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1 Introduction

The electronic properties of mixed valence lanthanide materials, like Ce compounds, were stud-
ied experimentally over a long period of time. In addition to thermodynamic and transport
measurements various “high energy” spectroscopies like valence photoemission and inverse
photoemission and core level spectroscopies were used to understand the electronic properties
of the f -levels of such systems [1]. It took some time until it was realized that electronic corre-
lations play an essential role for the understanding of the f -spectra. As a first step in the attempt
of the theoretical understanding, a single rare earth atom in a simple metal can be studied using
the single impurity Anderson model [2]. In this model, discussed in detail in the following, the
energy εf of the f -level, the coupling ∆ to the conduction electrons and the Coulomb repulsion
U between two electrons in the f -level are the essential parameters which determine quantities
like the total f - level occupancy nf . If spin-orbit and crystal field splitting is neglected the
degeneracy of the f -level is given by Nf = 14.
The f -electron spectral function of the Anderson impurity model was a long-standing issue. If
the coupling ∆ is weak, εf is below and εf + U is above the Fermi level the spectrum has a
peak near εf (seen in photoemission) and a peak near εf + U (seen in inverse photoemission).
It was further realized that the spectrum has resonance close to εF = 0 usually called “Kondo
resonance” [3, 4]. Except for some special cases [5] it was, however, for a long time hard to
determine even the qualitative properties of the Kondo resonance.
A historically important progress in the treatment of the Anderson impurity model was the
realization in the early eighties of the last century that 1/Nf can be treated as a small parameter
[6, 7]. Using this idea O. Gunnarsson and the author developed a method for calculating zero
temperature spectral properties (“intermediate states method”), which becomes exact in the
limit Nf → ∞ [8–11]. In particular this method makes it possible to study the Kondo peak
quantitatively for large values ofNf . Analytical results in the infiniteU limit obtained to leading
order in 1/Nf are presented in the following chapters. Higher order calculations which require
numerical work usually converge quickly for Nf = 14. They were successfully used for a
comparison to experimental spectra of Ce compounds [9, 10, 12].
Apart from second quantization the intermediate states method uses only basic quantum me-
chanics. The knowledge of more sophisticated many-body techniques, like Feynman diagrams,
is not necessary to understand it. This is presumably one the reasons why it is used frequently
by experimental groups for the interpretation of their measured spectra.
At about the same time as the intermediate states method, large Nf approaches (for infinite U )
were proposed which allow an extension to finite temperatures [13–16]. Some of the ideas in
these papers can be traced back to earlier work [17, 18]. Using different many-body techniques
these approaches lead to the same set of integral equations in the so-called “non-crossing ap-
proximation” (NCA). Usual Feynman diagram techniques can be used in the derivation if a
“slave boson” is introduced [16]. There is a special chapter on the slave boson technique in this
book.
At the time of these developments Wilson’s numerical renormalization group method (NRG) to
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calculate ground state properties of the spin-degenerate Anderson impurity model numerically
to arbitrary accuracy was known [19], but the extension to calculate the impurity spectral func-
tion came more than ten years after Wilson’s work [20,21]. There are two chapters on the NRG
in this book. Therefore it is not further discussed here.
Later the NCA was generalized to finite U values [22–24] and further improved [25, 26] to
correctly obtain the Kondo scale for Nf = 2. Another approach which circumvents many
of the earlier deficiencies in the treatment of the spin-degenerate single impurity Anderson
model (SIAM) is the “local moment approach” [27]. It was later extended to include orbital
degeneracy [28].
Exact results for ground state properties and thermodynamic properties of the spin-degenerate
Anderson impurity model were presented using the Bethe-ansatz [29, 30]. Later this approach
was extended to the model with large orbital degeneracy in the limit U → ∞ [31]. Unfor-
tunately results for spectral properties by this method do not (yet) exist. The Bethe-Ansatz
technique is discussed in a separate chapter.
Additional motivation for simple accurate calculational schemes for the impurity spectral func-
tion came later from the development of the dynamical mean field theory (DMFT) [32] in which
an extended lattice model of correlated electrons is mapped onto a SIAM with a coupling to a
bath whose structure has to be determined self-consistently. Then the coupling of the impurity
to the conduction band can have an arbitrary energy dependence.

In section 2 the Anderson impurity model in its basic form as well as the minimal model for
an impurity with a core level in a metal are introduced. Important new aspects when the orbital
degeneracy is taken into account are discussed in section 3. As a first example of the ideas of the
1/Nf expansion presented in the following the ground state of the impurity system is discussed.
In section 4 the “intermediate states” method is introduced and applied to the description of
various spectroscopies. The comparison with spectroscopic measurements of mixed valence
compounds is shortly addressed in section 5.

2 Basic impurity models

2.1 Spin-degenerate single impurity Anderson model

In order to study a single magnetic impurity in simple metals P. W. Anderson proposed the
Hamiltonian [2]

HA =
∑
σ

[
εdndσ +

∑
k

εknkσ +
∑
k

Vdk(ψ
†
dσψkσ +H.c.)

]
+ Und↑nd↓ , (1)

where ψd,σ is the annihilation operator of the localized impurity |d〉-state with energy εd and
the ψk,σ are the annihilation operators of the delocalized band states |k〉 with energy εk. The
ndσ = ψ†dσψdσ (and d → k) are particle number operators. In the body of his 1961 paper
Anderson used the “physically unrealistic case” with only spin degeneracy and treated the case
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of a doubly degenerate “d”-orbital in an appendix [2]. As a “physically realistic” case the spin-
degenerate model was later used to describe hydrogen chemisorption on metal surfaces (d→ a

for “adsorbate”), where |a〉 corresponds to the hydrogen 1s-level [33]. The last term of the
Anderson Hamiltonian describes the local “Coulomb” repulsion U which acts when the d-level
is doubly occupied. This two-body interaction makes the model highly non-trivial.
Experimentally relevant spectral functions are obtained from the one-particle Green’s functions.
The general definition of the retarded functions [36] is

〈〈A;B〉〉z ≡ −i
∫ ∞
0

〈[A(t), B]±〉eiztdt , (2)

where A(t) = eiHtAe−iHt is the operator A in the Heisenberg picture, 〈 〉 denotes the average
over the grand canonical ensemble, and z is a complex variable with Imz > 0 in order to ensure
the convergence of the time integral. For operators A involving products of and odd (even)
number of Fermion field operators the anticommutator [ , ]+ (commutator [ , ]−) is chosen. The
Heisenberg equation of motion (EOM) for A(t) and a partial integration yields the EOM

z〈〈A;B〉〉z − 〈〈[A,H];B〉〉z = 〈[A,B]±〉 . (3)

This EOM is very useful for discussing the exactly solvable limits of the Anderson impurity
model.
The retarded one-particle Green’s functions Gij(z) is obtained by A→ ψi, B → ψ†j .

