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Abstract

In supergravity models with superlight gravitinos G the gravitino couplings to
matter are amplified by the tiny mass of this particle. Such models provide
additional supernova cooling mechanisms via light gravitino emission. These states
would appear to the observer as missing energy since gravitinos cannot be detected.
The detection of supernova neutrinos from SN1987A however provides us with a
clear bound on any extra cooling mechanism of supernova cores. Any suggested
new physics like supergravity has to respect these bounds and we derive the lower
bounds on the gravitino mass obtained from this requirement.

We investigate the two gravitino pair production processes vy — GG and v —
GG and derive corresponding bounds that strongly depend on the masses of the
goldstino’s scalar partners. We also discuss phenomenological implications of
bilinear R-parity violations and show that the corresponding additional production
of single gravitinos from the processes vy — Gv and vv — G is too low to
have any observable effect.

Keywords: Supergravity, Astroparticle Physics, Gravitino Phenomenology,
Supernovae
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Zusammenfassung

Die Masse des Gravitinos G kann in einigen Modellen der Supergravitation sehr
gering sein. Die Materiekopplungen eines leichten Gravitinos werden durch den
kleinen Wert der Masse ms/, verstarkt. Im Kern einer Supernova wéren so die Ener-
gien hoch genug, Gravitinos zu produzieren, zu emittieren und den Supernovakern
zusétzlich abzukiihlen. Durch die Detektion der Neutrinos der Supernova SN1987A
wurde jedoch verifiziert, dass der grofite Energieanteil durch Neutrinos abgestrahlt
wird, neue relevante Supernova-Kiithlungsmechanismen sind somit ausgeschlossen
und neue Physik darf solche nicht vorhersagen.

Wir untersuchen die Produktion von leichten Gravitino-Paaren durch die Prozesse
vy — GG und v — GG und finden untere Grenzen fiir mg/2, da leichtere
Gravitinos zu stark zu der Energieemission beitragen wiirden. Diese Grenzwerte
héngen jedoch stark von der Annahme ab, wie massiv die Superpartner des Golds-
tinos in dem gewédhlten Modell sind. Des weiteren diskutieren wir, inwiefern die
Hinzunahme von bilinearen R-Paritatsverletzungen unsere Ergebnisse beeinflussen.
Die neuen Produktionskanéle einzelner Gravitinos vy — Gv und v — Gv
erweisen sich jedoch als zu schwach, um bei der Kiihlung einer Supernova eine
relevante Rolle zu spielen.

Stichworter: Supergravitation, Astroteilchen-Physik, Gravitino Phénomenolo-
gie, Supernovae
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Preface

Almost four decades passed by since the Standard Model of Particle Physics has
been formulated. It summarizes today’s best understanding of the elementary
particles of nature and their fundamental interactions. For these forty years the
Standard Model has been scrutinized like hardly any other theory. Countless
high-energy experiments have been conducted in hopes that new phenomena would
be observed; Phenomena that could not be explained by the Standard Model and
whose discovery would lead to scientific progress extending our fundamental un-
derstanding of Nature. Over the years the experimental efforts became bigger and
bigger and the discoveries confirmed exactly what the Standard Model predicted.
This year the Nobel prize in physics was awarded to the British physicist Peter
Higgs and the Belgian physicist Francois Englert for their theoretical discovery of
the Higgs-mechanism. The reason for this was the discovery of a very Higgs-like
boson at CERN a year before. It seems that the Standard Model as a whole has
been comfirmed as the correct description of high-energy physics at accessible

energies. The Large Hadron Collider at CERN will presumably return to operation



1. Preface

in 2015 and the hopes to find new physics are still high, but one might ask how to
proceed if the LHC fails to detect any physics beyond the Standard Model.
Nevertheless, it is undisputed that the Standard Model is not able to serve as a final
fundamental theory but as an effective description of high-energy physics. We will
depict its problems in more detail in sec. 2.1. There is a vast number of proposals
on how to extend the theory and it is the purpose of particle physics phenomenology
to find ways to examine and check the new ideas using empirical observations.
Particle colliders are only one experimental setting with high enough energies,
another way is to exploit the natural high-energy phenomena in astrophysics, even
if these energies are lower than in today’s colliders.

In this thesis we make use of the observation of the famous Supernova SN1987A.
As we will see, the detection of Supernova neutrinos enables us to test any new
physics that would lead to novel mechanisms of energy loss in such an event. One
of such mechanisms could be provided by Supersymmetry.

Supersymmetry is a special extension of the Standard Model’s symmetry group
that gained a lot of attention during the last decades. In the course of this thesis we
depict what Supersymmetry is and show its ability to solve several of the Standard
Model’s most severe problems. Yet, it also predicts many new phenomena, e.g.
every particle from the Standard Model would obtain a partner particle, called the
superpartner or ‘sparticle’. None of these new particles has been observed so far.
By promoting Supersymmetry to a local symmetry gravity is included into this
framework very naturally. In Supergravity, the superpartner of the graviton is
called the gravitino or G. Different realizations of supergravity, i.e. different ways
of SUSY breaking, can give rise to both heavy and very light gravitinos. The
latter case is of special interest for us, because a small gravitino mass could lead to
additional contributions of Supernova cooling beside neutrino emission. Since these
new mechanisms are strictly bound by the SN1987A observation we can derive

certain bounds on the gravitino mass. This is the main goal of this thesis.

We organize the way of proceeding as follows. In ch. 2 we start by discussing
the context of this thesis. We give some more details on the Standard Model and
the hierarchy problem and devote one section to Supernovae and the energy-loss

argument. Subsequently we introduce the idea of Supersymmetry and Supergravity



in ch. 3. We cover topics like Supersymmetry breaking, the Super-Higgs effect,
R-Parity and present the full general Supergravity Lagrangian. Afterwards we
focus on the gravitino and depict its phenomenology in ch. 4, which is completed
by the Feynman rules which we obtain from the Lagrangian in ch. 3.

Our main analysis is divided into two parts. In ch. 5 we review some investigations
by Grifols, Mohaparta and Riotto [1] in great detail and generalize them. In ch.
6 we examine how these results are altered in the case of broken R-parity. We
summarize and discuss our results in the last chapter.

Since we want to present our analysis as comprehensibly as possible, we provide
several appendices containing many helpful treatments. We establish the conven-
tions, notations and physical constants used throughout this thesis in app. A. We
devote an extra appendix (app. B) to spinor notations and conventions and also
treat spinors in curved spacetime. This is necessary for app. C where we derive
Feynman rules for gravitons from linearized gravity. The appendices D, E and F

contain several other relevant relations we need and tools we use.






Fundamentals — From Particles to

Stellar Explosions

This thesis can be placed into the broad spectrum of astroparticle physics. We start

by discussing the particle related background as well as the astrophysical context.

Supersymmetry (and Supergravity) is a well-motivated extension of the Standard
Model. As an introduction we treat the general properties and problems of the
SM. Here we focus on the hierarchy problem that serves as a nice transition and

motivation to the topic of Supersymmetry.

In sec. 2.2 we treat the astrophysical setting of this thesis and discuss the mechanism
of supernovae. We are most interested in the energy-loss-argument which is the

basis for our subsequent investigations.



2. Fundamentals — From Particles to Stellar Explosions

2.1. The Standard Model of Particle Physics — Its

Successes and Deficits

The Standard Model of Particle Physics (SM)* is an extremely successful description
of fundamental particles and their interactions. Despite gigantic efforts by thou-
sands of physicists it was not possible to observe significant anomalies from the SM
predictions. The most recent success of the SM is the confirmation of the predicted
existence of the (or rather a) Higgs boson on 4 July 2012 [5] at the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN) in
Geneva. Assuming that the observed boson is indeed the SM-Higgs one finds a
remarkable agreement between experiment and theory [6]. However we will see
that the SM is in a somewhat awkward situation from the theoretical as well as
from the empirical point of view, despite its large achievements.

The SM is a Poincaré invariant quantum field theory with additional internal
symmetries. The corresponding symmetry groups as well as the field content and
the values of the 19 free parameters of the theory are dictated by observations.
Having non-abelian gauge groups the SM is formulated as a Yang-Mills-Shaw theory
introduced in 1954 by Chen-Ning Yang and Robert L. Mills and independently by
Ronald Shaw in 1955 [7]. The structure of the SM interactions are determined by
the gauge group SU(3)c x SU(2), x U(1)y. It is regarded as one of the most suc-
cessful theories in science. Yet, the SM faces some serious problems or challenges if
you will. We want to mention three of these challenges, two of which are concerned
with the SM’s incompleteness and one that concerns its internal consistency.

The SM cannot be the fundamental and complete description of nature since it
does not incorporate all of either nature’s interactions or nature’s particles. The
issue of gravity is not addressed in the SM, it just does not appear. A consistent
formulation of a quantum theory of gravity and its relation to particle physics
remains one of the most important open questions in physics today.

The second problem of incompleteness is the lack of Dark Matter (DM) in the

SM. On the scale of galaxies, galaxy clusters and cosmology, we find convincing

'For a pedagogical introduction we refer e.g. to the textbook of Halzen and Martin [2] or the
review by Novaes [3]. For more details of the historical development of the SM we mention [4]
as an example.



2.1. The Standard Model of Particle Physics — Its Successes and Deficits

evidence for the existence of huge quantities of invisible and massive matter [8].
Models in which the DM particle is a Weakly Interacting Massive Particle (WIMP)
are favored from cosmological arguments, yet none of the particles in the SM have
the right properties in order to act as DM. The last challenge is one regarding the
internal consistency of the SM . It is called the "hierarchy problem’ [9] and it will
serve us as a bridge to the topic of this thesis?.

Not least because of the shortcomings of the SM mentioned above, today’s interpre-
tation of the SM is that of an effective field theory. The theory is not interpreted
as a fundamental theory but as a description of physics up to a physical cutoff
energy Ayy. Above this scale new, unknown physical structures become relevant,
e.g. quantum gravity effects may no longer be ignored at the Planck scale.
Considering this new physics it is puzzling that the Higgs mass is as small as it
is. A fundamental scalar field as the Higgs field is highly sensitive to the heaviest
fields in a theory and any physics beyond the SM. The bare mass would receive

radiative corrections,
My = Mupare + Ampg = O(100GeV) . (2.1)

If the Higgs couples e.g. to some heavy fermion f via the term A;H f f you obtain

a mass correction from the diagram in figure 2.1.

This diagram gives corrections to the Higgs mass

of the form f
2 _ _‘)‘f ‘2 2, (99 —————— & ————
Since we are sure of the existence of physics f

beyond the SM (at least gravity), we expect Ayy Figure 2.1.: Fermion Loop

to be a large energy scale like the GUT or Planck scale, yielding large correction
terms like (2.2). Therefore a cancellation between two huge terms must occur in
(2.1) in order to get a small value of mpy ~ 125 GeV.

In anticipation of the next chapters we mention that this problem could be solved

2Here we follow mainly the introduction of [10]



2. Fundamentals — From Particles to Stellar Explosions

by the introduction of a new symmetry connecting bosons and fermions. If we
assume that for each fermion in the theory we also have a bosonic field, we obtain

additional corrections to the Higgs mass, e.g. given by the diagram in figure 2.2,

As

T Aby+ ... (2.3)

2 _
Amy =

The different sign between (2.2) and (2.3)
enables us to understand the cancellation of
radiative corrections without the need of fine-

oy g tuning [11]. In chapter 3.1 we will elaborate on
this kind of symmetry.
We observe that recent developments at the LHC
Figure 2.2.: Scalar Loop have left the SM in an inconvenient position. On
the one hand we have this extremely powerful and predictive theory, on the other
hand, for the reason mentioned above, it cries out for extensions and particle
physicists around the world hoped for the LHC to not only find the Higgs boson
but also evidence of new physics at the TeV scale. However the first run of the
LHC, that ended on 14 February 2013, seems to confirm the SM and fails to detect
signals from physics Beyond the Standard Model (BSM) [12]. The situation will
worsen if the second run of the LHC at a center-of-mass energy of 13 TeV, beginning
presumably in early 20153, does not show anything new as well.
This would leave us with the serious question of how to proceed in high energy
physics. Of course we have to wait for the results, but in either case it is important
to look for alternative methods to test high-energy physics beyond accelerators.
Having a vast number of proposed extensions and hypotheses and limited amounts
of data finding new phenomenological methods has to be the order of the day. As
mentioned in the preface one promising area of research is astroparticle physics.
The relatively young combination of particle physics, astrophysics and cosmology
faces some of the most fundamental open questions in modern physics and reveals
many new possibilities to tackle these problems. This thesis gives one of these

attempts.

3http://press.web.cern.ch/press-releases/2012/12/
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2.2. Supernovae and the Energy Loss Argument

2.2. Supernovae and the Energy Loss Argument

A core collapse of stars with masses larger than a
few solar masses can trigger a giant stellar explosion
called a Supernova (SN) [13]. Its dynamics can be
explained by a 'bounce-and-shock’ model [14]:

The evolution of a star ends as soon as its nuclear
fuel is exhausted. Then the central iron core is
surrounded by various layers of different fusion pro-
cesses, e.g. hydrogen fusion in the most outer layer

as illustrated in the figure.

The iron core can no longer release energy via fu-

sion and remains stable as long as the electron degeneracy pressure balances the
gravitational pressure. But once the core mass exceeds the Chandrasekhar limit
of M ~ 1.44M¢ it becomes unstable and starts to collapse. This contraction
enhances itself by leading to electron-capture (p + e~ — v, + n) and lowering the
electron pressure. In a split second the core collapses to a small (Rgy ~ 10km)
and hot (Tsy &~ 50MeV) object of supranuclear density (psy &~ 3 x 10Mgem ™).

Then the contraction slows down and the gravitational binding energy of

3GyM M Rgy \ ¢
E, ~ = =1.6 x 10 | — ( > 2.4
"™ 5 Ren % (M@> 10km/ '8 (2:4)

gets released. While the contraction of the core stops more material continues to
fall towards the core’s center with suprasonic velocity. This leads to the emergence
of a shock wave at the core edge. This shock wave moves outwards and gains more
and more energy. Finally it ejects the material of the stellar mantle. This explosion
is called a supernova. All that remains is an explosion nebula and a neutron star
(R~ 10 km, M ~ Mg)). The exact mechanism for the transformation of the core
implosion to the explosion of the mantle is not fully understood. It is believed to
be connected to the mantle’s interactions with the SN-neutrinos.

Despite the fact that single Supernovae can be bright as whole galaxies the mantle
material and the electromagnetic radiation make up only ~ 1% of the released

energy. Neutrinos carry away the energy bulk.



2. Fundamentals — From Particles to Stellar Explosions

Supernova Neutrinos We will now focus on the neutrino sector of a SN [15]. As
the core collapses, only electron neutrinos are produced via electron capture of

nuclei,
e +N—=v.+N.

These neutrinos escape directly, but are not relevant for the overall neutrino
luminosity. During the collapse the core density increases and the neutrino’s mean-
free-path decreases through scattering Nv, — Nv,.. At temperatures higher than
10 MeV and densities over 10'2g cm ™3 the cross-section of neutrino scatterings on
heavy nuclei increases [16] such that the neutrinos are trapped. The cross-section
of neutrino scatterings is proportional to E2, only low-energy neutrinos are able to
escape the core now. The other neutrinos form the so called ‘neutrino sphere’ with

a radius of

Re ~ 1.0 x 10%cm (V> :

¢ 10 MeV
Apart from the early universe this is the only instance where neutrinos are in
thermal equilibrium. After the collapse stops and the shock wave emerges all kind
of neutrinos can be produced, because thermal processes lead to the presence of

relativistic positrons,

vy — e et — v,u, for high E,,
NN — NNv,v, forlow E, .

Now the cooling phase occurs, where the hot and dense core emits thermal neutrinos
from all flavors. A SN is roughly a black-body source for neutrinos?.

In our analysis we will simplify this picture by assuming that the core has a radius of
10 km and all flavors of neutrinos are in thermal equilibrium following Fermi-Dirac

statistics, see app. E.

4Neutrinos of different flavors interact differently with matter. That is why the neutrino sphere
is ill-defined [15].

