Exact Ground States of Finite Ising Spin Glasses Obtained by ”Branch-and-Bound”

S. Kobe

kobe@theory.phy.tu-dresden.de

http://www.physik.tu-dresden.de/itp/members/kobe.html

Technische Univ. Dresden, Inst. für Theor. Physik, D-01062 Dresden, Germany
Outline

- **Ising** model: A short history
- Exact ground states of finite **Ising** spin glasses
- Results:
 - Lattice models:
 - Energy landscape
 - Relaxation
 - Mean field models:
 - Energy exponents and correction to scaling
 - Ferromagnetic – spin-glass transition
Letter of Wolfgang Pauli to H. B. G. Casimir:

Princeton, 11. Oktober 1945

"... A few weeks will be sufficient for you and others to learn everything of scientific interest which happened during these 'lost years'. I am sending you today a package with reprints, please divide them among persons who are interested.

There is a paper of Onsager included (...) of which I think that it is a masterpiece of mathematical analysis. It contains the rigorous solution of the Kramers - Wannier order-disorder problem for the two dimensional model (unfortunately the method cannot be generalized for three dimensional crystals). ... "
Ising Model: Phase transition, scaling behaviour

Zero field Ising model:

\[\mathcal{H} = - \sum_{1 \leq i < j \leq N} J_{ij} S_i S_j \quad S_i = 1 \lor -1 \]

- \(J_{ij} > 0 \) between nearest neighbours of a lattice; \(J_{ij} = 0 \) else
- Ground state is trivial
- Phase transition: (ferromagnetic) order - disorder
CRYSTAL STATISTICS

a rough value of the current amplitude at resonance. We find for the current at resonance

\[I = -\left[2a_1 e^{\left(\frac{x}{a_1}\right)}\right] 0.04 \cos \left(\frac{3\pi}{2} \frac{a_1}{x}\right) \cos \omega t \]

(T II 28)

The current is in phase with the impressed electromotive force in the two extreme thirds of the antenna, but out of phase in the middle third. As the current amplitude at the center of the antenna is only some 4 percent of that at first resonance, the second and higher order resonances are evidently of little importance as compared with the first resonance.

PHYSICAL REVIEW VOLUME 45, NUMBERS 3 AND 4 FEBRUARY 1 AND 15, 1944

Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition

Laure Odgers

Statistical Laboratory, Yale University, New Haven, Connecticut

(Received October 4, 1943)

The partition function of a two-dimensional "ferromagnetic" with scalar "spins" (long model) is computed rigorously for the case of vanishing field. The eigenvalue problem involved in the corresponding computation for a long strip crystal of finite width (a atom), lined straight to itself around a cylinder, is solved by direct product decomposition; in the special case \(n = m \), an integral replaces a sum. The choice of different interaction energies \(\{a, b, c, d\} \) in the \((0,1) \) and \((1,0) \) directions does not complicate the problem. The two-way infinite crystal has an order-disorder transition at a temperature \(T = T_c \), given by the condition

\[\sinh \left(2J/kT_c\right) \sin \left(2J/kT_c\right) = 1. \]

INTRODUCTION

THE statistical theory of phase changes in solids and liquids involves formidable mathematical problems.

In dealing with transitions of the first order, computation of the partition functions of both phases by successive approximation may be adequate. In such cases it is to be expected that both functions will be analytic functions of the temperature, capable of extension beyond the transition point, so that good methods of approximating the functions may be expected to yield good results for their derivatives as well, and the heat of transition can be obtained from the difference of the latter. In this case, allowing the continuation of at least one phase into its metastable range, the heat of transition, the most appropriate measure of the discontinuity, may be considered to exist over a range of temperatures.