Gij(z) ≡ 〈〈ψi;ψ†j〉〉z . (4)

At zero temperature the local Green’s function takes the form

Gdσ,dσ(z) ≡ 〈E0(N)|
[
ψ†dσ

1

z +H − E0(N)
ψdσ + ψdσ

1

z −H + E0(N)
ψ†dσ

]
|E0(N)〉 (5)

≡ G<
dσ,dσ(z) +G>

dσ,dσ(z) .

The first term is relevant for photoemission and the second one for inverse photoemission. At
finite temperature T the spectral functions are obtained as

ρ<dd(ε) = −
1

π
f(ε)ImGdσ,dσ(ε+ i0) , ρ>dd(ε) = −

1

π
(1− f(ε))ImGdσ,dσ(ε+ i0) , (6)

where f(ε) = (eβε + 1)−1 is the Fermi function with β = 1/kBT and the chemical potential is
chosen as the zero of energy. This leads to

ρ>dd(ε) = eβερ<dd(ε) . (7)

This relation can be read as “photoemission determines inverse photoemission”. It has been
used in the present context to get information about a Kondo resonance above the chemical
potential by means of photoemission [37]. Unfortunately the relation is of limited practical use.
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For U = 0 the Anderson impurity model describes noninteracting electrons and is exactly
solvable. The generally valid EOMs follow from Eq. (3)

(z − εd)Gdσ,dσ(z)− U〈〈ψdσnd−σ;ψ†dσ〉〉z −
∑
k

VdkGkσ,dσ(z) = 1 , (8)

For U = 0 these equations close and one obtains

GU=0
dσ,dσ(z) =

1

z − εd − Γ (z)
, with Γ (z) =

∑
k

|Vdk|2

z − εk
. (9)

For finite systems Γ (z) has poles on the real axis. In the thermodynamic limit they go over to a
branch cut on the real axis.
Using ρdσ,dσ(ε) = −ImGdσ,dσ(ε + i0)/π one obtains the impurity spectral function. The only
information about the band states which enters is the coupling function Γ (ε+ i0). It determines
the width and location of the resonance resulting from the coupling. An often used approxima-
tion for the coupling function is the “wide-band limit” Γ (ε ± i0) = ∓iΓ with a constant Γ .
Then the U = 0 impurity spectral function ρdσ,dσ(ε) has Lorentzian peak of half-width Γ at εf .
The mathematical structure of the results of the noninteracting limit of the Anderson model first
appeared in earlier models by K.O Friedrichs [34] and T.D. Lee [35].
A long history exists of the attempts to solve the Anderson impurity model for finite values of
the Coulomb interaction U . It started with Anderson using the Hartree-Fock (HF) approxima-
tion [2]

Und↑nd↓ → U
(
nd↑〈nd↓〉HF + nd↓〈nd↑〉HF − 〈nd↑〉HF 〈nd↓〉HF

)
, (10)

which corresponds to a noninteracting model with the bare f -level position given by the re-
placement εd → εHFdσ = εd + U〈nd−σ〉HF . This leads to

GHF
dσ,dσ(z) =

1

z − εd − U〈nd−σ〉 − Γ (z)
. (11)

In the language of the EOMs the HF-approximation corresponds to the “factorization”
〈〈ψdσnd−σ;ψ†dσ〉〉z → 〈nd−σ〉〈〈ψdσ;ψ

†
dσ〉〉z. The discussion of the results of the HF- approx-

imation simplifies in the particle-hole-symmetric case εd + U/2 = µ = εF = 0 and a sym-
metric band around the chemical potential. Then 〈nd−σ〉RHF = 1/2 = 〈nd,−σ〉exact and the
R(estriced)HF resonance is at the chemical potential. The shape and position of this RHF-
spectral function is independent of the value of U in this particle-hole symmetric case. At
a critical value U/Γ = π solutions of the HF-equations occur where the occupancies of the
impurity level for spin-up and spin-down differ [2]. These “unrestricted Hatree-Fock” (UHF)
solutions are an artefact of the approximation as no spontaneous symmetry breaking can oc-
cur when the interaction acts in a zero dimensional system. Therefore the spin variable in the
Green’s function is suppressed in (most of) the following (e.g. dσ → d).
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In order to properly describe the U -dependence of Gdd a better treatment of the self-energy
Σ(z) defined in the usual way

Gdd(z) =
1

z − εd − Γ (z)−Σ(z)
(12)

is necessary. The first order contribution toΣ in U is just the HF-term U〈nd,−σ〉. In the particle-
hole symmetric case and the wide band limit the spectral function takes the form (Σ̃ ≡ Σ −
U〈nd,−σ〉 )

ρdd(ε) =
1

π

Γ + |ImΣ̃(ε+ i0)|
(ε− ReΣ̃(ε))2 + (Γ + |ImΣ̃(ε+ i0)|)2

(13)

with ReΣ̃(ε) an odd function of ε. At zero temperature the Fermi liquid property ImΣ̃(ε+i0) ∼
ε2 holds for ε → 0. This can be seen easily for the self-energy second order in U and has been
discussed to abitrary order by Yamada and Yoshida [38]. This implies the exact result for the
particle-hole symmetric case

T = 0 : ρdd(0) = ρRHFdd (0) =
1

πΓ
. (14)

