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Motivation Wolfhard Janke

Motivation

Proteins = chains of amino acids

Amino acids: amino group NH2

carboxyl group COOH

side chain R

Side chain R: distinguishing component

20 different amino acids in proteins

Primary structure = sequence of amino acids
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Petide bonds
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    Protein Structure
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methionine (Met)

Met

leucine (Leu)

aspartic acid (Asp) tyrosine (Tyr)
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side chainspolypeptide backbone

amino, or
N-, terminus

carboxyl, or
C-, terminus

peptide bondpeptide
bonds

SCHEMATIC

SEQUENCE Asp Leu Tyr
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Typical proteins consist of N = 50− 4000 residues

Protein with N residues: 20N possibilities

Today more than 100 000 sequences identified

First complete sequence: insulin (1953)

Human body: ≈ 100 000 different proteins
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Anfinsen’s experiment:

Sequence determines 3D folded structure

Hemoglobin

→ Protein Data Bank, plotted with RasMol

Secondary structures:

• α helices

• β sheets

Tertiary, quarternary structures

3D structure determines biological function
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Aquaporin
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Native 3D structure: Minimum in funnel-like
rugged free energy landscape

Proteins Spin Glasses
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Protein sketch taken from: G. Srinivas and B. Bagchia, J.

Chem. Phys. 116 (2002) 8579
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Main objectives:

Direct problem: Given sequence →

predict 3D structure

Inverse problem: Given 3D structure →

find associated sequence

Levels of abstraction:

• All-atom models

force fields (CHARMM, AMBER, ECEPP, GROMOS,

FANTOM, . . . ) from quantum chemistry and experiments,

explicit/implicit solvent models

• United residues models

atomistic, but coarse-grained effective interactions

• Off-lattice heteropolymers (AB models)

flexible chain models with long-range Lennard-Jones

interactions, A and B type of residues only

• Lattice heteropolymers (HP models)

short-range interacting self-avoiding random walks, two

types of monomers: hydrophobic (H) and polar (P)

Ising model of biophysics ?
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Overview

I. HP model

• 3D HP lattice proteins

• Density of states: energetic quantities in thermodynamics

• Results from exact enumeration in the space

of sequences of 14mers and 18mers

• Stochastic search strategies for longer chains

• Updates: move sets vs chain growth

II. Multicanonical chain growth

• Idea

• Realisation

III. Results

• Simulating a 42mer: model for parallel

β-helix of pectate lyase C

• Density of states of 48mers with different

ground-state degeneracies
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3D HP Lattice Proteins

Lattice heteropolymers in 3D with sequence of two types of

monomers:

hydrophobic (H) and

polar (P)

amino acids

HP protein folding principle: Screening of the hydrophobic

core from the (fictitious) aqueous environment by the polar

residues

HP model (Dill, 1985); simplest form: only regard to hydro-

phobic interaction:

E = −
X

〈i,j<i−1〉

σiσj, σi =



1 hydrophobic

0 polar

=⇒ attraction between next-neighbored hydrophobic mono-

mers nonadjacent along the chain, forming HH contacts:
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Density of States

HP model – goals:

• Search for sequences with unique (native) ground state

• Analysis of relation sequence ←→ conformation: “second-

ary structures”

• Investigation of thermodynamic properties, e.g. confor-

mational transitions

Density of states: degeneracy of states with energy E

Partition sum of heteropolymer with given sequence:

Z =
X

{x}

exp(−E({x})/kBT )

=
X

i

g(Ei) exp(−Ei/kBT )

with g0 ≡ g(E0) denoting the ground-state degeneracy

Determination of g(E) for lattice proteins with given

sequence:

• Exact enumeration (for short chains only)

• Stochastic search methods

• g0 via H-core construction methods (Yue, Dill, 1993/95)
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Indicators of temperature-dependent transitions:

Mean energy:

〈E〉(T ) =
1

Z

X

i

Ei g(Ei) exp(−Ei/kBT )

Specific heat:

CV (T ) =
1

kBT 2

“

〈E
2
〉 − 〈E〉

2
”

Helmholtz free energy:

F (T ) = −kBT ln
X

i

g(Ei) exp(−Ei/kBT )

Entropy:

