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Chapter 1

Introduction

1.1 The Construction of Models in Relativistic Quantum

Field Theory

The observed phenomena of high energy physics can be successfully described by rela-
tivistic quantum field theories. Such theories are the constituents of the standard model,
and have led to our current understanding of the physics of elementary particles. But
although the predictions of quantum field theories agree with the experimental results to
a very high degree of accuracy in several cases, the construction of models within this
framework is a delicate issue, which is only partly understood today.

The most common approach to construct quantum field theories starts from a quan-
tized version of a classical Lagrangian and uses a formal perturbative expansion in the
coupling constant around an interaction-free model theory. However, the perturbation
series is believed to diverge in many cases, and can therefore not be used for a proper defi-
nition of models. These problems have attracted the attention of mathematical physicists
for several decades, and have stimulated different approaches to constructive quantum
field theory.

The first theories which were constructed without having to rely on cutoffs were de-
fined by a Lagrangian with a polynomial interaction term on two-dimensional Minkowski
spacetime. These models were established using the Hamiltonian strategy, and could be
shown to satisfy the assumptions of axiomatic quantum field theory [GJ72].

With the advent of the Euclidian approach [Sym69], powerful new methods and strate-
gies became available. Until the beginning of the 1980s, several interacting models on two-
and three-dimensional spacetime had been constructed with the help of functional inte-
gral techniques, see [GJ81] and the references cited therein. These models have been
thoroughly investigated, and their relation to perturbation theory is well understood.

However, after this period of successes, little progress has been made in constructive
aspects of quantum field theory1. In particular, comparable results in four dimensions are
missing up to now.

A completely different approach to the construction of two-dimensional quantum field
theories is taken up in the so-called bootstrap form factor program [BK04, Smi92]. Here
models are not defined in terms of Lagrangians, but rather with the help of a factorizing

1See, however, [Sch05, SS05] for interesting recent results concerning the local S-matrices in the P (ϕ)2
models.
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6 Chapter 1. Introduction

S-matrix. Such scattering operators have first been found in the context of integrable
models like the Sine-Gordon theory or the scaling Ising model [AAR91], and have a simple
structure in comparison with an S-matrix in higher dimensions. In particular, it is possible
to explicitly specify non-trivial factorizing S-matrices, and use them as a sufficiently well
understood description of a possible interaction.

In the form factor program, one investigates local field operators associated with a
given S-matrix by analyzing their matrix elements in scattering states. Due to the special
form of the S-matrix, there exist numerous constraints on these matrix elements (called
form factors in this context), which render their explicit calculation possible. In fact, the
form factors of many models are known today.

After the computation of the form factors, the crucial step in the bootstrap program
is the derivation of formulae for n-point Wightman functions of local fields associated
with the considered S-matrix, which are given by certain infinite sums of integrals over
form factors. These sums are very difficult to control as a consequence of the involved
structure of local quantum fields, reminiscent of the perturbation series. Due to these
problems, the construction envisaged in the form factor program can be presently carried
out only for two special models [BK04].

In the present work, we present a new approach to the construction of quantum
field theories with factorizing S-matrices. Our approach uses the insights of the structural
analysis of relativistic quantum physics carried out in the algebraic framework of quantum
field theory [Haa92] and can be summarized as follows.

As in the form factor program, we consider the inverse scattering problem, i.e. the
construction starts from a given factorizing S-matrix. But instead of aiming at the con-
struction of local quantum fields in the first place, we begin by considering objects with
weaker localization properties, which are easier to construct. These are certain fields de-
scribing asymptotic particle states connected to the given S-matrix. On the vacuum, they
act by creating single particle states, without admixture of vacuum polarization clouds.
Such operators have been introduced by B. Schroer [Sch99, Sch97], who coined the name
polarization-free generators for them. He discovered that polarization-free generators are
localized in causal closures of half lines, i.e. wedge-shaped spacelike regions of Minkowski
space (wedges, for short). Later on, it was shown by Borchers, Buchholz and Schroer
that such generators exist in any local theory, although they may in general have delicate
domain properties [BBS01].

In this work, we will show that polarization-free generators can be constructed in
a non-perturbative manner for a large class of S-matrices. Using concepts of algebraic
quantum field theory, these generators are then used to build an infinite family of models.
Here the crucial insight is that for the construction of a model theory, it is not necessary
to derive explicit formulae for field operators or n-point functions. Rather, it is sufficient
to control the structure of the algebras generated by local observables.

It has been discovered by D. Buchholz that the rich algebraic structure of the ob-
servables in quantum field theory can be used to study observables localized in bounded
regions of spacetime in an indirect manner, in terms of the algebras generated by the
polarization-free generators [BL04]. In particular, it is possible to decide whether to a
given factorizing S-matrix S there exists a model of quantum field theory whose scatter-
ing is governed by S. The main technical tool underlying this observation is a condition
on the modular operators of the wedge algebras, due to Bucholz, D’Antoni and Longo
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[BDL90a, BDL90b].

Using these methods, the long-standing question of the form factor program regarding
the existence of models with a prescribed factorizing S-matrix is solved here. For a certain
infinite class of S-matrices, corresponding model theories which comply with all basic
assumptions of relativistic quantum physics are constructed in the framework of algebraic
quantum field theory.

Among these models are the Sinh-Gordon theory and the scaling Ising model, which
are usually formulated in terms of a Lagrangian with hyperbolic interaction potential and
the scaling limit of a model of statistical mechanics, respectively. These systems are well-
studied from different points of view [Skl89, FMS93, MW73, BKW79], but for most of the
theories found here, an alternative description is not known. Thus they may be considered
as new models.

After the existence of the models is established, it is necessary to analyze their scatter-
ing states and to compute their S-matrices in order to verify that the construction really
yields the solution of the inverse scattering problem. In contrast to all other approaches,
this is possible here. It will be shown how multi-particle scattering states can be explicitly
calculated, and we find that the S-matrices used as an input in the construction can be
recovered from the collision states of the finished models. Moreover, we prove that these
models have a complete interpretation in terms of asymptotic particle states, and thus pro-
vide the very first interacting theories in which the property of asymptotic completeness
can be established.

1.2 Overview of this Thesis

This thesis is organized as follows. In chapter 1, we briefly summarize the framework
of algebraic quantum field theory in order to establish our notation and indicate which
conventions are used. Furthermore, some basic geometrical facts about two-dimensional
Minkowski space are collected here for later reference.

A model-independent construction procedure for two-dimensional quantum field theo-
ries in terms of wedge-localized objects is presented in chapter 2. We employ the framework
of local quantum physics [Haa92], and address the question how a relativistic quantum
theory can be constructed in terms of its observables which are localized in a particular
wedge. The main result of this chapter is the derivation of a set of clear-cut conditions
on the algebra generated by such wedge-localized observables which ensure that the cor-
responding model theory complies with all principles of relativistic quantum physics.

This general construction is then made concrete in a family of models which are char-
acterized in terms of their S-matrices. These S-matrices are taken to be of the factorizing
type, and the properties of such scattering operators are recalled in chapter 3. In chapter
4, the construction is carried out by an inverse scattering approach. We fix a factorizing
S-matrix from a certain infinite class, and construct a corresponding model theory. At
the basis of this construction lies the Zamolodchikov-Faddeev algebra, which is given a
spacetime interpretation in terms of a pair of associated wedge-local quantum fields. These
fields constitute the basic objects of our models, and we study their properties in chapter
4. It is shown there that they determine a local quantum theory as in the general setup
of chapter 2. Furthermore, we compute the two-particle scattering states of this theory,
which are found to reproduce the initially given two-particle S-matrix.
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Chapter 5, devoted to an analysis of the local observable content of these models, is
a crucial step in the construction. For a large class of S-matrices, we prove the existence
of local observables in arbitrarily small spacetime regions by verifying the conditions on
the underlying wedge algebra proposed in chapter 2. For a still larger class, we obtain
observables localized in regions above a minimal size.

Two aspects of the interaction in the constructed models are investigated in chapter 6.
Our most important result in this context is the proof that the S-matrices, which were used
as an input for the construction, can be recovered from the collision states of the model by
application of the Haag-Ruelle scattering theory. This implies that the program carried out
here provides the solution to the inverse scattering problem for the considered class of S-
matrices. Moreover, we prove that the constructed models have a complete interpretation
in terms of asymptotic particle states, providing the first examples of interacting quantum
field theories for which this property has been established. In addition to the results
related to scattering theory, we derive bounds on the thermodynamical partition function
of the theory.

The main text of the thesis is completed in chapter 7 with a presentation of our
conclusions, and an account of open problems and perspectives.

The three appendices cover the following subjects. In appendix A, the analysis of
chapter 5 is reconsidered for two special models, namely the interaction-free theory and
the scaling Ising model. Due to the simpler algebraic structure of these theories, it is
possible to treat them with different methods, leading to somewhat stronger results than
in chapter 5. Appendix B contains the technical proofs of certain statements needed in
the main text. Finally, appendix C provides some mathematical background material.

Parts of the content of chapter 2 have been published in the joint paper [BL04]
with D. Buchholz, and most of the material covered in chapter 4 can be found in [Lec03].
The proceedings contribution [Lec05b] contains a preliminary version of the results
of chapter 5, whereas a treatment similar to the one presented here is the content of
[Lec06]. The analysis of the scaling Ising model in the context of our inverse scattering
construction has been published in [Lec05a].

1.3 Geometrical Preliminaries on Two-Dimensional

Minkowski Space

We consider Minkowski space as the two-dimensional real plane IR2 endowed with proper
coordinates x = (x0, x1) and the inner product x · y = x0y0 − x1y1. Using units in which
the speed of light is c = 1, the subregions of points x with x ·x > 0, x ·x < 0 and x ·x = 0
are called timelike, spacelike and lightlike, respectively. (Also Planck’s constant ~ will be
set to unity here.)

The invariance group of this product is the Poincaré group P, which is generated by
the translations ta : x 7→ x+ a, a ∈ IR2, the proper boost transformations

Λ(λ) : x 7−→
(

cosh λ sinhλ
sinhλ coshλ

)
x , λ ∈ IR, (1.3.1)

and the two reflections T : x 7→ (−x0, x1) and −T : x 7→ (x0,−x1).
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The proper Poincaré group P+ is generated by the translations, boosts and the total
reflection −1 : x 7−→ −x.

Finally, the proper orthochronous Poincaré group, P↑
+, is generated by the translations

and boosts only.

For the localization of physical observables, different regions in IR2 will become im-
portant in this thesis. We adopt the convention to work with open regions only,
and thus define the spacelike complement O′ of a set O ⊂ IR2 as the interior of
{x ∈ IR2 : (x− y)2 < 0 ∀y ∈ O}.

Of particular significance for us is the family of wedges, which is defined as follows.
The so-called right wedge is the set

WR := {x ∈ IR2 : x1 > |x0|} (1.3.2)

and the left wedge is WL := W ′
R = −WR (see figure 1.1). An arbitrary wedge is defined

to be a set of the form gWR, where g ∈ P is a Poincaré transformation. The set of all
wedges will be denoted W.

WR
WL

x0

x1

Figure 1.1: The left and the right wedge.

Note that the sets WR and WL are invariant under the action of the boost transformations
(1.3.1), since the eigenvectors of Λ(λ) (1.3.1) are lightlike. Hence W has the form

W = {WL + x : x ∈ IR2} ∪ {WR + x : x ∈ IR2} . (1.3.3)

Wedges of the form WL + x and WR + x will be referred to as left and right wedges,
respectively.

Besides these unbounded regions, we also consider double cones, usually denoted by
the letter O. A double cone is defined to be a non-empty intersection of a forward and
a backward lightcone, which in two dimensions is equivalent to saying that it is the in-
tersection of a left and a right wedge. The family of all double cones will be denoted by
O.

Each double cone determines four associated wedges, as depicted in the following figure.

With the notation introduced here, there holds for any double cone O

O′ = WO
L ∪WO

R , O =
(
WO
L

)′ ∩
(
WO
R

)′
. (1.3.4)



10 Chapter 1. Introduction

O
WO
R

WO
L

(
WO
L

)′

(
WO
R

)′

Figure 1.2: A double cone O and its associated wedges

The fact that two double cones O1,O2 are contained in each other or lie spacelike to each
other can be expressed in terms of their associated wedges as

O1 ⊂ O2 ⇐⇒WO1
R ⊃WO2

R and WO1
L ⊃WO2

L , (1.3.5)

O1 ⊂ O′
2 ⇐⇒ O1 ⊂WO2

L or O1 ⊂WO2
R . (1.3.6)

Finally, we agree to write O1 ⋐ O2 for an inclusion of two (arbitrary) regions O1,O2 ⊂ IR2

if the closure of O1 is contained in the interior of O2.

1.4 The Algebraic Formulation of Quantum Field Theory

In this section we briefly recall the framework of algebraic quantum field theory, mainly
to indicate our notations and conventions. An introduction to the subject can be found
in either of the books [Haa92, Ara99, Hor90, BW90].

We consider a relativistic quantum theory on Minkowski space IRd (d ≥ 2) in its
vacuum representation. In the algebraic approach to quantum field theory, a model is
characterized in terms of its algebra A of local observables, which are given by selfadjoint
operators on a fixed Hilbert space H (the vacuum Hilbert space of the theory). The
algebra A has a very rich structure, which we outline in the following.

To begin with, A contains all local algebras A(O), generated by the observables local-
ized in a spacetime region O ⊂ IRd. Usually, A(O) ⊂ B(H) is taken to be a von Neumann
algebra, i.e. a ∗-subalgebra of B(H) which is closed in the weak operator topology. The
assignment

IRd ⊃ O 7−→ A(O) ⊂ B(H) (1.4.1)

contains all physical information of the theory, and therefore constitutes the main object
of interest in algebraic quantum field theory. For (1.4.1) to model the observables of a
relativistic quantum system, the algebras A(O) must have a number of properties.

To begin with, the interpretation of the selfadjoint elements of A(O1) as observables
localized in O1 implies that to a larger region O2, there must correspond a larger algebra
A(O2), i.e.

A(O1) ⊂ A(O2) for O1 ⊂ O2 . (1.4.2)
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This property will be referred to as isotony, it gives the map O 7−→ A(O) the mathematical
structure of a net.

In relativistic theories, no effect can propagate faster than the speed of light. As a
consequence, observables localized in regions of spacetime which cannot be connected by
a sequence of light rays are commensurable and do not interfere with each other. In
view of Heisenberg’s uncertainty relation, this implies in particular that the corresponding
operators must commute. Causality can therefore be implemented in the mathematical
framework by requiring that algebras of observables localized in spacelike separated regions
must commute,

A(O1) ⊂ A(O2)
′ for O1 ⊂ O′

2 . (1.4.3)

As usual, we adopt the convention to write the causal (spacelike) complement of a region
O ⊂ IRd as O′, and use the prime on an algebra of operators acting on a Hilbert space H
to denote its commutant in B(H).

The condition of locality can be strengthened to Haag duality by requiring that any
operator commuting with all elements of A(O) is localized in O′,

A(O′) = A(O)′ . (1.4.4)

Whereas Haag-duality is known to hold if the region O in (1.4.4) is a wedge and the net is
generated by finite-component Wightman fields [BW76], it is not valid for bounded regions
in general.

The relativistic symmetries are assumed to act on the net by a representation of the
identity component of the Poincaré group, i.e. one postulates that there exists a strongly
continuous, unitary representation U : P↑

+ −→ B(H) of the proper orthochronous Poincaré
group on H. The covariance of the theory then demands

U(g)A(O)U(g)−1 = A(gO) , g ∈ P↑
+ , (1.4.5)

where gO = {g x : x ∈ O} denotes the transformed region.

The translation group (IRd,+) is contained in P↑
+ as a subgroup, and as usual, the

generators Pµ of U(x) = eixµPµ
are interpreted as energy and momentum operators. In a

vacuum representation, the stability of matter requires to have a positive energy spectrum
in all Lorentz frames. This spectrum condition amounts to the joint spectrum of the Pµ

being contained in the closure of the forward light cone V + := {(p0, ~p ) ∈ IRd : p0 > |~p |}.
Finally, there is a vector Ω ∈ H which models the physical vacuum state. It is required

to have energy and momentum zero, i.e. Ω must be invariant under the action of U .
Moreover, one usually requires that Ω is unique in the sense that all U -invariant vectors
in H are scalar multiples of Ω.

In quantum field theory, the vacuum state has the Reeh-Schlieder property. In the
algebraic framework, this property can be formulated by requiring Ω to be cyclic for the
local algebras, i.e.

A(O)Ω = H , O ⊂ IRd open . (1.4.6)

(The bar denotes closure in the norm topology of H.) For regions O with non-empty
causal complement, it then follows that Ω must also be separating for O, i.e. AΩ = 0,
A ∈ A(O), implies A = 0.
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In this work, we will refer to a net A : O 7−→ A(O) (1.4.1) which has all the
above described properties as a local net on IRd. If the stronger condition (1.4.4) is
assumed, we speak of a Haag-dual net. In both cases, the algebras A(O) are called local
algebras if O is bounded, and their elements are called local observables.



Chapter 2

Construction of Two-Dimensional

Local Nets from Wedge Algebras

A large part of this thesis is devoted to the explicit construction of two-dimensional quan-
tum field theory models with prescribed factorizing S-matrices. As mentioned in the
Introduction, the methods we use differ significantly from those usually employed in con-
structive of quantum field theory. Instead of perturbatively studying a quantized classical
field theory with functional integral techniques, the approach followed here focuses on the
structure of the algebra of quantum observables.

The main insight is that the construction of models can be based on quantities with
quite weak localization properties, and strictly local observables are obtained in a second
step. The weak localization to be used is localization in wedge regions (section 1.3), and
in the present chapter, we study the model-independent aspects of constructions of local
nets in terms of wedge-local quantities.

Wedges are on the one hand large enough to allow a comparatively easy construction
of observables localized within them. On the other hand, a double cone O is the
intersection of all wedges containing O. Hence it is possible to study observables localized
in finite regions indirectly in terms of wedge-localized objects.

The framework best suited for our analysis is that of algebraic quantum field the-
ory [Haa92, Ara99, Hor90, BW90], and accordingly, the most natural input for the
construction is an algebra of observables localized in a wedge (a wedge algebra, for short).

As we shall see later, such a wedge algebra can be defined in terms of a factorizing
S-matrix on two-dimensional Minkowski space, constituting the starting point of our con-
struction of models by means of inverse scattering theory. In the present chapter, devoted
to a model-independent discussion of the concept, we define a wedge algebra as an ab-
stract algebra M satisfying an appropriate set of conditions which ensure that M can be
consistently interpreted as being generated by quantum observables localized in a wedge
region. The results of this chapter are therefore not restricted to the realm of models with
a factorizing S-matrix, but hold for a much larger class of theories.

In algebraic quantum field theory, wedge algebras are well-studied objects because of
the distinguished geometric action of their modular operators with respect to the vacuum
[BW75, BW76, Bor92, BDFS00, Mun01]. Exploiting this important property, there have
been several constructive proposals making use of wedge algebras. The work which is

13
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most closely related to our discussion is that of Borchers, who also considers the two-
dimensional case in [Bor92], and constructs a theory in terms of a single wedge algebra.
Wiesbrock proposes constructions on two- [Wie93], three- [Wie98], and four-dimensional
[KW01] Minkowski space by considering a set of wedge algebras in appropriate modular
positions relative to each other. Longo and Rehren also use a form of wedge algebras in
their analysis of algebraic boundary conformal field theory [LR04].

In combination with a representation U of the translations, a wedge algebra M
can be used to define a local net in a straightforward manner. This is done in section
2.1, where we define a standard right wedge algebra as a von Neumann algebra which
transforms appropriately under the representation U . However, due to the infinite
extension of the wedges, the characterization of local observables in this theory becomes
a nontrivial issue. For example in the works of Borchers [Bor92] and of Wiesbrock
[Wie93, Wie98, KW01], the existence of local observables had to be postulated as an
additional assumption. This unsatisfactory situation is here improved by identifying
suitable conditions on the underlying wedge algebra M which imply the existence of local
observables.

It was noticed in [BL04] that such a condition is the so-called split property for wedges,
which in combination with Haag duality fixes the structure of the local algebras com-
pletely. The split property is discussed in section 2.2. Strengthening the results of [BL04],
we prove that it implies that the associated local net complies with all principles of alge-
braic quantum field theory. In particular, the Reeh-Schlieder property is shown to be a
consequence of the split property for wedges.

Closely related to the split property is the modular nuclearity condition, a condition
on the modular objects of the wedge algebra M. This condition, its relation to thermo-
dynamical properties, and its advantages over the split property regarding applications in
models are explained in section 2.3. In Theorem 2.3.4, we summarize the main results of
this chapter: Given a standard right wedge algebra which satisfies the modular nuclear-
ity condition, an associated local net can be defined which matches all requirements of
algebraic quantum field theory, and moreover has some additional properties.

In the last section, we address the question how standard right wedge algebras can
be constructed explicitly, as a prerequisite and motivation for the discussion of models in
the later chapters.

Parts of the results shown here have been published in the joint paper [BL04] with
D. Buchholz.