Important additional insight on the energy dependence of ρdd(ε) is obtained by considering the
exactly solvable atomic limit in which Vdk = 0 for all values of k . Again the EOMs close as
(z − εd − U)〈〈ψdσnd−σ;ψ†dσ〉〉z = 〈nd−σ〉 holds for vanishing coupling to the conduction band.
Keeping the spin indices one obtains

GV=0
dσ,dσ(z) =

1− 〈nd−σ〉
z − εd

+
〈nd−σ〉

z − (εd + U)
. (15)

Here we only discuss the most interesting case when εd is below the Fermi energy and εd + U

is above it. Then the total occupancy of the impurity level is approximately one which holds
exactly in the particle-hole symmetric case. If an electron is removed from the impurity level the
empty impurity state created can decay by tunneling back in of a spin-up or spin-down electron
which gives the “atomic peaks” a width twice as large as the width of the RHF-Lorentzian.

Gdd(z) ≈
1/2

z − U/2− 2Γ (z)
+

1/2

z + U/2− 2Γ (z)
. (16)

A formal way to obtain this result is to calculate a properly defined “matrix self-energy” to
second order in V [39]. For U � Γ most of the spectral weight is in the “atomic peaks”
assumed to be well described. At the chemical potential the spectral weight vanishes in this
large U limit ∼ Γ/U2 instead of yielding the exact result 1/(πΓ ). This implies that a very
narrow peak at the Fermi energy is missing.
Both approximations for the local spectral function in the particle-hole symmetric case pre-
sented so far are are unable to properly describe this Kondo resonance at the Fermi energy. An
exact (numerical) calculation was only presented in the eighties with the help of the numerical
renormalization group (NRG) [20]. The exact NRG result in the wide band limit for U/Γ = 4π
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Fig. 1: Result for the impurity spectral function of the spin-symmetric Anderson model in the
particle-hole symmetric case in the wide band limit for U/Γ = 4π: exact result from the
numerical renormalization group (NRG) with the Kondo peak at the Fermi energy (full line);
restricted Hartee-Fock approximation (dashed line); perturbation theory around the atomic
limit (dashed-dotted line)

is shown in Fig.1 . The RHF result agrees with the exact NRG result only for ε = 0 but oth-
erwise fails badly. The naive perturbation theory around the atomic limit fails badly in the low
energy region. For larger values of U/Γ than in Fig. 1 the high energy features near ±U/2
agree better with the NRG-result than in this figure.

The simple arguments presented in favor of the Kondo resonance in the particle-hole symmetric
case give no information about its width and its precise location if |εd| 6= |εd + U |. Before the
NRG results were available it was therefore useful to obtain partial answers to these questions
in the limit of large additional orbital degeneracy of the impurity level. This is discussed in
detail in the following sections.

There is a long history of attempts to obtain a controlled approximation for Gdd and the corre-
sponding spectral function which cannot be presented here in detail. We shortly mention decou-
pling schemes of higher order Green’s functions which appear in the EOM of 〈〈ψdσnd−σ;ψ†dσ〉〉z
or in the EOMs of higher order [40–44]. The quality of the results for Gdd is generally hard
to judge. The resulting spectral functions can have frequency regions with negative spectral
weight [43]. Special attention to the large Nf limit has been given by Czycholl [44]. To leading
order in 1/Nf he obtains at zero temperature a sharp peak at the correct Kondo energy.

Additional information on the attempts to understand the physics of the SIAM can be found in
the book by A. Hewson [45].
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2.2 Impurity models involving core levels

X-ray photoemission spectroscopy (XPS) of core levels of an impurity as well as X-ray ab-
sorption spectoscropy are useful tools to obtain information about the properties of the valence
electrons. In a minimal model a single nondegenerate core level of the impurity with energy
εc is considered which is filled in the initial state. The creation of the core hole in the photoe-
mission process leads to an additional attractive potential for the valence level of the impurity
which lowers it by an amount Udc. The corresponding model Hamiltonian reads

Htot = HA + εcnc − Udc(1− nc)
∑
σ

ndσ (17)

As the ground state of the combined system has the form ψ†c |E0(N)〉 with |E0(N)〉 the ground
state of the valence system with the core electron present the time development of the remain-
ing pure valence system after removing the core hole is described by the modified Anderson
Hamiltonian H̃A with the energy εd of the impurity level replaced by εd − Udc. The creation of
the core hole acts as a quantum quench for the valence system. The core spectral function is
given by

ρcc(ε) = 〈E0(N)|δ(ε− εc − E0(N) + H̃A)|E0(N)〉 . (18)

For the case of noninteracting valence electrons, i.e. U = 0 in Eq. (1), this problem falls into the
class of the famous X-ray edge singularity problem [46]. The sharp core level spectrum without
the presence of the valence electrons is replaced by a continuum with a power law singularity
at the high energy edge. This is closely related to the Anderson orthogonality catastrophe [47]
which states that the overlap of the ground states of HA and H̃A vanishes with a power law
in 1/N when the number of electrons N tends to infinity. The core level spectrum can show
satellite peaks corresponding to higher energy eigenstates of H̃A due to physical processes that
occur on a finite time scale [48–50]. This has been addressed in detail e.g. for core levels of
adsorbates at metal surfaces [50]. For small coupling Γ a high energy resonance dominates the
core level spectrum if the adsorbate level initially well above the chemical potential is pulled
well below it when the core hole is created. For finite Coulomb interaction U the problem
cannot be solved exactly and various approximations were proposed [51, 52]. The treatment
within the large degeneracy limit is discussed in section 4.