S(T ) =
1

T
(〈E〉 − F ) ,

S0 = kB ln g0

Conformational quantities: mean end-to-end distance, radius of

gyration

11



I. HP model Wolfhard Janke

Exact Enumeration for 14mers

• Comparison of thermodynamics for a subset of 14mers with

– the same hydrophobicity (nH = 8) and

– identical lowest energy (E = −8),

but different sequence

• On 3D s.c. lattice =⇒ one designing

sequence only (up to a reflection symmetry):

HPHPH2PHPH2P2H
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Specific heat: pronounced low-temperature peak for the

designing 14mer =⇒ ground state–globule transition

12



I. HP model Wolfhard Janke

. . . and for 18mers

• Enumeration of all 78 955 042 017 ≈ 8 × 1010

conformations for each of the 218 ≈ 2.5× 105 sequences

• Comparison of specific heat for a subset of 18mers with

– the same hydrophobicity (nH = 8) and

– identical ground-state energy (E = −9)

T

CV (T )

0.60.50.40.30.20.10.0
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Solid lines: 2 designing sequences (unique ground states)

Dashed lines: Envelope of 525 non-designing sequences

R. Schiemann, M. Bachmann, WJ, q-bio.BM/0405009, J.

Chem. Phys. (in print); and Comp. Phys. Comm. (in

print).
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Stochastic Search Algorithms

• Number of self-avoiding conformations grows exponentially

with chain length N (∼ 4.8N)⇒ enumeration exhausting

for chains with more than 20 monomers

• Efficient approximate search strategies are required for

statistical sampling, e.g.

– Histogram reweighting Monte Carlo algorithms (e.g.

multicanonical sampling, Wang-Landau method, multi-

self-overlap ensemble)

– Simulated and parallel tempering

– Rosenbluth chain growth algorithms, such as PERM and

nPERMss
is (Pruned Enriched Rosenbluth Method)

General problem: Updating the conformation under the

constraint of self-avoidance (=⇒ single occupation of a lattice

site)

• Examples for possible strategies:

– Move sets (e.g. consisting of end and corner flips,

crankshaft moves, pivot rotations)

– Coded updates (embedded into fixed coordinate system;

F=forward, B=backward, U=up, D=down, L=left,

R=right): e.g. FULBBDR −→ FDLBBDR

– Bond fluctuations (but: non-conserved bond length be-

tween adjacent monomers)

– Chain growth (with population control)
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Move Sets vs Chain Growth

Move set (frequently used and hopefully ergodic):

end flip

corner flip

crankshaft

i

pivot rotation about

any axis through ith

monomer

Rosenbluth chain growth (self-avoidingly attaching a new

monomer at the end of the chain until total chain length is

reached): more advantageous to avoid conformational barriers!

Peculiarity (2D example, all monomers hydrophobic):

1

1/4 1/3

1/3

1/3

E = −1

p =
1

108
1 1/4

1/3

1/3

1/2

E = −1

p =
1

72

Necessary: bias correction by Rosenbluth weights ∼ p−1
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Multicanonical Chain Growth

PERM (Grassberger, 1997), nPERMss

is
(Hsu, Mehra, Nadler,

Grassberger, 2002):

• chain growth is controlled by comparing present weight Wn

(or W pred
n ) with optimally chosen bounds W >

n and W <
n

• W (pred)
n > W >

n : enrich the sample (make copies of the

present chain)

W (pred)
n < W <

n : prune the present chain with some

probability

Multicanonical histogram (e.g. Berg, Neuhaus, 1992):

• flattening of the energy histogram by introducing a weight

factor proportional to the inverse canonical distribution ⇒

random walk in energy space

canonical multicanonical
MON P QSR T-UM@N P QSR V6U

W�X@Y

Z�[3\@]^ [`_

a b�ac*dfegefecShfefefec*igefegecSefefege

e;j efefegd

e;j efefe*h

e;j efefefi

kOl;m n o�p q-rk@l;m n o�p s6r

t u-v

wyx3zO{| x`}

~ ��~�*�f�g�f��S�f�f�f��*�g�f�g��S�f�f�g�

�;� �f�f�g�

�;� �f�f�f�

�;� �f�f���

Example from first-order transition in 3D 4-state Potts model
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Idea of Multicanonical Chain Growth

Introducing additional (energy-dependent) weight into the

partition sum (M. Bachmann, WJ, Phys. Rev. Lett. 91

(2003) 208105):

Zn ∼
X

{x}

W
PERM
n ({x})W

flat
n (En({x}))

h

W
flat
n (En({x}))

i−1

,

where (as usual)

W
PERM
n =

n
Y

l=2

mle
−(El−El−1)/kBT

, 2 ≤ n ≤ N,

W
PERM
1 = 1

ml : number of possible (free) sites of the lth monomer

El : total energy of a partial chain of length l (E1 = 0)

Chain growth requires product form of the weight factors, e.g.