2.1 Nets of Wedge Algebras and Double Cone Algebras

In this section, we start our construction of quantum field theory models from an abstract
algebra M which is interpreted as a “wedge algebra” with respect to a given representation
U of the translation group. To begin with, we collect and motivate our assumptions.

2.1.1 Assumptions

Motivated by the idea of inverse scattering theory, we begin by fixing the particle spec-
trum of the model to be constructed, which is a prerequisite for the formulation of an
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S-matrix. In relativistic quantum field theory, the choice of the particle spectrum amounts
to the choice of an appropriate positive energy representation of the proper orthochronous
Poincaré group P↑

+. According to the classical analysis of Wigner [Wig39], the decompo-

sition of the one particle subrepresentation into irreducible representations of P↑
+ yields

the mass and spin quantum numbers of the particles present in the theory.

For our construction, however, it suffices to consider a representation U of the two-
dimensional translation subgroup (IR2,+) ⊂ P↑

+. We will see later that this representation
can be extended to the proper Poincaré group with the help of the modular data of wedge
algebras.

To be precise, we consider a strongly continuous, unitary representation U of the two-
dimensional translation group on a Hilbert space H as the starting point of our construc-
tion. As usual, the stability requirement of positive energy in all Lorentz frames is made,
i.e. the joint spectrum of the generators P = (P0, P1) of U(x) = eiP ·x is supposed to be
contained in the closed forward light cone V + = {p ∈ IR2 : p0 ≥ |p1|}. Whereas the choice
of a particular representation space H is largely a matter of convenience, the choice of the
(unitary equivalence class of the) representation amounts to fixing the mass spectrum of
the theory as the eigenvalues of the associated mass operator M = (P 2

0 − P 2
1 )1/2.

In the first steps of the construction, we allow for arbitrary mass spectra, but later
on, we will have to restrict to the case of finitely many species of massive particles. In
any case, we require the existence of a unique vacuum by postulating that U contains
the trivial representation as a one-dimensional subrepresentation. This corresponds to the
existence of a vacuum vector Ω ∈ H which is invariant under the action of U , and which is
characterized by this condition uniquely up to scalar multiples. Clearly, our Hilbert space
should be large enough to accommodate also other physical states besides the vacuum,
and so we also assume dimH > 1.

Having set the stage for the construction of a model theory by introducing the Hilbert
space H and the representation U , we now need an input for the formulation of the net
of observable algebras. As explained in the previous section, we will generate this net
from wedge-local operators, and so we consider a von Neumann algebra M ⊂ B(H), the
selfadjoint elements of which shall be interpreted as observables measurable in a wedge.
Fixing once and for all the right wedge WR (1.3.2) as our reference wedge region, we
now collect assumptions on M which guarantee that M can be consistently viewed as an
algebra of observables localized in WR.

A typical and important feature in quantum field theory is the Reeh-Schlieder property
of the vacuum. In the context of a local net A it can be formulated by requiring that the
sets A(O)Ω are dense in H for any open region O, i.e. the vacuum vector is cyclic for the
local algebras. So if the algebra M shall represent the observables localized in WR, it must
have Ω as a cyclic vector. Moreover, thinking of M = A(WR) as the algebra of the right
wedge in a local net A, the Reeh-Schlieder property for the observables localized in the
left wedge, A(WL) ⊂ A(WR)′ = M′, implies that Ω must also be cyclic for the commutant
M′ of M. This is equivalent to Ω being separating for the algebra itself [BR87], and we
thus assume that the vacuum vector is cyclic and separating for M.

To characterize M not only as an observable algebra which is localized in some region
of spacetime, but more precisely in the right wedge WR, note that WR has the geometric
property that it is mapped into itself by translations tx with x ∈ WR, i.e. WR + x ⊂ WR

for x ∈ WR. In view of the isotony and covariance properties a relativistic quantum field
theory is bound to have, we are therefore lead to postulate U(x)MU(x)−1 ⊂ M for any
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x ∈WR.
This requirement completes our list of assumptions on H, U and M, and we summarize

them in the definition of a standard right wedge algebra (M, U,H), which is the basic input
for the construction carried out in this chapter.

Definition 2.1.1. A standard right wedge algebra is a triple (M, U,H) consisting of a
Hilbert space H with dimH > 1, a representation U of the translation group (IR2,+) on
H, and a von Neumann algebra M ⊂ B(H) such that the following conditions are satisfied.

a) U is strongly continuous and unitary. The joint spectrum of the generators P0, P1

of U(IR2) is contained in the forward light cone {(p0, p1) ∈ IR2 : p0 ≥ |p1|}.
There is an up to a phase unique unit vector Ω ∈ H which is invariant under the
action of U .

b) Ω is cyclic and separating for M.

c) For each x ∈WR, the adjoint action of U(x) induces endomorphisms on M,

M(x) := U(x)MU(x)−1 ⊂ M, x ∈WR . (2.1.1)

Thinking about explicit realizations of this structure, note that the representation U can
be easily constructed as follows: Choose a spectrum of masses m1, ...,mN ≥ 0 and corre-
sponding translation representations U1,k with mass mk, k = 1, ...,N . For example, U1,k

can be represented on the space L2(IR, dµk) of momentum wavefunctions which are square
integrable with respect to the standard measure dµk = (p2 +m2

k)
−1/2 dp as

(U1,k(x)f)(p) := ei((p
2+m2

k)1/2x0−p x1) · f(p) . (2.1.2)

By a standard procedure, one then obtains the Bose Fock space H over
⊕N

k=1 L
2(IR, dµk),

which is acted upon by the second quantization U of
⊕N

k=1 U1,k and contains a unique
invariant vacuum vector Ω.

The fact that this Hilbert space and this representation are shared by the correspond-
ing free field theory does not exclude the possibility to have other nets on H, which also
transform covariantly under U and exhibit nontrivial interaction. In fact, in an asymptot-
ically complete theory one can use either one of the unitary Møller operators to represent
the interacting net on the Hilbert space of incoming or outgoing collision states, which is
just the Fock space over the one particle space of the theory [Ara99]. So the assumption
that H and U are of the above described forms is no essential restriction.

In contrast to the construction of the representation U , the construction of an asso-
ciated wedge algebra M is a much more difficult problem. This is only to be expected,
since, as we shall see in the following, the choice of M essentially fixes the complete the-
ory. In particular, the interaction is encoded in the algebra M. In chapter 4, we will take
an inverse scattering approach to construct a wedge algebra, and define M in terms of a
prescribed factorizing S-matrix S. In this case, the interaction is fixed by the choice of
S. The important question how wedge algebras can be constructed without relying on an
explicitly known S-matrix is presently open and a subject of current research1.

1To satisfy assumption c) of Definition 2.1.1, one could take an operator X ∈ B(H) and consider the von
Neumann algebra MX := {U(x)XU(x)−1 : x ∈ WR}

′′, which clearly satisfies U(x)MXU(x)−1 ⊂ MX ,
x ∈ WR [Buc06]. But it is not clear how to choose X in order to ensure that Ω is cyclic and separating for
MX .



2.1. Nets of Wedge Algebras and Double Cone Algebras 17

In the present chapter, we take the point of view that H, U and M are given
such that all the assumptions of Definition 2.1.1 are satisfied, and construct a local
net O 7→ A(O) with the help of the standard right wedge algebra (M, U,H). The
explicit realization of examples of standard right wedge algebras, and hence of associ-
ated model theories, will then be carried out in chapter 4 by the above mentioned methods.

The construction we want to present proceeds in two steps by first defining a net
W 7−→ A(W ) of wedge algebras and then constructing the local observables within this
net. The second step requires to impose one more condition on the standard right wedge
algebra (M, U,H), but for the beginning, the assumptions summarized in Definition 2.1.1
are sufficient.

2.1.2 Definition of the Net of Observable Algebras

The construction of a net of wedge algebras using a standard right wedge algebra is rather
immediate [Bor92, BL04]. In fact, the structure is uniquely fixed if we require Haag duality
for wedges, a property which is known to hold in any net generated by Wightman fields
[BW76].

The following definitions are indispensable if we want to end up with a Haag-dual net
which transforms covariantly under the adjoint action of U : We put

A(WR) := M , A(WR + x) := U(x)MU(x)−1 , (2.1.3a)

A(WL) := M′ , A(WL + x) := U(x)M′U(x)−1 . (2.1.3b)

In view of the simple structure of the set of wedges W in two dimensions (1.3.3), these
assignments completely determine a net of wedge algebras.

Lemma 2.1.2. Consider a standard right wedge algebra (M, U,H), and define A(W ),
W ∈ W, as in (2.1.3).
Then W ∋ W 7−→ A(W ) is a Haag-dual net of von Neumann algebras which transforms
covariantly under the adjoint action of U . Moreover, Ω is cyclic and separating for each
A(W ), W ∈ W.

Proof. The translation covariance of W 7−→ A(W ) follows directly from the definition
(2.1.3), and since (U(x)MU(x)−1)′ = U(x)M′U(x)−1, the duality A(W ′

R) = A(WR)′

transports to all pairs W,W ′ of wedges.
To show that W 7−→ A(W ) is isotonous, we consider an inclusion of wedges of the

form WR + x ⊂ WR, x ∈ WR. In this situation, the corresponding algebras are included
in each other,

A(WR + x) = M(x) ⊂ M = A(WR), (2.1.4)

in view of the assumption in Definition 2.1.1 c). Taking commutants gives A(WL + x) ⊃
A(WL), x ∈WR. But any inclusion W1 ⊂W2 of wedges arises from one of these two cases
by a translation, and therefore the isotony of W 7−→ A(W ) follows by covariance.

As a consequence of Definition 2.1.1 b), Ω is cyclic and separating for A(WR) = M
and A(WL) = M′. Taking into account the translation invariance of Ω, we see that this
vector is cyclic and separating for each wedge algebra A(W ), W ∈ W, and the proof is
finished.
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It has been discovered by Borchers [Bor92] that in the present situation, the representation
U can be extended to an (anti-) unitary representation of the proper Poincaré group P+.
This can be achieved as follows: As Ω is cyclic and separating for M, the modular theory
of Tomita and Takesaki [KR86] is applicable and we may define the modular unitaries ∆it,
t ∈ IR, and the modular conjugation J of the pair (M,Ω). It has been shown in [Bor92]
(see [Flo98] for a simplified proof) that as a consequence of the spectrum condition for U ,
the following commutation relations hold, x ∈ IR2.

J U(x)J = U(−x) (2.1.5a)

∆itU(x)∆−it = U(Λ(−2πt)x) (2.1.5b)

Here Λ(−2πt) is the boost transformation with rapidity parameter −2πt, defined in (1.3.1).
The equations (2.1.5) imply that a proper Poincaré transformation consisting of a boost
Λ(λ), a space-time reflection (−1)ε, ε = ±1, and a subsequent translation tx along x ∈ IR2,
can be represented by the operator

U(tx(−1)εΛ(λ)) := U(x)Jε∆−iλ/2π . (2.1.6)

This definition gives rise to an (anti-) unitary, strongly continuous representation of the
proper Poincaré group P+ on H under which Ω is invariant, and under which the netW 7−→
A(W ) defined above transforms covariantly (see [Bor92] or Proposition 2.1.3 below).

We adopt the convention to denote this representation by the same symbol U as the
representation of the translation subgroup, and introduce the notation

U(x, λ) := U(txΛ(λ)) (2.1.7)

for the transformations in the identity component P↑
+ of P+. For simplicity, the notation

U(x) = U(x, 0) for pure translations is also maintained.

According to Lemma 2.1.2 and Borchers’ commutation relations, a net of wedge-
local observable algebras which has the Reeh-Schlieder property and is moreover covariant
under a representation of the proper Poincaré group, can be readily constructed from
a standard right wedge algebra. It is not surprising that the construction of such a
wedge net poses no difficulties since all relevant structures, like the algebra M and the
translations U(x), were part of our ”input” (M, U,H). However, the most important
constituents of a relativistic theory are its local observables, which do not appear in our
assumptions and therefore have to be constructed.

To fix ideas, we consider a double cone O and look for observables A localized in O. As
pointed out in section 1.3, the causal complement of O has two disconnected components,
consisting of the right wedge WO

R and the left wedge WO
L (cf. figure 1.2, page 10).

If A ∈ B(H) is an operator corresponding to a measurement in O, then the principle
of locality demands that A is not influenced by operations in O′ = WO

R ∪WO
L , and hence

A has to commute with all operators contained in A(WO
R ) or A(WO

L ). Thus it must be
an element of the von Neumann algebra

A(O) :=
(
A(WO

R ) ∨ A(WO
L )
)′

= A(WO
R )′ ∩ A(WO

L )′ , (2.1.8)

where the symbol A(WO
R ) ∨ A(WO

L ) denotes the von Neumann algebra generated by
A(WO

R ) and A(WO
L ).
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The assignment (2.1.8) is the maximal possible choice of A(O) compatible with locality,
and will here be used as the definition of the observable algebras associated to double cones.
By additivity, this definition extends to arbitrary bounded open regions Q ⊂ IR2, i.e. we
put

A(Q) :=
∨

O∈O

O⊂Q

A(O) , (2.1.9)

where O denotes the set of all double cones in IR2 (see section 1.3).

The basic properties of these local algebras are specified in the following Proposi-
tion (see also [Bor92]).

Proposition 2.1.3. Let (M, U,H) be as before and consider the algebras A(O) defined
in (2.1.8, 2.1.9).
The assignment O 7−→ A(O) is a local net of von Neumann algebras transforming co-
variantly under the adjoint action of the representation U (2.1.6) of the proper Poincaré
group.

Proof. We use the notation introduced in section 1.3. Considering an inclusion O1 ⊂ O2

of double cones, we have WO1
R ⊃WO2

R and WO1
L ⊃WO2

L and hence

A(O1) = A(WO1
R )′ ∩ A(WO1

L )′ ⊂ A(WO2
R )′ ∩ A(WO2

L )′ = A(O2) .

So the definition (2.1.9) implies that isotony holds, i.e. O 7−→ A(O) is a net of von
Neumann algebras.

To show locality, consider two spacelike separated double cones O1 ⊂ O′
2. In this

situation, either O1 ⊂WO2
R and A(O1) ⊂ A(WO2

R ), or O1 ⊂WO2
L and A(O1) ⊂ A(WO2

L ).

As A(O2) is contained in the commutants A(WO2
R )′ and A(WO2

L )′, the algebras A(O1)
and A(O2) commute with each other in both cases. For two arbitrary spacelike separated
bounded regions Q1 ⊂ Q′

2, the same argument can be applied to the double cone algebras
generating A(Q1),A(Q2), leading also to the conclusion A(Q1) ⊂ A(Q2)

′.
For the covariance of the net, we first consider the action of U (2.1.6) on wedge algebras.

As the modular group induces automorphisms on A(WR), the right wedge WR is invariant
under the boosts Λ(t), and J maps A(WR) onto A(WL) = A(−WR), we have

U(x, λ)A(WR)U(x, λ)−1 = U(x)∆−iλ/2πA(WR)∆iλ/2πU(x)−1

= U(x)A(WR)U(x)−1

= A(WR + x) = A(txΛ(λ)WR) ,

U(−1)A(WR)U(−1)−1 = JA(WR)J = A(WR)′ = A(WL) = A(−WR) .

Since each wedge is a Poincaré transform of WR, this implies

U(g)A(W )U(g)−1 = A(gW ), g ∈ P+, W ∈ W . (2.1.10)

The covariance of the local algebras is then an immediate consequence of their definition
(2.1.8). For arbitrary g ∈ P+, O ∈ O we have

U(g)A(O)U(g)−1 = U(g)A(WO
R )′U(g)−1 ∩ U(g)A(WO

L )′U(g)−1

= A(gWO
R )′ ∩ A(gWO

L )′

= A(gO) ,

and by (2.1.9), this covariance property carries over to arbitrary regions Q ⊂ IR2.
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Lemma 2.1.3 shows that many important features of the net O 7−→ A(O), in particular its
locality, are inherited from the corresponding properties of the wedge algebras. Starting
from a standard right wedge algebra, we thus obtain an associated local net, which is
moreover uniquely fixed by (M, U,H) if all observable algebras are chosen maximally.

However, the local algebras are defined in a rather indirect way as intersections of
wedge algebras, and it is therefore a nontrivial issue to analyze their properties in more
detail. For example, it is in general difficult to characterize the ”size” of these algebras,
and in particular, it is not clear if the Reeh-Schlieder property holds locally, i.e. if the
vacuum vector Ω is cyclic for A(O) if O is bounded.

For the wedge algebras, the cyclicity of the vacuum follows from the assumption that
Ω is cyclic and separating for the initial algebra M, and they must therefore be ”big” in a
certain sense. This notion of size can be made precise by studying the algebraic structure
of M, which turns out to be severely restricted if M is assumed to be part of a standard
right wedge algebra (M, U,H) in the sense of Definition 2.1.1.

The following theorem has first been shown by Driessler [Dri75] (see also the work of
Longo, [Lon79, Thm. 3]).

Theorem 2.1.4. [Dri75, Lon79]
Consider a standard right wedge algebra (M, U,H). Then M is a type III1 factor according
to the classification of Connes.

Note that the trivial case M = C · 1, which was found as a possibility in [Lon79], is here
excluded by the assumption dimH > 1 and the cyclicity of Ω for M. As all wedge algebras
are (anti-) isomorphic to M by definition, Theorem 2.1.4 implies that A(W ) is a type III1
factor for each wedge W ∈ W, which is the typical situation in quantum field theory. In
particular, M is purely infinite as a von Neumann algebra, and the underlying Hilbert
space H must be infinite dimensional.

In comparison to this quite detailed information we have on the wedge algebras, little
is known about the properties of their intersections (2.1.8). In fact, even the question
whether these algebras are nontrivial in the sense that they contain any operators apart
from multiples of the identity has not been settled in general. But the extreme case
of a net with A(O) = C · 1 for all bounded regions O describes a theory without any
local observables, which clearly has to be considered pathological from a physical point
of view. We therefore need to impose additional conditions on the underlying standard
right wedge algebra (M, U,H) in order to obtain a physically reasonable net, the minimal
demand being that the associated net contains local observables in regions of macroscopic
extent.

2.2 The Split Property for Wedges and its Consequences

In our setup, the algebra of observables localized in the double cone O = (WO
L )′ ∩ (WO

R )′

is defined as A(O) = A(WO
L )′ ∩A(WO

R )′, which is just the relative commutant of A(WO
R )

in A(WO
L )′. A general analysis of the structure of relative commutants of type III1 factors

would be favorable for the investigation of the local algebras, but does not yet exist in the
literature. However, there does exist a distinguished case in which the algebraic structure
of the relative commutant can be directly read off from the properties of the algebras
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A(WO
L ) and A(WO

R ). This is the case of a split inclusion A(WO
R ) ⊂ A(WO

L )′, with which
we will be concerned in the following. We begin by recalling the relevant definitions.

Definition 2.2.1. [DL84]

a) An inclusion M1 ⊂ M2 of two von Neumann algebras M1, M2 is called split if
there exists a type I factor N such that

M1 ⊂ N ⊂ M2 . (2.2.1)

b) An inclusion M1 ⊂ M2 of two von Neumann algebras M1,M2 acting on a Hilbert
space H is called standard if there exists a vector which is cyclic and separating for
M1, M2, and the relative commutant M′

1 ∩M2.

c) A local net A is said to have the split property for wedges if for each inclusion
W1 ⋐ W2 of wedges W1,W2 ∈ W, the corresponding inclusion of wedge algebras is
split [Müg98].

The split property of an inclusion M1 ⊂ M2 of von Neumann algebras amounts to a
form of statistical independence between M1 and M′

2, and is sometimes also called ”W ∗-
independence in the spatial product sense” [Sum90]. This latter terminology is motivated
by the fact that there exist a number of conditions that, when added to the split property
of M1 ⊂ M2, imply that M1∨M′

2 is naturally spatially isomorphic to the tensor product
algebra M1 ⊗M′

2 (see, for example, the review article [Sum90, Thm. 3.9]). In the case
of a standard inclusion, the following result holds.

Lemma 2.2.2. [DL83, DL84]
Let M1 ⊂ M2 be a standard inclusion of von Neumann factors, acting on a Hilbert space
H. The following two statements are equivalent:

a) The inclusion M1 ⊂ M2 is split.

b) There exists a unitary V mapping H onto H⊗H such that

VM1M
′
2V

∗ = M1 ⊗M ′
2, M1 ∈ M1, M ′

2 ∈ M′
2 . (2.2.2)

The significance of the split property for our construction lies in the simplifying influence
it has on the structure of the local algebras: Consider an inclusion W1 ⋐ W2 of wedges
and the associated double cone algebra A(W1 ∩W2) = A(W1) ∩ A(W2). If the inclusion
A(W1) ⊂ A(W2) is split, the above result can be applied to realize A(W1∩W2) as a tensor
product of two wedge algebras on H⊗H. In particular, the nontriviality A(W1∩W2) 6= C·1
then follows.