3 Anderson impurity model with large orbital degeneracy

Despite the fact that Anderson proposed his model to treat transition metal impurities in simple
metals the five-fold orbital degeneracy of d-orbitals was not treated explicitely. The degeneracy
of f -orbitals is given by Nf = 14 if spin degeneracy is included and spin-orbit and crystal field
splitting is neglected. As mentioned in the introduction an important progress in the treatment
of the Anderson model was the realization that the treatment of 1/Nf as a small parameter
allows new approximation schemes [6,7]. In the SIAM Hamiltonian Eq. (1) the non-degenerate
orbital label d is replaced by the orbital quantum number m and Vkd by Vkm. We assume that in
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the thermodynamic limit ∑
k

V ∗kmVkm′δ(ε− εk) = V (ε)2δmm′ (19)

holds [9, 10]. It is useful to introduce new one-particle states

|ε,mσ〉 ≡ V (ε)−1
∑
k

Vkmδ(ε− εk) (20)

and to use the combined degeneracy index ν ≡ mσ. The orthogonality relation of these states
reads 〈ε, ν|ε′, ν ′〉 = δνν′δ(ε− ε′).
Despite the fact that it is mathematically more appropriate to write down the many body Hamil-
tonian for finite systems and take the thermodynamic limit in the end of the calculation, in the
following we formally write it down using creation and annihilation operators of the states de-
fined in Eq. (20). To avoid problems one can discretize the energies ε and replace the Dirac delta
functions δ(ε− ε′) by Kronecker deltas δεε′ . This is done anyway in the higher order numerical
treatment of the 1/Nf scheme presented in the following sections [9]. Alternatively one has to
subtract the (infinite) energy of the filled Fermi see.
Keeping theses precautions in mind the Nf -fold degenerate single impurity Anderson Hamilto-
nian used in the following reads

H =

Nf∑
ν=1

[
εfψ

†
νψν +

∫
εψ†νεψνεdε+

∫ [
V (ε)ψ†νψνε +H.c.

]]
+ U

∑
ν<µ

nνnµ . (21)

The Hamiltonian H̃0 which contains linear combinations of conduction states which do not
couple to the f -level is not included . It can be neglegted for the properties studied here.
As in the following V (ε) enters in the combinations NfV (ε)2 and V (ε)2 it is useful to define

Ṽ (ε) ≡
√
NfV (ε) (22)

and require that Ṽ (ε) is independent of the degeneracy Nf . This simplifies the discussion of the
large degeneracy limit Nf →∞.

3.1 Ground state calculation

The ground state calculation is performed variationally by classifying the many-electron states
shown in Fig.2 in orders of 1/Nf .
In the state |0〉 all conduction states below the Fermi energy are filled and the f -level is empty.
This state couples via H to the states “a” in Fig.2. They are of the form

|ε〉 = 1√
Nf

∑
ν

ψ†νψεν (23)

in which a conduction electron has hopped into the f -level. These states couple to the “b”-states
with two electrons

|ε, ε′〉 = 1√
Nf (Nf − 1)

∑
ν 6=ν′

ψ†νψενψ
†
ν′ψε′ν′|0〉 , (24)
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Fig. 2: Schematic representation of the many-electron basis states. Solid circles show electrons
and open circles show holes. The hatched part indicates the filled conduction bands and the
horizontal lines the f -level. The arrows show which states couple to each other. A solid line
indicates the strength Ṽ and a dashed line the strength Ṽ /

√
Nf .

and to states the “c”-states with a conduction electron-conduction hole pair

|Eε〉 = 1√
Nf

∑
ν

ψ†Eνψεν , (25)

where E refers to a conduction electron state above the Fermi level (E > εF ). Further states in
Fig.2 can easily be written down [10].

The matrix elements coupling these states are given by

〈ε|H|0〉 = Ṽ (ε) , (26)

〈ε, ε′|H|ε′′〉 =
√

1− 1/Nf [Ṽ (ε′)δ(ε− ε′′) + Ṽ (ε)δ(ε′ − ε′′)] , (27)

〈Eε|H|ε′〉 = Ṽ (E)/
√
Nfδ(ε− ε′) . (28)

These examples illustrate the general result that within each row in Fig.2 there are states which
couple with strength Ṽ , while states in different rows at most couple with a strength Ṽ /

√
Nf .

This allows to classify the states in orders of 1/Nf according to their contribution to the ground
state. The states in the first, second and third rows are of the orders (1/Nf )

0, (1/Nf )
1 and

(1/Nf )
2, respectively.

As an illustration we calculate the ground state for U =∞ to lowest order in 1/Nf . It is written
as [53]

|E0〉(0) = A

[
|0〉+

∫ 0

−B
dεa(ε)|ε〉

]
, (29)
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where the normalization constant A is related to the total occupancy nf of the f -level by A2 =

1 − nf . In contrast to the ground state energy E
(0)
0 the difference ∆E0 ≡ E

(0)
0 − 〈0|H|0〉

is finite also in the thermodynamic limit. Using the coupling matrix elements Eq. (26) and
〈ε|(H − 〈0|H|0〉)|ε′〉 = (εf − ε)δ(ε− ε′) the Schrödinger equation leads to

∆E0 =

∫ 0

−B
Ṽ (ε)a(ε)dε, (∆E0 − εf + ε)a(ε) = Ṽ (ε) . (30)

Therefore ∆E0 obeys the implicit equation

∆E0 =

∫ 0

−B

Ṽ (ε)2

∆E0 − εf + ε
dε→ Ṽ 2 ln

εf −∆E0

εf −∆E0 +B
, (31)

where the energy integration was performed for the case of an energy independent Ṽ . We
discuss the solution of the equation for the constant Ṽ case and εf well below the Fermi energy.
Defining the (positive) δ ≡ εf −∆E0, ∆̃ ≡ πṼ 2, and ε̃f ≡ εf +(∆̃/π) ln (πB/∆̃) the equation
for δ simplifies in the “Kondo-limit” limit −ε̃f � ∆̃

δ = (∆̃/π)eπ(ε̃f−δ)/∆̃ → δ ≈ (∆̃/π)eπε̃f/∆̃ . (32)

The coefficient

a(ε)2 = (∆̃/π)/(ε− δ)2 (33)

grows on the energy scale δ as the Fermi energy is approched from below. The total f -
occupancy is determined by