10



2.2. Supernovae and the Energy Loss Argument

2.2.1. The Observation of SN1987A

On 23 February 1987 the blue giant
Sanduleak-69202 in the Large Magellanic
Cloud exploded in a supernova that was
named SN1987A. Since Kepler’s supernova
in 1604 it was the first one visible to the
naked eye. The remains can be seen in the
figure at the side®. It is the first and to this
day only SN, whose neutrinos have been
observed directly. They have been detected
in Kamiokande II and IMB [17]. Together

with models of gravitational collapse [18] it

is possible to estimate the neutrino energy
released at SN1987TA,

E, > 2 x 10%%erg. (2.5)

The Argument of Energy Loss Comparing (2.4) with (2.5) we find a correspon-
dence which constrains new physics by an argument of anomalous energy loss [13].
New physics is often accompanied by the presence of new particles. Weakly in-
teracting particles of low mass could contribute to the energy loss or cooling of
stars and SNe. These anomalous energy loss mechanisms are however constrained.
Comparing again (2.4) and (2.5) a new particle X could only have a SN luminosity
of roughly

2618
S

Lx < 10° (2.6)

The luminosity Ly gives the integrated energy emitted by anomalous cooling
mechanisms via new particles. This argument applies if the new particle escapes
from the SN core. It should not diffuse inside the core for longer than tgg ~ 1s,

since the energy gets depleted via neutrino emission during this duration.

Shttp://www.spacetelescope.org/images/potwii42a/

11
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Global and Local Supersymmetry

In the first section of this chapter we introduce the general idea of global Supersym-

metry in a qualitative way, sketch its development and make the first comments
about SUSY breaking.

In section 3.2 we generalize SUSY to a gauge symmetry and describe the idea of
Supergravity. Here the gravitino will appear for the first time and we give some

details on local SUSY breaking and the Super-Higgs mechanism.

Subsequently we state the full Supergravity Lagrangian in 3.3 as the starting point
of our investigations. For this we have to introduce a lot of notations, but we will
see explicitly the concepts and ideas from the previous sections. At the end of this

chapter we end up with a Lagrangian suitable for our phenomenological studies.

At last we discuss R-Parity and its violations. Here the focus lies on bilinear

R-parity violations.

13



3. Global and Local Supersymmetry

3.1. Global Supersymmetry

The special symmetry between bosons and fermions that we briefly mentioned in
ch. 2.1 is called Supersymmetry (SUSY) [10, 19]. The reasons, why SUSY gains
a lot of attention by theoretical physicists are diverse, we already mentioned its
ability to solve the hierarchy problem. Now we want to add another motivation of
a rather aesthetic nature.

It all started in 1971, when it was shown that the Mandula-Coleman theorem [20]
could be circumvented. This theorem is based on some very general assumptions
and states that the most general Lie algebra of symmetries of the S-matrix of a
realistic quantum field theory can only be a direct product of the Poincaré group
and a finite number of generators belonging to the Lie algebra of a compact Lie
group, which transform as Lorentz scalars. In other words the tensorial symmetries
are completely given by the Poincaré generators, i.e. the Lorentz generators M,
and generators of spatial translations P,.

But the assumptions turned out to be too restrictive when it was shown that
the Poincaré algebra could be nontrivially extended by generators given by the
Weyl-spinors Q,, [21, 22], which obey anti-commutation relations. These spinors!

satisfy the so-called super-Poincaré algebra,

{QaQs} =202 P. (3.1)
{Qa, Qs} = {Qs, @5} =0, (3-2)
[QO“PN] = [@c’wpu} =0. (33)

The generators @ satisfying (3.1-3.3) relate bosonic states with fermionic ones,
Q|boson) ~ |fermion), @|fermion) ~ |boson). (3.4)

A finite SUSY transformation is parametrized by a Weyl spinor € and given by
e~@ We refer to SUSY as global, if € is not spacetime-dependent.
The first supersymmetric, renormalizable field theory interesting for particle physics

was formulated by Wess and Zumino in 1974 [23], who presented a supersymmetric

IThe conventions used for spinors are given in the app. B.

14



3.1. Global Supersymmetry

toy model consisting of two real bosonic and one chiral fermionic field. However the
first realistic supersymmetric theory, the MSSM, was not introduced until 1981 [24].
Shortly after the work of Wess and Zumino it was shown that SUSY is not just
one but the only possible way of extending the symmetry algebra of the S-matrix
nontrivially [25]. Of course there are also more phenomenological reasons to study
SUSY like the solution of the DM problem mentioned in ch. 2.1 or the unification
of gauge couplings at high energies [24].

3.1.1. Global Supersymmetry Breaking

In a supersymmetric theory every bosonic particle in the spectrum has a fermionic
partner and vice versa. A complex scalar field, a chiral fermion and an auxiliary
field form a so-called supermultiplet (¢,, F'). In order for a theory to be invariant
under SUSY transformations, the bosonic and fermionic superpartners of these
supermultiplets must have identical masses. This is obviously excluded. The scalar
superpartner of the electron, the selectron, being charged and light, would have
been discovered a long time ago. This means that in the true vacuum state |§2) of
the theory SUSY should be a broken symmetry, leading to a mass gap between the
superpartners of one supermultiplet. Since the Hamiltonian of the theory can be

expressed in terms of the SUSY generators one can show that
QIN2) A0« (QH|Q) > 0. (3.5)

Therefore in order for global SUSY to be spontaneously broken, the vacuum energy
must be non-zero. To achieve this one usually assumes that some auxiliary field
F obtains a vacuum expectation value (VEV) (F'). This way supersymmetry is
broken at a scale Agysy = \/ﬁ . After symmetry breaking, a massless Goldstone
particle enters the spectrum as in the electroweak theory, but in the case of SUSY
this is a fermion, the so-called goldstino [21, 26]. As a spin 1/2 particle it has a
complex scalar superpartner, the sgoldstino, whose mass depends on the specific
model.

It turns out that the auxiliary field with the VEV cannot belong to a supermultiplet
from the observable field sector, e.g. the electron-selectron supermultiplet. Instead

it has to be outsourced to a supermultiplet of a new hidden field sector [27]. This

15



3. Global and Local Supersymmetry

supermultiplet is composed of the goldstino, the sgoldstinos and the auxiliary
field F' that acquires the VEV. As soon as SUSY breaking occurs in this sector,
it gets communicated to the observable parts by certain interactions, which also

depend on the SUSY breaking mechanism.

3.2. Local Supersymmetry (Supergravity)

Since the internal symmetries of the SM are all realized locally (‘gauged’), it is not
far-fetched to examine the consequences of promoting SUSY to a local symmetry.
For this the parametrizing spinor € is assumed to be a spacetime dependent function
().

Looking at (3.1) we see that the SUSY generators are connected to the Poincaré
group. Hence gauging SUSY also means gauging spacetime translations. Therefore
the only way to have a locally supersymmetric theory is to add the Einstein-Hilbert
action?. The spin-2 graviton has to be part of the particle spectrum and we find
that local SUSY is nothing but the combination of supersymmetry and General
Relativity (GR) and thus called Supergravity (SUGRA)3[30, 31].

As every other boson the graviton is part of a supermultiplet and has a fermionic
partner of spin % called the gravitino, whose dynamics is described by the Rarita-
Schwinger action. Before SUSY breaking both the graviton and the gravitino are
massless. Indeed you can interpret these two fields as the gauge fields of the local
Poincaré group and local SUSY respectively. In conclusion this leaves us with the

locally supersymmetric part of the action describing the gravity sector,

1 1 —
_ 4 KAV 5
5= [dlwe |5 SR = SR 00,0 (3.6)
where e is the determinant of the vielbein (see app. B and C), R is the Ricci scalar,
k = /8nGy is the gravitational coupling constant and 1), is the Rarita-Schwinger
field describing the gravitino. Since it is the central particle of this thesis we will

focus on the gravitino in the separate chapter 4.

2We could also argue in the opposite direction and say that SUSY would have to be a local
symmetry, since we are sure of gravity’s existence.
3For a review we refer to [28]. For a pedagogical introduction we also recommend [19, 29].

16



3.2. Local Supersymmetry (Supergravity)

It is understood that N =1, d = 4 SUGRA is not a candidate for a fundamental
theory for its non-renormalizability. Just as in the case of perturbative quantization
of General Relativity, SUGRA is considered as an effective field theory predictive

up to a physical cutoff energy scale.

3.2.1. Local Supersymmetry Breaking and Super-Higgs

Mechanism

In sec. 3.1.1 we stated that non-vanishing vacuum energy is the indicator for
spontaneously broken supersymmetry in the global case. In SUGRA this is no
longer valid and we obtain additional terms in the scalar potential which could
cancel the vacuum energy. The Minkowski spacetime would be the theory’s classical
background. Instead of the vacuum energy the new criterion for SUSY breaking in
the local case is given by a non-vanishing gravitino mass mgs/,,. While the graviton
remains massless a massive gravitino is a clear indicator of SUSY breaking and
directly related to the SUSY breaking scale Agysy via

K

Mms/2 = \/gAgUSY' (3.7)
But how does the gravitino obtain its mass?
It does in a way similar to the massive vector bosons in electroweak symmetry
breaking. In analogy to these particles, the gravitino becomes massive via the
Super-Higgs effect [30, 32, 33]. The goldstino becomes its +5 helicity states and
disappears from the physical spectrum. This reasoning, which we only sketched
here, will be carried out explicitly in the next chapter.
Different SUSY breaking schemes give rise to different values of m3/;. For example in
Planck-scale mediated SUSY breaking, gravity mediates the symmetry breakdown
to the observable sector [34]. In this framework the gravitino typically has a mass

comparable to the gaugino masses. There are other models allowing ms/, to be

small as we will see in ch. 4.
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3. Global and Local Supersymmetry

3.3. General Lagrangian of a Locally

Supersymmetric Gauge Theory

The full Lagrangian for a gauge invariant SUGRA Model is derived in [32] and also
given in [29]. We start from the Lagrangian given in the app. G of the book by Wess
and Bagger and rewrite it using four-component spinors*. The full supergravity

Lagrangian is given by

e 'L =
~ 5B 05 DU DA — gDy DI 4 g XE Dy
&MY, 3Dy, —  F PO 4 <y F S
— V290, D\

i a1 —a
+ 5)\(@)7“17#)\( ) — 3¢ 1f{ab)DM {e)\( )’y“)\g)
—J\ (a K a)Y(®) K * a)——1
~ V/290): Dy X2 A + 7 v/290, i D' Oy V200 fiy DX AY

\/§ ~(a v i \/§ a
i3 SN AL ED 450 S XE TN EL)

16
K — o K — o V2 « Vi
+ 59D, "N~ ng@m“A(L) i Dud P X

+ i V2 =91 Do XLV Uy — [% ™, "] ”Na)} [F )+F(a)}

2 16

2
K s KAV T A% ~——J %
— Y € e+ D, k] X

2
K —1 —d_c

B g(gij*gkz* — 2R X5 XEXT X
1
16 {25 Gij f(ab) + (f cd)) af(bc)8 f(ad } X©'v XL)‘ ’Yu)\(

~ct iy (a c a)
gviajf(ab)XL AN — gvi*aj*f(ab XA
1 - ~N(a) ;<
- 176(]0(];1)) 1aif(ac)ajf(bd))\ XL)\( )Xi
1 _ . . i (@) i
- E(f(?d)) L0pe [0y O fioay Xz A XL AP
1 352

. @)\ (b)) | (d ~ o~ b
_Egjaif(ab)aj*f(cd))‘ AP )‘gz)+176/\(a)7“/\5%)/\(b)%)‘g%)

“Note that our conventions, see app. A and B, differ from the ones chosen in [29].
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

K ~(a) W AT - iy
— E\/ﬁ&f(ab) [A V) X, 1A — wﬂ“xLA( AP

K * R v a)77, b —i (@) y (b
+ V20 Sl X A IATB AL + X XA

2

— exp <K2K> {TW*WQ 7% 77] s + %Wﬁa 77| s

2

\/5"'i — i \/5’% k1 1 —ct. Jj
+ 5 DiWY, Xy + 5= D WXL Y + 5 DD WX X

2 2

L D W xS 4 g Do W, Foap NOAD 1 L8 D . £, XOAD
+ 5D D WIXL'XL + 197 D Wi 0ifap A AL + 797 DiW 05+ flan A" Ag
—exp (KK [g7" D;W(D;W)* = 352W* W] . (3.8)

We will now introduce the individual constituents.

Field Content
Matter Fields

The matter sector consists of chiral superfields. In the component formulation

of (3.8) they appear as a lefthanded 4-spinor \%, given by

Xo = ((XZgWB) 7 (3.9)

where (\,)ws is the 2-spinor used by Wess and Bagger in [29], as well as a complex
scalar field ¢* and an auxiliary field F. The index i runs over all chiral superfields
of the respective model and the index « is the spinor index. In the following we

will mark all quantities coinciding with the ones in [29] with WB.

Gauge Fields

Since we are interested in gauge invariant models there are also gauge supermulti-

plets. They consist of a gauge boson AL“) with the associated field strength tensor
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3. Global and Local Supersymmetry

F ;53) and a superpartner fermion, the gaugino @, written as a Majorana spinor?,

—i ()\(a)

a o )WB
\(@ — Z, </\(a)d> , (3.10)
‘WB

and an auxiliary field D@, The gauge index is always written with brackets,

(a) =1,2,...,dim G for the gauge group G.

Gravity Fields

In the gravity sector, we have the graviton spin-2 field, given by the vielbein or
tetrad e}’ that can be found indirectly in the vielbein‘s determinant e and the
Ricci scalar R, for more details on the vielbein we refer to the app. B and C. The

gravitino is a massless Majorana vector-spinor field 1,

—1 (dﬁwc)WB)
V=1 [ : (3.11)
( ¢ (w“)WB

In contrast to the gauge and matter fields there are two auxiliary fields, a complex
scalar field M and a real vector field b*, which secure a consistent off-shell description
of the gravity sector. These do not appear in (3.8) because they have already been

eliminated using their respective field equation.

Auxiliary Fields

The auxiliary fields of the chiral supermultiplets £ do not appear in the Lagrangian

for the same reason. Their equation of motion reads
Fl = K20 DL (3.12)
We will need the field equations for the scalar M field given by

M = —3ke™ KPW . (3.13)

5 Just as in [35] we add additional factors of i in the definition of the gaugino and gravitino
fields.
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

The D@ fields have not been eliminated. However their field equations are given

by

D@ =Re(f7) I (t99)" (3.14)

(ab)

where the generators ¢ of the Lie algebra of the gauge group G occur for the first

time.

Matter Coupling to the SUGRA multiplet

The coupling of matter to the gravity sector of the model is encoded in three

functions:

1. The first is the superpotential IV, an analytic function of the scalar fields

¢' as well as scalar fields h from a hidden sector,
W (o', h) = Wi(h) + W,(¢') . (3.15)

It has a mass dimension of 3 and determines the self-interactions of the scalar
fields and their Yukawa couplings. The scalar field h plays an essential role
when it comes to SUSY breaking. We will have to come back to this in
sec. 3.3.

2. The Kihler potential K (¢') is a real function of mass dimension 2, that

appears either directly in (3.8) or indirectly in the Kahler metric

K

(3.16)

It is in particular responsible for the kinetic term of the scalar fields. The

corresponding Kéahler connection and curvature are given by

[k = ghl” 222 1
7,] g 8¢’L ) (3 7)
R = J rm 3.18
itk = Gt 55 i (3.18)
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3. Global and Local Supersymmetry

3. The gauge kinetic function f(,;(¢’) is located in front of the kinetic terms
of the gauge boson and gauginos. It is a dimensionless and analytic function.
Its real part, together with its real inverse, is used to raise and lower the

gauge indices.