This mechanism, to be explained in more detail in Proposition 2.2.3 below, was first
observed by Schroer and Wiesbrock in [SW00]. However, the assumption of the split
property for wedges as a tool to ensure the nontriviality of the local algebras was then
discarded by these authors, probably because it was not clear how to establish the existence
of interpolating type I factors for inclusions of wedge algebras. This issue will be discussed
subsequently in section 2.3. Irrespectively of the question how to check the split property
in concrete applications, we now discuss whether it can possibly hold for inclusions of
wedge algebras.
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As mentioned above, the split property of M1 ⊂ M2 amounts to a form of statistical
independence between the subsystems described by the algebras M1 and M′

2 of the larger
system identified with M1 ∨M′

2. Namely, it implies that for any pair of normal states ϕ1

on M1 and ϕ2 on M′
2, there exists a normal state ϕ on M1 ∨M′

2 such that ϕ|M1 = ϕ1,
ϕ|M′

2
= ϕ2, expressing the fact that states in the subsystems M1 and M′

2 can be prepared
independently of each other. Moreover, ϕ can be chosen in such a way that there are no
correlations between ”measurements” in M1 and M′

2, i.e. as a product state

ϕ(M1M
′
2) = ϕ1(M1) · ϕ2(M

′
2) , M1 ∈ M1 , M

′
2 ∈ M′

2 .

Taking M1 = A(O1) and M′
2 = A(O2) as the observable algebras of two spacelike sepa-

rated regions O1 ⊂ O′
2 in a quantum field theory given by a net A, some form of statistical

independence between M1 and M′
2 can be expected on physical grounds. For the massive

free field, the existence of normal product states for such pairs of local algebras was shown
by Buchholz [Buc74]. A corresponding analysis for algebras of free Fermi fields, and for
the Yukawa2 + P (ϕ)2 model has been carried by Summers [Sum82].

Examples of theories violating the split property can be obtained by considering models
with a non-compact global symmetry group or certain models with infinitely many different
species of particles [DL84]. Such theories have an immense number of local degrees of
freedom, and according to the analysis in [BW86], it is precisely this feature which is
responsible for the breakdown of the split property.

So we may take the point of view that the split property is a reasonable assumption for
inclusions of local algebras in theories which satisfy some rough bound on the number of
their local degrees of freedom, such as theories of finitely many species of scalar particles.
However, some care is needed when dealing with unbounded regions like wedges, even in
such theories. In fact, there is an argument by Araki [Buc74, p. 292] to the effect that
inclusions of wedge algebras cannot be split if the spacetime dimension is larger than
two. Araki’s argument exploits the translation invariance of wedges along their edges and
does not apply in two dimensions, where these edges are zero-dimensional points. The
split property for wedges is known to hold in the theory of a free, scalar, massive field
[Müg98, BL04]. It is, however, not fulfilled for arbitrary mass spectra. For example, the
split property for wedges does not hold in massless theories, and is also violated in the
model of a generalized free field with continuous mass spectrum [DL84]. But for models
describing finitely many species of massive particles, there is no a priori reason for the
split property for wedges not to hold.

We will therefore take the split property for wedges as a tentative requirement on
the net we constructed, and now investigate its many strong implications.

Its first consequence is stated in the following proposition, which is taken from [BL04].

Proposition 2.2.3. [BL04]
Consider a standard right wedge algebra (M, U,H) which has the property that the inclu-
sions M(x) := U(x)MU(x)−1 ⊂ M are split, x ∈WR.
Then

a) H is separable.

b) M is isomorphic to the unique hyperfinite type III1 factor.
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c) M(x) ⊂ M is a standard inclusion, x ∈WR.

d) The relative commutant M(x)′∩M is isomorphic to the unique hyperfinite type III1
factor, x ∈WR. In particular, this algebra has cyclic vectors and is thus nontrivial.

Proof. Let Nx denote the type I factor interpolating between M(x) and M. As Ω is cyclic
and separating for M and M(x), the same holds for Nx. It follows that Nx, being of type
I, is separable in the ultraweak topology and consequently H is separable [DL84, Prop.
1.2].

Now, as U is continuous, M is continuous from the inside in the sense that M =∨
x∈WR

M(x). The split property thus implies that M can be approximated from the
inside by the separable type I factors Nx and is therefore hyperfinite [BDF87, Prop. 3.1].
As the type III1 factor property also holds (Thm. 2.1.4), the claims a) and b) follow. It
has been shown in [Haa87] that the hyperfinite type III1 factor is unique.

To prove c), recall that on a separable Hilbert space, any factor of type III has cyclic
and separating vectors [Sak71, Cor.2.9.28]. Moreover, for any von Neumann algebra on H
with a cyclic and separating vector, there exists a dense Gδ set of vectors which are both,
cyclic and separating [DM71]. Now, taking into account that Nx is isomorphic to B(H)
because it is a type I∞ factor, the relative commutant M(x)′ ∩ Nx of the type III factor
M(x) in Nx is (anti-) isomorphic to M(x) by modular theory. It is therefore of type III and
has cyclic vectors in H. Clearly, the latter property also holds for M(x)′∩M ⊃ M(x)′∩Nx

and, as Ω separates M, it follows that there exists a dense Gδ set of cyclic and separating
vectors for M(x)′ ∩M. But the intersection of a finite number of dense Gδ sets is non-
empty. So we conclude that the triple M, M(x) and M(x)′ ∩M has a joint cyclic and
separating vector, i.e. M(x) ⊂ M is a standard split inclusion.

d) Having shown that M(x) ⊂ M is standard, we can apply Lemma 2.2.2. Hence there
exists a unitary V : H → H⊗H implementing the isomorphism M(x)∨M′ ∼= M(x)⊗M′,
and taking commutants yields

M(x)′ ∩M ∼= M(x)′ ⊗M . (2.2.3)

To prove that M(x)′ ∩ M is also isomorphic to the hyperfinite type III1 factor, first
note that this algebra is hyperfinite since M(x)′ and M are. Secondly, the isomorphism
M(x)′ ∼= M implies M(x)′∩M ∼= M⊗M. But (M⊗M, U⊗U,H⊗H) is a standard right
wedge algebra in the sense of Definition 2.1.1, with invariant vacuum vector Ω⊗Ω. Thus
we can apply Driessler’s theorem (Thm. 2.1.4) once more, and conclude that M ⊗ M,
and hence M(x)′ ∩M, is a factor of type III1.

Note that the assumption that M(x) ⊂ M is split for all x ∈ WR implies that in the
net W 7−→ A(W ) (2.1.3), all wedge inclusions A(W1) ⊂ A(W2), W1 ⋐ W2, are standard
split inclusions, since an arbitrary inclusion of wedge algebras can be transformed to a
special inclusion of the form

A(WR + x) = M(x) ⊂ M = A(WR) (2.2.4)

by using the translation and TCP covariance of the net A.
Proposition 2.2.3 implies that all double cone algebras (2.1.8) are isomorphic to the

hyperfinite type III1 factor, provided the split property for wedges holds. In particular,
any local algebra A(O) associated to a non-empty open bounded region O has cyclic
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vectors in this case and therefore contains many nontrivial observables. These results
make the split property for wedges a very desirable feature for our construction, for it not
only excludes the pathological case A(O) = C · 1, corresponding to a theory without local
observables, but also establishes the algebraic properties for A(O) which are expected to
hold generally in quantum field theory [BDF87].

Having derived the existence of local observables from the assumption of the split
property for wedges, we move on to the question whether the Reeh-Schlieder property
holds locally, as the last axiom of algebraic quantum field theory to be checked for the
constructed net.

The proof of this property amounts to showing that Ω is a cyclic vector for any double
cone algebra A(O). Although it is known that under the assumptions made above the
local algebras have a dense set of vectors which are cyclic (and separating) [DM71], it
is not evident a priori that the vacuum vector Ω belongs to this set. Nevertheless, it is
possible to derive also the Reeh-Schlieder property in the present context, as will be done
in the remainder of this section.

In order to transport the Reeh-Schlieder property from the wedges to the double cones,
we need to establish a tight connection between the corresponding algebras A(W ) (2.1.3)
and A(O) (2.1.8). Such a connection is demonstrated in the following Lemma.

Lemma 2.2.4. Assume that the net A (2.1.3) has the split property for wedges. Then the
double cone algebras generate the wedge algebras,

∨

O⊂W
O∈O

A(O) = A(W ) , W ∈ W. (2.2.5)

Proof. By covariance, it suffices to consider the right wedge WR. We choose an increasing
sequence of double cones O1 ⊂ O2 ⊂ O3 ⊂ ... ⊂ WR such that the left vertex of each On

lies in the origin of IR2 and WR is exhausted by this sequence, i.e. for each double cone
O ⊂WR there exists an integer n ∈ N with O ⊂ On (cf. figure 2.1).

O1
O2

O3

WR

W 3
R

Figure 2.1: Generating the right wedge from a flag O1 ⊂ O2 ⊂ O3 ⊂ . . . ⊂ WR of double
cones with common left vertex.

As a consequence of isotony, we then have

∨

O⊂WR
O∈O

A(O) =
∨

n∈N

A(On) =: Aloc(WR) . (2.2.6)
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We denote the right part of the causal complement of On by W n
R, i.e. O′

n = WL ∪W n
R. in

view of the standard split property of A(W 1
R) ⊂ A(WR), there exists a unitary V1 : H −→

H⊗H such that

V1A(O1)
′V ∗

1 = V1

(
A(WL) ∨A(W 1

R)
)
V ∗

1 = A(WL) ⊗A(W 1
R) , (2.2.7)

V1ABV
∗
1 = A⊗B , A ∈ A(WL), B ∈ A(W 1

R) . (2.2.8)

As A(W n
R) ⊂ A(W 1

R), this isomorphism restricts to V1A(On)
′V ∗

1 = A(WL) ⊗ A(W n
R),

n ∈ N. We thus obtain

Aloc(WR)′ =

( ∨

n∈N

A(On)

)′

=
⋂

n∈N

A(On)
′ = V ∗

1

⋂

n∈N

(
A(WL) ⊗A(W n

R)
)
V1

= V ∗
1

(
A(WL) ⊗

⋂

n∈N

A(W n
R)
)
V1 . (2.2.9)

In the last line, we used the commutation theorem for tensor products of von Neumann
algebras (or rather, a consequence thereof, see [Tak79, Cor. IV.5.10]). Below we will show
by a cluster argument that the intersection appearing in (2.2.9) is trivial,

⋂
nA(W n

R) = C·1.
Anticipating this result for a moment, and noting that the isomorphism (2.2.7) restricts
to V1A(WL)V ∗

1 = A(WL) ⊗ 1, we have

Aloc(WR)′ = V ∗
1

(
A(WL) ⊗ 1

)
V1 = A(WL) . (2.2.10)

Taking commutants then yields the claim Aloc(WR) = A(WL)′ = A(WR).
So it remains to show that A∞ :=

⋂
nA(W n

R) is trivial. To this end, we consider
the commutant A′

∞ of this algebra and note that by construction, A′
∞ is stable under

translations, U(x)A′
∞U(x)−1 ⊂ A′

∞, x ∈ IR2. Furthermore, Ω is cyclic for A′
∞ since

A′
∞ ⊃ A(WL). Since the vacuum is (up to multiples) the only translation invariant vector

and the spectrum condition holds, it follows by standard arguments (cf., for example,
[Haa92]) that A′

∞ = B(H), i.e. A∞ = C · 1. (see also [Bor98, Thm. 2.6.].)
This completes the proof.

In order to establish the Reeh-Schlieder property, we need another additivity result,
which is due to M. Müger.

Lemma 2.2.5. [Müg98]
Let O1, O2 be two adjacent double cones and Ô = (O1 ∪ O2)

′′ the double cone generated
by them (see figure 2.2).
If the net A (2.1.3) has the split property for wedges, there holds additivity for double
cones in the form A(O1) ∨ A(O2) = A(Ô).

As this Lemma is essential for our investigations, we will repeat Müger’s proof here [Müg98,
Müg97]. We use the notation indicated in figure 2.2, namely we denote the left and right
parts of the causal complement of the double cone Oj byW j

L andW j
R, j = 1, 2, respectively.

With this notation, O′
j = W j

L ∪W j
R and (W 1

R)′ = W 2
L.

Proof. As all wedge inclusions are standard split inclusions, there exist unitaries V1, V2 :
H −→ H⊗H such that

V1A(O1)
′V ∗

1 = V1

(
A(W 1

L) ∨ A(W 1
R)
)
V ∗

1 = A(W 1
L) ⊗A(W 1

R) , (2.2.11)

V2A(O2)
′V ∗

2 = V2

(
A(W 2

L) ∨ A(W 2
R)
)
V ∗

2 = A(W 2
L) ⊗A(W 2

R) , (2.2.12)
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O1
O2

Ô
W 1
R

W 2
R

W 2
L

W 1
L

Figure 2.2: Adjacent double cones.

and the adjoint action of V1, V2 is natural in the sense of (2.2.2). First note that by
restriction we obtain

V2A(W 2
L)V ∗

2 = A(W 2
L) ⊗ 1, V2A(W 2

R)V ∗
2 = 1 ⊗A(W 2

R) ,

and, by taking commutants,

V2A(O2)V
∗
2 = A(W 2

L)′ ⊗A(W 2
R)′ .

Hence, using the commutation theorem for tensor products [Tak79] and factoriality of the
wedge algebras,

V2

(
A(W 2

L) ∨ A(O2)
)
V ∗

2 =
(
A(W 2

L) ⊗ 1
)
∨
(
A(W 2

L)′ ⊗A(W 2
R)′
)

= B(H) ⊗A(W 2
R)′

=
(
1 ⊗A(W 2

R)
)′

= V2A(W 2
R)′V ∗

2 .

Thus A(W 2
L) ∨ A(O2) = A(W 2

R)′. On the other hand, (2.2.2) implies that under the
isomorphism implemented by V1 we have

V1A(O2)V
∗
1 = 1 ⊗A(O2), V1A(Ô)V ∗

1 = A(W 1
L)′ ⊗A(W 2

R)′ ,

because both, A(O2) and A(W 2
R), are subalgebras of A(W 1

R). Together with the previously
obtained equation A(W 2

L) ∨ A(O2) = A(W 2
R)′ and the wedge duality A(W 1

R)′ = A(W 2
L),

we arrive at

V1

(
A(O1) ∨ A(O2)

)
V ∗

1 =
(
A(W 1

L)′ ⊗A(W 1
R)′
)
∨
(
1 ⊗A(O2)

)

= A(W 1
L)′ ⊗

(
A(W 2

L) ∨ A(O2)
)

= A(W 1
L)′ ⊗A(W 2

R)′

= V1A(Ô)V ∗
1 .

From this we conclude A(O1) ∨ A(O2) = A(Ô), which is the claim of the Lemma.

Next we show that Lemma 2.2.4 and Lemma 2.2.5 imply the Reeh-Schlieder property for
double cones by a standard argument (cf., for example, [BB99]).
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Proposition 2.2.6. Consider a standard right wedge algebra (M,U,H) and assume that
M(x) ⊂ M is split, x ∈WR.
Then the vacuum vector Ω is cyclic and separating for any algebra A(O) (2.1.8) associated
to a non-empty open bounded region O.

Proof. In view of the definition of the local algebras for arbitrary regions (2.1.9), it suffices
to consider double cones to prove the statement. The fact that Ω is separating for the
double cone algebras follows immediately because this vector even separates the larger
wedge algebras.

So we have to show that Ω is cyclic for A(O), where O is an arbitrary double cone,
which amounts to proving that the only vector orthogonal to A(O)Ω is the zero vector.
We thus consider a vector Ψ ⊥ A(O)Ω, and choose another double cone O1 such that
O1 +U ⊂ O for some open neighborhood U of the origin in IR2. In this situation, we have

〈Ψ, A(x)Ω〉 = 0, A ∈ A(O1), x ∈ U . (2.2.13)

But as a consequence of the spectrum condition, x 7−→ 〈Ψ, A(x)Ω〉 = 〈Ψ, eiP ·xAΩ〉 is the
boundary value of a function which is analytic in the forward tube IR2 + iV +. As this
function vanishes in an open region on the boundary of this tube, namely in U (2.2.13),
it has to vanish for any x ∈ IR2. Hence U(x)Ψ lies orthogonal to A(O1)Ω for all x ∈ IR2.
Since A(O1) is a ∗-algebra, the same holds true for AU(x)Ψ, for arbitrary A ∈ A(O1).
Restricting to a slightly smaller double cone O2 ⊂ O1, we obtain by repetition of the same
argument 〈Ψ, A1(x1)A2(x2)Ω〉 = 0 for any x1, x2 ∈ IR2, A1, A2 ∈ A(O2). Thus we can
proceed iteratively to conclude

〈Ψ, A1(x1) · · ·An(xn)Ω〉 = 0, A1, ..., An ∈ A(Õ), x1, ..., xn ∈ IR2 , (2.2.14)

where Õ can be chosen as a fixed double cone Õ ⊂ O1, independent of n.
Now consider some completely arbitrary double cone Ô. By appropriate choice of

n ∈ N and x1, ..., xn ∈ IR2, we have ((Õ + x1) ∪ ... ∪ (Õ + xn))
′′ ⊃ Ô. So it follows from

Lemma 2.2.5 and (2.2.14) that Ψ lies in the orthogonal complement of A(Ô)Ω. As Ô was
arbitrary, this implies via Lemma 2.2.4 that Ψ lies orthogonal to A(W )Ω, where W ⊃ O is
a wedge. But Ω is cyclic for A(W ), and so we conclude Ψ = 0. This proves the claim.

The above results show that the split property for wedges is a very powerful property,
allowing for the derivation of many strong properties of the underlying net. In addition
to the features discussed so far, even more can be said.

We first note that also the split property for inclusions of double cones O1 ⊂ O2

follows [Müg98]. The split property for wedges implies the existence of a unitary V2 which
implements the isomorphisms

A(O2) ∼= A(WO2
L )′ ⊗A(WO2

R )′ , (2.2.15)

A(O1) ∼= A(WO1
L )′ ⊗A(WO1

R )′ , (2.2.16)

and there are type I factors NL and NR such that A(WO1
L )′ ⊂ NL ⊂ A(WO2

L )′ and

A(WO1
R )′ ⊂ NR ⊂ A(WO2

R )′. Hence V ∗
2 (NL ⊗ NR)V2 is a type I factor interpolating

between A(O1) and A(O2).
Analogously to Lemma 2.2.5, one can prove that the split property for wedges implies

the time slice property [Müg98]. In the development of the algebraic approach quantum
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field theory, this property was suggested as a supplement for relativistic field equations
[HS62]. It postulates that for any time slice, i.e. any ”thickened Cauchy surface” of the
form C = {x ∈ IR2 : x ·η ∈ (a, b)}, where η is timelike and a < b, the observables localized
in C should generate all observables, A(C) = B(H). Although this assumption is usually
not regarded as a basic axiom of algebraic quantum field theory, it holds in the context
considered here, as a consequence of the split property for wedges.

Müger also studied the superselection structure of theories having the split property
for wedges, and found strong restrictions in comparison to the general case. Namely, he
proved that any representation of the quasilocal algebra which is unitarily equivalent
to the identical representation π0 in restriction to (left and right) wedges, is in fact
equivalent to a multiple of π0 [Müg98, Thm. 3.1]. This no-go theorem also applies to
DHR representations, and shows that the split property for wedges is incompatible with
the existence of DHR [DHR71, DHR74] or Buchholz-Fredenhagen [BF82] sectors. Hence
the only representations of such a theory besides the vacuum representation are soliton
representations [FRS89], which interpolate between two different vacua on the left and
right wedges [Müg97]. Our construction will therefore not lead to theories with a rich
superselection structure, as charged representations and the occurrence of braid group
statistics are ruled out by the split property for wedges. As suggested in [Müg97], the con-
struction of models with these characteristics should become possible if the Haag-duality
of the net is relaxed to wedge duality, which amounts to a different (smaller) choice of
the local algebras. However, we will not attempt to say anything concerning these ques-
tions here, and rather stick to the definition (2.1.8) of the local algebras introduced before.

To summarize, we have seen that a standard right wedge algebra (M, U,H) which
has the property that M(x) ⊂ M is split for any x ∈WR, defines a local net O 7−→ A(O)
(2.1.8) which has all the indispensable features listed in section 1.4. The split property
for wedges amounts to an implicit restriction on the mass spectrum, and in combination
with Haag duality, it also restricts the superselection structure of the theory.

From the point of view of applications in concrete examples, the split property is less
convenient, however, because it seems to be difficult to verify the existence of interpolating
type I factors for a given triple (M, U,H). In the following section, we will therefore look
for a more easily manageable condition on the underlying standard right wedge algebra,
which implies the split property for wedges.

2.3 The Modular Nuclearity Condition

In the literature there exist several criteria which are known to imply the split property.
Many of them can be formulated in terms of nuclear maps, and are therefore termed
”nuclearity conditions”. The definition and basic properties of nuclear maps are collected
in appendix C.1 – here we only recall that a linear map between two Banach spaces is
nuclear if it can be decomposed into a series of operators of rank one whose norms are
summable, and that a nuclear map is in particular compact.

