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Remarks on causality, localization, and spreading of wave packets
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Localization properties of general quantum systems and their connection with causality are studied, extending

previous results by the first-named author.

I. INTRODUCTION

For a free nonrelativistic wave packet it is well
known that it spreads instantaneously over all of
space if it is localized in a bounded region at time
g=0. For a free relativistic particle the meaning
of localization is not quite clear a priori, but, for
example, for the Newton-Wigner position operator
a similar phenomenon occurs' and it also occurs in
some models in which localization is expressed by
means of a current density four-vector. ' For rel-
ativistic particles there is a host of other position
operators that have been proposed. s However, if
one only assumes that one-particle states localized
in disjoint regions are orthogonal to each other,
then, as was shown by one of us, ' a particle will
spread infinitely fast if initially confined in a
bounded region of space; this result was later gen-
eralized to relativistic many-particle systems by
means of the edge-of-the-wedge theorem. ' It was
not shown in Refs. 4 and 5, however, that the
spreading was over all of space. These results im-
ply, of course, that one runs into conflict with
(Einstein) causality —ho propagation faster than the
speed of light —as soon as one can localize partic-
les in a bounded region.

In Secs. IIA and IIB of this paper we use very
simple analyticity arguments to first extend the
results of Refs. 4 and 5 to a quite general class of
time evolutions, not just relativistic ones. One
only needs a very weak condition on the energy-
momentum spectrum; for instance, if the energy
is a function a&(P) of momentum, as for a single
particle, then it suffices that ~ ~ -c and that ~ is
not identically constant. Under slightly stronger
assumptions it is then shown in Sec. II C that, if V
is any (bounded or unbounded) open region of space
and if the system is initially outside V, it will be
immediately afterwards everyw'here in V. Pictor-
ially this means that a wave function cannot exhibit
"holes" for finite-time intervals.

In Sec. II we make essential use of the assump-
tion that space and time translations commute.
Thus, we have restricted ourselves to translation-
invariant systems in this section. In the case of
many-particle systems one may also ask whether

results of this nature hold for translations of the
relative coordinates. Similar questions arise for
particles in external potentials. Such systems are
discussed in Sec. III.

The proofs of Theorems 2.1 and 2.2 below use the
physicist's language of non-normalizable eigenvec-
tors and are basically quite simple. For the more
mathematically inclined reader we have added an
appendix where these results are slightly extended
and proved by using the spectral theorem. In this
appendix we have also included another result re-
quiring more mathematical background than the
main text. This result concerns the absence of
compact localization of states in the continuous
spectrum of the Hamiltonian for a particle in an
external potential.

II. TRANSLATION-INVARIANT SYSTEMS

In this section we consider a physical system
described by a Hilbert space X and a time devel-
opment operator U, =exp( iHt) with self--adjoint
Hamiltonian H. One may think of N interacting or
noninteracting particles, +~ 1. It is assumed that
there are unitary operators U(a), a+A', corres-
ponding to space translations, i.e., if some state of
the system is described by some /~K then the
translated state is described by U(a)p. One can
write U(a) =exp( iP a). H -and P are conventional-
ly identified with the energy and momentum opera-
tors of the system. We assume that the Hamilton-
ian is translation invariant, i.e.,

[H, P] =0, [U„U(a)] =0 for all t, a.
'This means that H and P can be diagonalized si-
multaneously with in general non-normalizable
eigenvectors. ' The set (p', p) of all (generalized)
eigenvalues of (H, P) is the energy-momentum
spectrum or joint spectrum. For a one-particle
system H will be a function of P, H = a&(P), so that
po = to(p), and hence the energy-momentum spec-
trum will be a surface in g . If H is not a function
of &, as for interacting many-particle systems, the
spectrum is more general. For instance, for a
system of particles with masses m„. .. , m~ that
interact through positive pair potentials the spec-
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trum is the set of (po, p)&R' satisfying p' o p'/2M
orpo& (p +M')'~'(whereM—=g m,.), if the sys-
tem is described in a nonrelativistic or relativistic
framework, respectively (cf. also remarks 4 and
5 in Sec. II C). For ageneral relativistic system, as
in quantum field theory, one has pa& lpl.

The Hamiltonian is bounded from below, H~ -c
&-~, if all p' values satisfy p'~-c. This is
equivalent to &P, HQ) & -c for all P in the domain
of H. If H ~ -c one can assume c =0 by adding a
constant to H.