In this context we introduce the notation

0 f(ab) 01 (ab)
81' ab) ‘— — (91»* ab) ‘— — 3.19
Jfab) s Jab) D (3.19)
0K 0K
Kii=2"  and Kp:=—. 3.20
a¢z an a¢*z ( )
Covariant Derivatives and SUSY Transformation
The covariant derivatives in (3.8) and (3.12) are given by
D¢’ = 0,8 +igA g7 95Dy (3.21)
D ) -0 i _|_£ ab i +Fz D ¢j k_'_ A(a)a ”*3*D k
uXL XL 4wu Oab X, kPP Xy 7194, 0k (97 O« L) ) XL
1 j *J 7 i a 4
- (K;jDud? — K;-Dud™) Xy — ilingEL ) Tm Fayxh (3.22)

D@ = g A@ iw;baam@ — g [ ADAE

1 ) . )
+ o h (KjDud? — K;-Dyus) X@ 4 Sw2gAP Im FpA@ . (3.23)

2
i
Duwu - 8%% + Zwuabaabwu
1 , y i .
+ A (KiDu¢’ — K;-Dyg™) v, + SR gAY Im Flay)y (3.24)
DWW = W, + k*K;W | (3.25)
D;D;W = Wy; — TEDW
+ 12 (KW + K;D;W + K;DW — 1K KW ) (3.26)

The Lagrangian is invariant under the local SUSY transformation parametrized by
fWBo:))

the Majorana spinor &(x) = (5 (2)
wB\L

(Sfeﬂa =K (E’V“iﬁ}m - gfyawL,u) 5 (327)
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

0c¢’ = V2UEXT,, (3.28)
Sext = —iV2y"ERD,d — T e/ Xk — V2e K260 DLW,
- lﬂéLgij*a'*f*ab)X(a)Ag) + lefo (Kj0ed? — Kj0e0™) X . (3.29)
SeAL = T, — EnAi (3.30)
SN = JE 0716~ 9D + (VIR LS X

£ V() 0 f XA — (R (K 0ed? — Kjr0e0 AL, (331)
Oethy = iDuﬁ + ke KW, L — i;ﬁ(Kjéfd)f K 6¢0™ )1,

- ;Fv [ 1 €965 X027 X, — ;% (gw + i [, ’YV]) EXa?"Ng - (3.32)
Here we also used the covariant derivative of ¢ given by

i 1 ‘ y
Dut = 0 + Jw0wé + 47 (KDud) — KpDuo) €. (3.33)

SUSY Breaking and Super-Higgs Effect

In the ch. 3.1.1 and 3.2.1 we discussed many aspects of SUSY breaking in a
qualitative way. Now we want to carry out the corresponding steps explicitly.

If SUSY is spontaneously broken, the superpartner of the Standard-Model particles
could indeed attain a mass high enough to explain that they remain unobserved to
this day.

We already saw that global SUSY is broken, if and only if the vacuum energy
(Q| H Q) = (Q V'|§2) is non-zero. Here V is the scalar potential. In global SUSY
it is given by

L 1
V(p) = F'F* + §D(“)D(“) : (3.34)

Note that this potential is always positive or zero. If one of the auxiliary fields
F* attains a vacuum expection value (VEV) (F*), we will obtain a non-vanishing

vacuum energy and thus spontaneous breaking of supersymmetry®. With a positive

6 At this point we will not consider the possiblity of SUSY breaking via a non-vanishing (D(®)),
For reasons see e.g. [10]
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3. Global and Local Supersymmetry

vacuum energy, we would obtain de-Sitter spacetime as our classical background.
Now let us turn to local supersymmetry. In this case the scalar potential (3.34) is

generalized to

2
. " 1
V(p) = F'gi- F7 + % Re fanyD“D® — SMM (3.35)

After implementing the gravity sector the potential is no longer positive semi-
definite. Since a significant cosmological constant is experimentally disfavored we

demand that the vacuum energy vanishes,

Vy=0 = \/<Figij*F*j*>:j§<|M|>. (3.36)

In contrast to a globally supersymmetric model, we can choose flat Minkowski

spacetime as our classical background.

Gravitino Mass

We define the supersymmetry breaking scale as A% ¢y = (F'g;j«F*") and evaluate
(3.7),

kA2 K , " K
majs = " = T\ (g F) = (M), (337
With (3.13) we obtain
Mgy = K2 T2 (W) . (3.38)

This combination appears in the Lagrangian (3.8) giving rise to the gravitino mass

term,

KK\ (K%
— eexp < 5 ) <4W YR, hamﬁ] Y+ h.c‘>

1 _
= — L ema Vo 177 U5 (3.39)
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

The gravitino is now massive. As outlined in sec. 3.2.1 it obtained its two additional
degrees of freedom by absorbing the goldstino, which can be set to zero. In other
words, the goldstino-gravitino mixing term in (3.8),

ivV2k
2

(DW)IXG VYo + hc., (3.40)

vanishes.

Gaugino Masses

The only term in (3.8) that could generate gaugino masses is
1 .. a2
—ee" K2 197 Dy W0, Fan A2 P +he.| (3.41)

Based on these terms we define the gaugino mass matrix,

1 KZQ ii*
My = 5 #/265 (D, W0 f ) (3.42)

which gives the possibility of mixing the gaugino’s mass eigenstates.

3.3.1. Minimal Choices for the Lagrangian

In the following we will only consider terms up to the order x! and neglect terms
of higher order with one exception that we discuss later.

In addition we have to make some choices for the Kéhler potential, the gauge kinetic
function and the superpotential. We choose them minimally, just in order to get

the desired features of the theory, e.g. gaugino masses and canonical kinetic terms,

Siavy = () f(h), (3.43)
K(h,h*,¢",¢™) = Ky(h, h*) + ¢'¢™, (3.44)
W (¢, h) = Wy(h) + Wy(¢") . (3.45)

We assume that the function f(h) is real. Note that 0;f(.) is now of the order

k. Other consequences of this choice are a trivial Kihler metric, (3.16) becomes
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3. Global and Local Supersymmetry

gij+ = 05+, vanishing connection terms Ffj = 0 as well as a vanishing Kéahler
curvature I2;;-p» = 0. Furthermore we do no longer distinguish between upper and
lower gauge indices (a), (b), ... or superfield indices i, 7, ..., since they are now raised
and lowered by d(4) and d;; respectively. Furthermore the gaugino mass matrix
(3.42) is diagonal.

1 : 1 - i
e L =55 R+ DD — 592(f(h))_1D(“)D(“) + X VDX,

-1 _rAuv, 7, 1 a a)uv i 3\a a
L Lenn DDty — Zf(h)F‘E”)F( v §f(h))\( )’YMDM)‘( )

\a) i 1 — a)J\@) i
+ [— ﬂgaiD(a))\( )XL + Z\@gﬂh) laz‘f(h)D( )/\( )XL

\/§ @ V] b a K — a) 7, a
i WX [ IXEES) + S9f ()7 DY,

.\/5/{ *1 7. V. i’i A m n a a
— i D X b | = 2 f () [, [ A

(5)
—oxp | —

— exp (K2K) [DiW (D;W)* = 32" W]

’iW*wRa [, e + =

V2

DiWv, X

1 ﬂ . 1 * —(a

+ 5 DD WXE X+ D W0, Fan A AW 4 hee.
52 - KAV, T YRS VS V) pe— 7 2

T [26 YRy + 0,y %2} Xz vwxz' + O(k%). (3.46)

The last term may be of order 2, nonetheless it will be relevant in one situation

later on. The auxiliary D fields are simply given by
Dy = ¢t ¢/ (3.47)

After SUSY breaking the field A from the hidden sector acquires a VEV (h) (as

well as (f), (Wh), (K})) and we obtain the following gravitino and gaugino masses,

M = k2™ Fn2(W)) |

1 -
Map) = 565 R D W) (0if (h))(ab) -
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

We do not want the function f(h) to appear explicitly in our Lagrangian, so we

perform the following re-scaling as it was done in [35],

A — A= /(FI, (3.48)
AW — AW = J(fHAD (3.49)
g— =2 (3.50)

(f)
Mgy — Map) = M) (3.51)

We immediately abbreviate the notation and omit the hats. In consequence of the
re-scaling we obtain canonically normalized gauge kinetic terms. These choices

leave us with the Lagrangian,
-1 1 Zalpy Lo i (@) 15\ [ k(@) 41 — i
€ ﬁz_@R_FDMﬁDQS _59 (¢ tzg¢)(¢ ta @) + XLV Duxy,

4

N | —

—1 _rkAuv, Z "A o 1 a a)puv
_ L lerh ¢5'75'7/\Duwu+ §m3/2¢a0 B¢ﬁ _ Zpla) plau

S \a 1 S \a a
+ X DDA — (A;)A(L) + h.c.>

xj(@)\Y\2) 4 K *14 (@ AVR a
— V29 NN + G907 )T

2
\/5’% *1 /. V.1 /LK/ - m n a a
— D A e | = (8, A B

(HQ )
— exp
2

— exp (KK [DiW (D;W)* = 352" W]

_|_

N =

K2 K

=W hnr, 777 Wrs + ﬁDiW@,ﬂ“xiL

4

1 1 . —(a
+ 5 DiDWXE X+ D WD, Fan A A 4 hee.

2

K - kAU T v —1 7
- (€™, b + D,y ] X xe + O(k2). (3.52)

The masses of chiral fermions can be produced as usual from the bilinear part of
the superpotential, the Yukawa couplings emerge from trilinear terms [35]. In ch.

4.3 this Lagrangian will be our starting point.
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3. Global and Local Supersymmetry

3.4. R-Parity

In this section we will assume the field content of the Minimal Supersymmetric
Standard Model (MSSM)”. The superpotential of the MSSM is given by

Wassm = pHyHg + NjHaLi B + )\fdeQich- — N H.Q:UY, (3.53)
where the indices 7, j, k run over the three generations. However these terms are
not the most general set of renormalizable and gauge invariant terms.
Demanding gauge invariance and renormalizability the SM contains the most
general set of Yukawa couplings. This naturally leads to the conservation of baryon
number B and lepton number L, whose underlying symmetry can be regarded as
‘accidental’. This nice feature is lost once we add SUSY. It is possible to generalize B
and L to the sparticles, but some of the couplings compatible with gauge invariance
and renormalizability are very problematic. Namely the superpotential terms

proportional to
L-LE°, Q- LD, UeDeDe, (3.54)

that cannot be found in (3.53), lead to undesirable features. They introduce new
effective four-fermion interactions via exchange of squarks or other bosons that
do not conserve B or L. These interactions could spoil our model containing
electromagnetic, weak and strong interactions via gauge spin-1 boson mediation.
They can also lead to rapid proton decay, whose life time is very strictly bounded
from below (7p > 2.1 -10%%y [36]).

One solution was found by Pierre Fayet, who introduced a new discrete symmetry,

called R-parity [37]® and given by

+1 for particles,
RP — (_1)3B+L+2S — p (355)
—1 for sparticles.

"For an introduction we refer for example to [10, 19].
8For a pedagogical introduction we refer to [19]. For a review on R-Parity and its violation we
recommend [38].
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3.4. R-Parity

The conservation of R-parity forbids the terms in (3.54) and allows the necessary
Yukawa couplings of the Higgs-fields present in (3.53), because Rp = —1 for
Q, LU, D¢ E¢and Rp = +1 for H, and Hy.

It also means that the lightest supersymmetry particle (LSP) is stable and that
sparticles can only be produced in pairs. R-parity could emerge as the discrete
remnant of a broken global U(1) symmetry, whose generators R do not commute
with the SUSY generators,

Qa Rl = Qo [Qu B] = Qs (3.56)

and therefore treats particles and sparticles differently. This kind of internal global
symmetry is present in N=1 SUSY [19] but in the end one still has to impose

R-parity conservation as an additional input of the theory.

3.4.1. Bilinear R-Parity Violations

It should be clear by now that there is no fundamental reason to not include the

superpotential terms
1 C (& 1 (& (& C
Wi = piHu - Lit ShigiLi - LiEf + NigiLi - QD + S A" U DDy . (3.57)

However, as said before, these couplings are highly constrained phenomenologically
since they might lead to violation of baryon and lepton number. But only if both B
and L are violated simultaneously the proton could decay via e.g. p — 7%t and
it is possible to introduce lepton number violating terms compatible with empirical
data [39].

We will relax the MSSM’s assumption of invariance under R-parity and allow

bilinear R-parity violations [38, 40] given by the first term in (3.57),
WRP == ,U/zHu . Lz . (358)

This term is motivated by its ability to generate a hierarchical neutrino mass
spectrum favored by observations (e.g. the solar neutrino problem) [41].

After SUSY breaking additional terms containing bilinear RPV can be found in
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3. Global and Local Supersymmetry
the soft SUSY-breaking terms,

Lo = (BiHyLi + w3 H]Li +hec.) + .. (3.59)

1)

We can include the nine R-parity violating parameters p;, By, m?3; while respecting
existing experimental bounds since baryon number is still conserved and the proton
remains stable. This is not at all an unnatural thing to do and can change the
predicted phenomena completely [42].

Without R-parity we can no longer distinguish between the Higgsino H,; and

leptons L;. Mixing becomes a possibility and we can perform rotations of the weak

(Hd) — (H3> =U (Hd) ., with U € SU(4). (3.60)
L, L L;

This rotations lead to a tranformation of the RPV parameters such as

eigenstates [39]

pi = i = Ui+ Ugipg (3.61)

9

and also generates new Yukawa couplings A;j; and X;;;”. Due to the bilinear

term (3.59) the sneutrinos 7; typically acquire a VEV v; = 0}2) after radiative
electroweak symmetry breaking alongside with the Higgs VEVs v, and vy [43]. But
we should note that the value of the sneutrino VEV depends on the choice of weak

interaction basis and changes under the transformation (3.60) as
Vi — U; = UZ'()Ud + Uijvj . (362)

Of course it does not matter which basis is chosen. We could find weak eigenstates

such that v; = 0 and p; # 0. Following [39] we choose,

I —¢ i
U:( 6), fore; =1 <« 1. (3.63)
1

*
€; laxs

9These new trilinear terms do not lead to baryon number violations.
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3.4. R-Parity

In this basis the three parameter p; vanish and trilinear R terms emerge in the

superpotential. We have a non-vanishing sneutrino VEV given by [40]

*2
v;  Bitan —mp ;.

~~ . 3-64
Vg ml?ij + 2my cos2f3 (3.64)

The angle [ is defined by tan g = Z—Z

Neutrino-Neutralino and Chargino-Charged Lepton Mixing

As mentioned before without lepton number conservation bilinear RPV gives rise to
new mixings. Especially the neutralinos mix with the neutrinos and the charginos
mix with the charged leptons. These interactions are of special relevance to us,
since they lead to new effective gravitino couplings to leptons, as we will see in
chapter 4.4.

The 4 x 4 neutralino mixing matrix in the MSSM becomes a 7 x 7 matrix M
given in a basis (—i7, —iZO, ﬁg ) H 9. ;). This matrix can be diagonalized using

a unitary 7 x 7 matrix N7,

Xt —iy
e —iZ°
N |l=N"| B |. (3.65)
X Hy
922-5-1‘ Vi

Following [40] we define the photino-zino, zino-zino and higgsino-zino mixing

parameters,

4 N:N.; My — M
RIS in 6 Oy ——— L 3.66
mZ; —_ A my sin Oy cos Oy N, (3.66)

4 NN, sin? 0y cos? Oy
Uss = iz 2 ~ — 3.67

4 NNz M, cos? Oy + M, sin? 0

Ugoz = — e 7 m2 cos Oy — U— W 3.68
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3. Global and Local Supersymmetry

4 N*%yN.- 2 2
iH9"ViZ . M, cos® Oy + My sin® Oy,
Uzos = E ST 0 : 3.69
g7 = M7 2 Mg Mz S bW My Moy (3.69)

Here we wrote down the leading terms in the expansion of N7 in £ = Y (with

v =1, +vg) and my.
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Phenomenology of Superlight

Gravitinos

We now focus on the central particle of this thesis. After a short discussion of
the Rarita-Schwinger action, which describes the free massive spin—% gravitino
field, we explain why a superlight gravitino is of special interest for particle physics
phenomenology. This also involves the SUSY equivalence theorem stating that a

very light gravitino effectively acts as a massless spz'n-% goldstino.

In sec. 4.3 we complete the derivation of our model and state the Feynman rules
necessary for our investigations. Also we comment briefly on the complex role of

the sgoldstino fields and their couplings and masses.