∫
a(ε)2dε. For the case of an energy independent Ṽ one obtains

nf = ∆̃/(∆̃ + πδ) [9]. The energy scale δ depends exponentially on πε̃f/∆̃, which suggests
that it can be, apart from a factor given by the Boltzmann constant kB, interpreted as the Kondo
temperature: TK = kBδ. This will be further examined in the following sections.
The infinite U lowest order calculation presented above can be extended to the case when the
spin-orbit splitting ∆εf is taken into account [9]. The single f -level (with Nf = 14) is replaced
by two levels (with Nf1 = 6 and Nf2 = 8 for j = 5/2 and j = 7/2) at εf and εf +∆εf . For the
descrption of high-resolution experimental spectra of Ce compounds it is important to include
the spin-orbit splitting [57, 58].
The (1/Nf )

0 calculation of the ground state can also be extended to the finite U case. If an
infinite three-body interaction is assumed one just has to take the “b”-states in Fig.2 into account
with an additional term with coefficients b(ε, ε′) in Eq. (29). The Schrödinger equation then
leads to an integral equation for a(ε) which for U � B is of separable form [11]. For a
detailed discussion of the explicit bandwidth behaviour of the energy difference δ(U) between
the nonmagnetic ground state and the lowest “magnetic states”, which are not totally symmetric
in the degeneracy indices, see this reference.
Numerically performed ground state calculations of higher order in 1/Nf using the states shown
in Fig. 2 quickly converge for Nf = 14 [9, 10].
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4 The “intermediate states method” for spectra

The theoretical description of photoemission simplifies considerably when the emitted electron
in the state |κ〉 is assumed to have no interaction with the remaining (N − 1)-electron sys-
tem. This “sudden approximation” becomes increasingly accurate as the kinetic energy of the
emitted electron is increased. In this approximation the photoelectron current can be calculated
using the golden rule. For a weak energy dependence of the matrix elements τκi of the dipol
operator, where |i〉 is a valence state, the current is directly related to the spectral function of
one-particle Green’ functions G<

ii when interference effects are neglected [54, 10].

In Eq. (5) the zero temperature local one-particle Green’s functions G< and G> are expressed
as an expectation value of the resolvent of the many body Hamiltonian H . One obtains the well
known Lehmann representation by inserting the complete set of (N ∓1)-electron eigenstates of
H . For G< one can alternatively use the resolution of unity made of an arbitrary complete set
{|i〉} of (N − 1)-electron basis states

G<
νν(z) =

∑
ij

〈E0(N)|ψ†ν |i〉〈i|(z +H − E0(N))−1|j〉〈j|ψν |E0(N)〉 . (34)

The inversion of the matrix H̃(z)ij ≡ 〈i|(z +H −E0(N))|j〉 would lead to the exact result for
G<
νν(z)

G<
νν(z) =

∑
ij

〈E0(N)|ψ†ν |i〉(H̃(z)−1)ij〈j|ψν |E0(N)〉 (35)

if the procedure could be actually carried out for a complete set of states. Approximations can
be obtained by truncating the set {|i〉} of intermediate states. Useful results can be obtained
again using a classification of the states according to their contribution in orders of 1/Nf . For
the calculation of G> one can proceed the same way but with (N + 1)-electron intermediate
states {|i〉}.

4.1 Valence photoemission spectroscopy

Again we first consider the U = ∞ case and work to lowest order in 1/Nf . Then the ground
state is described by Eq. (29). As ψν |E0〉(0) = A

∫
dεa(ε)ψεν |0〉/

√
Nf we introduce the basis

states |εν〉 which via H couple to the states |εε′ν〉, where

|εν〉 ≡ ψεν |0〉, |εε′ν〉 ≡
1√
Nf

∑
ν′

ψ†ν′ψε′ν′ψεν |0〉 . (36)

The matrix H̃(z) defined before Eq. (35) has the matrix elements

H̃(z)ε,ε′ = (z −∆E0 − ε)δ(ε− ε′), (37)

H̃(z)εε′,ε′′ = Ṽ (ε′)δ(ε− ε′′)− Ṽ (ε)/
√
Nfδ(ε

′ − ε′′), (38)

H̃(z)εε′,ε1ε2 = (z −∆E0 + εf − ε− ε′)δ(ε− ε1)δ(ε− ε2) . (39)
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To leading order we neglect the term ∼ 1/
√
Nf on the rhs of the second equation. This leads

to the simplification that for each |εν〉 one can treat the coupling of this state to a continuum
of states with an additional hole at ε′ < εF = 0 separately. This greatly simplifies the leading
order calculation of G<

νν .
For the inversion of H̃(z) it is convenient to use a block matrix form with elements H̃11, H̃12, H̃21

and H̃22, where e.g. H̃11 refers to the H̃(z)ε,ε′ and H̃22 to H̃(z)εε′,ε1ε2 . The well known matrix
inversion formula

(H̃−1)11 = (H̃11 − H̃12H̃
−1
22 H̃21)

−1 (40)

simplifies the calculation. Since H̃22 is diagonal its inversion is trivial and one obtains

(H̃(z)−1)εε′ = g̃(z −∆E0 + εf − ε)δ(ε− ε′) , (41)

where

g̃(z) =
1

z − εf − Γ̃ (z)
, with Γ̃ (z) =

∫ 0

−B

Ṽ (ε)2

z − ε
dε . (42)

Note that the energy integration in the definition of Γ̃ (z) only extends to εF = 0. The function
g̃(z) has the form of the f -Green’s function of a noninteracting Anderson model with a sharp
band cut-off at ε = 0. Finally performing one of the energy integrations with the help of the
delta function in Eq. (41) one obtains for G<

f to leading order in 1/Nf

G<
νν(z) =

1

Nf

A2

∫ 0

−B
a(ε′)2g̃(z −∆E0 + εf − ε′)dε′. (43)

The function Img̃(ε ± i0) has a continuum part for −B ≤ ε ≤ 0 due to the imaginary part
of Γ̃ (ε ± i0). As the transcendental equation (31) for ∆E(0)

0 can be written as ∆E0 = −Γ̃ (δ)
the function g̃(z) has a pole at z = δ = εf − ∆E0. The strength of the pole (1 − dΓ̃ /dz)−1

evaluated at z = δ is given by 1 − nf . This pole of g̃ yields for the total f spectral function
ρ<f (ε) = −