In this section we discuss nuclearity conditions in quantum field theory and select the
so-called modular nuclearity condition as the appropriate tool for our purposes. We then
describe how this condition can be checked in concrete models, and summarize the main
results of chapter 2 in Theorem 2.3.4.
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Nuclearity conditions were originally invented to amend the basic axioms of quan-
tum field theory, like locality, covariance and positivity of the energy, by some additional
requirement which ensures that the theory has a particle interpretation. In partic-
ular, a theory complying with such an additional requirement should exhibit the
thermodynamical behavior expected from a theory of particles.

Improving on an earlier proposed compactness criterion by Haag and Swieca [HS65],
the first nuclearity condition was suggested by Buchholz and Wichmann [BW86]. This
condition, nowadays commonly termed energy nuclearity condition, formalizes the insight
that a quantum field theory must satisfy some restrictions on the number of its local
degrees of freedom in order to exhibit regular thermodynamical properties.

The mathematical formulation of this condition can be given as follows [BDF87].
Within the setting of a local net on d-dimensional Minkowski space (d ≥ 2), one con-
siders a region O ⊂ IRd and a parameter β > 0, representing the inverse temperature. In
analogy to the form of Gibbs equilibrium states in statistical mechanics, one defines the
maps

Θβ,O : A(O) −→ H , Θβ,O(A) := e−βHAΩ , (2.3.1)

where H = P0 denotes the Hamiltonian with respect to the time direction x0.

The energy nuclearity condition can then be formulated as follows:

Energy nuclearity condition
The maps Θβ,O (2.3.1) must be nuclear for any bounded region O and any inverse
temperature β > 0, and there must exist constants β0, n > 0 (depending on O) such that
the nuclear norm2 of Θβ,O is for β ց 0 bounded by

‖Θβ,O‖1 ≤ e(β0/β)n
. (2.3.2)

The energy nuclearity condition and variants thereof have found several applications in
relativistic quantum field theory. For example, it was shown that a theory complying
with it has thermodynamical equilibrium states for all temperatures [BJ89], which is not
a consequence of the basic axioms alone [BJ86]. It thus indeed provides a criterion to test
the thermodynamical properties of model theories, and the nuclear norm of Θβ,O can be
interpreted as the partition function of the system restricted to the ”relativistic box” O
at temperature β−1 [BW86]. More generally, energy nuclearity conditions turned out to
be useful in considerations of phase space [BP90].

The reason why we are interested in such a condition in the present context is apparent
from the following theorem, which can be found in [BDF87, Thm. 2.1].

Theorem 2.3.1. [BDF87]
Consider a net A on d-dimensional Minkowski space (d ≥ 2) which satisfies the energy
nuclearity condition.
Then for any inclusion O1 ⋐ O2 of open, bounded regions O1,O2 ⊂ IRd, the corresponding
inclusion A(O1) ⊂ A(O2) of observable algebras is split.

2The nuclear norm ‖ · ‖1 of a nuclear map is defined in appendix C.1.
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Theorem 2.3.1 suggests the energy nuclearity condition as a sufficient condition for the
split property, which is of crucial importance for our construction. In comparison to the
search for interpolating type I factors, which is required for the direct verification of the
split property, the energy nuclearity condition is a much more concrete condition which
is better manageable in applications. Its verification requires a spectral analysis of the
operator e−βH on certain subspaces of H, which essentially amounts to counting states of
bounded extension in position and momentum space.

However, what is needed for our construction is the split property for wedges. But the
above theorem was proven for inclusions of bounded regions only, and also the thermody-
namical reasoning motivating the assumption of energy nuclearity [BW86] leads only to
the conclusion that Θβ,O should be nuclear for bounded regions O, and does not apply to
wedges. In fact, given the infinite extension of wedges, it seems doubtful that the energy
nuclearity condition is valid for these regions. Intuitively speaking, a wedge W allows for
too many degrees of freedom to be localizable within W , suggesting the breakdown of the
nuclearity of the associated maps Θβ,W (2.3.1).

More precisely, we find the following Lemma, which applies to nets on d-dimensional
Minkowski space, d ≥ 2. Note that the region W appearing in its formulation can be
chosen to be a wedge.

Lemma 2.3.2. Consider a net A of local observables and let W ⊂ IRd+1 be a region with
the property that there exists a direction x ∈ IRd such that W + x ⊂W .
Then the maps Θβ,W (2.3.1) are compact if and only if A(W ) = C · 1.

Proof. The compactness of Θβ,W in case A(W ) = C · 1 is trivial. So assume A(W ) 6= C · 1
and pick A ∈ A(W ) with 〈Ω, AΩ〉 = 0 and A 6= 0. By the geometrical assumption on
the region W and the isotony of A, the sequence An := U(n · x)AU(n · x)−1, n ∈ N,
is contained in A(W ). To prove that Θβ,W is not compact, it suffices to show that the
image of this sequence, Ψn := Θβ,W (An), has no subsequence which converges in the norm
topology of H [RS80].

As the translations U(n ·x) commute with e−βH and the vacuum is translation invari-
ant, all vectors Ψn have the same norm ‖Ψn‖ = ‖e−βHAΩ‖ 6= 0. Taking into account the
cluster property of Ω [Mai68] yields

〈Ψn,Ψm〉 = 〈AΩ, U((m− n) · x)e−2βHAΩ〉 −→ 〈Ω, AΩ〉 〈Ω, e−2βHAΩ〉 = 0 (2.3.3)

as |m − n| → ∞. Hence for arbitrary small ε > 0 there exists an integer Nε such that
|〈Ψn,Ψm〉| < ε ‖e−βHAΩ‖2 for |m− n| ≥ Nε, and consequently we get

‖Ψn − Ψm‖ ≥ (2 (1 − ε))1/2 ‖e−βHAΩ‖ , |m− n| ≥ Nε . (2.3.4)

Clearly, this inequality contradicts {Ψn}n having a convergent subsequence, and hence
Θβ,W is not compact.

As compactness is a weaker property than nuclearity, the energy nuclearity condition
cannot hold in the context of wedge algebras, and does therefore not provide the desired
condition on the standard right wedge algebra underlying our construction to guarantee
the split property for wedges.

There exists, however, a reformulation of the energy nuclearity condition in terms
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of the modular operators of local observable algebras instead of the Hamiltonian, and this
so-called modular nuclearity condition is better suited in the present context.

The modular nuclearity condition has been found by Buchholz, d’Antoni and Longo in
[BDL90a], and can be formulated in a rather abstract setting for an inclusion M1 ⊂ M2

of von Neumann factors on a Hilbert space H: Assume that there exists a cyclic and
separating vector Ω for M2, and denote the modular operator of (M2,Ω) by ∆2. As the
analogue of the maps Θβ,O (2.3.1) appearing in the energy nuclearity condition, one here
considers

ΞM1,M2 : M1 −→ H , ΞM1,M2(M) := ∆
1/4
2 MΩ . (2.3.5)

Roughly speaking, the modular operator ∆2, or rather its logarithm, takes the role of the
Hamiltonian in this setting. In analogy to the energy nuclearity condition, the require-
ment that the maps (2.3.5) must be nuclear will be referred to as the modular nuclearity
condition for the inclusion M1 ⊂ M2.

It has been shown in [BDL90b] that in application to the local algebras A(O) of a
quantum field theory, the energy and modular nuclearity conditions are essentially equiva-
lent. More precisely, the order of the map ΞA(O),A(Ô) (2.3.5) can be estimated by the order

of Θβ,O for appropriate inverse temperature β. (The order of a bounded linear map is an
alternative measure of the ”size” of the image of this map.) On the other hand, under the
assumption of the Bisognano-Wichmann property, the order of Θβ,O can be estimated by
the order of ΞA(O),A(Ô) times a factor which depends on the inverse temperature and the

geometry of the considered regions O ⊂ Ô. This latter estimate is not valid if O is taken
to be a wedge.

So the nuclearity properties of the maps (2.3.1) and (2.3.5) are closely related in
application to the local observable algebras of a quantum field theory. Therefore also
the modular nuclearity condition implies the split property.

Theorem 2.3.3. [BDL90a]
Consider an inclusion M1 ⊂ M2 ⊂ B(H) of von Neumann factors and the maps (2.3.5)
as above. Then the following holds:

a) If ΞM1,M2 is nuclear, the inclusion M1 ⊂ M2 is split.

b) If the inclusion M1 ⊂ M2 is split, the map ΞM1,M2 is compact.

For possible generalizations to the non-factor case, see [Fid01].

Although the two nuclearity conditions introduced here are closely related in appli-
cations local algebras, they are not equivalent as such. Following the arguments in
[BDL90b] closely, one notes that the equivalence of the two concepts breaks down when
applied to observable algebras which are localized in unbounded regions, like wedges.
This opens up the possibility for the modular nuclearity condition to hold for inclusions
of wedge algebras. The following argument shows that the maps ΞM1,M2 can in fact
be nuclear if M1 ⊂ M2 is an inclusion of wedge algebras in a quantum field theory on
two-dimensional Minkowski space.

For the sake of concreteness, we consider an inclusion of right wedges

WR + x ⊂WR, x ∈WR . (2.3.6)
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As the corresponding observable algebras are related by A(WR+x) = U(x)A(WR)U(x)−1,
and A 7−→ A(x) = U(x)AU(x)−1 is an invertible map of norm one between the Banach
spaces3 A(WR) and A(WR + x), the map ΞA(WR+x),A(WR) is nuclear if and only if

Ξ(x) : A(WR) −→ H , Ξ(x)(A) := ∆1/4U(x)AΩ , (2.3.7)

is, with the same nuclear norm. (Here ∆ denotes the modular operator of A(WR) with
respect to the vacuum vector Ω.)

We now mimic the proof of Lemma 2.3.2 in order to understand why the obstruction
to the nuclearity of Θβ,W found there does not show up in the analysis of the map Ξ(x).
So we pick a direction y ∈WR and consider the sequence

Ψn := Ξ(x)
(
U(n · y)AU(n · y)−1

)
= ∆1/4U(x+ n · y)AΩ . (2.3.8)

In contrast to e−βH , the modular operator ∆1/4 does not commute with the translations
U(n ·y). In fact, one rather has Borchers’ commutation relations between the translations
and the modular unitaries ∆it (2.1.5), which after analytic continuation to t = − i

4 read
(on an appropriate domain)

∆1/4U(y) = U(Λ( iπ2 )y)∆1/4 . (2.3.9)

The boost Λ( iπ2 ) with imaginary rapidity parameter iπ
2 appearing here is explicitly given

by the matrix (1.3.1)

Λ( iπ2 ) =

(
cosh iπ

2 sinh iπ
2

sinh iπ
2 cosh iπ

2

)
=

(
0 i
i 0

)
, (2.3.10)

and hence we find

U(Λ( iπ2 )y) = eiP ·Λ( iπ
2

)y = e−P ·y′ , y′ := (y1, y0) . (2.3.11)

As y ∈ WR, the flipped vector y′ lies in the forward light cone, which implies P · y′ ≥ 0
because of the spectrum condition. Thus the vectors Ψn, given by

Ψn = Ξ(x)
(
U(y)AU(y)−1

)
= e−P ·y′Ξ(x)A (2.3.12)

have norms ‖Ψn‖ converging to zero for n→ ∞, and the argument of Lemma 2.3.2 cannot
be applied.

The above calculation shows that observables A ∈ A(WR) which are localized in the
remote right part of WR are exponentially suppressed by the operator e−P ·y′ . Disregarding
these damped observables, we are thus effectively left with the map Ξ(x) restricted to the
algebra of observables localized in a ”tip” region of WR + x, which is bounded in the case
of two-dimensional spacetime. Taking into account the relations between the energy and
modular nuclearity conditions mentioned before, and the thermodynamical significance
of the former, we therefore expect the validity of the modular nuclearity condition in a
two-dimensional quantum field theory which has the properties typical of a particle theory.

We mention as an aside that in higher-dimensional Minkowski space, the sequence
(2.3.8), with y chosen in the edge of WR, can be used to prove that the maps Ξ(x) are not

3All operator algebras appearing here are considered as Banach spaces equipped with the norm ‖·‖B(H).
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compact. In view of Theorem 2.3.3 b), this implies the breakdown of the split property
for wedges in more than two spacetime dimensions, as mentioned before.

But in two dimensions, there is no reason for the modular nuclearity condition to
fail if the theory does not exhibit to many wedge-local degrees of freedom, and we thus
use the postulate that the maps Ξ(x) (2.3.7) are nuclear, x ∈WR, as the desired sufficient
condition for the split property for wedges. Note that this is a condition on the input
from which we started our construction, since the map Ξ(x) (2.3.7) in question is defined
solely in terms of the objects M = A(WR), U and H constituting the standard right
wedge algebra (M, U,H).

If the maps Ξ(x), corresponding to the inclusions A(WR+x) ⊂ A(WR), are nuclear for
any x ∈ WR, it follows that the net A (2.1.3) has the split property for wedges. For any
inclusion of wedges can be transformed to WR + x ⊂ WR by translation and reflection,
and the corresponding (anti-) automorphisms A 7−→ JAJ , A 7−→ U(x)AU(x)−1 are,
considered as (anti-) linear maps between the respective Banach spaces, invertible and
bounded (cf. Theorem C.1.2 in appendix C.1). In particular, all the results obtained in
the previous section, which relied on the split property for wedges, are valid if Ξ(x) is
nuclear.

In the following theorem, we summarize the results of our construction.

Theorem 2.3.4. Consider a standard right wedge algebra (M, U,H) which has the prop-
erty that the maps

Ξ(x) : M −→ H , Ξ(x)A := ∆1/4U(x)AΩ , x ∈WR , (2.3.13)

are nuclear, where ∆ denotes the modular operator of (M,Ω).
Then

a) The correspondence O 7−→ A(O) defined by (2.1.3, 2.1.8, 2.1.9) is a local net which
transforms covariantly under the representation U (2.1.6) of the proper Poincaré
group.

b) The net A has the split property for inclusions of wedges (and hence, also for inclu-
sions of double cones).

c) The wedge algebras (2.1.3) and the double cone algebras (2.1.8) are all isomorphic
to the hyperfinite type III1 factor.

d) Haag duality holds, i.e. A(O)′ = A(O′) for any double cone O ⊂ IR2.

e) Strong additivity as expressed by Lemma 2.2.4 and Lemma 2.2.5 holds.

f) The Reeh-Schlieder property holds, i.e. the vacuum vector Ω is cyclic and separating
for A(O) if O is a non-empty region with non-empty causal complement.

�

It follows from the above mentioned estimates on the order of Θβ,O that the nuclearity
of Ξ(x) also implies nuclearity properties of Θβ,O for bounded regions O. To obtain the
bound ‖Θβ,O‖1 ≤ exp(β0/β)n required in the energy nuclearity condition, however, one
needs more detailed knowledge about the maps Ξ(x). This mechanism will be used in
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chapter 6, where we compute a bound on the nuclear norm of Θβ,O in terms of the nuclear
norm of Ξ(x) in concrete models.

To conclude this section, we briefly indicate how the modular nuclearity condition will
be verified in application to the models with factorizing S-matrix discussed in chapters 4
and 5. First note that the remarks made for the energy nuclearity condition apply also
here: Whereas in the direct verification of the split property, interpolating type I factors
need to be constructed, the verification of the modular nuclearity condition amounts to a
kind of spectral analysis of the maps Ξ(x).

These maps have the advantage to be given in a very concrete form, since the modular
operator ∆ acts as a boost transformation, with imaginary rapidity parameter iπ

2 . In the
models we have in mind, the Hilbert space H will have a form similar to the Bose Fock
space over L2(IR, dθ). In particular, its elements are sequences of n-particle wavefunctions
(θ1, ..., θn) 7−→ Ψn(θ1, ..., θn). These functions can be most conveniently formulated in
rapidity space, where the modular operator ∆1/4, acts according to

(∆1/4Ψ)n(θ1, ..., θn) = Ψn(θ − iπ
2 , ..., θn − iπ

2 ) , (2.3.14)

i.e. ∆1/4 maps the wavefunctions Ψn onto certain analytic continuations of themselves.
Thus the check of the nuclearity of the maps Ξ(x) can be carried out with methods of
complex analysis. As we shall see, this task can be accomplished in a large class of theories.

2.4 The Construction of Wedge Algebras

Up to now, our approach consisted in constructing a local net on a Hilbert space H in
terms of a von Neumann algebra M and a representation U of the translations, and in
identifying appropriate conditions on these objects to ensure that the resulting theory is
physically meaningful. But for the construction of concrete models we also have to specify
how such a standard right wedge algebra is to be defined explicitly. This is the subject
of chapters 4 and 5 of this thesis, where a family of models fitting into the framework
developed here is constructed. Nonetheless, we want to make some remarks about the
problem of constructing wedge algebras already in the present more abstract discussion,
partly to motivate the approach to the construction which is used in chapter 4, and partly
to indicate the historical development of the subject.

2.4.1 Modular Wedge-Localization and the Construction of Interaction-

Free Theories

To begin with, we will show how the definition of interaction-free theories can be adapted
to our construction program, thereby providing first examples of standard right wedge
algebras (M, U,H) satisfying all assumptions. In doing so, we will refrain from using the
usual field-theoretic formulation of free nets, but rather follow the work of Brunetti, Guido
and Longo [BGL02], who constructed interaction-free nets in a purely algebraic manner.

Deviating slightly from our setup in section 2.1, the authors of [BGL02] consider a
Hilbert space H1, to be interpreted as the single particle space of the theory, and a unitary,
strongly continuous representation U1 of the proper Poincaré group P↑

+ acting on it. To
come up with a definition of a wedge algebra, some localization concept is needed. As the
essential point of their construction, Brunetti, Guido and Longo invent such a concept on
the single particle space H1, which can be motivated as follows.
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To recall the relevant notions, we consider the localization of states in the context of
a Haag-dual net A. In this setting, a vector Ψ 6= 0 can be defined to be localized in a
spacetime region O if the associated vector state ‖Ψ‖−2〈Ψ, · Ψ〉 coincides with the vacuum
state 〈Ω, · Ω〉 on the algebra A(O′) = A(O)′.

It has been shown by Licht [Lic63, Lic66] that there is a correspondence between the
localization of operators in B(H) and vector states (see also [Kni61]). Namely, to any
vector Ψ localized in O there exists an operator A ∈ A(O) such that Ψ = AΩ. Hence
these vectors lie in the domain of the Tomita operator SO of (A(O),Ω) [KR86]. Since SO
is an antilinear involution, S2

O ⊂ 1, its domain can be conveniently described in terms of its
eigenspace K(O) to eigenvalue one as domSO = K(O) + iK(O) [BGL02]. The observable
algebra A(O) is then generated by the operators A corresponding to vectors in K(O) via
the above mentioned relation.

These observations also apply to the single particle space, and can be used for the
definition of wedge localization on H1 by invoking the Bisognano-Wichmann theorem
[BW75, BW76]. This theorem connects the algebraic structure of the net of observables in
a quantum field theory with the geometric structure of the underlying Minkowski spacetime
in the following way. It asserts that the modular unitaries ∆it and modular involution J
of the couple (A(WR),Ω) are related to the representation U of the proper Poincaré group
by4

∆it = U(Λ(−2πt)), t ∈ IR , (2.4.1)

J = U(−1) , (2.4.2)

if the net is generated from finite-component Wightman fields. In algebraic quantum
field theory, Borchers’ theorem [Bor92] constitutes an important partial version of this
result, which under additional assumptions has been used by J. Mund to derive the above
equations also in this setting [Mun01].

So the formulas (2.4.1, 2.4.2) are valid in a wide range of theories, and were there-
fore used as an input in [BGL02]. More precisely, in the construction starting from the
representation U1 on H1, the operators ∆ and J can be defined by (2.4.1, 2.4.2), with U
replaced by U1, and turn out to have all the algebraic properties familiar from modular
theory. In particular, the ”geometric Tomita operator of the right wedge” S := J∆1/2

exists as an unbounded, antilinear involution on H1, and one can define its eigenspace

K(WR) :=
{
Ψ ∈ dom∆1/2 : J∆1/2Ψ = Ψ

}
. (2.4.3)

Vectors in this space are considered as single particle states localized in the right wedge
WR. Because of its relation to modular theory, this idea is commonly referred to as
modular localization, see [Sch97, Mun03, MSY05] for applications of it.

Having defined a notion of wedge localization on H1, the construction of the wedge
algebra M in the free theory can be accomplished easily. Considering the Fock space H
over H1, we find a representation U of P+ and an invariant vacuum vector by second
quantization. The unitary Weyl operators V (Ψ), Ψ ∈ H1, act on the Fock space H and
lead to the definition of a right wedge algebra as

M :=
{
V (Ψ) : Ψ ∈ K(WR)

}′′
. (2.4.4)

4If the dimension of spacetime is larger than two, the formula (2.4.2) has to be altered by a rotation.
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It can be shown by standard arguments making use of the algebraic structure of the CCR
algebra that the triple (M, U,H) constructed in this way is a standard right wedge algebra
in the sense of our Definition 2.1.1.