It is quite otherwise with the more subtle transitions which take place without the release of latent heat. These transitions are usually marked by the vanishing of a physical variable, often an asymmetry, which ceases to exist beyond the transition point. By definition, the strongest possible discontinuity involves the specific heat. Experimentally, several types are known. In the \(\alpha-\beta \) quartz transition, the specific heat becomes infinite as \((T - T_c)^{-1} \); this may be the rule for a great many structural transformations in crystals. On the other hand, superconductors exhibit a clear-cut finite discontinuity of the specific heat, and the normal state can be continued at will below the transition

\[H. \text{Mösser, Physik. Zeits. 37, 737 (1936).} \]
Ernst Ising 1925
Peoria 1996
Zero field Ising model:

\[\mathcal{H} = - \sum_{1 \leq i < j \leq N} J_{ij} S_i S_j \quad S_i = 1 \lor -1 \]

- \(J_{ij} \) arbitrary
- Ground state is not known!!!
Spin Glass Models (Lattice vs. Mean-Field Models)

- Lattice models:

\[J_{ij} = \pm 1 \quad \text{or} \quad G_{ij}; \]

i.e. the couplings between spins being nearest neighbours in a (cubic) lattice are randomly distributed.

- Mean-field models:

 e.g. *Sherrington-Kirkpatrick* (SK) model:

\[J_{ij} = \frac{G_{ij}}{\sqrt{N}} \]

\(G_{ij} \) → independent identically distributed Gaussian random numbers with zero means and variance one.
A Related Mean-Field Model

SK model with non-symmetric distribution of Gauss couplings:

\[P(J_{ij}) = x\delta(J_{ij} + \frac{|G_{ij}|}{\sqrt{N}}) + (1 - x)\delta(J_{ij} - \frac{|G_{ij}|}{\sqrt{N}}) \]

i.e. the sign of interactions are inversed according the probability \(x\)

limiting cases:

\(x = 0\) \quad \rightarrow \text{ferromagnetic system}
\(x = 0.5\) \quad \rightarrow \text{SK model}
\(x = 1\) \quad \rightarrow \text{antiferromagnetic system}

No shift of the Gauss distribution !!!
How much states?

<table>
<thead>
<tr>
<th>N</th>
<th>2^N</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1048576</td>
<td>≈ (Maximal-)number of ancestors in 20th generation (14th century)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16 777 216</td>
<td>≈ combinations in German Lotto</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>$\approx 1.4 \times 10^{14}$</td>
<td>≈ age of mankind in seconds (4 Mio. a)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>$\approx 3 \times 10^{17}$</td>
<td>≈ time since "big bang" in seconds (13 Mrd. a)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>$\approx 2 \times 10^{19}$</td>
<td>"chessboard"-bet: fields vs. grains</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>$\approx 2 \times 10^{27}$</td>
<td>≈ time since "big bang" in ns</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>10^{10}</td>
<td>unimaginable!</td>
<td></td>
</tr>
</tbody>
</table>
Exact Ground States: Optimization

Complexity: NP-complete

Method: "branch-and-bound":
exact nonlinear discrete optimization
S. K., A. HARTWIG, Comp. Phys. Commun. 16 (1978) 1

example: $N = 8$

\[
J = \begin{pmatrix}
0 & -5 & -2 & -5 & -6 & -1 & 0 & 0 \\
0 & -10 & -4 & 0 & -2 & -1 & 0 \\
0 & 0 & 0 & -3 & 0 & -1 \\
0 & -3 & -5 & -7 & -4 \\
0 & -4 & -5 & -8 \\
0 & 0 & -1 \\
0 & 0 \\
0
\end{pmatrix}
\]
Branch-and-Bound Tree
Branch-and-Bound Tree

Energy of the branching level E_l (with $E_{l=N} = E_{states}$):

$$E_l = E_{l-1} + 2 \sum_{k(||l)}^{l-1} |J_{kl}|$$

$$E_l \geq E_{l-1}$$

example: $N = 8$; $E_1 = E_{id} = -77$
Branch-and-Bound Tree: Part
$N = 8; E_{id} = -77; E_{bound} = -47$ (heuristic solution: – – –)
$N = 8; \ E_{id} = -77; \ E_{bound} = -47$ (heuristic solution: $- - -$)
\(N = 8; \ E_{id} = -77; \ E_{bound} = -47 \) (heuristic solution: \(- - -\));
exact solution: \(E_0 = -51 \).
Misfit parameter: A measure for frustration