. A. A consequence of positive energy

Positivity of the energy has a simple but import-
ant consequence whose proof is based on an ele-
mentary analyticity argument.

L,emma. Let H & -c. Let X' be a closed sub-
space of X and assume that for some gHX and
some open time interval&, U, g cX' for any t c I.
Then U, p&3C' forany t&R. More generally, if A
is a bounded operator and AU, P =0 for any tEl,
then AU, p=0 for any tER.

Proof Let p .be an arbitrary vector orthogonal
to X'. Let z =t+iy with y ~0. Then

exists a sequence of finite disjoint intervals I„&B
(k=1, 2, . . . ) such that

(i) the union U», I» contains the energy spectrum;
(ii) for each k there is an open set p»cR' such

that I, & O, is not contained in the energy-momen-
tum spectrum.

Finally, assume that pc 3C satisfies the condition
(2.3). Then P =0.

Proof. Since H is bounded from below the lemma
implies that Eq. (2.3) holds for all t cR if l al & r
For any of the above I„, let Xz (p ) be 1 on I» and
zero outside. Then one also has'

&U(a)t, x,,(H)4) =«or lal-r. (2.4)

Now p»
= gi (H)g contains only energy values in I»

and, by condition (ii), only momentum values out-
side the set O~. In the momentum representation
g»-g»(p), ' one then has p»(p) =0 for p co,. From

E,(a) =- &U(a)g, ~,,(H)P)

exptp'a p, ~ p dp p, 25

one has

g(z) = &P, exp( tHz)y)- (2.2) E.(p)dp = &4(P) 4»(P))d~(p)

is analytic for y & 0 since H &—c. Moreover, g(z)
is continuous for y ~ 0 and vanishes for z = g eI.
But then g(z) vanishes for all z by the Schwarz re-
flection principle. This implies that y is ortho-
gonal to U, P for all t eR, i.e., the first part of the
lemma. The second part follows in the same way
by taking p=A*g with an arbitrary y&X. QZ.D.

Another way of stating the first part of the lemma
is that the subspace spanned by ( U,P; t a[a, bj) for
given g and a& b is invariant under all U, (it may
coincide with X).

B. Instantaneous spreading from bounded regions

Using the lemma just proved we shall now dis-
cuss the spreading of wave packets. Assume that
for a system in a state p a notion of localization is
given. As in Refs. 4 and 5 we assume at this point
only that, if g and g are localized in regions far
apart, g is orthogonal to g. This will be further
motivated in Sec. IIC. Now let U, |(i be localized in
a bounded region V for 0 ~ t & e. Then U(a)p, the
translate of P, should be localized outside V for
l al sufficiently large, and hence for some r &0

&U(a)P, U,g) =0 for any 0&t& e, l@l&r. (2.3)

The following theorem shows that this assumption
implies that g =0, provided some spectral condi-
tions are met.

Theorem 2.2 ("no bounded localization" ). Let
U(a) and U, commute and let H&-c. Assume there

where the right-hand side vanishes on 0,. But, by

Eq. (2.4), E»(p) is the Fourier transform of a func-
tion of compact support and thus analytic. Hence,
if E» vanishes on 0», E„=—0 and E»(a) =0 for all a.
Since by (i), P»yz (H) =1, we have

0 = g E (a) = &U(a) y,g )t„(H)y) =
& U(a) i', y)

for all a. Putting a=o the statement follows.
QS.D.

Remarks.
(1) The theorem implies that a state p, cannot be

localizedin a finite region p for a finite time in-
terval and that, if initially localized in V, it im-
mediately spreads out to infinity under the above
spectral assumptions. It need in pr'inciple, how-
ever, not "cover" all of space. This question will
be discussed in Sec. IIC.

(2) The spectral assumptions are very weak. If,
for example, K = e(P) & -c with a& continuous, it
suffices that w is not identically constant on the
momentum spectrum. '0 If one only has H &f(P)
& -c it suffices that supf(p) =~ on the momentum
spectrum.