Also the modular nuclearity condition holds if there are not too many different kinds
of particles in the mass spectrum of U1 ([BL04], see chapter 5 of this thesis). The local
net generated from the triple (M, U,H) along the lines described in section 2.1.2 is (an
abstract version of) the theory of free fields.

The general idea of defining wedge-localized observables with the help of wedge-
localized vectors which are characterized by the modular localization concept is applicable
to the construction of models with nontrivial interaction as well. But the Weyl operators
V (Ψ) used in (2.4.4) are typical of free theories and therefore have to be substituted by
operators with different commutation relations. This observation leads us to the concept
of polarization-free generators.

2.4.2 Polarization-Free Generators

A simplifying feature of the free theory which was used in the above construction is
the fact that the localization of a Weyl operator can be expressed on the one particle
space. This property is closely related to the form of the free field operator φ0 in the
standard formulation of this model, which is a solution of the Klein-Gordon equation.
Put differently, φ0 generates only single particle states from the vacuum, a property an
interacting Wightman field cannot have, as the Jost-Schroer theorem states [SW80, Thm.
4-15].

Intuitively, this fact can be understood by appealing to Heisenberg’s uncertainty re-
lation: The sharp localization of an operator A in configuration space implies large fluc-
tuations in momentum space. One would therefore expect that a vector of the form AΩ,
where A is localized in a bounded region, describes a ”vacuum polarization cloud” having
contributions with arbitrarily high particle numbers, and this is indeed the case in the
presence of interactions.

But when the localization in configuration space is weakened from strict localization to
localization in a wedge, the Jost-Schroer theorem does not apply, i.e. there is no general
argument ruling out the existence of operators which are localized in wedges and generate
single particle states from the vacuum. This was realized by Schroer, who coined the
name polarization-free generators for such objects and studied their properties in models
[Sch97, Sch99, SW00, Sch00a, Sch00b]. In [BBS01], the concept was formalized in a model-
independent way. Within the setting of a local net A on d-dimensional Minkowski space
(d ≥ 2), a polarization-free generator is defined in the following way.

Definition 2.4.1. A polarization-free generator G is a closed operator satisfying the fol-
lowing conditions:

a) G is affiliated with a wedge algebra A(W ), W ∈ W.

b) The vacuum vector Ω is contained in the domains of G and G∗.

c) The vectors GΩ and G∗Ω lie in the one-particle space.

It was shown in [BBS01] that polarization-free generators exist in fact in any theory.
Hence these objects seemed to be the appropriate substitute for the free field operator to
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transport the modular localization concept from the level of one particle states to the level
of operators.

However, it was also discovered that polarization-free generators have unwieldy do-
main properties, in general. The following definition, requiring some mild temperateness
properties which are fulfilled by the free field, has drastic consequences.

Definition 2.4.2. A polarization-free generator is said to be temperate if there exists a
dense, translation invariant subspace D of its domain such that the functions x 7→ GU(x)Ψ
are strongly continuous and polynomially bounded for Ψ ∈ D, and the same holds true for
its adjoint G∗.

Note that the requirements made in this definition are indispensable if one wants to do
Fourier analysis with polarization-free generators, as is for example necessary to utilize
them in scattering theory.

It was shown in [BBS01] that if the spacetime dimension is larger than two, the temper-
ateness assumption implies that the underlying theory has a trivial S-matrix, thus limiting
the use of polarization-free generators to the realm of two-dimensional theories. Also on
two-dimensional Minkowski space, the assumption that the polarization-free generators of
a theory are temperate puts strong constraints on the form of the S-matrix, albeit weaker
ones than in the higher-dimensional case. For example, it follows that there can be no
particle production [BBS01, Thm. 3.5]. This observation indicates that the range of ap-
plication for temperate polarization-free generators might be the family of theories with a
factorizing S-matrix, in which the particle number is a conserved quantity – despite these
models being fully relativistic5.

This conjecture is further supported by the relation between the temperate
polarization-free generators and the S-matrix: In view of the absence of polarization
clouds and the Reeh-Schlieder property, x 7−→ U(x)GU(x)−1 is a weak solution of the
Klein-Gordon equation if G is a temperate polarization-free generator [BBS01]. Thus G
can be split into a creation and an annihilation part by taking restrictions of its Fourier
transform to the upper and lower mass shell, respectively. Under additional regularity
assumptions on G, the analysis in [BBS01] indicates that the associated creation operators
fulfill certain quadratic exchange relations, involving the two-particle S-matrix.

In the framework of field-theoretic models with a factorizing S-matrix, on the other hand,
such relations are well-known as the Zamolodchikov-Faddeev algebra [ZZ79]. This algebra
is usually described as a ∗-algebra of non-commuting distributions Z(θ), Z(θ)∗ which are
parametrized by the rapidity θ and satisfy the relations, θ1, θ2 ∈ IR,

Z(θ1)Z(θ2) = S2(θ1 − θ2) Z(θ2)Z(θ1), (2.4.5a)

Z∗(θ1)Z
∗(θ2) = S2(θ1 − θ2) Z

∗(θ2)Z
∗(θ1), (2.4.5b)

Z(θ1)Z
∗(θ2) = S2(θ2 − θ1)Z

∗(θ2)Z(θ1) + δ(θ1 − θ2) · 1 . (2.4.5c)

Here S2 is the scattering function of the model, which is in one-to-one correspondence
with its two-particle S-matrix, see chapter 3 for a discussion of this matter. The relations
(2.4.5) can be heuristically motivated, and are taken as an input in the bootstrap form
factor program (section 3.3). The conceptual relevance of the objects Z(θ), Z∗(θ) seems
to be that of the creation and annihilation parts of temperate polarization-free generators.

5The family of factorizing S-matrices is discussed in chapter 3.
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In fact, it was precisely in the family of models based on such a Zamolodchikov
algebra, where the concept of polarization-free generators was first introduced by Schroer
by taking appropriate combinations of the operators Z and Z∗ [Sch97]. Utilizing these
operators, wedge algebras can be defined in a manner similar to the free net construction
by Brunetti, Guido and Longo, replacing the free field operator by the polarization-free
generators.

In chapter 4, we will study a representation of the Zamolodchikov-Faddeev algebra
and define certain semi-local quantum fields in terms of the representing operators. These
fields are then used to generate a standard right wedge algebra and the associated local
net, with respect to which they become temperate polarization-free generators.



Chapter 3

Factorizing S-Matrices and the

Form Factor Program

The common feature of the models to be constructed in chapter 4 is that their S-matrices
are of the factorizing type. As a prerequisite, we recall the definition and properties of
S-matrices on two-dimensional Minkowski space in general, and of factorizing S-matrices
in particular, in the first sections of this chapter. In section 3.3, we describe the so-called
bootstrap form factor program, which is the usual framework for investigations of models
with a factorizing S-matrix, and discuss its relation to our work.

3.1 S-Matrices in Two Dimensions

To introduce the notations and conventions used here, we recall some properties of the
S-matrix in relativistic quantum physics (cf., for example, [Iag93, BLT75, Ara99]).

For simplicity, we consider a theory describing a single species of neutral scalar par-
ticles of mass m > 0 which do not have any internal degrees of freedom. In this case1,
one can apply the Haag-Ruelle scattering theory [BS05a, Ara99, Haa58, Rue62] to com-
pute multiparticle collision states. The incoming and outgoing scattering states span the
symmetric Fock space H+ over the one particle space H1 of the theory, and one obtains
two isometries Vin and Vout, mapping H+ onto certain subspaces Hin ⊂ H and Hout ⊂ H
of the full Hilbert space H of the theory. The S-matrix S is defined as the product of
these generalized Møller operators, S := VinVout

∗ : Hout → Hin, and maps outgoing onto
incoming scattering states.

Unfortunately, there is no general agreement about the definition of the S-matrix; many
authors use VoutVin

∗ as the definition of S instead. Moreover, it is sometimes advantageous
to consider the S-matrix as an operator on H+, i.e. to use

Ŝ := Vout
∗Vin = Vin

∗SVin = Vout
∗SVout . (3.1.1)

In this work, we define the S-matrix on H as S := VinVout
∗, and the S-matrix on H+

as Ŝ := Vout
∗Vin. When speaking about the S-matrix without any further specification,

either of the two operators is meant.

1It is not strictly necessary to assume such a mass gap in the energy-momentum spectrum, as the
Haag-Ruelle scattering theory also works for more general mass spectra [Buc75, Buc77, Her71, Dyb05];
but this simplest case is sufficient for our purposes.

39
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If every vector in H has an interpretation in terms of asymptotic particle states, i.e.
Hin = Hout = H, the theory is said to be asymptotically complete, and the S-matrix S
becomes a unitary on H (and accordingly, Ŝ is a unitary on H+).

It has to mentioned, however, that up to now, the property of asymptotic completeness
has not been fully established for any relativistic theory with non-trivial interaction yet
[BS05a] – the models constructed here are therefore the very first theories of this type
where asymptotic completeness is known to hold.

In case of a particle spectrum as described above, the single particle space H1 of
the theory can be identified with the space L2(IRs, dµ(p)) of square integrable momen-
tum wavefunctions on the upper mass shell, where dµ(p) = (p2 + m2)−1/2dsp is the
usual Lorentz invariant measure and s ≥ 1 the spatial dimension. On two-dimensional
Minkowski space, however, it is more convenient to use as a variable the rapidity instead
of the momentum. The rapidity θ can be regarded as a particular parametrization of the
(one-dimensional) upper mass shell H+

m = {((p2 + m2)1/2, p) : p ∈ IR}, related to the
on-shell two-momentum by

p(θ) := m

(
cosh θ
sinh θ

)
, θ ∈ IR . (3.1.2)

Note that θ 7−→ p(θ) is a bijection between IR and H+
m, and that the invariant measure

dµ(p) takes after reparametrization the simple form of Lebesgue measure in θ. We may
therefore identify the one-particle space with L2(IR, dθ), and the symmetric Fock space
over it is H+ =

⊕∞
n=0 L

2(IRn, dnθ)+, where dnθ = dθ1 · · · dθn and the subscript ”+”
denotes total symmetrization in all variables.

On H+ we have a second quantization representation U of the proper orthochronous
Poincaré group with mass m and spin zero. Recall that a boost transformation is a
translation in rapidity space, described by a parameter λ ∈ IR . The transformation (x, λ)
consisting of such a boost and a subsequent spacetime translation along x ∈ IR2 is thus
represented on H+ according to

(U(x, λ)Ψ)n(θ1, ..., θn) =

n∏

k=1

eip(θk)·x · Ψn(θ1 − λ, ..., θn − λ) . (3.1.3)

In this setup, incoming and outgoing n-particle states are described by square integrable,
totally symmetric functions of n rapidity variables θ1, ..., θn, and S-matrix elements take
the form

〈Ψ, Ŝ Φ〉 =

∞∑

n,m=0

∫
dnθ

∫
dmθ′ Ψn(θ1, ...θn)Sn,m(θ1, ..., θn; θ

′
1, ..., θ

′
m)Φm(θ′1, ..., θ

′
m) ,

where Ψn ∈ H+
n , Φm ∈ H+

m are the totally symmetric wavefunctions of the respective
asymptotic states. The kernels Sn,m are tempered distributions on S (IRn+m). Formally
they are given by scalar products of improper rapidity states,

Sn,m(θ1, ..., θn; θ
′
1, ..., θ

′
m) = n! ·out 〈θ1, ..., θn | θ′1, ..., θ′m〉in . (3.1.4)

The normalization factor n! is a matter of convention.
The form of the distributions Sn,m is restricted by several constraints. For example,

energy momentum conservation demands that Sn,m(θ1, ..., θn; θ
′
1, ..., θ

′
m) contains the factor
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δ(
∑n

k=1 p(θk)−
∑m

l=1 p(θ
′
l)), and covariance under proper Lorentz transformations and the

TCP operator implies that in the sense of distributions [Ara99],

Sn,m(θ1 − λ, ..., θn − λ; θ′1 − λ, ..., θ′m − λ) = Sn,m(θ1, ..., θn; θ
′
1, ..., θ

′
m) , λ ∈ IR ,

Sn,m(θ1, ..., θn; θ
′
1, ..., θ

′
m) = Sm,n(θ

′
1, ..., θ

′
m; θ1, ..., θn) .

In two dimensions, the energy momentum conservation law for collision processes with
two incoming and two outgoing particles forces S2,2(θ1, θ2; θ

′
1, θ

′
2) to vanish unless θ1 = θ′1,

θ2 = θ′2 or θ1 = θ′2, θ2 = θ′1. Separating the corresponding delta distributions from S2,2,
the remaining part becomes a function of the usual Lorentz invariant Mandelstam variable
s, the square of the total energy of the collision process. Hence the two-particle S-matrix
elements can be written as

S2,2(θ1, θ2; θ
′
1, θ

′
2) =

1

2

(
δ(θ1 − θ′1)δ(θ2 − θ′2) + δ(θ1 − θ′2)δ(θ2 − θ′1)

)
· F (s(θ1, θ2)) ,

s(θ1, θ2) := (p(θ1) + p(θ2))
2 = 2m2(1 + cosh(θ1 − θ2)) . (3.1.5)

In contrast to the situation in higher-dimensional Minkowski space, where the two-particle
S-matrix element depends on two Mandelstam variables, s and one of the momentum
transfers t = (p(θ1)− p(θ′1))

2 and u = (p(θ1)− p(θ′2))
2, in two dimensions, F is a function

of the single variable s only. Parametrized as above, S2,2 is manifestly invariant under
Poincaré transformations, including the TCP symmetry.

The analytic structure of s 7−→ F (s) has been studied extensively in the past [BEG65,
BL75, Bro86, BI83]. It is known that F is the boundary value of a function which is
analytic outside a large enough disc in the cut s-plane, with branch cuts (arising from
two-particle thresholds) along [4m2,∞) and the negative real line [ELOP66, AAR91].
The original function F is recovered from its analytic continuation as the boundary value
at [4m2,∞), taken from Im s > 0 [ELOP66]. A priori, F could have poles corresponding
to other stable particles (bound states) in the theory. But as we are considering a model
of only a single kind of particles, these poles can be excluded. We are thus dealing with
S-matrices for which F is analytic in the complete cut s-plane. Moreover, the analytic
continuation of F has the properties of crossing symmetry and hermitian analyticity, which
we recall now.

The phenomenon of crossing symmetry provides a relation between a scattering process
with incoming momenta p1, p2, and outgoing momenta p′1, p

′
2, with the ”crossed” process2

with incoming momenta p1, −p′2 and outgoing momenta p′1,−p2. Namely, it asserts that
the functions F corresponding to these processes are boundary values of the same analytic
function. As the mentioned exchange of momenta amounts to the change s → 4m2 − s
in the square of the total energy, this implies that the boundary value of F on the cut
Re s < 0, approached from Im s < 0, coincides with the physical boundary value of
F [Iag93, Ara99, ELOP66] (see figure 3.1). For two-particle amplitudes, the crossing
property has been proven in the framework of the LSZ formalism [BEG65].

Hermitian analyticity [Oli62, Mir99] states that the boundary value of F on the right
cut, approached from Im s < 0, is given by the complex conjugate of the physical boundary
value on the other side of the cut. This property is believed to hold quite generally [Iag93],

2 The exchange of particles with their antiparticles can be ignored here since the particles under con-
sideration carry no charges.
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but there seems to exist no rigorous proof of it. It is definitely valid in the family of S-
matrices we will be studying later. In combination with crossing symmetry, hermitian
analyticity implies that the boundary values of F at the lower side of the right cut and at
the upper side of the left cut coincide, see figure 3.1.

crossing

Im s

Re s

branch cut branch cut

0 s4m2 − s

F (s)

F (s)F (s)

F (s)

4m2

Figure 3.1: The relations between the different boundary values of F as a consequence of
the crossing symmetry and hermitian analyticity.

In the rapidity picture, we consider instead of F the function

S2(θ) := F (s(θ, 0)) = F (2m2(1 + cosh θ)) , θ ≥ 0 , (3.1.6)

which contains all information about scattering processes with two incoming and two
outgoing particles.

We now translate the properties of F to properties of S2. To begin with, note that the
function θ 7−→ s(θ) := 2m2(1 + cosh θ) is a biholomorphic map from the strip

S(0, π) := {ζ ∈ C : 0 < Im ζ < π} (3.1.7)

to the cut plane in which F is analytic. Hence S2 = F ◦ s is analytic in S(0, π), and since
the positive real half line, forming part of the boundary of S(0, π), is mapped onto the
upper boundary of the cut along [4m2,∞) by s, the physical values of S2 are obtained for
real, positive rapidities. The lower boundary of this cut is the image of the negative real
half line in the rapidity picture, and therefore the property of hermitian analyticity reads
for S2

S2(−θ) = S2(θ) , θ ∈ IR . (3.1.8)

The change of variables s→ 4m2 − s inherent in the crossing symmetry is in the rapidity
parametrization given by θ → iπ − θ, and we thus have

S2(θ) = S2(iπ − θ) , θ ∈ IR . (3.1.9)

The relations between the boundary values of S2 are illustrated in figure 3.2.
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Im θ

Re θ
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θ−θ

iπ + θiπ − θ

S2(θ)S2(θ)

S2(θ) S2(θ)

Figure 3.2: The relations between the different boundary values of S2 as a consequence of
the crossing symmetry and hermitian analyticity.

3.2 Factorizing S-Matrices and their Scattering Functions

Whereas the structure of the two-particle S-matrix has been studied extensively, much
less is known about the higher S-matrix elements Sn,m, n,m > 2. The full S-matrix of an
interacting quantum field theory is in general a very complicated object, as can be inferred
from the existence of several no-go theorems for ”simple” S-matrices. For example, it is
known that if there is no particle production in a theory (i.e. Sn,m = 0 for n 6= m), there
can be no interaction at all [Åks65]. Also if there exist conserved quantities in collision
processes which transform like higher Lorentz tensors, the S-matrix has to be trivial, as
the Coleman-Mandula theorem (under some additional assumptions) states [CM67]. Both
of these examples apply if the spacetime dimension is higher than two [SW78], and in fact,
not a single non-trivial S-matrix is known in this case.

In two spacetime dimensions, however, the situation is quite different, the interesting
point being that there do exist S-matrices which admit higher spin conserved charges
despite describing non-trivial interaction. These special scattering operators have first
been found in the context of quantized versions of completely integrable classical field
theories, for example in the Sine-Gordon theory [Zam77]. In such models, there exists an
infinite number of conservation laws which severely restrict the dynamics. In particular,
the particle number is a conserved quantity in collision processes, despite the dynamics
being fully relativistic. Moreover, the n-particle S-matrix factorizes into a product of
several two-particle S-matrices, which motivated the name ”factorizing S-matrices” for
these objects.

A model-independent treatment of factorizing S-matrices was given in [Iag78]. In the
case of a single species of massive particles without any internal degrees of freedom an
S-matrix is defined to be factorizing if its kernels are of the form

Sn,n(θ1, ..., θn; θ
′
1, ..., θ

′
n) = S0

n,n(θ1, ..., θn; θ
′
1, ..., θ

′
n) ·

∏

1≤l<k≤n

S2(|θk − θl|) , (3.2.1)

Sn,m = 0 , n 6= m, (3.2.2)

where

S0
n,m(θ1, ..., θn; θ

′
1, ..., θ

′
m) =

δnm
n!

∑

π∈Sn

n∏

k=1

δ(θk − θ′π(k)) (3.2.3)
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are the kernels of the trivial S-matrix S0 = id and Sn denotes the group of permutations
of n objects.

A factorizing S-matrix shares two important properties with the free S-matrix S0:
Firstly, Sn,m vanishes for n 6= m, expressing the fact that transition amplitudes from
n-particle states to m-particle states vanish, i.e. there is no particle production in the
theory. Secondly, Sn,n(θ1, ..., θn; θ

′
1, ..., θ

′
n) vanishes if {θ1, ..., θn} 6= {θ′1, ..., θ′n}, that is, the

sets of incoming and outgoing rapidities coincide.
Physically, the factorization of the multiparticle S-matrix elements into two-particle

S-matrix elements is expected to hold in theories where collision processes of n particles
can be treated as a succession of two-particle scattering processes, the movement between
the two particle collisions being free. Despite these strong constraints on the interaction,
there are observable effects in a collision process governed by a factorizing S-matrix which
clearly show that there is non-trivial interaction. For example, due to the non-constant
phase shift of S2, time delays appear, and in theories describing particles with additional
quantum numbers, these are dynamic quantities3.

Factorizing S-matrices have been found in many two-dimensional quantum field
theory models. As mentioned before, these are usually quantized versions of integrable
classical field theories with an infinite number of conservation laws, prominent examples
being the Sine-Gordon and Sinh-Gordon models, the Thirring model, the Ising model,
and the nonlinear σ-model [AAR91]. However, it is by no means clear that all factorizing
S-matrices are realized by Lagrangian field theories, and in fact, we will construct an in-
finity of models to which a Lagrangian formulation or a classical counterpart is not known.