The focus of the final section lies on the additional gravitino interactions arising
from bilinear RPV terms in the superpotential. The vacuum expectation value of a
sneutrino field gives new effective couplings between gravitino, matter fermions and

gauge bosons.
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4. Phenomenology of Superlight Gravitinos

4.1. Free Gravitinos — The Rarita-Schwinger-Field

The Lagrangian of a free massive spin % field already appears in (3.52). It can be

written [44] as

1 1
L= —56“”“%75%05% = a2 [V (4.1)

The corresponding field equations are the Rarita-Schwinger equations [45],

1
2 Oty + Smasge [1,7°] % = 0. (4.2)

Alternatively they can be expressed in the form

au¢u($> = 07 (43)
Vhu(z) =0, (4.4)
(i — masa)ihu(x) = 0 (4.5)

Therefore the object 1, is a four-vector with spinors as entries, each satisfying
the Dirac equation. Hence the solution v, ~ e_ip%ﬁ# can be written using a

spin—% spinor u and a polarization vector €, of a spin 1 field,
- 1 3 . -
w,u(pu )‘) = Z <(27 S) (17 m) ’ (27 )‘)> U(p, S)€#<p7 m) ’ (46)

where <(%, 5) (1,m) | (%, )\)> are Clebsch-Gordan coefficients [46].
When summing over the gravitino spins we will need the polarization tensor of 1,

with momentum p,

I (k) = v () (where 5=, ié’)

= —(p:l: m3/2)><

pupz/> 1 < p,upa> ( pAPu) o A\
Guv — — o\ 9o — =5 | [ 9or — Y (4.7)
{( " mg/z 3\ mg/Q m%/z
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4.2. Phenomenology of Superlight Gravitinos

for the positive and negative frequency solution respectively [40, 44]. For a derivation
we refer for example to [47].

The polarization tensor satisfies the following relations,

YL, (p) =1L, (p)y" =0, (4.8)
P'IL,,(p) =11, (p)p” = 0, (4.9)
(p — ms2)IL,, (p) = 1L, (p) (p — msy2) = 0. (4.10)

4.2. Phenomenology of Superlight Gravitinos

The actual value of the gravitino mass heavily depends on the SUSY breaking
scheme. For example in Planck-scale mediated SUSY breaking gravity communi-
cates the symmetry breakdown to the observable sector [34]. In this framework
the gravitino typically has a mass comparable to the gaugino masses. For phe-
nomenological reasons we are interested in superlight gravitinos only, which do
not appear in the framework of Planck-scale mediated SUSY breaking. However
there are other models allowing ms3/, to be small like certain no-scale models [48]
and models with gauge-mediated SUSY breaking (GMSB) [49]. In the latter gauge
interactions communicate the SUSY breaking to the observable matter fields of our
theory leading to the necessary mass gaps. Gravity, being present as well of course,
is not relevant in this context. But why should we restrict ourselves to superlight
gravitinos?

In 1977 the French physicist Pierre Fayet came to the conclusion that a superlight
gravitino would be very favourable from a phenomenologist’s point of view [50].

He concludes

"[...]that the super-Higgs mechanism gives to the gravitino, and to
gravitation effects in particle physics, their chance to be detected, since

weak interactions can be generated from gravitational ones."

A small value of m3/, would enhance the gravitino’s interactions that would have
been otherwise suppressed by a prefactor of the gravitational coupling . It turns
out e.g. that the effective gravitino-gauge boson-gaugino vertex is proportional

to Iﬁ%, the magnitude of the fraction %‘/’2 could compensate the weakness of
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4. Phenomenology of Superlight Gravitinos

gravity.

We already saw that the massive gravitino obtains its :I:% helicity states by absorbing
the goldstino. If the gravitino mass is very small compared to the energy scale of
the relevant process, these helicity states dominate and the gravitino effectively
behaves like the massless goldstino, while its :I:% helicity states are negligible. This
is called the SUSY Equivalence Theorem [51]. In the equivalence theorem limit we

can write

b~ zﬁlw, (4.11)

mg/2

where 1 is the Spin—% goldstino. In certain models this enhancement of gravita-
tional interactions affects also the sgoldstinos. In contrast to the goldstino, the
sgoldstinos do not disappear from the physical spectrum and can be very light
[52, 53]. Therefore a superlight gravitino could open not only a phenomenological
door to gravitation but also to the observation of new particles from a hidden

sector, which we will discuss further in sec. 4.3.

Indeed our analysis is based on the assumption that the gravitino mass is very
small. But in using these simplifications we implicitly neglect terms in the gravitino
polarization tensor (4.7). In cross-sections of reactions with more than one external
gravitino these terms might be relevant and cannot be ignored. Instead the whole
polarization tensor should be used. In order to simplify our calculations we can

expand (4.7) in powers of msgs,

2 k,k, 14k, k, — kv, — K,
1E () — 22k g o Ll = b = Rk

3 m3/2 3 msz/2
1

+ g (_39;11/% + k%ﬂyu - 'VVku + '7uku) + O(m3/2)
1 1

= 7m2 H(g)m,(k‘) + - H(l),u,,(k‘) + H(O)uu(k) + O(mg/g) . (4.12)

3/2 3/2

Note that the number of y-matrices is even for II(;y and odd for II(5) and IL).
In practice, when dealing with superlight gravitinos, it often will turn out to be
sufficient to retain the leading order in (4.12), i.e. Il (k) and to substitute

(4.11). Before doing so one should perform a careful power counting of ms/, in the
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4.2. Phenomenology of Superlight Gravitinos
occurring amplitudes. We will elaborate on this in sec. 5.2.1.

Previous Studies

Various approaches to test the possibility of a superlight and detectable gravitino
were proposed. Possible experimental settings are colliders: ete™ annihilation
[53, 54], v annihilation [55, 56] and hadron collider [57] were considered to
constrain a superlight gravitino. In this thesis we want to use observations from
astrophysics and compare them to the predictions derived from particle physics
models. But also within astroparticle physics there have been various approaches
to a superlight gravitino. Some early constraints on its mass were derived from
cosmology, more precisely from Big Bang Nucleosynthesis (BBN). It was shown
that BBN allows either a light gravitino < 1keV or a very heavy one [58]. These
investigations have been revisited in 1993 by Moroi [59] and four years later again
by Gherghetta [60, 61]. The latter found that ms/; 2 1eV. Other approaches
consisted of the possibility of exotic cooling of stars, red giants and white dwarfs

[62]. These were reviewed in [63].
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4. Phenomenology of Superlight Gravitinos

4.3. Gravitino Interactions and Feynman-Rules

Now we will derive the final Lagrangian of our model, that we will use in the ch. 5
in the case of conserved R-parity. It is a broken-supersymmetric Einstein-Maxwell
system with the gauge group U(1)qep. We extract all necessary terms from (3.52)
and read off the Feynman rules, especially the ones of the Gravitino interactions.
For this gauge group we only have one gaugino, the massive photino (M) — my).
The relevant kinetic terms and Gravitino interactions are contained in the following
Lagrangian,
1

252

1 —(a a i *7 *1 11
T 5/\( "W D, — ms) A@ + D¢ DI — my,¢"ié

1 — 7 — 1
e 1L =— R— 56_16’“’\””1D,€757>\Du1/1y + 3 mg/gwaao‘ﬁwg — —F, F"

4

+ X' LY DXL — 5m (XE'xi + D)

ik T v i (. k= oo
) (Dud™ b, 7"y X, — Dud' X7 V") — 10u0" A Fo
KQ - —1 KAV DYRE 20l V) e— 7 2
~7 e M D N ry + 0 V] X+ O(K). (4.13)

The covariant derivatives are given by

Du¢ = 8u¢ + ZQZ’AM¢ > DuXL = a,uXL + zwuabg bXL + ZQiA,uXL )
)

Dll)\ = (9“)\ + iwuabaab)\a D,U«wl/ = aﬂ«wlj + 4

b
wuabaa wu .

Here Q; is the charge of the respective field!.

Sgoldstino Couplings and Masses

The couplings of the scalar field A from the hidden sector to matter depend largely
on the specific choices for the h-depending parts of the gauge kinetic function, the
Kahler potential and the superpotential (3.43)-(3.44). The model we choose has
been derived in [32, 64] and employed by various authors in the context of gravitino

phenomenology [1, 55, 56, 60, 61, 65]. It inherits a canonical K&hler potential,

INote that we do not sum over the index i.
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4.3. Gravitino Interactions and Feynman-Rules

a vanishing cosmological constant and D-term SUSY breaking. The Lagrangian

involving the sgoldstino reads

¢ Lsgino = 5 (0,505 —msS* + 0, PP —mpP?)
SO S + iSmaadi, o, S
- gce_le””p"Fm,Fng - igdwwaﬂmﬂaap FOKY).  (4.14)
The scalar and pseudo-scalar fields S/P are the real sgoldstino components [55]
given by

1 . R SR
S= 50+, P=—m(h=h). (4.15)

The dimensionless couplings ¢ and d emerge from the super-Higgs mechanism and

are related to each other,

my
c-d=

, 4.16
. (4.16)

or more specifically for no-scale models [55],

2 mry 3
= —4/= d=—/=. 4.17
‘ \fgmw, 2 (117)

We do not need to include the sgoldstino’s couplings to other fermions like the

neutrinos because they are not getting amplified by the factor mg /12 [65].

In the end all these assumptions still do not fix the sgoldstino masses. They depend
on possible additional terms in the Kéhler potential [61] and could be very light,
such as the gravitino, or very heavy. The phenomenology of these cases differs

dramatically and we will distinguish the two cases in our analysis in ch. 5.
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4. Phenomenology of Superlight Gravitinos

Feynman Rules

We will now present the Feynman rules of our model. Our model contains Majorana
fermions like the photino and the gravitino. We will handle Majorana spinors by
using the method of a continuous fermion flow [66]. Depending on the fermion flow

direction, we obtain two expression for each vertex.

External Lines

The momentum p flows from left to right.

e Matter Fermions and Photino:

{
{
%

P P — s
> o - ° - u’(p),

— - — - — —s
— > o - ° -9 7°(p),

g —— — —s
° > ° - PN u’(p),

e Gauge bosons:

U A~~~ E'u(p) o~~~ U 6*“<p) .
o Gravitinos:
p——  yter(p), e————1pn U (),

o=

When we use the equivalence theorem (4.11) the more precise relations read

Yot (p) = Z\/g 4 u(p), (4.18)

ms/2

PN 3
(0 (p)~@\/;m3/2v (p) - (4.19)

Usually we will suppress the spin index s for convenience.
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4.3. Gravitino Interactions and Feynman-Rules

Propagators

o Matter fermions:

. i(p +my)
pr—mi
. i(—p -+ my)
pr—mi
o Matter scalars:
7
————>————9o - -
p2 — My

Gauge boson (in the £ = 1 gauge):

—iq,,
U e~~~ 279#2 .
DT —my
» Gaugino:
e Z(p —+ m,\)
[ s aa s eSs o . — %5 .
p*—m}

Graviton (see app. C)

i

LY e_RAAAAAAS O 2

(Nuatlvs + NusMva = NuwNap) -

Vertices from (4.13)
We present the Feynman rules relevant for the upcoming analysis. For a complete

set (without the Graviton rules) we refer to [35]. For the graviton vertices we have

to linearize gravity. The derivation can be found in the app. C.
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4. Phenomenology of Superlight Gravitinos

All momenta flow into the vertex.

M M
_*_/ %}’}%LPL 5 ——*—/ %PL%?a
p p
u [
»/ i P »/ g, Pr
p p
M M
/ —57"oasp” . @ / 5000
D < 2 B D 2Vap H
M M
------ ikdms oM P IKCEqpu kT KD
A ko
v v
14
]{32 kl
ikd o — IKC X
........ TGHUVP/V qu S _———— =
1 (K1 - k2)77/w - klyk2u] )
kl k2



4.4. R-Parity Violating Gravitino Vertices

(67

k 4
W/\HB/H 2 [na(ukb)klﬁ + nﬁ(ﬂkll’)k%‘ o (kl ’ kz)na(unV)ﬁ - naﬂkl(ﬂkQV)
v
q 1
+ U ((kl : k?)naﬁ - klﬁkQQ) )
ko 2
B

(6%
k K o i o
y 5 [Eaaﬁ(u757V)(k2 - kl) + 56040,8(;/75 {7 agu)p} qp
v
¢ 2i 2
k2 + 1msy2 (naﬁnwf - na(unu)ﬁ) .
B

These vertices agree with the one given in [35] and [55]. Although the authors of
the former employ the Veltman definition of the graviton field (C.9) leading to
some extra factors of v/2, for more details we again refer to the app. C of this

thesis.

4.4. R-Parity Violating Gravitino Vertices

In sec. 3.4 we introduced R-parity and bilinear R-parity violations. We mentioned
that models including bilinear RPV can inherit a sneutrino VEV (7) and also allow
for neutrinos and neutralinos to mix. This leads to effective interactions between

neutrinos, gravitinos and gauge bosons.

I

— ;%g; U’YZ (1 + '75) Y [%7 /YV] ) (420)
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4. Phenomenology of Superlight Gravitinos

u
S (SR PN S BIE
"
- _"gj\’j? (1+77) v (4.22)

These diagrams have been computed in the context of gravitino decays [40, 47, 67].
We have to estimate these parameters such that we are able to make quantitative
statements later on.

Instead of the sneutrino VEV we will use the parameter £ = %, where v is the

SM-Higgs VEV of v = (v2Gr)~'/? 2 246 GeV. For the estimation of the gravitino

luminosity later on we will assume
£~ 1077 (4.23)

such that neutrino masses below 1 eV can be obtained. The mixing parameter
defined in (3.66) and (3.67) can be estimated roughly if neutralino masses are of
the same order M; ~ My ~ My 5 [40].

mz
My’

038. (4.25)

UﬁZ:U~Z%

and M/, = O(100GeV) (4.24)

Q

At last the electroweak coupling parameter is defined as

_ 9 . 1/4 /
9z cos Oy withh g FMw,
~ 0.65. (4.26)
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Supernova Constraints on Superlight

Gravitinos

The first part of our analysis is about gravitino pair production in supernovae with
conserved R-Parity. We review in great detail some results from the mid-90s [1]

and obtain similar astrophysical bounds on the gravitino mass.

In particular these authors indirectly assume to have massless sgoldstinos in their
model which enhance the gravitino pair production heavily. We perform the same
calculation with very massive sgoldstinos and obtain strongly altered results. This

shows the strong model-dependence of these bounds.

In sec. 5.3 we change the initial particles from photons to neutrinos and show that
this gives rise to additional relevant supernova cooling channels once the assumption
of massless sgoldstinos is dismissed. Yet, this process does not lead to qualitatively

new findings.

45



5. Supernova Constraints on Superlight Gravitinos
5.1. Gravitino Pair Luminosity

The luminosity for gravitinos produced via v(p;)y(p2) — G(k1)G(ky) is given [68]
by

d’py d*ps &’k d*ks
L=V | G ) | g 09 | G |
V] @ 20 | o 20 | Gaant | nyeang

(2m) 40D (p1 + ps — ki — ko) (k) + K9) | M(yy — QNQN)‘Q‘

(5.1)

Thus, the luminosity is given by the overall amount of gravitino energy produced
inside a volume V with temperature 7' via the collision of photons in thermal
equilibrium. The temperature enters the luminosity via the photon Bose-Einstein

distribution function n.(p?), given by
ny () = ——  (sce app. E)
+(pi ST . E).
For the squared amplitude |./\/l]2, we already averaged over incoming and summed

over outgoing spins. Now we can use energy conservation, the expression for the
relative velocity (D.18) and the total cross-section (D.20),

V ~ o~
L= (2m)° /d3p12n7(P[1)) /d3p22m(Pg)(p(1) + p9)|vr — vs|Niglo(vy — GG)
- bi-p .
- @ /dgpm”(p?)/dgmnv(pg)@?+p3) o (v = GG) (5.2)
2 pbip2

where Niq is the number of identical particles in the final states appearing in (D.20)*.

In order to simplify the integration we use that n(p?) > e #/T for all p°. Hence,

8V
(27)¢

where o = £(p, Pa) -

L>

/d?’pld?’pge*(p(l)*pg)/T(p(f +p9) (1 = cosa) o(yy — GG, (5.3)

The cross-section in general depends on the photons’ momenta or rather on the

Mandelstam variable s. We express the photon momenta p; and py in spherical

IThis expression differs from the luminosity given in [1] by a factor of 8.
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5.2. Gravitino Pair Production via Photon Collision
coordinates (p?, 6;, ¢;) and obtain

5= (p +P2)2 = 2]9?178(1 —cosa), (5.4)

and cos a = sin 0y sin 0, cos(¢; — ¢o) + cos Oy cos b, . (5.5)

The next step is to calculate o(yy — GG).