(3) If the energy is not bounded from below one
can still obtain information on spreading: Assume
that a state p, is localized in V for all t and that
(i) and (ii) of Theorem 2.1 hold, but that H is not
bounded from below. Then the same argument as
before goes through and the analog of Theorem 2.1
would give g, = 0 in contradiction to lip, ll= I.
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Hence the state cannot be localized in V for all
times. It should be pointed out that in this case in-
stantaneous spreading does not take place in gen-
eral. For instance, the dynamics given by the free
Klein-Gordon and Dirac equations, for which the
energy is not bounded from below, give rise to fin-
ite propagation speed. An even simpler example is
a free particle with "energy" function &u(p) =p, . In
this case the "time evolution" simply translates
the wave packet in the x, direction.

C. Absence of holes

In this subsection we assume that some localiza-
tion operator N(V) for open regions VcR' is given,
such that &p, N(V)p& is the probability of detecting
the system (or a part thereof, cf. Remark 4 below)
in the region V, if its state is given by the vector
gL X. Since probabilities lie between 0 and 1 we
must have

0=&a, N«)m&-. 1 f" II nil=I. (2.6)

& U(eo)p, N(V) U(a, )g) g 0 for some a, . (2.8)

Below we shall give examples of N(V) for which
these conditions are satisfied (Remark 4). We are
now in a position to state and prove a general re-
sult concerning absence of holes.

Theorem 2.2 ("no holes" ). Let U(a) =exp( —iP ~ a)
and. U, =exp( iHt) commute-and let H) -c. As-
sume there exists a sequence of finite disjoint in-
tervals I»cR (h=1, 2, . . . ) and balls B»c:R' such
that the union U~I~xB, contains the energy-mo-
mentum spectrum. "

Now assume there is a state g and open region
pp such that g is not in Vp,

&g, N(V, )y& =0. (2.9)

This implies that N(V) is self-adjoint. We will say
a state g is localized in V if the probability of find-
ing it in V is 1, and that it is not in V if the proba-
bility is 0. In either case, g is an eigenvector of
N(V), with eigenvalue 1 and 0, respectively, since

I= &y, N(V)y& = IIN(V)'"@ll' = llqll' (2.~)

implies N(V)'imp =g, and similarly for the second
case. Hence, if g is localized in V, but U(a)p is
not in P for some a, then they are orthogonal.
This was used in Sec. II B.

We will make the following two rather weak as-
sumptions, which are physically quite intuitive.

(a) Let V'~ V be such that the boundaries 8 V and
s V' have nonzero distance. If p is not in V then the
translated state U(a)g is not in V' for i ai suffi-
ciently small.

(b) For any open region V and state p there is a
translate U(ao)g of g that is in V with nonzero prob-
ability, i.e.,

Then for any open pc Vp and any time interval
(0, e) there is a f c(0, e) such that

&U, g, N(V) U, P& g 0 . (2.10)

exp -ip a, ~ p dg p 2.13

is the Fourier transform of a measure of compact
support. Hence F»(a) is analytic, and since it van-
ishes for iaJ ( 5, F»(a) = 0 for all a cR'. Since
Q»)(, (H)=1, we have

0 =g F»(a) = &y, N(V')U(~) g X,,(H)0&

= &P, N(V')U(e)g&

and hence

N(V')U(a)g =0 for any acR'. (2.14)

This contradicts our assumption (b) on N(V), so
that the theorem is proved. Q. E.D.

Remarks.
(1) The above theorem again imp. ies infinite

propagation speed and would thus lead to conflict
with causality, unless all physical states were al-
ready spread out over all space to start with. This
then would rule out that N(V) had eigenvalues 0 or
1, and thus N(V) could not be a projection (assum-
ing that every unit vector in K represents a phys-
ically realizable state).

(2) One can rephrase the spectral conditions in

Theorems 2.1 and 2.2 as follows. Consider the in-
tersection S~ of the slab I~& B' with the energy-
momentum spectrum. Then Theorem 2.1 requires
that the projection of 9~ on B' contain a hole, while
Theorem 2.2 requires that it be contained in a ball.
This makes it obvious that the spectral assump-
tions of Theorem 2.2 are stronger than those of
Theorem 2.1. However, they are Still quite gener-

Proof. Assume the statement is incorrect. Then
there is some open V and time interval (0, e) such
that

&(„N(V)g, &=0 for any f E[0, et . (2.11)

Then for any open V'c.V with dist(8V, 8 V') )0 and
sufficiently small [ai, the translated state U(a)$,
is not in P', and thus by the remark following Eq.
(2.6),

