Warum fällt vielen Studienanfänger*innen der Einstieg in die Physik so schwer – und wie lassen sich ihre Lernprozesse besser verstehen und gezielter unterstützen? Trotz bekannter Hürden in der Studieneingangsphase wird die universitäre Physiklehre in der deutschsprachigen fachdidaktischen Forschung bislang nur vereinzelt untersucht. Der Vortrag stellt ein Forschungsprogramm vor, das diese Lücke systematisch schließt.
Im Mittelpunkt stehen Studien zum Verständnis physikalischer Repräsentationen – etwa von Vektorfeldern und vektoriellen Differentialoperatoren – sowie zu typischen Lernschwierigkeiten im Umgang mit diesen Konzepten. Eye-Tracking-Experimente erlauben dabei Einblicke in visuelle Aufmerksamkeitsmuster, Denkprozesse und Fehlvorstellungen.
Die Ergebnisse fließen in die Entwicklung neuer, vorlesungsbegleitender Aufgabenformate ein, die in der Lehre erprobt und nach dem Prinzip der evidenzbasierten Medizin evaluiert werden.
So entsteht ein enger Forschungs-Lehr-Zirkel, der zeigt: Hochschuldidaktik Physik ist kein Randthema, sondern ein Schlüssel zur Weiterentwicklung universitärer Lehre – vorausgesetzt, sie bekommt den Raum, den sie verdient.
The coupling between electronic and nuclear degrees of freedom underpins many emergent phenomena in condensed matter systems. In this talk, we discuss the dynamics of nuclear motion and quantum geometric effects in electron-nuclear coupling, illustrated through examples from charge density waves (CDWs) and driven quantum materials. First, we demonstrate how nuclear quantum and thermal fluctuations influence CDW physics in two-dimensional materials. Second, we explore how the driving of circular phonons can generate giant pseudomagnetic fields. We describe a coupling mechanism between electronic and nuclear angular momenta rooted in electron-nuclear quantum geometry. Using SrTiO3 as a prototype, we show how this coupling induces transient orbital splittings through circularly driven phonon modes, paving the way for novel approaches to dynamically controlled magnetism. These insights are enabled by an ab initio electron-lattice downfolding scheme, which enhances the efficiency of simulations of electronic properties, nuclear motion, and their interplay by several orders of magnitude.
Coronal bright points are ubiquitous, highly energetic events that are often seen accompanying other dynamic and eruptive phenomena in the solar atmosphere. Their large energy output, their similarity to active regions and their connections to other events make them especially interesting to understand the solar corona. This talk will describe the findings of a recent project focusing on the hottest loop constituents of coronal bright points. We extract and analyse the hot loops of three different state-of-the-art radiative-MHD Bifrost simulations, studying their basic thermodynamic, magnetic and geometrical properties. The simulated loop properties are compared to a recent observational dataset, the first detailed study of this kind found in the literature, finding great compatibility between simulations and observations. Additionally, the loop geometry is assessed by focusing on the deviations from the commonly-assumed semi-circularity, another aspect that has been overlooked so far. We study the heating and cooling mechanisms acting on the loops, a fundamental aspect to accurately model the energy balance of these structures and their contribution to the coronal heating. The results show that only the 3D simulations show strong Joule and viscous heating in the footpoints. This reveals a localized source of entropy possibly stemming from 3D magnetic reconnection at the footpoints, which is consistent with other findings in this work.