5.2. Gravitino Pair Production via Photon Collision

5.2.1. Calculation of the Cross-Section

We consider the process v(py)y(p2) — G(k1)G(ks). The contributing diagrams are

given by
o po B p
ko ko o %
y4 P2
2\ k
M = + +
b2 1{31
D2 P1
ky kq B v
B v «Q v
o % o 2

Applying the Feynman rules given in sec. 4.2 and app. C, we obtain the amplitude

of this process,

ZM == Z-~/\/lPho‘cino + 2.~/\/1Gravit0n + Z.-/\/lScalar + Z.~/\/lPseudoscalar 5 (57)
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5. Supernova Constraints on Superlight Gravitinos

where
- 2
. R « K —+ — My —v
ZMPhotino = 165 plpg\ ¢ M(k2)0aK7u§@7;7VaﬁAz/j (kl)
4 qi —msg
- 2
K « K —+ — My —v
+ T €9 6[13 pri\ ¢ M<k2)0-an’y,u,q§ g’}/yaﬁ)\w (]fl) s (58)
43 —m5
- K Aop o L Ap
iM Graviton = m (61 ' 62)191]?2 + 5((]01 : 62)(]?2 : 61) - (p1 ']02)(61 : 62))77
+ (¢ '292)6{\5[2) — (p2- 61)5/2)]01\ — (p1- 62)P§\€§) + (p < A))
—+ o Z o
w 'u(kQ) [EMUV(A757p) (k2 - kl) + 56,1101/()\75 {'7 )JP)T}
- 2im3/2(277u()\77p)1/ - nuunkp)‘| ¢_V<k1) ) (59)
iK%ms
M calar — - X
Seal (p1 4 p2)? — m3
@ o —+ —v
eves ((pr-p2)ias — PDPS) M & " (Ra)y™" (k) , (5.10)
iK2ms 1
ZM seudoScalar — T X
PreudoSeal 2mszs (p1 + p2)? — mp
K —+ —v
€75 PP €xnas (D1 + P2)° €uove U (k)" (ka) . (5.11)

After squaring (5.7) we have to sum over the spins of the photons and gravitinos.
For the gravitinos we could just use (4.7). It is however beneficial to first detect

the relevant terms in the polarization tensor and neglect the rest.

Identifying the Relevant Terms — Power-Counting of mj3 ),

Using the equivalence theorem (see sec. 4.2) can be a neat way of simplifying the
calculation of the cross-section. Nevertheless it cannot be used without caution,
since we deal with a process involving two external gravitinos. In this case it turns
out that we would miss important terms of leading order of ms,, if we simply use
(4.18-4.19). Instead we perform a careful power-counting before we can exploit the

equivalence theorem.
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2. Gravitino Pair Production via Photon Collision

In the case of gravitino pair production a generic amplitude is given by

1
ZM1 -

O (ko) O (). (5.12)

m3/2

The amplitude consists of N terms with n; y-matrices respectively, indicated by
the indices (nq,...,ny). We will obtain several contributing diagrams and therefore
several amplitudes. After averaging over initial and summing over final states, a

general term in the squared amplitude reads

(M M| = [0 () O™ T (k) OF "] (5.13)

1u/v' SV

The first step in our calculation will be the identification of the leading order 4;cqging

of m3/y. For this we proceed as follows:
1. We find the amplitudes with the leading order 7,,q, of ms/,.

2. We use the equivalence theorem and calculate the square of these amplitudes.

The result should be o m, /(2lm”+4).

3. Now there are two possibilities:

a) The result does not vanish, 4cq4ing = 2imaes +4. In this case we are done,
since the other diagrams will only give higher order corrections to the
cross-section.

b) The result vanishes. Now the second term in (4.12) could possibly yield

the leading terms of order m, /(2’m“x+3

and cannot be neglected. Also
other diagrams with lower power 4,,,, — 1 of m3/, become relevant again

and may not be neglected as there are interference terms of the order

(4+7/maac+(lmam 1))
3/2

4. We continue in this fashion order by order, until we find the first non-vanishing

terms of order icqding-

5. We add up all terms of this order. In this step the equivalence theorem can

be of great benefit if applied carefully.
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5. Supernova Constraints on Superlight Gravitinos
Contributions of Order 6
We quickly see that only the amplitude (5.11), which involves a pseudoscalar

exchange, is of the order m§/12. The only terms in the amplitude’s square oc my; /62

come from the square of (5.11),

]. ! ! !
‘-/\/llz’seudOScalar’2 X o TI' [Hw’ (kl)’y& H# #(]{é),yﬂ
m
3/2

/

Tr (1135 (k)7 TG (k)Y |

6

ms o

+ " (T (10857 (R )y T ()| + T 11 (R )y T (K)o’ )

PR N (I (e )y I (k)| + Omg ) (5.14)
M3 o (1A (1) \M2 3/2 :

Now we will have to calculate the trace of many ~-matrices. For calculations like
this we will use the Mathematica package FeynCalc[69, 70]%. After the evaluation
of these traces we find that the contributions oc mg /62 vanish upon choosing a
frame of reference and substituting the kinetic relations (D.11-D.14). Following

our procedure we move to the next power.

Contributions of Order 5

We immediately see that the contributions oc mg /52 in (5.14) vanish due to odd
numbers of y-matrices in the trace. But there are also interference terms of the

same order,

2The used code can be found in the app F.
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5.2. Gravitino Pair Production via Photon Collision

MTPseudoScalarMPhOtiHO (8 Tr [HVV'(]{: ) HM ’u(kQ)@PGh?tmo}

ms/2
1 7
= o Tr [ (ka)y H72¢<k2>@£holmo]
3/2
1 (6,7)
+ - Tr (kl) (kQ)@ hotino
M3 < [ W Fhet }
+Tr [ I(j;)/(kl)fyélﬂ (k2>®Phot1no} > + O(mg/‘é) )
(5.15)
M;seudOScalarMGraViton X m3/2 Tr [HW/(k?l)76/H“/”(k2)@8§2§§20n]
1 vv'! 3,5
=5 Tr [H(Q) (kl) H(2) (k2)@£rav1‘)con}
M3 9
1 / 0 3 5
Tr (117 (k k) O
+ m3/2< I'[ (1)( 1) ( 2) Gravlton]

+ T [T1¢3) (ke )y I (b)GQ;iﬁion] ) +0(m3}) . (5.16)

M ;r:’seudoScalarM Scalar X Tr |:HVZ/' (kl ) HM # (kQ ) @Scalar}

ms2
1 v/
= mg/g Tr [ (2) (kl) Hl(lQ) (kQ)@Scalar}

1 v’ /
oA m3/2 (TI‘ [ 1) (kl)/y(s H (k2>@Scalar}
+ Tr [ l{;{(h) H(1 (k2>®Scalar:| ) + O(m3/2) (5.17)

The terms that vanish due to an odd number of y-matrices are indicated by a
(0,3.3)

crossed-out index, e.g. O .

For the remaining terms we calculate the traces
using FeynCalc. The terms oc m /52 vanish after substituting (D.11-D.14) just as

before. The only non-vanishing terms are of the order my /42.

Contributions of Order 4

First of all, we notice that the amplitudes (5.8-5.10) do not depend on the gravitino

mass. Apart from their interference terms with Mpgeudosealar it is safe to compute
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5. Supernova Constraints on Superlight Gravitinos

their contributions in the equivalence theorem limit. The result will be of the
order m, /42. We calculate the square of the amplitudes, average over the incoming
photon spins and sum over the outgoing gravitino spins. After the insertion of the
kinematic relations (D.11)-(D.14) we obtain

1= ) . 2
Z |ZMPhotin0 + M Craviton T Z-/\/lScalar| =

m482m% 1

288mi, (a2 sin?(0) + 4a + 4)°

(128$ + 16 sin*(0)(cos(26) + 11)z* + 4(4 cos(26) + 3 cos(46) + 25)z°
+ sin?(0) (12 cos(26) + cos(46) + 51)z* + 8 sin4(9)x5) + O(mgfz) , (5.18)

where z = ;. As discussed before the only non-vanishing contribtion from (5.14)
ol

is of the order mg/42,

2 k' s?ms

_ i8d -3
= o 7 +O(my3) . (5.19)

1
Z |MPseudOScalar

We turn to the interference terms in (5.15-5.17). Due to the fermion propagator
the amplitudes (5.8) include terms with odd and even numbers of ~-matrices, so

does (5.9). The only non-zero terms are given by

v
1 (MPseudOSCalarMPhotino) +c.c. =

4
_ K's*mg (a7 sin®(0) + 2% cos(26) + 32?)
18my r2sin?(0) + 4z + 4

(5.20)

Result for the Cross-Section

We add up (5.18), (5.19) and (5.20) to obtain the complete square of the overall
amplitude. We substitute this into (D.23)3. After integration we are left with the

3We point out that we have to include an overall factor of % coming from the Majorana nature
of the gravitinos.
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5.2. Gravitino Pair Production via Photon Collision

total cross-section of vy — GG,

O — Kimis
o= )_17287rm§/2x
12 24 1 48 24 6
T == = - 2)loglt 5.21
{1+x(x+ x x2)+x+2(x3+x2 x) og(1 +2) (5.21)

This is in agreement with the results in [55, 60]*. For < 1, i.e. a large photino

mass, this yields

kAs%m?

L+ 0(2"). (5.22)

o(yy = gg) = 576l
3/2

Heavy Sgoldstinos

Up until now we always assumed the sgoldstinos to be very light (mg, mp < ms5).
However many models contain very heavy sgoldstinos. The last two diagrams in
(5.6) do not contribute significantly if mg, mp > ms holds.

Without the s-channel exchange of the scalar and pseudoscalar field the cross-section
for the gravitino pair production can be easily computed by using (4.18-4.19), since

the critical Mpgeudoscalar 18 10 longer present. It is given by

( GN'G) Ii4m%8
— = ——T1 %
o 1728wm ,
1 12 24 6 3 4 8
32 — 8 —5——) (2 4+ = )1 1
{14—1:(95 v r  x? +2+SL’ +x+x2+x3 og(1 +)
s3k4
- : 2
5760, Ole) (5.23)

4The authors of these papers however don’t mention the necessity of retaining higher order
terms in the gravitino polarization tensor.
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5. Supernova Constraints on Superlight Gravitinos

5.2.2. Bounds from SN1987A

Case | — Superlight Sgoldstinos

Now we can substitute the cross-section (5.22) into (5.3) and integrate over the
photons momenta using (5.4) and (5.5). We find

L 160 (k)" 2y 71l 5.24
Gl E= ms3/o AT SN (5:24)
We re-arrange this inequality and apply the constraint on the missing energy (2.6)

emitted from the Supernova core,

w6\ v\ =
> — —_ Ton
ez = ( o ) <1O5Qerg/s> i

- 1/2 T 11/4 1% 1/4
=18x 1077 ( il ) (SN) () 5o
8 x 10 100GV 0.05GaV 12 % 105em? eV. (5.25)

Here we used the conversion factors from app. A.

This constraint is valid under the condition that the gravitinos, once produced,
leave the SN core without further interactions. This means that the gravitino’s
mean-free-path A must exceed the Supernova core radius Rgy. The gravitinos

scatter mainly with photons [1], i.e. ~vG —» ~vG. Their mean-free-path is given by
~ ~ -1
AMFP ~ (n'y(TSN)O'(’YG — ’YG)) : (5.26)

The contributing diagrams to gravitino-photon scattering are given by

A/‘)\/\nff\/x

We calculate the cross-section as we did in sec. 5.2.1 using FeynCalc and obtain

ki m?2s?
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5.2. Gravitino Pair Production via Photon Collision

In evaluating (5.26) we need the number density and the average energy of photons.
The corresponding relations can be found in app. E, namely (E.6)-(E.8). We obtain

the gravitino mean-free-path in the SN core,

873

)\MFP ~ wmg/Qlﬁ)_le;Q T_7 . (529)

The bound we found in (5.25) is only valid if Aypp > Rgy. Plugging in numbers

we find

msya 4 ms -2 T -7
Aep ~ 2.1 106( ) ( ) ( k
MEP x 1.8 x 1056v) \100GeV 0.05Gev,) M

Rsn
> 10 (10km) km. (5.30)

For our allowed range for mg/, the gravitinos leave the supernova core without
scattering, our bounds are reasonable.

Yet looking at (5.30) we quickly recognize that for even smaller values of mg, its
mean-free-path gets short enough for the gravitinos to diffuse inside the core. If
the gravitinos are trapped inside the core for longer than 1s energy is depleted
by neutrino emission and the gravitinos’ luminosity is lower and again compatible
with Ly < 1052%. Trapped gravitinos random-walk through the core and move a
Amtp N7 where N is the number of

(&
scatterings. Hence the conditions for the decreased luminosity are

distance Rgig ~ V N Angp in time interval tqig =

Am
RN > 18, AnpVN < Rsy
C
Ry

— App < ~ 0.3m. 5.31
fp = c(ls) m ( )

Substitution of (5.29) yields
mzje < 6.2 x 10%V (5.32)
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5. Supernova Constraints on Superlight Gravitinos

This is the allowed mass range for the gravitino in the case of gravitino diffusion.

As a final result we can exclude the mass range of
6.2 x 107%V < myy < 1.8 x 107%V, (5.33)

based on the observation of the SN1987A supernova. This bound heavily relies on
the sgoldstinos being light.

Case Il — Heavy Sgoldstinos

We integrate (5.3) using the cross-section (5.23) just as we did in the case of

massless sgoldstinos and get

L

vy Il = 5

4
1536
(” ) VT, (5:34)
msy2

leading to the weaker bounds of

B TSN 13/4 V 1/4
7.0 x 1077 () () V. 5.35
Ma/z > 10X 0.05GeV 12 % 10%cm3)  © (5.35)

In the case of very heavy Sgoldstinos, the last two diagrams in (5.27) do not

contribute significantly and can be neglected. This changes our scattering-cross-

section to
( o G) /@4m§s
— =T x
it 77 3456rmd
1 78 60
2425 + 32 + 2% + 2522 + 41z — 52 — — >
[2($_1)2(1+x)( T+ or +a” + Zox” + 4l x+x2
6 3 4 5
- 2+ 2+ = — =) log(l
x—l( +as+x2 332> og(1 +7)
3Kt
=—4+0 . 5.36
768, | (@) (5.36)
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5.2. Gravitino Pair Production via Photon Collision

The mean-free-path becomes

2m® 4 49
AMFP ~ mmg/Qﬁl T (537)
ms /o 4 T - Rsn
=18 x 10° < > ( > k 10 < >k . (5.38
<A o 107ev) \oosaey) > 10 gy ) - (5:38)

The obtained bound (5.35) is consistent.

Again for sufficiently small values of ms/, the gravitinos will diffuse in the core
leading to decreased luminosity that spoils this bound. Substituting (5.37) into
(5.31), we find that this is the case for

majs < 4.5 x 107%V. (5.39)

In conclusion, for heavy sgoldstinos, the observation of SN1987A allows us to

exclude the mass range
4.5 % 107%V < mgzp < 7.0 x 1077eV. (5.40)

This bound is our most conservative one from the consideration of photons. All
of the relevant couplings are contained in any SUGRA theory and we did not
assume to have any additional couplings rising from the hidden field sector. Yet,
the constraint can be tightened by additional gravitino production channels as we

will show now.
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5. Supernova Constraints on Superlight Gravitinos

5.3. Gravitino Pair Production via Neutrino Collision

We will now perform a similar analysis using the channel v(p;)7(ps) — G(k1)G(ks).