N(V')U(g)U, y=0 for f c[O, e], iai 6. (2.12)

By the lemma, Eq. (2.11) then holds for all t and
also with U, P replaced by g»

=- yl (H)g, as in the
proof of Theorem 2.1. The energy values in g» are
restricted to I~ and so in the momentum represent-
ation, p»( p) = 0 for pk B». Let p cX be arbitrary
and let @'=N(V')P. Then the function

F (a) =- (N(V') g, U(&)y, (H)g&
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al. For instance, if H is a continuous function of
(P~, P=&u(LP~), it is sufficient (but not necessary)
that v is strictly increasing. If one only has H
~ f(P) for some (continuous) function f, it suffices
that f(p)-~ uniformly as p~-~. This covers
relativistic systems with po~ ~p~.

(3) If H is not bounded from below, but other-
wise the same spectral conditions hold, one can
show by the same argument that for any region V
and any state p there is a time t such that
(U, (t), N(V)U, (t))oo, i.e., U, (t cannot stay out of V for
all times.

(4) The conditions on the localization operators
N(V) are also quite general. To make this clearer
let us first consider a nonrelativistic free particle,
with K = L'(R', dx). Then N(V) =)tv, so that

Clearly H and P comNute. In a center-of-mass
system one can write, with M =—Q,m„

H =Pm/2M+ H, (2.17}

where the first term is the center-of-mass kinetic
energy, while H contains only internal variables.
If the potentials U,.~ are such that H is bounded
from below the spectral assumptions of Theorems
2.1 and 2.2 are satisfied, since p'/2M-~ as ( p[-~. Theorem 2.1 then says that a wave function

tt)(x„... , x~', t) immediately spreads to infinity if
initially it has compact support in some or all of
its variables.

A localization operator N(V) that satisfies re-
strictions (a) and (b) is, for instance,

N(V) = q„(x,) . (2.18)

'Theorem 2.2 then states that the probability of de-
tecting particle i of the system described by Eq.
(2.16) in a given volume cannot vanish for a finite
time interval. A similar conclusion holds for the
center- of- mass localization operator

N(lr) =»„(pm, x /»» ) .
i=&

(2.19)

For a relativistic free particle and the Newton-
Wigner position operator X~~, one would have

N(V) =y(, (X)n,), the projection associated to V in the
spectral decomposition of ~~. Clearly, in both
cases conditions (a) and (b) are satisfied.

To get a feeling for the multiparticle case, let
us consider a nonrelativistic N-particle system
with R =L'(R'", dx, dx„),

1 1P = —.Vg + ' ' + —.V1
(2.16}

Since the center of mass moves freely, we note
that the absence of compact localization and holes
in the sense described above can be attributed to '

the instantaneous spreading of the center-of-mass
coordinate.

Setting N(V)=x„(x,). y„(x~) Theorem 2.2 would

seem to lead to the stronger conclusion that the
probability of detecting all particles simultaneously
in a given volume cannot vanish for any finite time
interval. However, this N(V) does not satisfy as-
sumption (b), and so this conclusion is not valid
without additional assumptions on the potentials.
[See in this connection the first example in Sec. III
and the discussion of Eq. (3.15).]

(5) In the case of a relativistic description of
particles interacting through pair potentials (as re-
cently studied by one of us"} one has P'
~ (p'+ c')'t', provided the "reduced Hamiltonian" is
bounded from below by p &0. Thus, the spectral
assumptions are satisfied. In this case the opera-
tor N(V) =)t~((i/M)»»), ) satisfies (a) and (b), and

may be regarded as the relativistic analog of the
center-of-mass operator (2.19) (cf. Ref. 12, Sec.
5.2). However, in spite of the weakness of the re-
strictions on N(V) it is not clear whether an analog
of (2.18) exists that satisfies these restrictions.

III. SYSTEMS WITH EXTERNAL POTENTIALS

H=H, +U, (3.1)

where Ho is a function &(P) of the momentum oper-
ator P, while the interaction operator U does not
commute with P.

Without further assumptions on U it can easily
happen that the particle stays in a bounded region
for all time. To see this, consider the following
two examples:

(i) A Schrodinger particle on the line with

pl 2 1
+X i-x,it (x}, 2 ~ (3.2)

The potential has nonintegrable singularities at a1,

As we have just seen, for many-particle sys-
tems it is the spreading of the center of mass that
is responsible for the absence of holes. It is
therefore a natural question to ask whether similar
results can be obtained for the relative motion once
the center-of-mass motion is factored out. We
shall only address this question for a system of
two particles interacting via, a pair potential or,
equivalently, a particle in an external potential.