The assumption that an S-matrix factorizes simplifies its mathematical structure
drastically, as now the full S-matrix can be described in terms of a single function. This
is the two-particle S-matrix element S2, which will be called the scattering function in
the context of a factorizing S-matrix. In particular, the so-called unitarity constraint,
namely the requirement that the operator S belonging to a family of kernels Sn,m must
be a unitary, translates into a simple condition on S2, much in contrast to the general
situation with particle production. In view of (3.2.1), S acts on each n-particle space of
the Fock space of asymptotic wavefunctions as a multiplication operator4 ,

(SΨ)n(θ1, ..., θn) =
∏

1≤l<k≤n

S2(|θk − θl|) · Ψn(θ1, ..., θn) . (3.2.4)

Hence the unitarity of S is equivalent to S2 being a phase, i.e.

S2(θ) = S2(θ)
−1 , θ ∈ IR . (3.2.5)

To summarize, a factorizing S-matrix is uniquely determined by its scattering function S2,
which satisfies the equations (3.1.8, 3.1.9, 3.2.5). As we intend to do inverse scattering
theory, we give a formal definition of the term ”scattering function”, which will be used
as the starting point for the construction of models.

3If there are several species of particles present in the theory, or the particles carry internal quantum
numbers, the two-particle S-matrix elements become (finite-dimensional) matrices. In this case, the order
of multiplication in the product (3.2.1) has to be specified, which leads to postulating the Yang-Baxter
equations as an additional requirement.

4In the study of S-matrices in their own right, the operator multiplying with
Q

l<k S2(θk − θl), which
differs from (3.2.4) by the missing absolute value in the scattering function, is often called the n-particle
S-matrix, the identification with the physical S-matrix being understood.
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Definition 3.2.1. A scattering function is an analytic function S2 : S(0, π) −→ C which
is bounded and continuous on the closure of this strip and satisfies the equations

S2(θ) = S2(θ)
−1 = S2(−θ) = S2(θ + iπ) , θ ∈ IR . (3.2.6)

The set of all scattering functions is denoted by S.

Note that we have slightly strengthened the properties of S2 in this definition by
requiring continuous boundary values and boundedness on the strip. However, as S2

must have modulus one on the boundary of S(0, π) as a consequence of unitarity and
crossing symmetry, this strengthening is very slight, since already a bound of the form
|S2(θ + iλ)| ≤ exp(ec|θ|), c < 1, for θ + iλ ∈ S(0, π) implies that S2 is in fact uniformly
bounded [Rud87, Thm. 12.9].

From a mathematical point of view, it is also interesting to note that S has the structure
of a semi group under pointwise multiplication, i.e. the constant function S2(θ) = 1 is
contained in S as a neutral element, and S is stable under taking products. As mentioned
before, S2 = 1 represents the trivial S-matrix S0 = id and hence the interaction-free
theory. A typical non-trivial example for a scattering function in S is provided by the
Sinh-Gordon model, i.e. the integrable model defined by the Lagrangian

LShG =
1

2
∂µφ(x) ∂µφ(x) − m2

g2
cosh(gφ(x)) , (3.2.7)

where g is the (real) coupling constant. Extrapolating results obtained in perturbation
theory, the scattering function of the Sinh-Gordon model is expected to be [AFZ79, BS91]

S2(θ) =
sinh θ − i sin(πB)

sinh θ + i sin(πB)
, B :=

g2

4π + g2
. (3.2.8)

Taking into account 0 ≤ B < 1, this function is easily seen to belong to the class S.

The constraints summarized in Definition 3.2.1 are so strong that they actually al-
low to calculate the most general form of S2 by methods of complex analysis. More
precisely, each scattering function S2 ∈ S is uniquely fixed by its zeros and two more
parameters, as stated in the following Proposition.

Proposition 3.2.2. The set S of scattering functions is

S =

{
ζ 7−→ ε · eia sinh ζ ·

∏

k

sinhβk − sinh ζ

sinhβk + sinh ζ
: ε = ±1, a ≥ 0, {βk} ∈ Z

}
, (3.2.9)

where the family Z consists of the finite or infinite sequences {βk} ⊂ C satisfying the
following conditions:

i) 0 < Imβk ≤ π
2 ,

ii) βk and −βk appear the same (finite) number of times in the sequence {βk},

iii) {βk} has no finite limit point,

iv)
∑

k Im 1
sinhβk

<∞.
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The product in (3.2.9) converges absolutely and uniformly in ζ on compact subsets of the
strip S(0, π).

A similar result has been obtained by Mitra [Mit77]. The proof of Proposition 3.2.2 can
be found in appendix B.1.

The only constant scattering functions are S2 = ±1. Whereas S2 = +1 corre-
sponds to the free theory, S2 = −1 is realized in the scaling limit of the Ising model
[BKW79]. As mentioned above, the scattering function of the Sinh-Gordon model is an
element of S for any value g > 0 of the coupling constant. But for the more general
functions (3.2.9) in S, no corresponding quantum field theoretic model is known.

It is interesting to notice, and will turn out to be of some relevance later, that the
structure of S2 implies stronger analyticity properties than just analyticity in the physical
sheet S(0, π). Denoting open strips in C by

S(a, b) :=
{
ζ ∈ C : a < Im < b

}
, a < b , (3.2.10)

we observe that as a consequence of S2(−θ) = S2(θ)
−1 and the continuity of S2 on the

real line, this function extends to a meromorphic function on S(−π, π). The zeros βk
of S2 correspond to poles at −βk ∈ S(−π, 0), which cannot accumulate to an essential
singularity since {βk} has no finite limit point. Moreover, the crossing symmetry implies

S2(θ − iπ) = S2(−θ + iπ)−1 = S2(θ)
−1 = S2(θ + iπ) , (3.2.11)

and hence each S2 continues to a (2πi)-periodic, meromorphic function on all of C. The
connection between zeros in S(0, π) and poles in S(−π, 0) (and S(π, 2π)) also shows that
S2 is actually analytic in the strip S(−κ(S2), π + κ(S2)), where

κ(S2) := inf
{
Im ζ : ζ ∈ S(0, π2 ) , S2(ζ) = 0

}
. (3.2.12)

There exist scattering functions which have an infinite sequence of zeros approaching
the real line, resulting in κ(S2) = 0. But for a large subfamily of S, in particular for all
scattering functions having finitely many zeros in the physical strip, κ(S2) is strictly larger
than zero, and hence S2 can be analytically continued to a strip broader than S(0, π). For
later reference, we state the following Lemma.

Lemma 3.2.3. Consider a scattering function S2 ∈ S with finitely many zeros in
S(0, π), and with parameter a = 0 in (3.2.9). Then S2 can be analytically continued
to S(−κ(S2), π+κ(S2)), where κ(S2) > 0 (3.2.12). Moreover, S2 is uniformly bounded on
each strip S(−κ, π + κ), κ < κ(S2).

Proof. By Proposition 3.2.2, the assumptions imply that S2 is of the form

S2(ζ) = ±
N∏

k=1

sinhβk − sinh ζ

sinhβk + sinh ζ
, 0 < Imβ1, ..., Im βN ≤ π

2 , N <∞ . (3.2.13)

The continuation to S(−κ(S2), π + κ(S2)), with κ(S2) = mink=1,...,N Imβk, is clear from
this formula. For the boundedness, note that |S2(θ + iλ)| → 1 for θ → ±∞, λ ∈ [0, π]
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fixed, and this convergence is uniform in λ. As S2 has no zeros in S(0, κ(S2)), this implies
via the minimum principle that we have the lower bound

|S2(ζ)| ≥ min{|S2(θ + iκ)| : θ ∈ IR} =: ‖S2‖−1
κ > 0 , ζ ∈ S(0, κ) , κ < κ(S2) .

The relations S2(−ζ) = S2(ζ)
−1 = S2(iπ + ζ) then yield |S2(ζ)| ≤ ‖S2‖κ < ∞ for each

ζ ∈ S(0, κ) ∪ S(π, π+ κ). Together with the bound |S2(ζ)| ≤ 1, ζ ∈ S(0, π), this gives the
desired result.

We close this section by pointing out that some restriction on the distribution of
the zeros of the scattering function which goes beyond the properties summarized in
Proposition 3.2.2 can be expected for physical reasons. As was shown above, a zero
of S2 in S(0, π) corresponds to a pole in S(−π, 0) and vice versa. Whereas poles in
the physical sheet S(0, π) are related to stable bound states, and are excluded in the
present discussion, poles in the ”unphysical sheet” S(−π, 0) are interpreted as evidence
for unstable particles. Heuristically, an unstable particle is modelled by a complex mass
mR with negative imaginary part, mR = mphys

R − iΓ/2, where Γ−1 > 0 is taken to be
the lifetime of this unstable particle [Wei95, CA01]. Hence in the rapidity picture, a pole
in S(−π, 0) corresponds to such a resonance, and by expressing the Mandelstam variable

s = (mphys
R − iΓ/2)2 in terms of the rapidity one sees that the lifetime of the resonance is

the longer the closer the pole lies to the real line.
If a scattering function exhibits a sequence of infinitely many zeros approaching the

real line, there are also infinitely many resonances present in the theory, the lifetimes of
which can become arbitrarily long. In fact, it is possible to choose a distribution of zeros
complying with the conditions listed in Proposition 3.2.2 such that the associated unstable
particles have unbounded lifetimes and “masses” mk so that

∑
k e

−mk/T diverges for all
temperatures T > 0. But a model with these characteristics cannot be expected to have
a regular thermodynamical behavior or only a finite partition function [BW86, BJ89].

Later on, we will therefore restrict to scattering functions which do not exhibit this
behavior.

3.3 The Form Factor Program

The form factor program is a constructive approach to quantum field theory which has
been developed in the late seventies, with the aim to construct model theories in the
Wightman framework from the input of a factorizing S-matrix. As the goals of the form
factor program and our constructions are very similar, we give here a brief introduction
to the basic ideas of the form factor program. For a more complete treatment of the
subject, see [KTTW77, BKW79, BK01, Smi92, FMS93, BK04], and the references cited
therein.

As we are interested in the essential concepts, we describe the program in the set-
ting of theories with the simple particle spectrum specified before, although it is not
restricted to this case. Fixing a factorizing S-matrix by means of its scattering function
S2, the task is to construct the n-point functions of a Wightman quantum field theory
[SW80] which has the S-matrix corresponding to S2.

The construction is carried out on the space of scattering states, and at its basis lies
a certain algebraic structure of these states, which is named the Zamolodchikov algebra
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or Zamolodchikov’s algebra after its inventors [ZZ79]. It can be motivated as follows:
Consider n idealized particles on the one-dimensional line with sharp rapidities θ1, ..., θn.
Each particle is represented by a symbol Z∗(θ), where θ = θk is its rapidity. States of
more than one particle are symbolized by expressions like Z∗(θ1) · · ·Z∗(θn), where the
ordering of the symbols Z∗(θk) in this product is given by the spatial ordering of the
corresponding particles on the line. If the particles are arranged from the left to the right
in the order of increasing rapidities, the symbol Z∗(θ1) · · ·Z∗(θn), θ1 < ... < θn, is taken
to represent an outgoing n-particle scattering state, since the faster particles are always
located to the right of the slower ones and hence there is no interaction between them.
(The interaction range is assumed to be zero.) Analogously, symbols arranged in order of
decreasing rapidities, Z∗(θ1) · · ·Z∗(θn), θ1 > ... > θn, stand for incoming collision states
which have not interacted in the past. As outgoing and incoming scattering states should
be related by the factorizing S-matrix based on S2 (3.2.4), one imposes the relation

Z∗(θn) · · ·Z∗(θ1) =
∏

1≤l<k≤n

S2(θk − θl) · Z∗(θ1) · · ·Z∗(θn) , θ1 < ... < θn . (3.3.1)

The symbols Z∗(θ) are elements of an abstract non-commutative algebra, and their physi-
cal interpretation is that they create a single particle state with rapidity θ from the vacuum
state. Multiplying (3.3.1) from the left with the inverse n-particle S-matrix, and taking
into account S(θ)−1 = S(−θ), the Zamolodchikov brothers obtained the exchange relation
[ZZ79]

Z∗(θ1)Z
∗(θ2) = S2(θ1 − θ2)Z

∗(θ2)Z
∗(θ1) , θ1, θ2 ∈ IR . (3.3.2)

This structure was completed by Faddeev [Fad80] by adding a corresponding annihilation
operator Z(θ) and postulating the algebraic relations

Z(θ1)Z(θ2) = S2(θ1 − θ2)Z(θ2)Z(θ1) , (3.3.3)

Z(θ1)Z
∗(θ2) = S2(θ2 − θ1)Z

∗(θ2)Z(θ1) + δ(θ1 − θ2) · 1 , (3.3.4)

between Z and Z∗. (Here 1 denotes the identity in the algebra.) The algebra given by
the relations (3.3.2) and (3.3.3) is usually referred to as the Zamolodchikov algebra or
the Zamolodchikov-Faddeev algebra. Setting Z(θ)∗ = Z∗(θ), it acquires a ∗-structure,
and can be represented on a Hilbert space by defining a vacuum state on it which is
annihilated by Z(θ). (This representation will be discussed in detail in the next chapter.)

Taking the Zamolodchikov-Faddeev algebra as represented on a Hilbert space with
vacuum vector Ω, one considers in the form factor program expressions of the form

FA(x)
n (θ1, ..., θn; θ

′
1, ..., θ

′
m) := 〈Z∗(θ1) · · ·Z∗(θn)Ω, A(x)Z∗(θ′1) · · ·Z∗(θ′m)Ω〉 , (3.3.5)

where A(x) is a (still to be constructed) local operator, taken to be localized at the

spacetime point x. The F
A(x)
n are called (generalized) form factors and constitute the

main objects of interest in this approach. The relations of Zamolodchikov’s algebra, the
interpretation of Z∗(θ1) · · ·Z∗(θn)Ω as asymptotic scattering states for certain orderings
of the rapidities, and the assumed locality of A(x) give rise to many relations between
different form factors, for example

FA(x)
n (θ1, ..., θn; θ

′
1, ..., θ

′
m) = FA(x)

n (θ1, ..., θn; θ
′
2, θ

′
1, ..., θ

′
m) · S2(θ

′
1 − θ′2) (3.3.6)
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as a consequence of (3.3.2). Other relations are given by the crossing symmetry of S2, or
follow from the requirement of Lorentz covariance for the field A(x), which is attributed
some spin; but we do not write down all these equations here as we are interested
primarily in the general strategy of the program. The emerging set of equations is then
promoted to a system of axioms [Smi92], usually amended by additional assumptions
about maximal analyticity domains for the form factors.

Starting from these axioms, the construction of a model theory in the form factor
program consists of the following three steps [BK04].

To begin with, the scattering function, respectively the two-particle S-matrix in the
case of a richer particle spectrum, is calculated. For the simplest case, the possible scat-
tering functions are given by Proposition 3.2.2, but in general, also the more complicated
Yang-Baxter equations have to be solved. In a second step, the form factors are calcu-
lated by solving the system of axiom equations for certain local objects A(x). Finally, the
n-point Wightman functions of the theory are expressed in terms of the form factors by
inserting a complete set of intermediate scattering states in the vacuum expectation values
of the field operators. For example, the two-point function of a hermitian local operator
A is given (up to some constant factor) by [BK01]

〈Ω, A(x)A(0)Ω〉 =

∞∑

n=0

1

n!

∫
dθ1 · · ·

∫
dθn e

−ix·
Pn

k=1 p(θk) |〈Ω |A(0) |θ1, ..., θn〉in|2 , (3.3.7)

where |θ1, ..., θn〉in denotes the incoming n-particle state corresponding to
Z∗(θ1) · · ·Z∗(θn)Ω. The distributions obtained in this way are then interpreted as
the Wightman functions of the constructed theory.

The first two steps of this program, the determination of appropriate two-particle
S-matrices and the calculation of their associated form factors, have been carried out
in many models, for example in the Sinh-Gordon [FMS93] and Sine-Gordon models
[BFKZ99] and their generalizations [CA01], the Ising model [BKW79], and many more.
The knowledge of form factors already allows to extract physical information, which has
even led to concrete applications [CAF03].

The crucial step of completing the construction of these models, however, requires
controlling series of the type (3.3.7), and is a long-standing open problem. In fact,
the converge properties of such sums have been thoroughly investigated only in two
special models, namely the scaling limit of the Ising model, and the Yang-Lee model
[BK04, Fri06]. Even for these two best understood cases, no proof of the Wightman
axioms for the resulting family of n-point functions is known to us5. Furthermore, it has
not been shown that the collision states of the so-defined theories (if they exist) reproduce
the initially taken S-matrix, and also the property of asymptotic completeness, which
is used as an assumption in the construction, seems to be hard to establish in this manner.

These problems point at the complicated structure local quantum fields have in
the presence of non-trivial interactions, despite the relatively simple form of the S-matrix.
The problem of establishing convergence of series as (3.3.7) is reminiscent of the problems

5However, the convergence of the form factor series for the two-point function can be shown in the case
of the Yang-Lee model [Smi06].
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one faces in the usual perturbative approach to quantum field theory, and seems to be
very difficult to overcome.

From a conceptual point of view, one might expect serious problems in trying to
find the n-point functions of a quantum field from its S-matrix, as it is well-known that
the field is not uniquely fixed by the scattering operator [Bor60]. Moreover, the explicit
construction of field operators in the presence of interactions is a very ambitious task,
and much more than what is needed to construct a quantum field theory with a given
S-matrix, which requires only control over asymptotic properties.

Schroer suggested a complementary approach [Sch99, Sch97, Sch00a, SW00] to the
problem of constructing quantum field theories from a factorizing S-matrix, which is
the basis for our construction in the following chapter. In contrast to the form factor
program, the starting point is an appropriate spacetime interpretation of (the vacuum
representation of) Zamolodchikov’s algebra. It turns out that field operators can be
formed in terms of Zamolodchikov annihilation and creation operators in a simple way,
and that these fields can be consistently interpreted as being localized in wedge regions.
This observation links the concrete problem of finding quantum field theory models with
a given factorizing S-matrix with the more abstract problem of defining quantum field
theories using wedge algebras, as discussed in chapter 2.

As we shall see, by generating wedge algebras with Schroer’s wedge-local fields, one
can obtain a local quantum field theory along the same lines as in chapter 2, which for
an infinite family of scattering functions can be shown to have all physically important
properties. Moreover, it is possible to explicitly compute the multiparticle scattering
states of this theory, and prove that it is asymptotically complete. The S-matrix is found
to coincide with the initially given one, thus establishing the construction as the solution
to the inverse scattering problem for this family of S-matrices.



Chapter 4

A Family of Models with

Factorizing S-Matrices

This chapter is devoted to the construction of a family of two-dimensional quantum field
theory models with prescribed factorizing S-matrices. We consider a single species of mas-
sive, scalar, neutral particles and a factorizing S-matrix S which is fixed by its scattering
function S2 (Def. 3.2.1). As in the form factor program, the construction is based on the
Zamolodchikov-Faddeev algebra Z(S2) with scattering function S2, which is rigorously
defined in section 4.1. We then define the vacuum Hilbert space for the models to be
constructed as a representation space of the Zamolodchikov algebra.

Following the proposals of Schroer [Sch97, Sch99], a quantum field φ is then defined
explicitly as an unbounded operator on H. This field is a non-local auxiliary object in
the construction, not to be confused with a local physical field defining the model in the
sense of Wightman theory. The localization properties of φ are discussed in section 4.2.
It is a crucial point for the constructive program followed here that φ is not completely
delocalized, but can be consistently interpreted as being localized in a wedge region. This
opens up the possibility to generate a Poincaré-covariant net of wedge-local observable
algebras in terms of φ. As in the abstract construction in chapter 2, these wedge algebras
determine a net of local algebras, which constitute the definition of the model constructed
from the scattering function S2.

The investigation of these local observables is postponed to chapter 5. In the present
chapter, we compute the two-particle scattering states of the constructed models and
prove that they reproduce the initially given scattering function S2 (section 4.3). In the
last section, we study the models in the framework of algebraic quantum field theory and
make contact with the formalism of chapter 2.

The basic idea underlying the construction presented here is due to B. Schroer
[Sch97, Sch99, Sch00a] and Schroer and Wiesbrock [SW00], who observed that the field
φ might be localizable in a wedge, and investigated its properties as a polarization-free
generator. The proof of the wedge-locality of φ and the computation of the two-particle
scattering states have been found in [Lec05a], and the analysis of the modular structure
of the wedge net was carried out in the joint paper [BL04] with D. Buchholz.
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4.1 The Zamolodchikov-Faddeev Algebra

The algebraic structure lying at the root of our construction is the so-called
Zamolodchikov-Faddeev algebra [ZZ79, Fad80], an algebra of creation and annihilation
operators which satisfy quadratic exchange relations involving a scattering function. The
Zamolodchikov-Faddeev algebra, mostly called Zamolodchikov algebra for brevity, is a
common tool in the framework of the form factor program [BK04, CA01, FMS93]. Fixing
a scattering function S2 ∈ S (Def. 3.2.1), it is usually described as a ∗-algebra generated
by non-commuting distributions Z(θ), Z∗(θ), which are parametrized by the rapidity θ
and satisfy the commutation relations, θ1, θ2 ∈ IR,

Z(θ1)Z(θ2) = S2(θ1 − θ2) Z(θ2)Z(θ1), (4.1.1a)

Z∗(θ1)Z
∗(θ2) = S2(θ1 − θ2) Z

∗(θ2)Z
∗(θ1), (4.1.1b)

Z(θ1)Z
∗(θ2) = S2(θ2 − θ1)Z

∗(θ2)Z(θ1) + δ(θ1 − θ2) · 1 . (4.1.1c)

Here 1 denotes the unit in the algebra, and all equations have to be understood in the
sense of distributions. For the physical motivation of the relations (4.1.1) in the context
of scattering theory with the factorizing S-matrix given by S2, see section 3.3.