∑
ν ImG

<
νν(ε+ i0)/π using Eq. (33) and A2 = 1− nf

ρ<f (ε) =
(1− nf )2Ṽ (ε)2

(δ − ε)2
, for − δ ≤ ε ≤ 0 . (44)

There is a (partial) contribution of this type to ρ<f (ε) also for −B ≤ ε ≤ δ. As A2
∫
a(ε)2dε =

nf the total weight of ρ<f resulting from the pole of g̃(z) at z = δ is given by nf (1 − nf ). It
becomes very small in the Kondo limit nf ≈ 1.
For ε < −δ the continuum part of Img̃(ε± i0) also contributes to ρ<f (ε). (In addition there can
be a split-off state below the conduction band in g̃(z)).
The “low energy” spectral weight described in Eq. (44) rises sharply as ε approaches εF = 0

from below. It is the tail of the Kondo resonance present at ε ≈ δ in the spectral function
ρ>f (ε) describing inverse photoemission. This is discussed in the next subsection. This low
energy behaviour is totally different from the noninteracting case Nf = 1. When εf lies below
the Fermi energy, the f -spectral density in the Nf = 1 case has an “ionization peak” near εf
and the spectral density decreases when ε approaches εF = 0 from below. In the Kondo limit
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Fig. 3: Comparison of the leading order result for ρ<f (ε) (full lines) with the result of a Nf = 1

calculation where ∆ is replaced by ∆̃ (dotted lines) for two different values of εf .

−εf � ∆̃ implying nf ≈ 1 a similar ionization peak near εf dominates ρ<f (ε). In this limit the
energy integration with A2a(ε′)2 in Eq. (43) for −ε � δ approximately acts like (one-sided)
delta function in the origin and ρ>f (ε) ≈ −Img̃(ε+ i0)/π holds. The width of this peak is given
by ∆̃ = Nf∆, where ∆ = πV 2(εf ) is the half-width of the model for Nf = 1. After removing
an f -electron from the ground state given by Eq. (29) the probability that an conduction electron
in channel ν with energy ε ≈ εf hops into the f -level is given determined by ∆. Since there are
Nf such channels the width is given by Nf∆ = ∆̃.
In Fig. 3 we compare results for the leading order result for ρ>f (ε) with the result of a Nf = 1

calculation where ∆ is replaced by ∆̃. For both cases shown εf is below the Fermi level. In the
left part of the figure |εf | < ∆̃ and the ionization peak of the Nf = 1 spectrum only shows as a
shoulder in the leading order result for ρ>f (ε). In the right half of the figure |εf | = 2∆ and the
ionization peak shows up which is more asymmetric than the Nf = 1 result. This is similar as
in Fig. 1 where in the exact NRG result the “atomic peaks” are more asymmetric than the result
from simple perturbation theory around the atomic limit.
The leading order calculation ofG<

νν(z) can be again extended to the case of including spin-orbit
splitting [9] and the case of finite U [11].

4.2 Inverse Photoemission

In inverse photoemission earlier called Bremsstrahlung isochromat spectroscopy (BIS) the sam-
ple is bombarded by electrons which make radiative transitions into lower-lying (N + 1)-
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electron states. Here we discuss transitions into the f -level. The theoretical description is
in terms of

G>
νν(z) = 〈E0(N)|ψν

1

z −H + E0(N)
ψ†ν |E0(N)〉 . (45)

As the integrated weight of the total spectral function ρνν = ρ<νν+ρ
>
νν is unity and

∫
ρ<νν(ε)dε =

nf/Nf holds, with nf ≤ 1 in the infinite U case, the integrated weight of ρ>νν is given by
1−nf/Nf , i.e. it is larger by a factor ofNf than the integrated weight of ρ<νν . This is a clear hint
that a 1/Nf approximation for the full Gνν is problematic. In order to fulfill ρ<νν(0) = ρ>νν(0)

expected for an exact description at any finite Nf , this is an indication of the requirement to
treat G>

νν differently from the of calculation G<
νν .

If in Eq. (45) the leading order in 1/Nf ground state Eq. (29) is used one has to calculate the
expectation value of the resolvent of the many body Hamiltonian with

ψ†ν |E0〉(0) = A

ψ†ν |0〉+ 1√
Nf

∑
ν′(6=ν)

∫
dεa(ε)ψ†νψ

†
ν′ψεν′|0〉

 . (46)

In the first state on the rhs the f -level is singly occupied (“f 1”) while in the second term it is
doubly occupied (“f 2”). Integrating the corresponding expectation values of δ(ε−H+E0(N))

shows that the total weight of the f 1 contribution is given by 1−nf and the f 2 weight by nf (1−
1/Nf ). For large values of U the two different contribution are energetically well separated.
In a first attempt one would take the states on the rhs of Eq. (46) as the intermediate states to
calculate G>

νν . If one focusses on the f 1-peak in the U → ∞ limit, only the state |ν〉 = ψ†ν |0〉
plays a role and one obtains

G>
νν(z) ≈

1− nf
z +∆E0 − εf

=
1− nf
z − δ

. (47)

In this approximation ρ>νν has a delta peak at εf −∆E0 = δ. For εf well above the Fermi energy
εF = 0 one has nf � 1 and |∆E0| is small compared to εf . This leads to a Delta peak of weight
≈ 1 close to εf . This is the atomic limit of the trivial “empty level case”. Lowering εf lowers
the peak position but it stays above the Fermi energy. For εf well below the Fermi energy the
peak is very close to the Fermi energy as δ/∆̃ is exponentially small in πε̃f/∆ (see Eq. (32)).
As 1− nf � 1 the weight of the peak is very small. In this approximation this Kondo peak has
zero width.
Obviously when using this leading order description for the calculation of ρ<νν the condition
ρ<νν(0) = ρ>νν(0) is not fullfilled. In order to achieve this one has to go one order higher in 1/Nf

for the intermediate states inserted in Eq. (45). For εf well above the Fermi level the state |ν〉
decays into states |Eν〉 ≡ ψ†Eν |0〉 with E ≈ εf which leads to a peak a half-width πV (εf )

2 =

πṼ (εf )
2/Nf . The states |Eν〉 couple to the states |Eεν〉 ≡

∑
ν′ ψ

†
Eνψ

†
ν′ψεν′ |0〉/

√
Nf with a

matrix element Ṽ (ε), i. e. of order (1/Nf )
0. In the infinite U case these are the additional state

to be included. The calculation is similar to the leading order calculation for G<
νν presented in
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the previous subsection, but using the inversion formula Eq. (40) twice. It leads to [9, 10]

G>
νν(z)

1− nf
z +∆E0 − εf − µ(z)

, with µ(z) =

∫ B

0

V (E)2

z +∆E0 − E + Γ̃ (−z −∆E0 + E + εf )
dE .