As before, we assume the dynamics is given by
U, =exp( —iHt) on a Hilbert space K, and that the
(relative) translations are given by U(a)
=exp(-iP ~ a), aeR'. Moreover, we assume that
H is explicitly given by



REMARKS ON CAUSALITY, LOCALIZATION, AND SPREADING. . . 381

so that wave functions in the domain of H must van-
ish at x = +I, while their derivatives may be dis-
continuous (Dirichlet boundary conditions). As a
result, H commutes'with)tf »I(x), so that any
wave function with support in [-I, I] will remain
in this interval for all time: the particle is "boxed
in." Clearly, initial states to the left and right of
the box shall also remain there for all time.

(ii) A Schrodinger particle in a space of arbitrary
dimension, described by

H= — g, +1 g -+1 g -- ---+1 g,
(3.3)

has an eigenstate p =g with eigenvalue —l. If g is a
function of compact support, U, P =exp(it)g is al-
ways zero outside a fixed bounded region.

These examples show that bound states may be
compactly localized for all time; the first example
also shows that scattering states may exhibit holes
for all time, if the potential is very repulsive.
However, a scattering state tjp is a vector in the
range of the Mg(lier or wave operators W„

g=@,
&

&P= s-lim exp(iHt)exp(-iHot)g (3.4)
t ~+ 'oo(~ eo)

for some y, and so p, looks like a freely evolving
vector in the future (or past, respectively). In or-
dinary nonrelativistic quantum mechanics with the
usual localization notion, a free state eventually
moves out of any finite volume, so for this case al-
so a scattering state should spread to infinity. But
there seems to be no physical reason to expect this
spreading to be instantaneous. For more general
free dynamics and localization notions, as in Sec.
II, we have not even shown that a free wave packet
eventually leaves every finite volume, so in this
general context a scattering state might, conceiv-
ably, not spread at all. It may therefore be sur-
prising that also scattering states instantaneously
spread to infinity under the same weak hypotheses
as in Sec. II B. This is shown in the next result,
which is the analog of 'Theorem 2.1.

Theorem 3.1 ("instantaneous spreading for scat-
tering states"). Let H =Ho+ U~ —c with Ho = ~(P),
where the continuous function (o is not identically
constant and is bounded from below. Let g be a
scattering state as in Eq. (3.4). Finally, assume
that

( U, ,p, U(a) U, p) = 0, V l a l
- r &0, V t, t' c [0, e) .

(3.5)
Then g =0. If (o is not bounded from below the
conclusion is valid if Eq. (3.5) holds for all t, t' cR.

Proof Since H ~ -e, .Eq. (3.5) holds for all t, t'
cR by the lemma. Since exp(-iHot) commutes with

U(a} we can write Eq. (3.5) as

(U, g, N(V)U, g) = 0 for all t c [0, e] .
By the lemma this holds for all t (=-A, and thus

N(V)U, U, /=0, V t, 7 cR .
From this we conclude for any interval I,

N(V)U, y~(H))=0, V t cR .
Similarly,

(g, U(a)U, p) = 0, V t c [0, e],
implies

(y (H)g, U(a}U )t (H)g) =0, VtcR.

With ~1(H) we can project out any part of the spec-
trum, in particular the bound states. Writing

Q &g4)+facade( ~ (3.8)

where g, are (normalized) eigenstates of H, we
conclude that if P is not localized in V for t in a
finite time interval, then this holds for the g, 's
and p „as well.

It thus remains to consider the localization prop-
erties of bound states. General results for these
are only known for Schrodinger operators H = -a/2m
+U. For a large class of potentials it is known
that eigenfunctions of II cannot vanish on open
sets. '4 For the time-dependent Schro'dinger equa-
tion for N particles with

(exp(iH, t') exp( iH-t')g, U(a) exp[iH, (t' t-)] exp(iH, t)

x exp( iH-t)p)=o, V Ial r-, Vt, t'cR. (3.6)

Now by Eq. (3.4) the vector exp(idiot) exp( —iHt)g
strongly converges to p for t- +~(-~). Hence,
putting t=t'+7 and letting t'- +~(-~) in Eq. (3.6)
while keeping 7 fixed we obtain

(p, U(a) exp( iHo-v)p)=0, V lalo-r, V7 cR.
(3.7)

However, since &u(p) is nonconstant and bounded
from below all conditions of Theorem 2.1 are met,
so that we may infer that /=0. But then (=0 by

Eq. (3.4). As before, the last assertion follows
trivially by starting directly from E q. (3.6).
QS.D.