5.3.1. Calculation of the Cross-Section

The three contributing diagrams are given by

~_, — H \/
D1 k M D1
iM = + -
2 k2 D2 I /{32 %/\ k
T Ty T Ty ?
v

With the Feynman rules from sec. 4.3 and app. C we find the amplitudes,

2

; _ R 77 a _ B B _ a _ ofB _

1My St +p2>20(p2) {7 (p1 —p2)” +797(pr — p2)™ — 0™ (1 ;%)} Pru(p:)
X @+M(/€1) [Emua’Ys’Yﬁ(kQ - kl)/\ + %Eu,\m”yg) {’Y/\, UBT} (p1 + p2)T] V™Y (ke)
K kY kY
T 12m ), (1 +pe)?
X 0(p2) {”Ya(pl —p2)” + 77 (01— p2)* — 1™ (o — 171)} Pru(p:)
X ﬂ(’ﬁ) {E;Muo/f)’}/ﬁ(ké - kl)/\ + %Eu/\uo/}/g) {7)\7 U,BT} (pl + pZ)T} U(k2) ; (541)

)
iMy = K 1

2 (p1— k1)2 — m2

< 0 (k1) (p, — B Pru(py) U(p2) Pro (fy — p,)0 ™" (k2)
iK? 1

N 3m§/2 (p1 = Fk1)? —

X T(k1)(p, — k1)K Pru(pr) 0(p2) Prky(Fy — p,)0" (k2)

a(k)p, ki Pru(pr) 5(pa) PrEop,v(ka),  (5.42)

22

~3md, ((Pl kr)? —m3)

U(ka)p, ko Pru(pr) O(pa) PrEyp,v(kr),  (5.43)
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5.3. Gravitino Pair Production via Neutrino Collision

2

; K™ — ; —v - K
iMy = =0 (k) [y Pr = i 1uPr] &7 (ko) Dp2)y* Pru(py)
2
K . — K
~ 6m2 - k?’fklglﬂ(k‘l) {Eu/\wﬂ/)\PR - ZUW%PR} v(ka) D(p2)y" Pru(p1) - (5.44)

3/2

The last amplitude of the diagram with the 4-fermion vertex can be read off the last
line of our Lagrangian in (4.13). For this process it is safe to use the equivalence

theorem from the beginning and continue with the massless goldstino instead of
the gravitino. The leading order is given by m’f . In this limit we already made
3/2

use of f,f; = k? =~ 0 for the amplitudes (5.42) and (5.43).

Interference terms including the third amplitude like M§M2 will cause problems

because they will not lead to calculable v traces without further ado. The reason
for this is the Majorana nature of the gravitino. However, it is possible to transform
the interference terms in such a way that we can just calculate the spin sums as
usual using FeynCalc [71]. For this we need the relations (B.13), (B.14) and (B.17).

For clarity we will demonstrate the necessary steps on an example,

(B.14)

B(k)pkPro(p) "2 (k) PRCT (p) = (B(k)pkPRCT (p))
= u(p)CT LK P (w(k) 1) "2 a(p)CO PrCCCCT O 0w (k)
"2 () Prktpu(k)

This way we can write the problematic interference terms as

—irk kL kY
3635 (p1 + p2)*((p1 — k2)? — m3)
x 0(k1)p, k1 Pro(p2)
X U(p2) (7‘”(192 — 1)+ (p2 — p1)* — 377a6(272 - 171)) u(p1)

1
X ﬂ(/ﬁ) (E#Aya7575(k2 - kl))\ + §€uxua75 {7/\, 057} (pl +p2)7) U(kz)

MiIM, =

U(p1) Prkop,u(ks)
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5. Supernova Constraints on Superlight Gravitinos

—irk k' kY

~36md (01 + p2)2((p1 — k2)? —m2)

U(pr) Priop, u(ks)

1
x k) (Cunvars7” (k1 = ko) + 2 eunva {705} 701 4 p2)7 ) 0n)

2
(k1)p, k1 Pro(p2)
x 0(p2) (Y (pr — p2)” + 77 (1 — p2)* = 1 (g — ) ) u(p1) ,

X

<

Gty (o1 — *)? — i) (o1 — )2 — )" PV Pk ulla)

X O(k1)p ki Pro(p2)  a(ki)p, by Pru(pr)  ©(p2) PrEop,v(ka)

<k2>p1%2PLU(p1)

MiIM, =

K
N v
I3 ((p1r — k1)? = m3) ((p1 — k2)? — m3)

X 0(p1) Prfyp,v(ki)  o(kn)p by Pro(p2)  0(pa) Priyp,v(ka)
ik kY kY

M;EM4 - 18m§/2((p1 — ky)? — mg)ﬁ(pl)PL%Qplu(kz) @(h)pz%lPRU(pZ)

v

X ﬁ(pz)’)/ﬁPLu(pl) H(kl) <€,u)\wiﬁ)/)\PR - Z‘T]w/f)/fﬁPR) U(kg)
ik kY
= m k P el K)P
18my 5 ((p1 — ka)? — mlz,)v( Pk Pro(p2)  T(p2)y" Pru(p:)

X (pr) Prkop u(ks) (k) (iUWPR% - E,LL)\VHPR/-}/)\) v(ky) .

We can now average over initial and sum over final spins as usual and find

1
P (MEM; + MEM, + MIM, +cc.) =

spins
k155 (1 + cos(0))*(1 — 2 cos(h))
576m3, (2m? + scos(0) +s)

(5.45)

Here we already chose a frame of reference by using (D.15) and (D.16). The other
contributions are calculated as usual using FeynCalc. We add up the contributions,

integrate and obtain the total cross-section for gravitino production via neutrino
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5.3. Gravitino Pair Production via Neutrino Collision

collision,

o(vv — GG) =
kAs3

32256mms

1
(1 . (4953 Gde? 4+ Tal — 74 1dr — 2802 + 84z + 168x—4>
i
168
-5 log(1 + x)) (5.46)

Here we defined the quantity z = % . For x <1 we find

kis®

o(wp — GG) = ————— 4+ O(a?). (5.47)
2304073,

5.3.2. Bounds from SN1987A

Our next step is to calculate the gravitino luminosity in a supernova core. In
contrast to (5.2) we have to use the Fermi-Dirac distribution function n, according

to the neutrinos fermionic nature,

L= [ @ pina @) [ o, )0 + ) 20w = GG). - (5.48)
(2m) PIpS
The factor of 3 takes the three different flavors of neutrinos into account, whose
superpartners we assume to be degenerate in mass for simplicity.
Apart from this distinction we proceed in the same way as in sec. 5.1 and integrate
over the momenta using spherical coordinates. The luminosity is given by

I 93¢(7)m KVTE,

h ~1. 4
20 i, where ((7) (5.49)

Comparison with Former Results We compare our result for the gravitino lumi-
nosity with our results for photons in the initial state. In the case of superlight
sgoldstinos we obtained a large luminosity (see (5.24)) compared to (5.49). More

precisely the ratio

L, _ Tsn \* ms -2
~ 2 x 10 6( ) ( 7 ) 5.50
L. " 50MeV /) \100GeV (5.50)

61



5. Supernova Constraints on Superlight Gravitinos

clearly illustrates that the channel v — GG does not contribute significantly to
the gravitino production, because the production via photon collision dominates via
the exchange of sgoldstinos. In our model there are no similar enhanced couplings

for the neutrinos.

Nevertheless we also considered the other alternative, where the sgoldstino contri-
butions are suppressed by their heavy mass. The vy — GG does not dominate the

other channels anymore, as we see by comparing (5.34) with (5.49),

L 122

~ 0.7. .01
7 0.7 (5.51)

vy, 11

The bounds derived in the second part of sec. 5.2.2 therefore become a little bit

more restrictive. We add up the luminosities of the two production channels,
Ltotal = L'y'y,][ + LVPv (552)

and demand that Ly < Ly, see (2.6).

B TSN 13/4 % 1/4
05107 (2 (o) V- .
a2 = SO Sonev s itaw) V¥ 699

The scattering of gravitinos on neutrinos might also be relevant in the context
of the core’s opacity. The cross-section o(vG — vG) is very similar to the one

computed above and we obtain

~ ~ 13K%s3
G—->1vG)= ——F. 5.54
oG = V) = 3a0mm B (5:54)
: O’(VC}V*)Z/C}) ~ - s .
The ratio ~—=—= G0 0.98 shows that this is a relevant gravitino scattering process.

The mean-free-path gets modified,

AMEFp = (nﬁ/(T)a(fy@ — 7@) + 3 x n,,(T)a(Vé — y@))*l

322010,
N 9 :
124173¢(3) " 8/2" (5.55)
ms3/2 4 T - Rsn
=9.7x 10* ( ) ( ) k 10 ( ) km. (5.56
<10 Sox107ev) \oosaey) > 10 1oy, ) ke (5:56)
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5.3. Gravitino Pair Production via Neutrino Collision

By including the neutrinos into our analysis the mean-free-path shrunk compared
to (5.37). However the decreased value still allows the gravitinos to escape the SN
core as long as (5.31) does not hold. In other words, our argument is consistent

only if
mz/e > 6.0 x 10" km . (5.57)

In conclusion, the additional consideration of neutrinos as the initial state allows us

to tighten the excluded intervall for the gravitino mass in the case of heavy scalars,
6.0 x 107V < my < 8.0 x 107 7eV . (5.58)

The gravitino production rate and the gravitino scattering cross-sections with
photons and neutrinos are of same order. Their combination therefore modifies the

excluded mass range only slightly.
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Phenomenological Implications of

Bilinear RPV on Supernova Bounds

In the second part we allow certain additional terms in our superpotential that
violate R-parity. As discussed in ch. 4 new effective couplings emerge and the

production of single gravitinos is feasible.

For both initial states from ch. 5 we show that the production rates due to new RPV
channels are negligible. Therefore the observation of the SN neutrinos of SN1987A

does not allow us to make any statement about bilinear R-parity violations.
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6. Phenomenological Implications of Bilinear RPV on Supernova Bounds

As we saw in sec. 4.4, the inclusion of bilinear R-parity violation gives rise to
effective vertices between gravitino, neutrino and photons or Z bosons. In this way
we can not only expect gravitino pair production from photon collision that we

computed earlier, but also the production of single gravitinos.

6.1. Single Gravitino Production via Photon

Collision

We investigate whether the channel 4y — Guv is relevant compared to vy — GG.

The two contributing diagrams are given by

(6.1)

The ‘blob’ in this diagram denotes the coupling of the neutrinos to the photon
field. Since the neutrino is neutral this vertex is not present at tree level of course.

However it could be generated by radiative corrections, such as

q
Vv = = WSV +o. (6.2)
W
1% 1%

Depending on the model there may be many more contributing diagrams. Instead
of focusing on this potentially large number of contributing loop diagrams we take

a general vertex with form factors [72],

VJW(q2) = fQ(qQ)%L - fM(QQ)quV + fE(qz)a/wqy% + fA(q2> (q27u - qug) s -
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6.1. Single Gravitino Production via Photon Collision

The occuring functions are the real charge, magnetic dipole, electric dipole and
anapole neutrino form factors respectively. For the coupling with real photons, i.e.

¢*> = 0, the quantities

fQ(O):un fM(O):NVa fE<O):€Vuande<O):aV

are the effective charge, dipoles and anapole of a neutrino. These are strictly

limited by observations [36],

q, < x1072e ~ 10713,

Lo,y < 107 Tpup ~ 107°GeV !,
2

a, = % <1075CeV2,

here r2 is the ‘neutrino charge radius’ squared.
With the vertex from (4.20) we find the amplitude

iM(yy — Gr) =
kgz(NUsy - 5 » —Fy +my
e A dulk) Vi (o) (fll— b~z (L 090 [ 4 (R)

+ ((p1, @) < (p2, B)).- (6.3)

For the total cross-section, we find

o(yy — GV) — H2U§Z<l7>29% S (33 (f2 (0) + f3 (O)) —5f0(0)2 — 2£4(0)f (0)5)
7 ~ 576mm? 12T, B M Q 4(0)fq
K2U2 (0)?g% s
_ vz Z 2 2\ 2
B 5767Tm§/2m22 (33 (€V+My> 54, 2ayqys> . (6.4)

Now we can determine whether this production rate is of any relevance compared
to the production of gravitino pairs from the same initial state. We consider the
ratio of (5.23) with (6.4).

o(yy — Gv) B 109%ng<5>2 mg/Q

oy = GG)  KEmy (3s (¢ + ) = 5¢; = 2a,q,8) . (6.5)
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6. Phenomenological Implications of Bilinear RPV on Supernova Bounds

We insert the numerical values for the RPV parameters from sec. 4.4 and the

empirical bounds on the neutrino’s electromagnetic properties and find

~ 2
o(yy — Gv) 15 < ms/s )2 £
- ~ ~ 1 .

o(yy = GG) <510 10-6eV 10-7) 7’ (6.6)

where we used s = 3672y and Tsy ~ 50MeV.

Obviously the production of gravitinos via photon collisions occurs almost exclu-
sively in pairs and bilinear RPV does not alter any of our previous results. Neither
modifications of the luminosity nor the mean-free-path can be of relevance making
any further calculation with this result unnecessary.

For heavier gravitinos (mg, ~ O(10eV) ) the two processes may lead to simi-
lar production rates but then the absolute production rate would be completely

negligible.

6.2. Single Gravitino Production via Neutrino

Collision

If the sgoldstinos are very heavy, gravitino pair production from photon collision
is not dominant and contributions from neutrino collisions are equally relevant
for the gravitino luminosity. As in the case of photons, bilinear RPVs allow us to
produce a single gravitino from the initial state v. We show that the luminosity
from single gravitino production may safely be neglected.

The diagrams associated with the process v(ps)7(p1) — G (k1)v(ks) are
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6.2. Single Gravitino Production via Neutrino Collision

They correspond to the following amplitudes,

g KgEUzs(0r) 1
M= 8v3mzmys (p1 — k1)? —m3
(k)7 Pru(pa) O(p1)(1+ )y [(py — F1)o %] v(k1),  (6.7)
g kg (i) 1
M= 4v/3mg)s (p1 — k1)? — m3
(ko) Pru(pz)  0(p1)(1+7") K vav (k) - (6.8)

We compute the cross-section using FeynCalc,

~ K2g] (i >2 1
v — Gv) = 22T |UZ, 12(14+-]]—-6
(v V) = 5i6mm2 Ll zz\VT T
—3(2+y) (2U}2:(1+y) —y) log(1+ y)]
K2gy (D, )2 s s
= 227" 1+ 0®), wherey= — < 1. (6.9)
1152mm3 ymy m3
Just as in (6.6) we compare this result with the corresponding cross-section from

the R-parity conserving case (5.47),

o(vv — éu) 7 < mg/o )2 § ’
-~ ~ % 4 1 . '1
s = aa) =N meev) 10 (6.10)

We come to the same conclusion as sec. 6.1. The extra gravitino production from
neutrino-antineutrino collisions due to bilinear RPV is vanishingly low and has no

influence on our results from ch. 5.
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Conclusions

We started this thesis by covering both the astrophysical context, where we discussed
supernovae and the energy-loss argument, and the current stand of particle physics.
There we emphasized that particle physics phenomenology is of great relevance now
more than ever, especially if it comes to physics beyond the SM. We introduced
the idea of SUSY and SUGRA and presented the full Lagrangian for a locally
supersymmetric gauge field theory. After a brief treatment of R-parity and bilinear
R-parity violations we focused on the phenomenology of superlight gravitinos and
derived its Feynman rules starting from the Lagrangian mentioned above. We also
discussed the additional effective couplings to matter fermions and gauge bosons
occuring once bilinear RPVs are included.

In ch. 5 we rederived some known bounds on the gravitino mass from the observation
of SN1987A. We presented the computation of the cross-section of the process
vy — GG in great detail, because we found several subtleties and complications
concerning the usage of the equivalence theorem for light gravitinos, which had

not been mentioned in the literature. We found similar bounds from photon
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7. Conclusions

annihilation to the results by Riotto, Mohaparta and Grifols [1]. In particular we

were able to exclude the gravitino mass range of
6.2 x 107%V < myy < 1.8 x 107%eV . (7.1)

To obtain this result one has to assume very light scalar particles in the spectrum,
the sgoldstinos.The corresponding diagrams are proportional to the large photino
mass and dominate the total cross-section in the limit of superlight sgoldstinos.
However, since the sgoldstino mass can also be very large in a variety of models,
we performed the same calculation again with heavy sgoldstinos. In this scenario
the resulting bounds are less restrictive because of the lower gravitino luminosity.
Notably, other initial states can give rise to gravitino production rates similar to
the ones via 7y —» GG. We showed this in the case of gravitino pair production
via neutrino annihilation v7 — GG. The obtained gravitino luminosity is of the
same order as for photon annihilation with heavy sgoldstinos and we found the

new result
6.0 x 1077V < myy < 8.0 x 107 7eV . (7.2)

In both limiting cases (mg, mp < ms and mg, mp > ms) we find an excluded mass
interval which covers two orders of magnitude and we can expect similar results for
the intermediate case mg, mp ~ ms. The upper bound of mz/, < 8.0 x 107 7eV is
our most conservative result. It relies solely on interactions that are part of any
SUGRA theory regardless of the specific model.