(48)
The additional term Γ̃ in the denominator of the integrand of µ(z) results from including the
states |Eεν〉 with a hole in the conduction band. Neglecting Γ̃ gives the result for the width of
the peak near εf well above the Fermi energy, mentioned above. For εf well below the Fermi
energy it is essential to include Γ̃ . Then the integrand on the rhs has a pole at z = E of strength
1− nf leading to −Imµ(ε+ i0) = (1− nf )πV (ε)2. This leads to

ρ>f (ε) =
(1− nf )2Ṽ (ε)2

(ε− δ − Reµ(ε))2 + ((1− nf )πV (ε))2
, for 0 ≤ ε ≤ δ (49)

In a strict 1/Nf expansion of ρ>f the contributions from µ in the denominator which are of order
1/Nf and can be neglected. With this assumption ρ>f (ε) joins smoothly to the low energy result
in ρ<f (ε) in Eq. (44). The steep rise found there for−δ ≤ ε ≤ 0 continues for ρ>f (ε). To describe
the region ε ≈ δ the strict 1/Nf expansion fails and the full expression in Eq. (49) has to be used.
This gives the Kondo peak a half-width (1− nf )πV (δ)2 ≈ πnfδ/Nf . The correct treatment of
the energy range ε ≥ δ within the approximation given by Eq. (48) requires the inclusion of the
“continuum part” of µ. Unfortunately the approximation for G>

νν presented by Eq. (48) leads
to an additional weak unphysical pole slightly below ε = 0. A different type of of anomaly
appears in the NCA at zero temperature [55]. For large Nf the NCA properly describes how the
weight of the Kondo resonance decreases whith increasing temperature where the scale is given
by the Kondo temperature.
One can summarize the behaviour of the f 1-peak as a function of εf as follows: Lowering εf
from well above the Fermi energy to well below it its position goes from εf to very close to
εF = 0. Its weight (1− nf )Nf and width (1− nf )πṼ (δ)2/Nf is reduced in this process as nf
goes from ≈ 0 to ≈ 1.

For a comparison with experiment it is crucial to take into account that U is finite, since this
leads to a second, f 2-like peak in the BIS spectrum. Using the leading order finite U ground
state and additional intermediate states with a doubly occupied f -level and a hole in the con-
duction band the resulting matrix has to be inverted numerically [11, 10]. The f 2 peak has a
broadening of 2∆ (half-width) as the f 2 state can decay by the hopping of either of the two
f -electrons into the conduction band. It shows a tailing towards higher energies. The reason is
that the intermediate states with two electrons in the f -level have a hole in the conduction band.
This hole is likely to be close to the Fermi energy, but can also be located further down.
In the spin-degenerate case Nf = 2 a half filled symmetric band and 2εf + U = 0 lead to
particle-hole symmetry and the Kondo resonance is at ε = 0 as shown in Fig. 1. For Nf > 2

the Kondo resonance is above the Fermi level for 2εf + U = 0 [24]. In order to obtain the
Kondo resonance exactly at ε = 0 for Nf = 2 an infinite summation of skeleton diagrams in the



impurity spectra 5.17

generating functional is necessary leading to the “symmetrized finite U NCA” [25].

Let us summarize the behaviour of the total spectral function ρf = ρ<f +ρ
>
f in the Kondo regime

−εf � ∆̃ for large values of U : The ionization peak near εf has the weight nf ≈ 1, the weight
of the f 1 peak (Kondo peak) slightly above εF is (1− nf )Nf , and the f 2 peak near εf + U has
a weight nf (Nf − 1) ≈ Nf − 1. Therfore even for nf = 0.9 and Nf = 14 the weight of the
f 1 peak is higher than the weight of the ionization peak. Despite the fact that that there is a
small chance, 1− nf , to find the f -level empty, there are Nf different ways to put the electron.
The weight of the Kondo peak in the BIS specrum is a factor Nf larger than the part seen in
photoemission.

4.3 Spectra involving core holes

As mentioned in section 2.2 core level XPS and X-ray absorption spectroscopy provide addi-
tional information about the valence electrons. The Hamiltonian used to describe core level
spectra of mixed valence systems takes the form presented in Eq. (17) with Udc → Ufc and HA

replaced by the valence Hamiltonian H in Eq. (21). With the assumptions explained in section
2.2 the core spectral function is given by

ρc(ε) = 〈E0(N)|δ(ε− εc − E0(N) + H̃)|E0(N)〉 . (50)

where H̃ is H in Eq. (21) with εf replaced by ε̃f ≡ εf − Ufc. In the infinite U case to order
(1/Nf )

0 the ground state is given in Eq. (29) and the states |0〉 and |ε〉 defined in Eq. (23) are
used as intermediate states in the calculation of Gcc = G<

cc. The matrix elements H̃(z)ij ≡
〈i|(z + H̃ − E0(N))|i〉 are easily written down. The 00, 0ε, ε0 and εε′ matrix elements of of
the inverse matrix H̃(z)−1 are all needed. The calculation is analogous to the one to obtain the
Green’s functions of a noninteracting Anderson model. With z̃ ≡ z − εc −∆E0 this yields e.g.
(H̃(z)−1)00 = (z̃ − Γ̃ (z̃ + ε̃f ))