As the preceding two examples show, this result
cannot be carried over to the "no holes" case. In
the Appendix we will prove a similar result for any
vector in the continuous spectrum of II.

o investigate the spreading of an arbitrary state
g e K we can decompose it into a superposition of
bound states and a scattering state" and consider
these states separately. This is seen as follows.
Let U, =exp( iHt) wit-h H ~ -c and assume that for
some pc X and some V
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H f Vg Ag x + U xgy e ~ ~ y x+ (3.9)

where H ~ -c and where A~ and U satisfy some
technical conditions, it is known that a solution
g(x„... , x~; t) cannot vanish on an open space-time
set unless it vanishes identically. " For the Klein-
Gordon equation with external potentials a similar
result is known. " It should be noted, however,
that the space variable x in the Klein-Gordon equa-
tion is not a position variable as in the Schrodinger
case, so that the relevance of Ref. 16 with respect
to particle localization is not obvious.

The results of Refs. 14-16 depend on detailed
properties of partial differential equations and do
not allow for more general localization notions.
It would therefore be interesting to find general
conditions on non-translation-invariant Hamilton-
ians that lead to results similar to those of Sec. II.
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APPENDIX

From an operator-theoretic point of view the
spectral assumptions we made in Theorem 2.1
[2.2] were used to prove the following two facts:
If gEK and A is some bounded operator on X, then
the assumption

(A1)AU(~)U, W(
=0

for any t in a nonzero time interval and any a cR'
with (a(&r [(a(~r)(r&0) implies that

AU(a)g =0, & ac R (A2)

U, = exp -itE dD~,

ULe)= f exp( EP e)dM-
(A3)

(A4)

We shall denote the spectral projections of H and
P corresponding to measurable sets A cR and 0
&R' by D~ and M„, respectively. The conditions
(A5), (A6) and (A5), (A13) below correspond to the
spectral assumptions of Theorems 2.1 and 2.2, re-
spectively.

Indeed, in the proofs of these theorems we took
& = (p) (p( [& =&(p')], and an inspection of the
proofs shows that the spectral assumptions were
only used to get (A2) from the assumption (Al).

We shall now restate and rigorously prove these
two facts under even weaker spectral assumptions
on the generators H and P. We denote by D~ and

M~ the spectral families of the dynamics H and mo-
mentum P, in terms of which U, and U(a} can be
written as

Theorem A.l ("no compact localization" ). As-
sume there exists a sequence of sets A~cR and a
sequence of sets Q~&R' with nonzero Lebesgue
measure (k = 1, 2, . .. ), satisfying

s-lim D
I ~

(A 5)

and

(A6)Mg D~ =0, 0=1,2, ... .
Assume moreover that (Al) holds for any f cR and
any as R' with (a(~r&0. Then (A2) holds true.

Proof. The assumptions imply that for any tp

c X one has

(Q, AU(a}U, P) = Jt exp(-itE)de(Q, AU(a)Der)) =0,

&t~R, V(a(~r. (A7)

exp -iP a d&,AM&D„, @=1,2, ... .

(A9)

By virtue of (A8) the functions E» have compact
support, so that their Fourier transforms F~ are
real-analytic. As a result we can write

d»(Q, AMp D» )I)) = E»(P)dP, (A10)

where dp denotes Lebesgue measure. If one inte-
grates this equality over any subset of Q„ the left-
hand side vanishes by assumption (A6), implying
that E»(p) vanishes on 0». But Q» has nonzero
Lebesgue measure and F™~is real-analytic, so that
F~ vanishes identically. Hence,

(Q, AU(a)D» g) =0, k=1, 2, ... , VecR», (All)

so that by assumption (A5)

(A12)(Q, AU(a))1)) =0, &a cR
Since p was arbitrary this implies (A2). QZ.D.

