Übungen zur Thermodynamik und Statistik

Aufgabe 5: (Van der Waals-Gas, Maxwell Konstruktion) Die Zustandsgleichung des van der Waals-Gases lautet

$$\left(p + a\frac{n^2}{V^2}\right)(V - nb) = nRT,$$

wobei a, b Materialparameter sind.

- a. Ist das ideale Gas als Spezialfall enthalten?
- b. V als Funktion von p hat offenbar immer 3 Lösungen. Wenn man p(V) plottet (siehe Übungsblatt), sieht man: oberhalb von T_c gibt es eine reelle (und zwei komplexe), unterhalb drei reelle Lösungen. Der kritische Punkt (T_c, p_c, V_c) ist also dadurch gegeben, dass alle drei reellen Lösungen zusammenfallen. Bestimmen Sie den kritischen Punkt.

TIP: Stellen Sie die Zustandsgleichung als Nullstelle eines Polynoms in V dar.

- c. Reskalieren Sie die Variablen $\tilde{p} = p/p_c, v = V/V_c$ und $t = T/T_c$. Was ergibt sich?
- d. Für $T < T_c$ gilt teilweise $\frac{\partial V}{\partial p} > 0$, was unphysikalisch ist. Erklärung: die Annahme, dass ein Gas in diesem Gebiet homogen vorliegt, ist nicht erfüllt. In diesem Bereich liegt das Gas als Koexistenz zweier Phasen vor. Wenn beide Phasen (1/2) im Gleichgwicht sind, muß $\mu_1(T, p^*) = \mu_2(T, p^*)$ gelten. Zeigen Sie damit, dass für das Koexistenzgebiet die Flächen A,B an der Geraden $p = p^*$ gleich sein müssen.

TIP: Verwenden Sie die Gibbs-Duhem Relation für die Gibbsche freie Enthalpie $G = \sum_i \mu_i N_i$, rechnen Sie daraus den Unterschied $F_2 - F_1$ der freien Energien zwischen den Phasen aus. Ermitteln Sie diesen Unterschied nochmal aus $dF = SdT - pdV + \mu dN$ durch Integration.