In order to give a rigorous definition of Zamolodchikov’s algebra, we work with
”smeared” quantities, formally given by Z(ψ) =

∫
dθ Z(θ)ψ(θ), Z†(ψ) =

∫
dθ Z∗(θ)ψ(θ),

where ψ is a test function. Abstractly speaking, we consider the symbols Z(Ψ1), Z
†(Ψ1),

Ψ1 ∈ L2(IR, dθ), and more generally

(Z#1 × ...× Z#n)(Ψn) , Ψn ∈ L2(IRn) , (4.1.2)

where Z#l stands for Z or Z†, independently in each entry. These symbols are assumed
to depend complex linearly on Ψn. They generate a linear space, and a product is defined
by

(Z#1 × . . .× Z#n)(Ψn) · (Z#′
1× . . .× Z#′

m)(Ψm)

= (Z#1 × . . .× Z#n × Z#′
1 × . . .× Z#′

m)(Ψn ⊗ Ψm) .

We adjoin a unit 1 as the neutral element. An involutive, antilinear star operation is fixed
by setting 1∗ = 1 and (with Z†† := Z)

(
(Z#1 × . . . × Z#n)(Ψn)

)∗
= (Z#n† × . . . × Z#1†)(Ψ∗

n) , Ψn ∈ L2(IRn), (4.1.3)

Ψ∗
n(θ1, ..., θn) = Ψn(θn, ..., θ1) . (4.1.4)

The Zamolodchikov-Faddeev algebra Z(S2) with scattering function S2 ∈ S is obtained by
imposing the commutation relations (4.1.1) on this free ∗-algebra. To formulate them, we
adopt the convention to regard the scattering function S2 also as a multiplication operator,
acting on functions Ψ2 ∈ L2(IR2) according to

(S2Ψ2)(θ1, θ2) := S2(θ1 − θ2) · Ψ2(θ1, θ2) . (4.1.5)

With this notation, the definition of the algebraic structure of Z(S2) is completed by
requiring the relations

Z(ψ)Z(ϕ) = (Z × Z)(S∗
2(ϕ⊗ ψ)), (4.1.6a)

Z(ψ)Z†(ϕ) = (Z† × Z)(S2(ϕ⊗ ψ)) + 〈ψ, ϕ〉 · 1 . (4.1.6b)
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Here the brackets 〈 . , . 〉 denote the scalar product on L2(IR, dθ), given as usual by the
integral 〈ψ,ϕ〉 =

∫
dθ ψ(θ)ϕ(θ). Note that the equations (4.1.6) arise from (4.1.1) by

formal integration against ψ(θ1)ϕ(θ2) over θ1, θ2 ∈ IR.
Recall that as a scattering function, S2 satisfies the relations (Def. 3.2.1)

S2(θ) = S2(θ)
−1 = S2(−θ) = S2(θ + iπ) , θ ∈ IR . (4.1.7)

These imply in particular that the second equation in (4.1.6) is consistent with the invo-
lution (4.1.3). Applying the star operation to the first commutation relation (4.1.6a), we
also obtain

Z†(ψ)Z†(ϕ) = (Z† × Z†)(S∗
2(ϕ⊗ ψ)) . (4.1.8)

It is worth noting that in case the scattering function is constant, S2 = ±1, the commu-
tation relations (4.1.6) read

Z(ψ)Z(ϕ) = ±Z(ϕ)Z(ψ), (4.1.9)

Z(ψ)Z†(ϕ) = ±Z†(ϕ)Z(ψ) + 〈ψ, ϕ〉 · 1 . (4.1.10)

Disregarding the difference to the common convention according to which the ”annihila-
tion operator” Z(ψ) depends anti linearely on ψ, the Zamolodchikov algebras Z(+1) and
Z(−1) are thus isomorphic to the CCR and CAR algebras over L2(IR), respectively [BR97].

We now turn to the description of the vacuum Hilbert space H of the model the-
ory to be constructed, which carries a representation of Z(S2). In the special cases
S2 = ±1, the space H coincides with the Bose and Fermi Fock space over L2(IR, dθ),
respectively. Also for a generic scattering function S2 ∈ S, it is a proper subspace of the
unsymmetrized Fock space FH1 :=

⊕∞
n=0 H⊗n

1 over H1 := L2(IR, dθ). As we shall see
below, H carries a grading with respect to the ”particle number”, i.e. it has the structure
H =

⊕∞
n=0 Hn, Hn ⊂ H⊗n

1 = L2(IRn).

Proceeding analogously to the construction of the Bose Fock space as a subspace
of FH1 , we distinguish the functions in Hn by requiring invariance under a representation
of the symmetric group Sn on H⊗n

1 , the only discrepancy lying in a different representation
of the permutations.

Let Sn denote the group of permutations of n elements, and τk ∈ Sn, k = 1, ..., n− 1,
the transposition which exchanges k and (k+1). Instead of only permuting the arguments
of functions in L2(IRn), our symmetrization prescription uses the S2-dependent operators

(Dn(τk)fn)(θ1, ..., θn) := S2(θk+1 − θk) · fn(θ1, ..., θk+1, θk, ..., θn) . (4.1.11)

Lemma 4.1.1. Consider the mapSn ∋ τk 7−→ Dn(τk) ∈ B(L2(IRn)) . (4.1.12)

a) Dn defines a unitary representation of Sn on L2(IRn) which acts explicitly as

(Dn(π)fn) (θ1, ..., θn) = Sπ(θ1, ..., θn) · fn(θπ(1), ..., θπ(n)), (4.1.13a)

Sπ(θ1, ..., θn) :=
∏

1≤l<k≤n
π(l)>π(k)

S2(θπ(l) − θπ(k)) . (4.1.13b)
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b) The mean over Dn,

Pn :=
1

n!

∑

π∈Sn

Dn(π) , (4.1.14)

is an orthogonal projection.

Proof. a) In order to show that Dn is a representation of Sn, one has to check the relations
Dn(τk)

2 = 1 for k = 1, ..., n − 1 and [Dn(τj),Dn(τk)] = 0 for |j − k| > 1, as well as

Dn(τk)Dn(τk+1)Dn(τk) = Dn(τk+1)Dn(τk)Dn(τk+1) , k = 1, ..., n − 2 . (4.1.15)

The first relation follows from S2(−θ) = S2(θ)
−1 (4.1.7): Let fn ∈ L2(IRn), then

(
Dn(τk)

2fn
)
(θ1, ..., θn) = S2(θk+1 − θk) · (Dn(τk)fn) (θ1, ..., θk+1, θk, ..., θn)

= S2(θk+1 − θk) · S2(θk − θk+1) · fn(θ1, ..., θn)
= fn(θ1, ..., θn) .

The second relation, [Dn(τj),Dn(τk)] = 0 for |j−k| > 1, holds because Dn(τk) acts only on
the variables θk and θk+1. Since S2 is a multiplication operator, the different S2-factors oc-
curring in the computation of Dn(τk)Dn(τk+1)Dn(τk) and Dn(τk+1)Dn(τk)Dn(τk+1) com-
mute with each other, which implies the third relation (4.1.15). Finally, Dn(τk) is unitary
since S2 has modulus unity, and this property carries over to arbitrary Dn(π), π ∈ Sn,
because the transpositions generate the symmetric group.

To verify the formula (4.1.13), we first note that it agrees with the definition (4.1.11)
on the transpositions τj. Now assume the formula is valid for some permutation π. Then
there holds, fn ∈ L2(IRn), j = 1, ..., n − 1,

(
Dn(πτj)fn

)
(θ1, .., θn) = Sπ(θ1, .., θn) ·

(
Dn(τj)fn

)
(θπ(1), .., θπ(n)) (4.1.16)

= Sπ(θ1, .., θn)S2(θπ(j+1) − θπ(j)) fn(θπ(1), .., θπ(j+1), θπ(j), .., θπ(n)).

On the other hand, the function Sπτj is

Sπτj (θ1, ..., θn) =
∏

1≤l<k≤n
π(l)>π(k)

(l,k) 6=(j,j+1)

S2(θπ(l) − θπ(k)) ·
∏

π(j+1)>π(j)

S2(θπ(j+1) − θπ(j))

= Sπ(θ1, ..., θn) · S2(θπ(j+1) − θπ(j)) ,

as can be seen by considering the two cases π(j) < π(j + 1) and π(j) > π(j + 1). Hence
the factor of scattering functions appearing in (4.1.16) coincides with Sπτj , and so (4.1.13)
holds for the permutations πτj, provided it holds for π. Since the transpositions generateSn, the validity of (4.1.13) follows by induction.

b) As Dn is a unitary representation, we have Pn = P ∗
n . The equation P 2

n = Pn holds
because Sn is a group of n! elements.

Remark: A similar symmetrization procedure has also been used by Liguori and Mintchev
in the context of Fock spaces with generalized statistics [LM95].
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With the help of the projections Pn we can symmetrize the unsymmetrized Fock
space FH1 with respect to Dn, which yields the definition of our model Hilbert space H:

H :=

∞⊕

n=0

Hn, Hn := PnH⊗n
1 , H0 := C . (4.1.17)

The projections Pn will be considered as operators on FH1 by putting PnΨ := 0 for
Ψ ⊥ Hn, and we also write P :=

⊕∞
n=0 Pn ∈ B(FH1) for the orthogonal projection onto

the subspace H.

The interpretation of H is as follows. In a relativistic quantum field theory describing
a single species of scalar, neutral particles of mass m > 0, the single particle space can
be realized in the momentum picture as the space of functions on the upper mass shell
H+
m = {((p2

1 + m2)1/2, p1) : p1 ∈ IR}, which are square integrable with respect to the
measure (p2

1 +m2)−1/2dp1. In the rapidity parametrization of H+
m (3.1.2), this measure is

simply the Lebesgue measure dθ. So H1 = L2(IR, dθ) will be interpreted as the one particle
space of our model, and Hn will be referred to as ”n-particle spaces”. Generalizing the
totally symmetric functions known from the free bosonic field, its elements are those
functions Ψn ∈ L2(IRn) which are S2-symmetric in the sense that

Ψn(θ1, ..., θk+1, θk, ...θn) = S2(θk − θk+1) · Ψn(θ1, ..., θn) , k ∈ {1, ..., n − 1} . (4.1.18)

In the zero-particle space H0 we fix a unit vector Ω, representing the physical vacuum.
Generic elements of H are denoted Ψ = (Ψ0,Ψ1, ... ), Ψn ∈ Hn, and have the norm
‖Ψ‖2 =

∑∞
n=0

∫
dnθ|Ψn(θ)|2 <∞.

We introduce the particle number operator N as (NΨ)n := n · Ψn on the vectors Ψ
with

∑
n n

2‖Ψn‖2 < ∞. The dense subspace of H which consists of vectors Ψ with finite
particle number, i.e. Ψn = 0 for sufficiently large n, is denoted D.

On the unsymmetrized Fock space FH1 , the proper orthochronous Poincaré group

P↑
+ (see section 1.3) acts via the representation Û , defined as

(
Û(x, λ)Ψ

)
n
(θ1, ..., θn) := exp

(
i

n∑

k=1

p(θk) · x
)
· Ψn(θ1 − λ, ..., θn − λ) , (4.1.19)

where p(θ) = m(cosh θ, sinh θ)T (3.1.2) and m > 0 is the mass of the particles in our
model. This representation can be restricted to H: The translations Û(x, 0) preserve the
symmetry structure (4.1.18) because they act by multiplication with totally symmetric
functions, and also the boosts Û(0, λ) map H onto H because the scattering function in
(4.1.18) depends only on differences of rapidities.

We denote the restriction of Û to H by U , and take it as the definition of the repre-
sentation of the Poincaré symmetries in the model to be constructed.

Clearly, U is a strongly continuous positive energy representation of P↑
+, and Ω ∈ H0

is the (up to a phase) unique U -invariant unit vector, justifying its interpretation as
representing the physical vacuum state. The energy and momentum operators1 P0, P1

are defined as the generators of the translation subgroups in x0- and x1-direction, as

1Using standard notation, we denote these operators by P0, P1, as no confusion with the projections Pn

(4.1.14) is likely to arise.
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usual. The mass operator M := (P 2
0 − P 2

1 )1/2 has m as its only positive eigenvalue, with
eigenspace H1. So also the interpretation of vectors Ψ1 ∈ H1 as single particle states
complies with the definition of U . The interpretation of vectors Ψn ∈ Hn as n-particle
states will be justified later in scattering theory. Until then, the term ”n-particle space”
will be used just as a name for Hn.

Note that as a representation on FH1 , Û can be extended to the proper Poincaré group

P+ ⊃ P↑
+, which also contains the spacetime reflection −1, mapping x ∈ IR2 to −x. Its

representative Û(−1) is defined as complex conjugation,

(Û (−1)Ψ)n(θ1, ..., θn) := Ψn(θ1, ..., θn) , Ψ ∈ FH1 . (4.1.20)

But complex conjugation does not preserve the S2-symmetry (4.1.18), since the scattering
function is not real, in general. (The only exceptions are the constant functions S2 = ±1.)
Hence Û(−1) cannot be restricted to the subspace H. Later on, we will find a unitary
U(−1) ∈ B(H), extending U to P+, as an important step in the construction of the
wedge-local observables.

4.1.1 Representation of Zamolodchikov’s Algebra

Guided by the Fock representation of the CCR algebra, we now introduce properly sym-
metrized creation and annihilation operators on H. We start from their unsymmetrized

counterparts a(ψ), a†(ψ), ψ ∈ H1, which are defined on the subspace F (0)
H1

⊂ FH1 of finite
particle number by

a(ψ)Ω := 0 , (a(ψ)Φ)n(θ1, ..., θn) :=
√
n+ 1

∫
dθ ψ(θ)Φn+1(θ, θ1, ..., θn) , (4.1.21)

a†(ψ)Ω := ψ , (a†(ψ)Φ)n :=
√
n ψ(θ1) · Φn−1(θ2, ..., θn) . (4.1.22)

Note that these operators are related to each other according to a(ψ)∗ ⊃ a†(ψ), as can be
seen by taking adjoints on FH1 .

The domain of the representation of the Zamolodchikov algebra will be the subspace

D = PF (0)
H1

⊂ H of S2-symmetric vectors of finite particle number.

Lemma 4.1.2.
a) The map

Z(ψ) 7−→ z(ψ) := Pa(ψ)P, Z†(ψ) 7−→ z†(ψ) := Pa†(ψ)P (4.1.23)

extends to a representation of the Zamolodchikov-Faddeev algebra Z(S2) on D which
has Ω as a cyclic vector.

b) On Φ ∈ D one has, ψ ∈ L2(IR),

z†(ψ)Φ = Pa†(ψ)Φ, z(ψ)Φ = a(ψ)Φ , (4.1.24)

and explicitly

(z(ψ)Φ)n(θ1, ..., θn) =
√
n+ 1

∫
dθ ψ(θ)Φn+1(θ, θ1, ..., θn) , (4.1.25)

(z†(ψ)Φ)n(θ1, ..., θn) =
1√
n

n∑

k=1

k−1∏

j=1

S2(θk − θj)ψ(θk)Φn−1(θ1, θ2, ..., θ̂k, ..., θn) .

(4.1.26)

Here the hat on θk indicates that this variable is omitted.
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Proof. We begin with the proof of b). The annihilator a(ψ) preserves the S2-symmetry
(4.1.18) in the remaining n − 1 variables when applied to a function Φn ∈ Hn (4.1.21).
Hence a(ψ)Hn ⊂ Hn−1, and thus the projections in the definition of z(ψ) may be omitted,
z(ψ)Φ = a(ψ)Φ for all Φ ∈ D. Equation (4.1.25) is just a reformulation of this fact. Since
P = 1 on D, the equation z†(ψ)Φ = Pa†(ψ)Φ follows as well.

To compute the action of the creation operator z†(ψ), we introduce the special per-
mutations σk ∈ Sn, k = 1, ..., n, defined by

σk := τk−1τk−2 · · · τ1 , k = 2, ..., n , σ1 = id . (4.1.27)

Any permutation π ∈ Sn can be uniquely decomposed as π = σkρ, where σk ∈ Sn and
ρ ∈ Sn−1 acts on the subset {2, ..., n} ⊂ {1, ..., n}. For the projection Pn this entails

Pn =
1

n!

n∑

k=1

∑

ρ∈Sn

Dn(σk) (1 ⊗Dn−1(ρ)) =
1

n

n∑

k=1

Dn(σk) (1 ⊗ Pn−1) . (4.1.28)

As σk(1, 2, ..., n) = (k, 1, 2, ..., k̂, ..., n), it follows from (4.1.13) that the permutations σk
are represented as, fn ∈ L2(IRn),

(Dn(σk)fn) (θ1, ..., θn) =

k−1∏

j=1

S2(θk − θj) · fn(θk, θ1, θ2, ..., θ̂k, ..., θn) . (4.1.29)

The hat on θk indicates that this variable is omitted. With these formulae, the action of
the creation operator, (z†(ψ)Φ)n =

√
nPn(ψ⊗Φn−1) (4.1.22), can be explicitly evaluated

as

(z†(ψ)Φ)n(θ1, ..., θn) =
1√
n

n∑

k=1

k−1∏

j=1

S2(θk − θj)ψ(θk)Φn−1(θ1, θ2, ..., θ̂k, ..., θn) ,

in agreement with (4.1.26).

a) The linearity of ψ 7−→ z#(ψ) follows directly from (4.1.23). As a(ψ)∗ ⊃ a(ψ), the
∗-operation acts like

z(ψ)∗ = (Pa(ψ)P )∗ ⊃ Pa†(ψ)P = z†(ψ) , (4.1.30)

as in the abstract Zamolodchikov algebra (4.1.3). Using (4.1.25) and the S2-symmetry of
Φ ∈ D, we obtain, ψ,ϕ ∈ H1,

(z(ψ)z(ϕ)Φ)n(θ1, ..., θn) =
√

(n+ 1)(n + 2)

∫
dθ ψ(θ)

∫
dθ′ ϕ(θ′)Φn+2(θ

′, θ, θ1, θ2, ..., θn)

=
√

(n+ 1)(n + 2)

∫
dθ

∫
dθ′S2(θ − θ′)ψ(θ)ϕ(θ′)Φn+2(θ, θ

′, θ1, θ2, ..., θn) .

(4.1.31)

Linear and continuous extension in ψ ⊗ ϕ ∈ L2(IR2) yields the definition of (z × z) as

(
(z × z)(Ψ2)Φ

)
n
(θ1, ..., θn) =

√
(n + 1)(n + 2)

∫
dθ

∫
dθ′Ψ2(θ, θ

′)Φn+2(θ
′, θ, θ1, θ2, ..., θn).
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Since S∗
2(ϕ⊗ψ)(θ′, θ) = S2(θ−θ′)ϕ(θ′)ψ(θ), (4.1.31) implies the first commutation relation

of Zamolodchikov’s algebra, z(ψ)z(ϕ) = (z× z)(S∗
2 (ϕ⊗ψ)) (4.1.6a). To derive the second

relation (4.1.6b), we compute

(z(ψ)z†(ϕ)Φ)n(θ1, .., θn) =

∫
dθ0 ψ(θ0)

n+1∑

k=1

k−1∏

j=1

S2(θk−1 − θj−1)ϕ(θk−1)Φn(θ0, .., θ̂k−1, .., θn)

=

∫
dθ0 ψ(θ0)

n∑

k=0

k−1∏

j=0

S2(θk − θj)ϕ(θk)Φn(θ0, θ1, .., θ̂k, .., θn).

(4.1.32)

As above, linear and continuous extension in ψ⊗ϕ ∈ L2(IR2) yields the operators (z× z†)
((z†×z†) and higher products (z#1×...×z#n)(Ψn), Ψn ∈ L2(IRn), are defined accordingly).

The term corresponding to k = 0 in (4.1.32) gives 〈ψ,ϕ〉 ·Φn(θ1, ..., θn), as required in
(4.1.6b). The flipped operator z†(ϕ)z(ψ) acts as

(z†(ϕ)z(ψ)Φ)n(θ1, ..., θn) =

n∑

k=1

k−1∏

j=1

S2(θk − θj)

∫
dθ0 ϕ(θk)ψ(θ0)Φn(θ0, θ1, ..., θ̂k, ..., θn) .