- Misfit parameter → a useful rescaling of the ground-state energy per spin
- Definition: \(\mu_0 = \frac{1}{2} \left(1 - e_0 / e_{0}^{\text{id}} \right) \)
- with \(e_{0}^{\text{id}} \) → reference energy of a related non-frustrated system:
 \[J_{ij} = |J_{ij}| \text{ (lattice model)} \]
 \[J_{ij} = \frac{|G_{ij}|}{\sqrt{N}} \rightarrow e_{0}^{\text{id}} = (N - 1)/(2\pi N)^{1/2} \text{ (SK and related models)} \]
- Properties:
 - \(\mu_0 \) is the fraction of each bond of the system, which is on average not satisfied.
 - Example: Antiferromagnetic triangular lattice → \(\mu_0 = \frac{1}{3} \), because one of three bonds of equal strength cannot be satisfied.
 - Maximum value: \(\mu_0 = \frac{1}{2} \) for highly frustrated systems (e.g. high-dimensional hypercubic and fcc fully frustrated \(\pm J \) systems).
 - SK and related models belongs also to the class of systems with maximum occurring frustration.
Results I

Lattice Models
Misfit parameter: Lattice models ($\pm J$ spin glass)

<table>
<thead>
<tr>
<th>lattice type</th>
<th>D</th>
<th>μ_0</th>
<th>ϵ_0 from</th>
</tr>
</thead>
<tbody>
<tr>
<td>honeycomb</td>
<td>2</td>
<td>0.09</td>
<td>W. Lebrecht, E.E. Vogel (1994)</td>
</tr>
<tr>
<td>triangular</td>
<td>2</td>
<td>0.22</td>
<td>W. Lebrecht, E.E. Vogel (1994)</td>
</tr>
<tr>
<td>simple cubic</td>
<td>3</td>
<td>0.202</td>
<td>various authors</td>
</tr>
<tr>
<td>hypercubic</td>
<td>4</td>
<td>0.24</td>
<td>S. Böttcher, A. G. Percus (2001)</td>
</tr>
<tr>
<td>hypercubic</td>
<td>5</td>
<td>0.26</td>
<td>S. Böttcher, private communication</td>
</tr>
</tbody>
</table>

(S. Kobe, J. Krawczyk in: Computational Complexity and Statistical Physics, in press)
Ground state clusters: Configuration vs. real space

- two (fixed) spin clusters in the real space: "red" and "yellow" spin domains
- Reversal of one spin domain \Rightarrow another cluster in the configuration space
- "free" spins between the spin domains \Rightarrow degeneracy of ground state clusters
Exact Landscape

- 1.635.796 states up to E_3,
- clusters of states form valleys (#1, #2),
- valleys are connected via saddle clusters

System $4 \times 4 \times 4$ the first excitation \circ - 50 states, the second excitation \circ - 300 states
Landscape: Inner profile of the saddle cluster

- Restriction of "transition" between clusters via saddle cluster
- Hamming distance of all pairs of states in the saddle cluster (right)
- "Bottleneck" has to be passed: "entropic barrier"
L = 12: Landscape and dynamics

- More complex saddle cluster structure (left)
- Dynamics: q vs. WTM time for 20 runs at $T = 0.37$ starting from one ground state (right) $q_{pl} = 0.915 \pm 0.02 \Rightarrow \bar{h}_d = 73 \pm 2 \Rightarrow "width of the valley"

Ground states from **A.K. Hartmann**: Genetic Cluster-Exact Approximation
Results II

Mean – Field Models
Energy exponents (zero temperature)

Lattice models: \(N = L^d \)

\[
\overline{E_J(L)} = e_0 L^d + e_1 L^{\Theta_s} + \ldots.
\]

\[
e_J(L) = \overline{E_J(L)} / L^d = e_0 + e_1 L^{-\omega} + \ldots.
\]

Scaling of the energy fluctuations:

\[
\left[\overline{E_J^2(L)} - \overline{E_J(L)}^2 \right]^{1/2} = \sigma_0 L^{\Theta_f} + \ldots.
\]

Scaling exponents:

shift exponent \(\Theta_s \rightarrow \omega = d - \Theta_s \)

fluctuation exponent \(\Theta_f \)
Energy exponents ctd.