−1 with Γ̃ defined in Eq. (42). After some algebra [9] the result
can be brought into the form

ρc(ε+ εc) = (1− nf )
(

Ufc
ε− Ufc

)2

ρ̃f (ε−∆E0 + εf − Ufc) , (51)

where
ρ̃f (ε) = −

1

π
Im

1

ε+ i0− εf + Ufc − Γ̃ (ε+ i0)
. (52)

The same type of expression is obtained in the exact solution of Nf = 1 “filled band model”
[56]. In this leading order in 1/Nf approximation the core spectrum is directly related to the
valence spectrum ρ̃f . This clearly shows that core level spectroscopy gives information about
properties of the valence electrons, like nf , εf and ∆. The multiplying factor [Ufc/(ε − Ufc)]2

changes the weights in ρ̃f but does not normally introduce new structures.
To test the accuracy of the 1/Nf method one can study the limit Nf = 1, where the exact solu-
tion can be obtained by solving the Nozierès-de Dominicis integral equation [46] numerically.
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Fig. 4: The core level spectrum for Nf = 1, εf = 0, ∆ = 1.5, and Ufc = 9 and a semi-ellitical
form of V (ε)2 with B = 3. The spectra are shown with a Lorentzian broadening (FWHM) of
0.15: exact result (full line), using the states 0, a, c, and d in Fig. 2 as intermediate states
(dashed line)

A comparison of the 1/Nf result including the state 0, a, c, and d in Fig. 2 is shown in Fig. 4.
As mentioned in section 2.2 the exact result has a has an infrared singularity at threshold which
is not present in the 1/Nf result. To mimic life time broadening the spectra shown have given
a Lorentzian broadening of 2Γ (full width half max). Despite the fact that the 1/Nf calcula-
tion includes at most two holes, the asymmetry of the exact solution which includes an infinite
number of electron-hole pairs is quite well described except very close to threshold.
X-ray absorption spectroscopy of 3d → 4f transitions has formal similarities with inverse
photoemission, as an electron is added to the f -level. The difference is that the final state has
the core hole present. The theoretical description therefore, as in core-hole XPS, has to use the
Hamiltonian H̃ with εf → εf−Ufc. If one works to lowest order in 1/Nf it is possible to obtain
an analytical solution even if f 2 configurations are included [9].

5 Comparison with experiment

The model calculations for spectra using the impurity model are used frequently for a compar-
ison with experimental data of lanthanide materials. An example for systems with essentially
zero f -occupancy in the ground state are La compounds. In Ce systems the f 0 and f 1 play the
important role. Even in dense systems spectra calaculated by the intermediate states method
for the Anderson impurity model are often in good agreement with experiment [9, 10, 12, 59].
Switching from the number of electrons in the f -level to the number of holes in it, the formal-
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Fig. 5: Comparison of experimental spectra (dots) for CeNi2 with theoretical results using the
impurity model. The results for inverse phtoemission (BIS), valence photoemission (PES), 3d
X-ray photoemission (XPS), and 3d→ 4f X-ray absorption (XAS) are discussed in the text.

ism presented is easily extended to describe also Yb compounds as there the f 13 and f 11 play
the same role as the f 1 and f 0 configurations in Ce compounds [57]. To study e.g. Pr or Nd
compounds the model used here should be generalized.

As the ab initio determination of parameters of model Hamaltonians is a problematic issue one
alternatively adjusts them to experimental data. If e. g. different spectroscopies are used, a part
of the data may suffice to obtain the parameters by the fitting to peak positions and their widths.
Then additional data can be used as a consistency check. If this turns out to be satisfying for
a class of materials the use of the model in conjunction with a first set of data has predictive
power for further measurements. This is what in fact happened with spectra of mixed valence
systems [1]. As an example let us take core level spectra. The leading peak in Fig.4 corresponds
to final states of mainly f 1 character, while the satellite corresponds to f 0 like states. This are
the the important final states for La compounds. For Ce compounds it is important to also
take f 2 configurations into account. The core spectrum often has three peaks, corresponding to
f 0, f 1 and f 2 states. The parameters are usually such that the high energy f 2 peak (shoulder) has
a small but observable weight which strongly depends on the value of the coupling parameter
∆ [10] and is therefore suitable for its determination.
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Fig. 5 shows as an example experimental spectra for CeNi2 and the attempts to fit them with a
single set of parameters using the Anderson impurity model and the methods discussed in sec-
tion 4. As the energy dependence of V (ε)2 has to be taken into account [12], the average value
∆av of πV (ε)2, extracted from 3d→ 4f X-ray absorption spectra, ∆av = 0.11eV is presented.
The total f-occupancy is inferred to be nf = 0.83. The two components of the XAS spectrum
in the figure are due to transitions from the spin-orbit split 3d 3/2 and 3d 5/2 levels. Each com-
ponent shows an f 1 and f 2 peak with multiplet structure. The relative weights of the 3d 3/2

and 3d 5/2 components were adjusted to the experiment and a weak background was added as
shown. A Lorentzian broadening (FWHM=2.0 eV) was used to describe life-time braodening
and instrumental resolution. The parameters obtained from the 3d XPS spectrum differ only
slightly from the ones from the XAS data. The f 2 and f 1-Kondo peak of the shown BIS spec-
trum were obtained using these parameters. Using the same parameters the valence-band PES
spectrum shows the onset of the Kondo peak at energies close to zero. The peak at ε ≈ −3eV
is somewhat too low in energy and too narrow (εf = −1.6eV was used ). Introducing different
features in V (ε)2 allows to improve the agreement with experiment [12]. More information
about the Coulomb parameters used can be found in this reference. It should be mentioned that
for CeNi2 and other Ce compounds the calculation of the static magnetic susceptibility with the
parameters from spectroscopy leads to results in good agreement with the measured values.

As mentioned there were many theoretical developments in the last thirty years which go beyond
the methods presented in sections 3 and 4. The intermediate states method nevertheless has
remained a very valuable tool in the hands of experimentalists.
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