Theorem A.Z ("no holes" ). Assume there exists
a sequence of sets A~cR and a sequence of com-
pact sets C»cR' satisfying (A5) and

M~ D~ =D~, k =1,2, ... .
k

Assume, moreover, that (AI) holds for any tcR
and any a in some set Q cR with nonzero Lebes-
gue measure. Then (A2) holds true.

Proof. Arguing as in the proof of Theorem A. l

(A 13)

Hence, the measure ds(Q, AU(a}De)p) vanishes for
(a(~r, so that

()P,AU(a)D» $)=0, k=1, 2, ... , V(a(~r.
(A8)

Using (A4) we have

E»(a) —= (Q, AU(a}D& g)
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one infers that the functions

P,(a) = (y, ~U(a}D„y)

exp -ip a d~, ATDA (A 14)

vanish for a c A. Now from (A13) it follows that

F (a) =f exp( —ip a)d~g, iiiii~&ij )
&a

(A15)

But C, is compact, so that I"~ is real-analytic.
Since Q has nonzero Lebesgue measure it follows
that I"~ vanishes identically. But then one has, us-
ing (A5),

= +p.p. &Lc. &a.c. (A IV)

containing vectors g for which the measure
de(g, Deg) is discrete (i.e., bound states), singular
continuous, and absolutely continuous.

Theorem A.3 ("instantaneous spreading for states
in the continuous spectrum"). Assume that g is
orthogonal to Xp.p. and that

XcUil = U~P (A 18)

for some compact set C and any t in a nonzero
time interval. Assume, moreover, that II has the

Q, AU(a)p)= lim g(P, AU(a)D„P)=0, VacR»,
n-X

(A16)

from which (A2) follows. QE.D.
Remarks.
(1) If one assumes in addition that H is bounded

from below, Eq. (A1) need only hold for f in a non-
zero time interval by the lemma.

(2) The assumption (A13) is stronger than (A6).
Indeed, if (A13) holds one can take for 0» the com-
plement of C». Since C» is compact, 9» =-R'gC» has
nonzero Lebesgue measure, and one also has

Mn DA = (1-Mc )DA
——0 by (A13).

We close this appendix by showing that instan-
taneous spreading occurs for any state in the con-
tinuous spectrum of a semibounded Hamiltonian H
of the form (3.1), provided some technical assump-
tions are met. We assume that X =L'(R', dx}, P
= (I/j)v, and Ho= v(P). As is well known, X can
be written as a direct sum of subspaces

same domain as H, =~(P), and that the function &o

is bounded from below, and such that (&u(p)+i) e
is square-integrable for some N ~1. Then $=0.

Proof. By the lemma, (A 18) holds for any t cR.
For P cX,., the assertion can then be shown by the
following argument: As is well known, one has

w-lim U, p =0 (A19)

for any pc X,., by the Riemann-Lebesgue lemma.
We now claim that gc(H+i) ' is a compact opera-
tor. Taking this for granted, it follows from this
and (A19) that

s-lim ycU, P =0
t~~

(A20)

for g cX,, eX„.But in view of (A18) this can
only hold if / =0. QS J3.

Remarks.
: (1) If &u is not semibounded, but the assumption
(A18) holds for any tcR, the conclusion of the the-
orem is still valid.

(2) The assumptions of the theorem also imply
the following conclusions, as the proof shows:
States in K,., move out of any finite volume in the
distant past and future [by Eq. (A20)], while states
in X„do so in the average sense of Eq. (A21).
'7hus, such states always tunnel out of potential
wells of arbitrary shape and depth.

for any p c X~c. A D(H), and therefore by a density
argument for any /&X, , , in particular for P.
But since (A18) holds for any f cR it then follows
that (=0, as claimed.

To prove the compactness assertion, we note
that it suffices to show that yc(H+i) ' is compact.
Indeed, since Hp and H have the same domain, the
operator (H, +i)(H+i) ~ is bounded by the closed-
graph theorem. But gc(x) is in any L'(R', dx) since
C is compact, while (&u(p)+ j) ' is in L'(R', dp) for
q ~ 2N. Therefore, yc(HO+ i) ' belongs to the trace
ideal 0' for q» 2+,"and in particular is compact.

To prove the theorem in the general case we

combine the "RAGE" theorem" with the argument
given above: since Xc(H+i) ' is compact, the
RAGE theorem implies that

2T J~ llxc«p(-f«)all'
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