In the second part of our analysis we treated the production of single gravitinos in
SN cores. For this to be possible R-parity cannot be conserved and we decided to
include bilinear RPVs to our model. We found new gravitino production channels
and calculated the cross-sections of the processes vy — Gv and v — Gv. The
production rates turned out to be negligible compared to the ones due to the
R-parity conserving channels, regardless of the sgoldstino masses.

We conclude that the observation of the SN neutrinos of SN1987A allows us to
exclude a gravitino mass interval covering two orders of magnitude in the superlight

mass regime. But the exact position of this interval depends on the specific model
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and the various possible realizations of the hidden field sector and SUSY breaking.
We also found that bilinear RPV would not affect these limits and only little can
be learned about R-parity from SN observation in this way.

The results could be improved either by future SN observations or by new discoveries
pointing towards specific SUGRA models with superlight gravitinos. A deeper
understanding of SUSY breaking will allow us to set considerably more robust

bounds on the gravitino mass based on SN observations.
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Conventions, Notations, Natural

Units and Physical Constants

Conventions and Notations

Spacetime Indices Greek letters p, v... denote spacetime indices of four-vectors
and tensors. They can be raised or lowered using the metric tensor. For its signature

we choose

1)



A. Conventions, Notations, Natural Units and Physical Constants

For the partial derivative we use the notation

0

oxH’

o, = o =g"ao,. (A.2)

(Anti-)Symmetrization of Lorentz indices are denoted with brackets,

N~ DN —

T (T +T,,) (A.3)

Ty = 5 (T — Top) - (A.4)

In almost every case we use the Minkowski metric 7, of flat spacetime as our
background.

Furthermore we fix the sign of the four-dimensional Levi-Civita symbol by

€o123 = — 1. (A.5)

Natural Units

Throughout this thesis we employ natural units. For this we set the speed of light,

the reduced Planck constant and the Boltzmann constant to unity,
c=h=kp=1. (A.6)

In the case that we want to convert a final result back to SI-units we use the

physical constants from this chapter and the following conversion relations,

Dimension Unit Conversion Factor Value

Length leV™' =1eV 'he =197 x 107"m
Mass leV = leVe? = 1.78 x 10~3kg
Time leV™' =1eV ' = 6.58 x 107105
Temperature 16V = leVkg' =1.16 x 10* K

We will also use the non-SI energy unit erg,

lerg = 1077J &~ 624GeV .
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Physical Constants

We state the relevant physical constants for this thesis [36].

Constant

speed of light in vacuum
reduced Planck constant
electron charge
permittivity of free space
fine-structure constant

Newtonian gravitational constant

Fermi coupling constant
Boltzmann constant
weak-mixing angle

W boson mass

7% boson mass

Symbol

c
h=h/(2m)
e

€0
62

4meghc

o =

Gn

Instead of the Newtonian constant G we use

1
Mp'

K

Here Mp is the reduced Planck mass given by

In natural units we obtain

k=1/87Gy =4.11 x 107" GeV L.

, with the Planck mass mp =

Value in SI Units

299 792 458 m s~

1.054 571 628(53) x 10734 J 5
1.602 176 487(40) x 1071 C
8.854 187 817--- x 1072 F m™*
1/137.035 999 679(94)

6.674 28(67) x 1071 m3 kg ™' 572
= 6.708 81(67) h ¢ (GeV /c?) 2
1.16637(1) x 1075GeV 2

1.380 6504(24) x 10723 JK™*
0.231 16(13)

80.399(23) GeV/c?

91.1876(21) GeV /c?

he

Gn

(A7)
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Spinors

B.1. Notations and Transformation Properties

Four-vectors and four-tensors can be defined by their transformation properties
under the Lorentz group or more precisely their matrix representation of SO(3,1).
The same goes for spinors.

We start our discussion of the spinor transformation properties with a complex
2 x 2 matrix A with det A =1, i.e. A € SL(2,C) and a Hermitian 2 x 2 matrix P.

The Pauli matrices
10 01 0 —1 1 0
op = , 0] = , 09 = , O03= B.1
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B. Spinors

form a basis of the space of Hermitian 2 x 2 matrices. Therefore we can write!

3 Ph+P; P —iP
P=Ypor= [0 DR (B.2)
n=0 P1+ZP2 PO_P3
A transformation of P under SL(2,C) gives us a new Hermitian matrix P,
P+ P' = APAT, (B.3)

which can be expanded as in (B.2),

PLO‘M = APH(I“AT
= det Plia“ = det P,o*

2 2 2 2

We see that P* and P'* are connected by a Lorentz transformation, the index p is
a proper Lorentz index. Any A € SL(2, C) corresponds to a Lorentz transformation

and SL(2,C) may be regarded as the group of Lorentz transformations for spinors.

Weyl Two-Spinors A left-handed Weyl-spinor ¢ transforms in the (3, 0) repre-

sentation,
Yo > Yo = A5,

a right-handed Weyl spinor Y in the conjugate (0, %) representation,
Xa — ¥ = A%

In order to differentiate between the two representations we employ the Van-der-
Waerden notation [29].

Therefore the left and right-handed spinors are related by Hermitian conjugation,

(¢a)T = @d ) (Yd)T = Xa -

!The summation over p is not a tensorial operation like a,b* = n*a,b,. The sum is written
explicitly in order to avoid confusion with the summation convention.
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B.1. Notations and Transformation Properties

The tensor €,5 with the components

_12 _21 _ _
€21 = € —1, €12 = € ——1, €11 = €22 = 0

is invariant under SL(2, C),
AaﬁA,yéEg(; = €ary -

It is therefore called the spinor Minkowski metric and can be used to raise and

lower spinor indices,

¢a - Ea6¢ﬁ s 77Z10c = Eaﬁwﬁ s

whose Lorentz transformations are given by

[0} 148 — -1 a 5
et = (A1) v,
X X = (A7

The contraction of two anti-commuting Weyl spinors gives us a Lorentz scalar. By

convention the notation is given by

wX = waXa = eaﬁwBXa = _Eaﬁonwﬁ = E/BOCXOAAB = Xﬁ¢ﬁ = X@D,

Py S syt &b T Yoo T B T
UX = X = €Y X = —€Xptha = X0, = XU = X0

We can also raise and lower the spinor indices of the Pauli matrices and therefore
define

—pda — &f af _p
gt = eWeal gy

= ol = ! ) ot = ! :
a —a
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B. Spinors

Dirac Bi-Spinors Combining a left-handed with a right-handed spinor (%, 0) &)
1

(O, 5) we obtain a four-component Dirac bi-spinor,

We adopt the conventions of [73]. The y-matrices
0 o
o, 0

{72} =29 (B.5)

satisfy the Clifford algebra

The Feynman slash notation,

P=7"pu (B.6)
is used throughout the thesis. The chiral projectors are given by
P =

(]l —75) , and Pp= (]1 —i—”yS) , (B.7)

DO | =
DN | —

where

. . -1 0
V= = e = Y = ( 0 1) : (B.8)

Under Lorentz transformations a Dirac bi-spinor transforms like
U(x) o W(2) = Ay jp¥(z) = exp [—;@WSW} W(z). (B.9)
The Lorentz generators are given by
1

s = Sat, (B.10)
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B.1. Notations and Transformation Properties

where

‘= bl (B.11)

ot

We define the charge conjugation matrix C,

C =iy*y’ = (202 X ) (B.12)

0 —tog
as well as the adjoint and the charge conjugate of ¥p,
Up = \I’E"YO = (Xa Ja) :
e =T = (@sz) .
The charge conjugation satisfies
ct=ct=c'=-C, C1v,C = —75, C™INC =A~°T. (B.13)
Its action on spinors reads
u(p) = Cv'(p), w(p)=Cu' (p) (B.14)

for Dirac and Majorana spinors. A Majorana spinor [71] satisfies the reality

condition Wy, = ¥, hence we write it as

(v
- 3). o

Uy = (v 0, (B.16)

This can also be written as

v(p) = %Cu*(p), u(p)=1%Cv"(p). (B.17)
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B. Spinors
B.2. Spinors in Curved Spacetimes

In the case of General Relativity we deal with curved spacetime. For the treatment
of spinors in curved spacetime we have to get a little more involved and introduce
the formulation of GR in terms of the vielbein [74]. This formalism is necessary

for the derivation of graviton fermion vertices, see app. C.

Vielbein, Spin Connection and Covariant Derivative of Spinors

At any point of spacetime, we are able to choose a frame of reference, such that
the local metric is that of flat spacetime 74,2. The two systems are connected by
the vielbein e,* and its inverse e*, ,
elae,* =00, e, ey =46y . (B.18)
The vielbein connects the metric of the globally curved spacetime with the local

Minkowski metric,

77ab = gﬂueuaeyba g,u,l/ - elu,aesznab . (Blg)

For this reason the vielbein is sometimes referred to as the ‘square root’ of the
metric. We raise and lower flat indices with 74, and curved ones with g,,.
The covariant derivative of a tensor in the coordinate basis is given by the Christoffel

symbols,
DV*=0,V*+T, V", (B.20)

In our flat frame we have to use the spin connection w,“; instead of the Christoffel

symbols?,

DV = 9,V — w, Ve (B.21)

2In this section we will always distinct between Einstein indices j, v... and flat indices a, b, ....
3The overall sign of the spin connection can differ from reference to reference.
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B.2. Spinors in Curved Spacetimes

We will need the spin connection in particular to write a covariant derivative of

spinors, hence the name. By comparing (B.20) to (B.21) one can show that the

spin connection is related to the Christoffel symbols by

v v a v b a
[y = €e"a0.en® —e”uen’w,,

~ w'uab = €>\b (8u6)\a — GVQFZ)\> .
This can be re-expressed as the so-called ’tetrad postulate’,

D,e," = 0,6, — e,

a b
'u]/_wll, bEv _07

which leads directly to metric compatibility, D,g,\ = 0.

We can express the spin-connection as a function of the vielbein only,

1 1
Wyab = 5e”a (Oveuy — Opew) + 56”1, (Opeva — Ovepa)

1
+ §€pa60b (0poec — Or€pe) €p

(B.24)

(B.25)

Covariant Derivative of a Fermion Field In GR the Lorentz transformation

parameter 6*” in (B.9) become spacetime dependent. As usual the partial derivative

now transforms like
0,V (x) — 0,V (x) # A1 20,%(x),
and we need a covariant derivative including a connection [75]

DM\II(I) = (au + Qu) U(z),
with Q, > Ay(2)2A 5 (x) = (9uA1/2(2)) Ay (),

such that

D, V(x) = Ayjo(x)D, V().

(B.26)

(B.29)
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B. Spinors
The connection is given by
1

ab
== *wu Sab .

QH2

The covariant derivative of a spinor field is correspondingly

D, W(z) = (au 4 iwuabaab) W(x).
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Linearized Gravity and Graviton

Feynman Rules

C.1. The Weak-Field-Approximation of Gravity

In situations, where gravitational interactions are weak, we may neglect non-linear
contributions from the Einstein-Hilbert action. This is called linearized gravity.
Starting from the Lagrangian of some field theory we insert the spacetime depen-
dent metric g, (z) for any Minkowski metric 7),,,, promote partial derivatives to
covariant derivatives and replace d*z by the covariant volume element /—gd*z.
We choose some solution of the Einstein equations as our classical background, for
this we always choose the Minkowski metric 7, of flat spacetime, and consider
small fluctuations or quantum contributions [76]. This is called the weak-field-

approximation

G = N + 260y, = ¢" =" — 2cW" + (’)(/{2) , (C.1)
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C. Linearized Gravity and Graviton Feynman Rules

where kK = /871Gy and hy, is the graviton field L. We assume that this field is
symmetric in its indices. It also appears hidden in the metric’s and vielbein’s

determinant,
V—g=e=1+kh+O(k*), where h=rn,,h". (C.2)

For fermionic fields it is necessary to perform the weak-field-approximation in terms

of the vielbein as well, we write

e, =0, +rc, '+ 0 (/iz) : (C.3)
ety =0 — k', + O (K,Q) . (C4)

Combining the equations (B.19) and (C.1) we find
G = euaeybnab = N + k(e +cp) + O (/12) L Nuw + 260 + O(k?*). (C.5)

Therefore the graviton field is given by h,, = 3 (¢ + ¢up) = (). We are only
interested in the symmetric part of c,, and can always perform the substitution
[76]

Cu 7 ) = P - (C.6)

Alternatively and equivalently we could just impose the symmetry c,, = ¢,,, which
is called the Lorentz symmetric gauge [78].

At last we can expand the spin-connection (B.25) as
Whab = kK (Oahyy, — Ophua) + O(K?). (C.7)

The field h,, describes the spin-2 graviton field. In this chapter we want to derive

the relevant Feynman rules of the graviton’s interactions with matter.

'Please note that some authors define the gravitational coupling x as /327Gy [76] or /167G N
[77] instead of (A.7). Also some authors define the graviton field with an additional factor of
V2, compared to our hy, [77].
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C.2. Graviton Propagator

C.2. Graviton Propagator

We will only state the graviton’s propagator in the harmonic (or De Donder) gauge

without the derivation, which can be found e.g. in [77].

(lualvs + 1us"ve = Ny ap) (C.8)

et 5 ,

1
af — _
€
q 2 q

Compared to Veltman’s famous lecture notes [77] we have an additional factor of 3

caused by the different definitions of the graviton field,

1
Py = EhZ;j“M. (C.9)

C.3. Graviton Interactions with Matter

In order to derive the vertices of the graviton interactions to matter we substitute the
global curved spacetime metric g, and its determinant appearing in a Lagrangian
with (C.1) and (C.2).

As an alternative derivation or a consistency check we can also write the interaction

part as
—kh, T + O (fi2) : (C.10)

where T" is the symmetric Hilbert energy momentum tensor (EMT)

e — 2 0EVZ9. (C.11)
vV —9 59;11/

For a particles without spin this tensor corresponds to the canonical EMT coming

from the Noether theorem,

8£matter
L — HD. — gtv
C) 8(81,@2) 0 i — g Ematter y

where ¢ runs over the matter fields in the Lagrangian L .iter- In general the

canonical EMT does not need need to be symmetric nor gauge invariant. It can
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C. Linearized Gravity and Graviton Feynman Rules

however be 'fixed’ by a method of Belinfante and Rosenfeld [79] which is described
e.g. in [73, 80]. For this terms are added to ©* which do not spoil the conservation

law and leave us with a symmetric and gauge invariant tensor,
T" = M + 9y\K"?» | with KM = — KMV (C.12)

But it should be stated here that the correct symmetric EMT can also be derived

from Noether’s theorem alone [81].

We will now work out four examples, which clarify the derivation of graviton
vertices, starting with the simplest. Note that in all of the following vertices the

momenta are assumed to flow into the vertex as usual.

Real Scalar Field

The Lagrangian of a massive real scalar field ¢ in curved spacetime is given by
L= e;a#qsa% — €”§¢2 : (C.13)
For scalar fields we find that T = O, since
O = ed"p0d" ¢ + ;eg“” (m2¢2 — 8’\¢8>\¢>) (C.14)

is symmetric already.
Now we insert (C.1) and (C.2) into the Lagrangian and find

£= 20,000 — "6t 1 1 (9,00 — mio?) (C.15)
— kW 0,60, + O (%)

— LO v [am@ + ;mw (m2¢? - awam)} +0 (%) (C.16)

=L — kb T, + O (5?) . (C.17)
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C.3. Graviton Interactions with Matter

Here we defined £®) = £|.—o. The term in the brackets in (C.16) is exactly the
canonical EMT (C.14). The vertex rule is

AARAARAAMY = 1K {lePQV +p1up2u — Nuv (pl “p2 + mi)} : (018)

Vector Field

We start from the Lagrangian of the electromagnetic field,

1
V—gL = V—9F,F" = —Z\/—gg““g”BFWFaﬁ. (C.19)

1
4

The canonical EMT reads

oL
W _ “ A, — egtt
© 68(81,14,\)6 A —eg'’ L
=eFMOr Ay + eig“yFagFaB : (C.20)

which is obviously not symmetric in its two indices. We use Belinfante’s method
to fix this by adding the term —F*9,A* and find the symmetric EMT of the

electromagnetic field in flat spacetime,

1
T/W = naﬁFuaFﬂV + znuuFaﬁFaﬁ (021)
= Nua0s A0y AP + 1,50, A% 00 AP — 1050, A0, AP — 1,01, 30 A%\ AP

1
+ 5w (s A“NA" — 954°0, A7) . (C.22)
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C. Linearized Gravity and Graviton Feynman Rules

For the interaction vertex with the graviton we expand (C.19) using (C.1) and

(C.2).
1
V=L = = 1V=99""9" Fuu Fog
_p)_F ap _ K ( vBpue _ paguB ?
-r 4hFa6F 2(77 h n"*h )FaﬁFuu‘f‘O(/{)
1
_ E(O) _ kpHv [UQBFMaFﬂV + 477W,FOZ@FCVB} + O (,&)

=LY — kT, + O (/@2) . (C.23)

Again we recognize the term in the brackets as the EMT (C.21). By looking at

(C.22) we can read of the vertex rule.