$L \to N^{1/d}$

\[
e_{J}(N) = e_0 + e_1N^{-\omega'} + \ldots .
\]

\[
\sigma_{J}(N) = \left[e_{J}^{2}(N) - e_{J}(N)^2 \right]^{1/2} = \sigma_0 N^{-\rho} + \ldots .
\]

with

\[
\omega' = \omega / d = 1 - \frac{\Theta_s}{d}
\]

\[
\rho = 1 - \frac{\Theta_f}{d}
\]
System sizes and numbers of realizations

<table>
<thead>
<tr>
<th>N</th>
<th>(x = 0.5) (SK)</th>
<th>(x = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>257909</td>
<td>438242</td>
</tr>
<tr>
<td>25</td>
<td>229086</td>
<td>207149</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>123220</td>
</tr>
<tr>
<td>39</td>
<td>74827</td>
<td>16519</td>
</tr>
<tr>
<td>42</td>
<td>50797</td>
<td>13828</td>
</tr>
<tr>
<td>49</td>
<td>7933</td>
<td>1486</td>
</tr>
<tr>
<td>50</td>
<td>7724</td>
<td>1181</td>
</tr>
<tr>
<td>56</td>
<td>6274</td>
<td>282</td>
</tr>
<tr>
<td>59</td>
<td>2082</td>
<td>136</td>
</tr>
<tr>
<td>64</td>
<td>1779</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>634</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>
Results: Ground-state energy (SK model)
Results: Ground-state energy (x = 1: AFM model)

No analytical solution known!
Results: Fluctuation exponent

upper curve: $x = 0.5$ (SK); lower curve: $x = 1$ (afm)
Results: Misfit parameter

upper curve: $x = 1$ (afm); lower curve: $x = 0.5$ (SK)

blue stars: M. Palassini, cond-mat/0307713: hybrid genetic algorithm
Results of fitting procedures

<table>
<thead>
<tr>
<th></th>
<th>x = 0.5 (SK)</th>
<th></th>
<th>x = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e₀</td>
<td>ω'</td>
<td>ρ</td>
</tr>
<tr>
<td>e₀(N) 3-p</td>
<td>0.7615(25)</td>
<td>0.698(23)</td>
<td>0.698(23)</td>
</tr>
<tr>
<td>item 2-p</td>
<td>*)</td>
<td>0.684(2)</td>
<td>0.684(2)</td>
</tr>
<tr>
<td>μ₀(N⁻¹/²) 3-p</td>
<td>-0.7655(38)</td>
<td>0.652(31)</td>
<td>0.652(31)</td>
</tr>
<tr>
<td>item 2-p</td>
<td>*)</td>
<td>0.671(3)</td>
<td>0.671(3)</td>
</tr>
<tr>
<td>σ_j(N) 2-p</td>
<td></td>
<td>0.710(5)</td>
<td>0.710(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.736(9)</td>
</tr>
</tbody>
</table>

*) The analytical value $e_0^{RSB} = -0.76321(3)$ is used for the 2-parameter fit

Phase transition
Summary

- Optimization algorithms → exact results for finite spin glass models
- Semi-quantitative understanding of dynamics (relaxation) in lattice models
- For mean-field models: SK ground states for small N are consistent with RSB solution and other numerical results.
- Related models are introduced: AFM model is ”higher” frustrated for finite N.
- Ground-state energy $e_{0,\text{afm}}$ is estimated.
- Predictions from energy scaling:
 - SK and AFM model have the same fluctuation exponent: $\Theta_f/d \simeq 1/4$.
 - The shift exponent is different: $\Theta_s/d \simeq 1/3$ (SK) and $-2/3$ (AFM).
- Outlook:
 - Phase transition between ferromagnetic and spin-glass ground state near $x = 1/2$?
 - Another related model: A fully connected $\pm J$ model
Acknowledgement

Klaus Handrich

Andreas Hartwig
Frank Daske

Thomas Klotz
Günter Milde

Pawel Polaszek
Mariusz Nogala
Jarosław Kłos
Jarosław Krawczyk

Eugenio Vogel, Jaime Cartes, Patricio Vargas, Dora Altbir