Zn ∼

X

{x}

h

W
flat
n (En)

i−1 n
Y

l=2

mle
−(El−El−1)/kBT W flat

l (El)

W flat
l−1(El−1)

with W flat
1 = 1
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PERM chain growth at certain temperature T :

pn ∼ W PERM
n

=⇒ canonical distribution P can,T
n (E)

of chains with length n

Density of states gn(E) = P can,∞
n (E)?

−→ e.g. through multi-histogram reweighting, requires

simulations for different temperatures.

Multicanonical chain growth at β ∼ 1/T = 0:

pn ∼ W PERM
n W flat

n
=⇒ flat distribution P flat

n (E) of

chains with length n

−→ direct simulation of g(E); P can,T
n (E) by reweighting

to temperature T .

Since W flat
n ∼ 1/gn(En):

Zn ∼
X

{x}

gn(En({x}))Wn({x})

with the combined weight Wn = W PERM
n W flat

n :

Wn({x}) =
n

Y

l=2

ml

g−1
l (El)

g−1
l−1(El−1)

, W1 = 1, g1 = 1,

or recursively Wn = Wn−1mng−1
n (En)/g−1

n−1(En−1).
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After Kth weight iteration: final estimate of the density of

states:

g
(K)
n (E) =

h(K)
n (E)

W
flat,(K)
n (E)

Remarks:

• Terminating iterations after 105–106 (iterations 0 to

(K − 1)) or 107–108 chains of length N (Kth iteration:

measuring run)

• Number of iterations: 20–30

• Resetting Zn, cn, W >
n , and W <

n to zero after each iteration

Example 42mer (curves offset by a constant):
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0th – 8th iteration: 4× 105 chains each
9th iteration (measuring run): 2× 107 chains

≈ 25 orders of magnitude
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Simulation of a 42mer

Lattice model for

parallel β-helix of

pectate lyase C

Properties of the lattice model:

• ground-state with energy −34 has 4-fold degeneracy (Yue,

Dill, 1995)

• conformational transitions at T ∼ 0.27 (ground state –

globule) and T ∼ 0.53 (globule – random coil) (see also

Chikenji, Kikuchi, Iba, 1999)

Density of states (normalized to unity):

¤

¥"¦¨§F©¢ªy«#¬ ¤®

¯°O±°�² ¯°�²�±°¢³ ¯°¢³¨±°´ ¯°¢´¨±

¯

°¢±

°�² ¯

°�²�±

°¢³ ¯

°¢³ ±
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Mean energy and specific heat:

µ
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Free energy and entropy:
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Density of States of 48mers

Two specific 48mers with different ground-state degeneracy:

48.1 E0 = −32 g0 = 1.5× 106

48.2 E0 = −34 g0 = 5× 103

Density of states (normalized to unity):

ø
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Mean energy and specific heat:
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A 103mer

Standard test case by Lattman et al. (1994):

Emin authors

−49 Toma & Toma (1996)

−54 Hsu, Mehra, Nadler, Grassberger (2003)

−55 Hsu, Mehra, Nadler, Grassberger (2003)

−56 M. Bachmann, WJ (J. Chem. Phys. 120 (2004) 6779)

but ground-state degeneracy

g0 ≈ 10
16
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Summary

Simulation of the density of states:

• Density of states contains all energetic thermodynamic

informations

• Goal: Direct simulation of the density of states

• Updates: Chain growth more appropriate than move sets

because of avoidance of conformational barriers

• Combination of chain growth algorithm (n)PERM with flat

histogram techniques: sampling of the total energy space

• Accurate study of the conformational transitions, in

particular the low-temperature ground state – globule

transition

• Estimation of the free energy and entropy

Perspectives:

• Different lattice structures (FCC, BCC, . . . )

• Off-lattice AB models
...

• All-atom formulations
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