«
N K [nuaplﬁp2u + NMvaP1sP2u + MvpP1uP2a + NupP1vP2a
. o = =g (PP + ProPan) — (01 P2) Muallvs + Nvallus)
P2 + N ((p1 'p2)77a5 - p16p2a) . (C.24)
s

This is in agreement with [55] considering their deviating definition of the graviton
field, see (C.9).

Dirac Field

For graviton vertices with fermionic fields we have to employ the formulation of
GR in terms of the vielbein introduced in sec. B.2 and its weak field approximation,
see sec. C.1 and [82]. For the derivation of the fermion-graviton coupling the

correct Lagrangian of a massive spin 3 field takes the form [83]

V=L = V=5 (506 ur* Do — g (©25)
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C.3. Graviton Interactions with Matter

> i PR
Here we define ¢ D, = ¢ D2 — D, 1) and express it as,

_ _ 7 1 f
¢'YVDMD = w’-}/l/ <ap, + 4wuabo_ab) - |:(ap, + 4w,u,abo—ab> 14 'YO%/w

_ 1 _
= 1#7,,3#1# + Zwuab¢ {’Yw Uab} V. (C-26>
Next we substitute (B.31),(C.2), (C.4) and (C.7) to obtain the Lagrangian,
1— 2 — i— & i— _
V=9Ebac = (507 Ot =m0 ) = k™ | S5, Dy00 = s (507206 = )|
+ gaw% (s o} ¥ + O(k2). (C.27)

The last term vanishes due to the fact that the graviton field is symmetric and

{/yua UVA} = - {’Ym U,uA} s (028)

which can be shown by a short calculation using (B.5). From (C.27) we read off

the vertex,

'\/\/\aW\J/U/ = 2; (7(u(p1 _pQ)V) + M [(1”2 _p1> - meD '

P2

Rarita-Schwinger Field
The Lagrangian of the spin—% field in curved spacetime is given by
1 — < 7 _
V=L = =5 0 Didn + V=g gm0 (C.29)

where the covariant derivative is given by the spin connection, D,y = (OM + iwuabaab) Uy,
see (B.31).
Since we deal with on-shell gravitinos the field equation (4.4) will help us to simplify
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C. Linearized Gravity and Graviton Feynman Rules

our vertex factor,

Juo.,ulfwu = _Z-gwj@ﬂwu . (C?’O)

With the insertion of the covariant derivative and graviton field, we obtain

KR T pas 1 v —
\/ —g£ = E(O) - §€apﬂyhu ¢ 75,)/“891#6 - Zaﬂh# Ea)\ﬁuqvb 75 {’7)\7 Jl/p} ¢ﬁ

KM —a o
= P (s 007 = 2as 0 07) + O(s%) (C.31)

Here we not only performed the steps shown in (C.26) but also used the relation

[v5, 0] = 0. Completing this appendix we read off the vertex factor,

K )

5 [eapﬁm%) (p2 —p1)” + §eam<,ﬂ5 (oo}
y77 -
+ 2im3/2 (UW%B - 277a(,u771/)6> ] .

p

This vertex coincides with the one given in [55], it is however important to bear in

mind that these authors employ the Veltman definition of the graviton field, see
(C.9).
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Kinematics and Cross-Sections of
Two-Body-Scatterings

Kinematics

We describe the general kinematics of 2 — 2 my M,
scatterings in the center-of-mass frame of reference

defined by 3, 5; = 0. The setting is depicted in D1 ey

figure D.1.We start by writing the four momenta

as
P2 ko

E E.
p1 = j , P2 = 2_, ; (Dl) 7;}2 . . M2
P igure D.1.: 2 — 2 Scattering
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D. Kinematics and Cross-Sections of Two-Body-Scatterings

The norm of the spatial momenta are given by

1 /mi+ (s —m3)2 —2m?(s + m3
pE|m:2\/ 1 ( 2) 1( 2)’ (D3)
s
- 1 | M — M2)2 —2M? M?2
kE‘k‘:\/ 1+(S 2) 1(S+ 2), (D4)
2 S
and the energies by
Elzlwm%_m%“)z, Eflwm%_m%”)z, (D.5)
2 s 2 S
1 MQ_MQ 2 1 MQ_MQ 2
s s

In calculations of scattering cross-sections we will need the scalar products of the

momenta,

pl'p1:m§a pg-pgzmg, k1'7€1:M127 k2'/€2:M227 (D.7)
pL-pe = E\Ey +p7, p1- k1= E B3 — pkcosO, (D.8)
p1 -k = E1Ey+ pkcosO, py-ky = FEyFE5+ pkcosf, (D.9)
Po - ko = FoFy —pkcost, ky-ky= EsEq+ kK, (D.10)

-

where 0 = £L(p, k).

Kinematics of Gravitino Pair Production With the massless photons or almost

massless neutrinos, m; = my = 0 and the gravitinos M; = M, = mg/5, we obtain

pL-pr=p2-p2=0, k1'k1=k2'k2=m§/2, (D.11)
pl'p2:§a kl-kzzg—m§/2, (D.12)
pl'k’lzpz-kg:i—\fkcose, (D.13)
pl'kQ_p2'k1_i+\é§k‘COS(9, (D.14)
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with k= ,/4 — m2 /2- In using the equivalence theorem later on, we will treat the
massive gravitino as a massless goldstino. With k = ? the following, more simple

relations hold,

S
Pr D1 =p2-pr=ki-ki=ky-ke=0, p1-p2=—, kl-kgzg, (D.15)

NNV

pl-lﬁ:pg-kg:i(l—cosﬂ), p1-ke=po-ki = (14 cosh) . (D.16)

=~ ®

Unpolarized Scattering Cross-Section

We start with the expression for the cross-section of a general scattering process
p1p2 — kiky [73],

1 — 1 Pk ke
7= 2p02p3|vy — o] (27)3 29 (27)3 29
X (271')45(4)(]91 + p2 — k?l — k2)|./\/l(pl,p2 — ]{?1, k2)|2 s (D17>

The line over the squared amplitude indicates, that we already summed over the
final and took the average of the initial spins. The relative velocity appearing in

the denominator is given [84] by

1
[v1 — V| = ﬁ\/(pl “p2)? —mim3, (D.18)
which becomes
E,+E
o — | = LB el ] (.19)

E,E, By FE

in the center-of-mass system.
When calculating total cross-sections by integration of (D.17), we avoid counting
identical final states several times by dividing by Niq!, where N;q is the number of

identical final state particles, otherwise we would count physically indistinguishable

97



D. Kinematics and Cross-Sections of Two-Body-Scatterings

events more than once.

1 1 d*k, / d®k,
Ototal =
fotal Nig! 2p82p8)v1 — vo| J (2m)3 2K J (27)3 2k9
(27T)4(5 (pl + p2 — 1 — k’g)‘./\/l(pl,pz — k‘l, ]{2)|2 . (DQO)

In the centre-of-mass frame these expressions simplify to

do 1 ‘kl‘ 2
o ki, ko)™ D.21
<dQ>c 2p92p8|va — vl (27)*4Eonm (M1, p2 = ki, ko) ( )

and

1 ‘/;1‘
Ototal = N. |/d 9 050 2
id- p12p2‘UA — UB| (271') 4ECM

IM(p1,pa = k1, k2)]?. (D.22)

Cross-Section of Gravitino Pair Production In the case of the reaction vy —
GG we obtain

k sin 0 - 2
oy — GG) / A0 S | M(y = GG for mgz£0,  (D23)

sin

~ ~ ~ |2
oy — GG = 5/0 db | My = GG

where k = /% —mg/Q.

for mg/o = 07 <D24)
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Formulae for ldeal Quantum Gases

For the computation of the gravitino luminosity in the SN core, we have to describe
the initial state particles. The photons and even the neutrinos are in thermal
equilibrium and can be described as an ideal quantum gas. In this section we state
the relevant relations [85].

The average number of (identical) particles in a single-particle state i is given by

the Fermi-Dirac or Bose-Einstein distribution function,

exp [Z2£1 +1) ,  (Fermi-Dirac),
fn(p) = (exp %E’T‘% - 1; (Bose-Einstein) (=
- : .

99



E. Formulae for Ideal Quantum Gases

1 is denoting the chemical potential of the relevant particles.

With this functions we can express the number and energy density as

ngp = (27’;)3/d3pff/b(p”), (E.2)

oo \/F2 _m?2
_ 292 E__Mm EAE, (E.3)
T Jm o exp {’T} +1

Pr/b = Qgﬁ)/dgpff/b(@E(@7 (E.4)
g > VET-m? 5

272 m exp {%} +1

dE, (E.5)

where we used E? = |p]> + m>.
Relativistic Limit For 7' > m and T' > p we obtain

gT*, (Bose-Einstein),

p= iowi’ 4 i-Di (E6)
s359T",  (Fermi-Dirac),
&) g3 Bose-Einstein
nel gT°, ) (E.7)
3¢B o713 | (Fermi-Dirac) .
Here the Riemann zeta functions occurs. We just state that ((3) ~ 1.20206.
This leads us to the average energy per particles,
71_4 ~ . .
() = P WT ~ 2.7T, (Bose-Einstein), (E.8)
Mo | T ~ 32T, (Fermi-Dirac).

Non-relativistic Limit For m > T we find no difference between bosons and

fermions,

w0 (") exp [ — /7. (£9)

p=mn. (E.10)
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Calculation of Cross-Sections with

FeynCalc

We always use the Mathematica [70] package FeynCalc [69] for the squaring of long
amplitudes and the calculation of cross-sections. Here we present the framework of
such an Mathematica notebook as an example.
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Calculation of Cross-Sections with FeynCalc

Preamble
Load FeynCalc:

$LoadFeynArts = False;
<< HighEnergyPhysics FeynCalc"

Feynman Rules, Kinematics, Assumptions and necessary Substitution Rules

$Assumptions =
k>0&&m3,, >0&&G>0&&s>0&&t > 0&&U> 0 &&Mypotino > 0&& My > 0&& ¢ > 0&&d > 0;
GravitonPropagator[u_, v_, a_, B_, @_] :=
I

(MT[u, a] MT[v, B] +MT[v, a] MT[u, B] -MT [y, v] MT[a, B]);
2 ScalarProduct[q, q]

I (DiracSlash[p] +m)

FermionPropagator[p_, m ] := ;
ScalarProduct[p, p] - m?
I
ScalarPropagator[p_, m ] := ;
ScalarProduct[p, p] - m?
- IMT[u, v]

PhotonPropagator[u_, v_, p_] := i
ScalarProduct[p, p]

polarizationsums =
{FCI[Pair[LorentzIndex[a ], Momentum[Polarization[x , 1]]] Pair[LorentzIndex[f_],
Momentum[Polarization[x , -1]]] :> PolarizationSum[a, B]]};

kinematicsET = J{ScalarProduct[pl, p1] | ScalarProduct[p,, p2] | ScalarProduct[k;, ki] |

s
ScalarProduct[k;, k;] » 0, ScalarProduct[p;, pz] | ScalarProduct[k;, k,] » —,
2
s
ScalarProduct[p;, k1] | ScalarProduct[p;, k;] » — (1 -Cos[¢]),
4

s
ScalarProduct[p;, k;] | ScalarProduct[p;, k1] » — (1 + Cos[d:])};
4

kinematics = {ScalarProduct[pl, p1] | ScalarProduct[p,, p2] - 0,
ScalarProduct[k;, k1] | ScalarProduct[ky, k] - m3,52%,
s s

ScalarProduct[p;, p2] » —, ScalarProduct[k;, k;] » ——m3,22,
2 2

s
ScalarProduct[p;, k;] | ScalarProduct[p,, ka] » —- - —m3,22 Cos[¢].,
4 2 4

s ys s 5
ScalarProduct[p;, kz] | ScalarProduct[py, k1] » —+ —-m3,2° Cos[¢] };
4 2 4

. . FV[p, u] FV[p, v]
PolarizationTensorVu_, v_,p_,m ] := - (GS[p] -m). |MT[u, v] - -
2
m
1. . FV[p, u] _ _ FV[p, v]
— |DiracMatrix[u] - —— GS[p] |. |DiracMatrix[v] - — GS[p] ;
3 m m?
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. . FV[p, u] FV[p, v]
PolarizationTensorU[u_, v_, p_, m_] := - (GS[p] +m) . [MT[u, v] - -
2
m

1
- (DiracMatrix[u] -
3

replaceindices = {a» a2, B>B2, y>¥2, 6>62, u»u2, v->v2, p-»p2, c- o2,
A2, E5E2, w- w2, il » il2, i2 » i22, i3 » i32, i4 » i42, j1 > j12, §2 » j22,
11 » 112, 12 » 122, ml » ml12, m2 » m22, nl - nl2, n2 » n22, ol » 0l2, 02 -» 022};

FV[p, u] ) ( , , FV[p, v] ))
——Gs[p] |. |pDiracMatrix[v] - —ZGS[p] ;

m m

Amplitudes:
Write the amplitudes here:

M = Amplitude;

Cross-Section

Insert the amplitudes, the number of identical particles in the final state and the correct weight of the
spin average and decide if you want to use the ET:

TimeS = SessionTime[];
IPFS = 2; (*Identical Particles in the Final Statex)
M

(*( 2 FV[kl,v]FV[kz,u])M/.{POT—)O}*)

2
3my,2

% » ComplexConjugate[% /. replaceindices] // Expand;
"Averaging over the Photon Spins..."

1
— %% //. polarizationsums // Contract;
4

Timel = SessionTime[];
Row[{"Done (", Timel - TimeS,

"s). Insert a) Completion Relation and b) contract the Result:"}]
FermionSpinSum[%%% // Expand] (*//FullSimplifyx) ;
(*%//Contract//FullSimplify; %)

Time2 = SessionTime[];

Row[{"Overall Time: (", Time2 - Timel, "s). Substitute the Polarization Tensor:"}]
%%% /. { (-POT + DiracGamma [Momentum[k;]]) -> PolarizationTensorV[v, v2, ki, m3,2],
(POT + DiracGamma [Momentum[k,]]) -> PolarizationTensorU[u2, u, ky, m3,2]};

Row[{"Done. Calculating Traces..."}]

%% /. DiracTrace » Tr // Contract;

Time3 = SessionTime[];

Row[{"Done (", Time3 - Time2, "s). Substituting Kinematics..."}]
%%% /. kinematics // Simplify;

Time4 = SessionTime[];

Row[{"Done (", Time4 - Time3, "s). Integrating..."}]



Untitled-1

Sin[¢] s 2 L
Integrate[— —-m3,2° %%%, {¢, 0, w}, GenerateConditions -» False] ;
4

16 7 s3/2
Time5 = SessionTime[];
Row[{"Done (", Time5 - Time4, "s). The result for the Cross Section:"}]
1

Simplify[CrossSection = %%%, TimeConstraint - 600] // StandardForm

Factorial [IPFS]

Row[{"Series Expansion for light gravitinos:"}]

FullSimplify[Series[%%, {m3,2, 0, -4}] // Normal,
Assumptions > s > 0 && Mppotino > 0] // StandardForm

TimeE = SessionTime[];

Row[{"Overall Time: (", TimeE - TimeS, "s)."}]

NotebookSave[];

(*Quit[];:=*)

| 3
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2]
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