If ϕ(θk)ψ(θ0) is replaced by S2(θk − θ0)ϕ(θk)ψ(θ0) = S2(ϕ ⊗ ψ)(θk, θ0), this expression
coincides with the partial sum (4.1.32), running over k = 1, ..., n. Hence we arrive at

(z(ψ)z†(ϕ))Φ = 〈ψ,ϕ〉 · Φ + ((z† × z)(S2(ϕ⊗ ψ))Φ, (4.1.33)

reproducing (4.1.6b). To finish the proof, note that the cyclicity of Ω follows from

z†(ψ1) · · · z†(ψn)Ω =
√
n!Pn(ψ1 ⊗ ...⊗ ψn) (4.1.34)

since Pn is linear and maps FH1 onto H.

If S2 = +1, the operators z(ψ), z†(ψ) form a representation of the CCR algebra and are
unbounded. In the case S2 = −1, however, it is well known that the CAR algebra Z(−1) is
represented by bounded operators [BR97]. For general scattering functions, the operators
z(θ1), z

†(θ2) interpolate between these two extremal cases. Considering for example the
typical scattering function

S2(θ) =
sinh θ − ib

sinh θ + ib
, 0 < b < π , (4.1.35)

the commutation relations between z(θ1), z
†(θ2) resemble the relations of the CAR

algebra if θ1 and θ2 are close to each other, since S2(0) = −1. For far separated rapidities
θ1 − θ2 → ∞, however, z(θ1), z

†(θ2) approximately obey the relations of the CCR algebra
since S2(θ) → +1 for θ → ±∞. So in general, the operators z(ψ), z†(ψ) are unbounded.

The bounds with respect to the particle number which are familiar from the CCR
and CAR algebras, hold for arbitrary scattering functions, as the following simple Lemma
shows.
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Lemma 4.1.3. For arbitrary scattering functions S2 ∈ S, the following bounds hold with
respect to the particle number operator N :

‖z(ψ)Φ‖ ≤ ‖ψ‖ · ‖N1/2Φ‖ , ‖z†(ψ)Φ‖ ≤ ‖ψ‖ · ‖(N + 1)1/2Φ‖ , Φ ∈ D . (4.1.36)

Proof. The unsymmetrized creation and annihilation operators are related to the particle
number operator N by a(ψ1)a

†(ψ2) = 〈ψ1, ψ2〉 · (N + 1). Hence

‖a†(ψ)Φ‖2 = ‖ψ‖2‖(N + 1)1/2Φ‖2 , Φ ∈ D ,

which implies ‖a†(ψ)(N + 1)−1/2‖ = ‖ψ‖. By taking adjoints, we see that the operator
(N + 1)−1/2a(ψ) = a(ψ)N−1/2 has also norm ‖ψ‖. The claimed bounds for the Zamolod-
chikov operators z#(ψ) = Pa#(ψ)P now follow from ‖P‖ = 1.

4.2 Wedge-Local Quantum Fields

With the S2-symmetric Hilbert space, the corresponding creation and annihilation oper-
ators, and the representation of the Poincaré symmetries on H, we have introduced all
objects necessary for the discussion of physical observables and their localization proper-
ties. These observables will be constructed with the help of two quantum fields φ, φ′ on
H, which we define and analyze in this section.

As mentioned before, in the special case of the scattering function S2 = 1, the Zamolod-
chikov algebra coincides with the CCR algebra, and the Hilbert space H is the usual totally
symmetric Fock space over H1. So in this case, the free, scalar field φ0 of mass m can be
defined as a sum of a creation and an annihilation operator z, z†. Mimicking this construc-
tion, we now introduce a quantum field φ on two-dimensional Minkowski space in terms
of the Zamolodchikov operators, but allow for an arbitrary scattering function S2 ∈ S.

In the following, S denotes the space of Schwartz test functions.

Definition 4.2.1. Let f ∈ S (R2) and set

f±(θ) :=
1

2π

∫
d2x f(±x)eip(θ)·x, p(θ) = m

(
cosh θ
sinh θ

)
. (4.2.1)

The field operator φ(f) is defined as

φ(f) := z†(f+) + z(f−) . (4.2.2)

Since the functions θ 7−→ f±(θ) = f̃(∓m cosh θ,±m sinh θ) are defined as restrictions
of the Fourier transform f̃ of f ∈ S (IR2), we may consider f+ and f− as vectors in
H1 = L2(IR).

The field φ was invented by B. Schroer [Sch99]. Note that it reproduces the free field
φ0 in the case S2 = 1. In the following Proposition we show that also for generic S2, the
field operator φ shares many properties with φ0, except locality.

Proposition 4.2.2. The field operator φ(f) has the following properties:

a) For any S2 ∈ S, φ(f) is defined on D and leaves this space invariant. There holds
the bound, Ψ ∈ D,

‖φ(f)Ψ‖ ≤
(
‖f+‖ + ‖f−‖

)
· ‖(N + 1)1/2Ψ‖ . (4.2.3)
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b) For Ψ ∈ D one has

φ(f)∗Ψ = φ(f)Ψ. (4.2.4)

All vectors in D are entire analytic for φ(f). If f ∈ S (R2) is real, φ(f) is essentially
selfadjoint on D.

c) φ is a solution of the Klein-Gordon equation of mass m: For every f ∈ S (IR2),
Ψ ∈ D one has

φ((� +m2)f)Ψ = 0 . (4.2.5)

d) φ(f) transforms covariantly under the representation U of P↑
+ (4.1.19):

U(x, λ)φ(f)U(x, λ)−1 = φ(f(x,λ)) , (4.2.6)

f(x,λ)(y) = f(Λ(λ)−1(y − x)), x ∈ IR2, λ ∈ IR . (4.2.7)

Here Λ(λ) denotes the boost with rapidity λ (1.3.1).

e) The vacuum vector Ω is cyclic for the field φ: Given any open set O ⊂ IR2, the
subspace

DO := span
{
φ(f1) · · · φ(fn)Ω : f1, ..., fn ∈ S (O), n ∈ N0

}
(4.2.8)

is dense in H.

f) φ is local if and only if S2 = 1.

Proof. a) These statements follow directly from the definition of φ(f), and the bounds
given in Lemma 4.1.3.

To establish b), one calculates (f)± = f∓, which implies

φ(f)∗Ψ =
(
z†(f+)∗ + z(f−)∗

)
Ψ =

(
z(f+) + z†(f−)

)
Ψ = φ(f)Ψ

for Ψ ∈ D. In particular, φ(f) is hermitian for real f .
Now let Ψn ∈ Hn and cf := ‖f+‖ + ‖f−‖. In view of the bound in a), we have the
estimates ‖φ(f)Ψn‖ ≤

√
n+ 1 cf‖Ψn‖ and

‖φ(f)kΨn‖ ≤
√
n+ k cf ‖φ(f)k−1Ψn‖ ≤

√
n+ k · · ·

√
n+ 1 ckf‖Ψn‖ , k ∈ N.

Thus, for arbitrary ζ ∈ C there holds

∞∑

k=0

|ζ|k
k!

‖φ(f)kΨn‖ ≤ ‖Ψn‖
∞∑

k=0

√
(n+ k)!

n!

1

k!
(|ζ| cf )k <∞ ,

which shows that every Ψ ∈ D is an entirely analytic vector for φ(f). Since D is dense in
H, we can use Nelson’s theorem [RS75, Thm. X.39] to conclude that φ(f) is essentially
selfadjoint on D if f is real. In the following we use the same symbol φ(f) for the selfadjoint
closure of this operator.

c) is an immediate consequence of ((� +m2)f)± = 0.
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To prove d), we choose ϕ ∈ H1,Ψ ∈ D, (x, λ) ∈ P↑
+. Using the fact that U commutes

with the symmetrization Pn, and the second quantization structure of this representation
(4.1.19), we calculate

(
U(x, λ)z†(ϕ)U(x, λ)∗Ψ

)
n

=
√
n U(x, λ)Pn

(
ϕ⊗ U(x, λ)∗Ψn−1

)

=
√
n Pn

(
U(x, λ)ϕ ⊗ Ψn−1

)
=
(
z†(U(x, λ)ϕ)Ψ

)
n
.

This implies (cf. (4.1.19))

U(x, λ)z(ϕ)U(x, λ)∗ =
(
U(x, λ)z†(ϕ)U(x, λ)∗

)∗
= z(U(x, λ)ϕ) = z(U(−x, λ)ϕ) .

One readily verifies U(±x, λ)f± = f(x,λ)
±, which yields the covariance of φ(f):

U(x, λ)φ(f)U(x, λ)−1 = z†(U(x, λ)f+) + z(U(−x, λ)f−) = φ(f(x,λ)) . (4.2.9)

e) Let P(O) denote the algebra generated by all polynomials in the field φ(f) with
test functions f ∈ S (O). By the standard Reeh-Schlieder argument making use of the
spectrum condition [SW80] it follows that P(O)Ω is dense in H if and only if P(IR2)Ω
is. Choosing f ∈ S (IR2) such that f− = 0, it follows that z†(f+) ∈ P(IR2). Varying f
gives a dense set of f+ in H1, implying that Ω is cyclic for P(IR2) and hence for P(O).

f) In the case S2 = 1, the operator φ(f) is the free field, and well-known to be local. To
show the non-local behavior of φ(f) for the other scattering functions, let f, g ∈ S (IR2)
be two test functions with spacelike separated supports, and consider

(P2[φ(f), φ(g)]Ω)(θ1, θ2) =
1√
2

(
f+(θ1)g

+(θ2) − g+(θ1)f
+(θ2)

)
· (1 − S2(θ2 − θ1))

(4.2.10)

This expression vanishes for arbitrary (spacelike separated) test functions f, g if and only
if S2 = 1.

Proposition 4.2.2 establishes most of the usual properties of Wightman fields for φ: It
is defined on a stable, Poincaré-invariant dense domain D, transforms covariantly under
the representation U , and has the vacuum Ω as a cyclic vector. Its matrix elements are
tempered distributions on S (IR2), and in particular, the two-point function of φ has the
familiar form

〈Ω, φ(x)φ(y)Ω〉 =
1

2π2

∫
d2pΘ(p0)δ(p

2 −m2) e−ip·(x−y) , (4.2.11)

independently of S2. (The S2-dependence of the n-point functions of φ shows up for even
n ≥ 4.) As the Jost-Schroer Theorem [SW80, Thm. 4-15] states, this form of the two-
point function implies that φ is either the free field or non-local. We have shown above
that the former case is realized by the scattering function S2 = 1, and the latter case for
all other scattering functions. We also see from (4.2.11) that φ does not anticommute at
spacelike distances, either – independently of the underlying S2.

In view of the lacking locality of φ, this field might at first sight appear to be of little
physical significance. In fact, we do not regard φ as a ”physical” quantum field, but
rather as an auxiliary object, which, however, will turn out to be very important for the
construction of the theory.
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It was discovered by Schroer that φ, despite not being local in the sense of Wightman
theory, admits a weaker form of spacetime localization [Sch97, Sch99]. Namely, he argued
that φ can be interpreted as being localized in a wedge W ⊂ IR2, cf. section 1.3 for the
definition of these regions. In the following, we will motivate the localization of φ and
define what is meant by saying ”φ can be interpreted as being localized in a wedge”.

We first give a heuristic motivation by considering the time zero fields ϕ(x1) = φ(0, x1)
and π(x1) = φ̇(0, x1), x1 ∈ IR, which can also be expressed as linear combinations of
Zamolodchikov creation and annihilation operators. According to the usual interpretation
of Zamolodchikov’s algebra (section 3.3), the operator z†(θ) acts on the scattering states
z†(θ1) · · · z†(θn)Ω, θ1 > ... > θn, incoming from x1 = −∞, by adding a particle with
rapidity θ. Combining z†(θ) with a corresponding annihilation operator, we obtain the
time zero fields ϕ, π. Because of this relation to incoming particles, one might conjecture
that ϕ(x1) and π(x1) are localized on the half line (−∞, x1). In analogy to free field
theory, this suggests that φ(x0, x1) is localized in the causal closure of {x0} × (−∞, x1),
which is the wedge WL + x. So φ differs significantly from a Wightman field φ0 in its
localization properties: Whereas a Wightman field φ0(x) is localized at the point x, φ(x)
is localized in the infinitely extended wedge region WL + x.

There is also a more mathematical motivation for this interpretation. Namely, the
crossing symmetry of the scattering function, S2(θ + iπ) = S2(−θ) = S2(θ − iπ), is
reminiscent of the KMS condition for wedge-local observables with respect to the boost
group. The crossing symmetry is the reason for one of the form factor equations in
the axiomatic system of Smirnov [Smi92], the so-called cyclic form factor equation. For
a discussion of the relations between this equation and the KMS property, see [Sch97,
Sch04, Nie98]. In fact, it is possible to show that polynomials in the field φ(f), with test
functions having support in the left wedge WL, satisfy the KMS property with respect to
the boost group [Lec02].

Given these motivations, we consider the field φ as being localized in a (left) wedge
and now construct a quantum field theory out of it. In the end, this construction will
lead to a strictly local theory, but as an intermediate step, it is important to analyze the
wedge-localized quantities more closely.

In view of the covariance of φ, U(x)φ(f)U(x)−1 is clearly localized in the wedge W +x
if φ(f) is localized in W , and in this way, we obtain quantum fields localized in every
left wedge. The crucial issue is now to find a second field φ′ which is localized in a right
wedge, such that φ(x) and φ′(y) commute in an appropriate sense if WL + x and WR + y
are spacelike separated. If such a field operator exists, and has the usual properties
concerning covariance and cyclicity of the vacuum, the interpretation of φ as a Bose field
localized in a wedge is consistent. In this case, quantum observables localized in arbitrary
(left and right) wedge regions of Minkowski space can be constructed. In contrast, if φ
does not admit such a second field φ′, it might turn out that there are no corresponding
observables localized in right wedges, and the interpretation of φ as a wedge-local field
would be inconsistent.

Before constructing φ′, we make contact with the algebraic formalism employed in
chapter 2. To this end, we define the algebra of quantum observables which are localized
in the left wedge WL as

A(WL) :=
{
eiφ(f) : f ∈ S (WL) real

}′′
. (4.2.12)
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Note that eiφ(f) is unitary for real test functions f . In chapter 2, we considered a standard
right wedge algebra (M, U,H) consisting of a von Neumann algebra M and a representation
U of the translations, acting on a Hilbert space H (Def. 2.1.1), as the basic object of the
construction. In the present more concrete setting, M is defined as

M := A(WL)′ , (4.2.13)

and acts on the S2-symmetric Fock space H. The representation of the translations is
obtained by restricting U to the translation subgroup. (The restriction will be denoted U ,
too.)

In order to verify that the triple (M, U,H) defines a standard right wedge algebra, we
need to check the assumptions summarized in Definition 2.1.1. These are in detail:

a) U is strongly continuous and unitary. The joint spectrum of the generators P0, P1

of U(IR2) is contained in the forward light cone {(p0, p1) ∈ IR2 : p0 ≥ |p1|}.
There is an up to a phase unique unit vector Ω ∈ H which is invariant under the
action of U .

b) Ω is cyclic and separating for M.

c) For each x ∈WR, the adjoint action of U(x) induces endomorphisms on M,

M(x) := U(x)MU(x)−1 ⊂ M, x ∈WR . (4.2.14)

Assumption a) is clearly satisfied in our construction, and c) can be deduced from the
covariance of the field φ. Regarding b), the cyclicity of Ω for the field φ (Prop. 3.2.2 e))
implies the cyclicity of Ω for the algebra A(WL) generated by φ, and hence this vector
separates the commutant M of A(WL). (These statements are formally proven in section
4.4 below.)

In the algebraic formulation, the crucial question whether there exists a second
field φ′ with the above described properties amounts to the question whether Ω is
also cyclic for M. The cyclicity of Ω for A(WL) states that there are many observ-
ables localized in WL, namely all bounded functions of the field φ(f), supp f ⊂ WL.
But a priori, we do not have any observables localized in the right wedge WR, which
ensure the cyclicity of the vacuum for M – these will be defined as bounded functions of φ′.

We now turn to the construction of φ′ and recall that φ′(x) is required to com-
mute with φ(y) if WL + y and WR + x are spacelike separated. Thinking of a Wightman
theory with TCP operator2 J , fields localized in WL and WR = −WL should be related
by the action of J . This suggests the definition φ′(x) := Jφ(−x)J for the second field.
The problem is, however, that we a priori have no TCP operator in our model.

To find an appropriate TCP operator nonetheless, we recall that J should implement
the total spacetime reflection −1 : x 7−→ −x. Hence it must extend the representation U
to the proper Poincaré group by U(−1) := J , which amounts to the commutation relations

J U(x, λ)J = U(−x, λ) , x ∈ IR2 , λ ∈ IR . (4.2.15)

2We denote the TCP operator by J instead of Θ since it coincides with the modular conjugation of the
algebra of observables localized in the left wedge with respect to the vacuum, which is commonly denoted
J . This connection has been established for the case of finite-component Wightman fields by Bisognano
and Wichmann [BW75, BW76]. In two dimensions, it is known to hold also in the more general framework
of a theory of local observables, as a consequence of Borchers’ theorem [Bor92].
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The action of J on the vacuum and on the one particle space is uniquely fixed by these
relations, since U acts irreducibly on H1. We find

JΩ = Ω , (Jψ)(θ) = ψ(θ) , ψ ∈ H1 . (4.2.16)

On the multiparticle spaces Hn, n > 1, however, U acts reducibly and consequently J is
not fixed by the commutation relations (4.2.15).

To motivate a particular choice for the implementation of the spacetime reflection,
recall that it is our aim to construct a model which has the S-matrix S (3.2.4) given by
the scattering function S2. So we assume for a moment that we had already constructed an
asymptotically complete, local quantum field theory with S-matrix S and TCP operator
J , in which φ is a field localized in the left wedge.

It is well-known from scattering theory that the TCP operator J is related to a cor-
responding ”free” TCP operator J0 by the Møller operators Vin, Vout. J0 acts on the
symmetric Fock space H+ over H1, consisting of the asymptotic collision states. More
precisely, we define J0 (as an antilinear operator on H+) as the second quantization of the
restriction of J to the single particle space, which in view of (4.2.16) amounts to

(J0Ψ
+)n(θ1, ..., θn) := Ψ+

n (θ1, ..., θn) . (4.2.17)

Here Ψ+ = (Ψ+
0 ,Ψ

+
1 , ... ) is a vector in the Bose Fock space H+. The relation between the

TCP operator J and J0 is (cf., for example, [Mun01, Lemma 8])

J = VinJ0V
∗
out . (4.2.18)

Taking into account the physical picture of factorized scattering which underlies Zamolod-
chikov’s algebra (section 3.3), the Møller operators are expected to act on idealized n-
particle states with sharp rapidities as

Vout : a†(θ1) · · · a†(θn)Ω+ 7−→ z†(θ1) · · · z†(θn)Ω , θ1 < ... < θn , (4.2.19a)

Vin : a†(θ1) · · · a†(θn)Ω+ 7−→ z†(θ1) · · · z†(θn)Ω , θ1 > ... > θn . (4.2.19b)

Here a†(θ) denotes the asymptotic creation operators, representing the CCR algebra on
the Bose Fock space H+, and Ω+ ∈ H+ is the Fock vacuum. These heuristic formulae lead
to a definition of J as follows. Let Ψn(θ1, ..., θn) := z†(θ1) · · · z†(θn)Ω, θ1 < ... < θn. Then

(VinJ0V
∗
outΨn)(θ1, ..., θn) = VinJ0a

†(θ1) · · · a†(θn)Ω+ = Vina†(θn) · · · a†(θ1)Ω+

= z†(θn) · · · z†(θ1)Ω = Ψn(θn, ..., θ1) .

Consequently, we define

(JΨ)n(θ1, ..., θn) := Ψn(θn, ..., θ1) . (4.2.20)

Let us emphasize that none of the indicated properties which were used for the motivation
of this definition, like asymptotic completeness of the theory, existence of Møller operators,
or the formulae (4.2.19), are assumed in the following. Rather, we take (4.2.20) as a
definition.

Besides J , we also introduce the involution

(ΓΨ)n(θ1, ..., θn) := Ψn(−θ1, ...,−θn) , (4.2.21)

and study the properties of J and Γ in the following Lemma.
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Lemma 4.2.3.

a) J and Γ are commuting antiunitary involutions which leave H invariant.

b) Denote by T : IR2 −→ IR2 the time reflection, T (x0, x1) = (−x0, x1), and put

U(−1) := J , U(T ) := Γ , U(−T ) := ΓJ . (4.2.22)

These assignments extend U to a representation of the full Poincaré group P on H.

Proof. a) It is apparent from (4.2.20) and (4.2.21) that J and Γ are commuting antiunitary
involutions on the unsymmetrized Fock space FH1 =

⊕∞
n=0 L

2(IRn). To prove that they
leave the subspace H ⊂ FH1 invariant, we compute the commutation relations between
these operators and the representations Dn (4.1.11) of the symmetric group. Let Ψn ∈
L2(IRn).

(JDn(τk)Ψn)(θ1, ..., θn) = S2(θn−k − θn−k+1) Ψn(θn, .., θn−k, θn−k+1, .., θ1)

= S2(θn−k+1 − θn−k)Ψn(θn, .., θn−k, θn−k+1, .., θ1)

= (Dn(τn−k)JΨn)(θ1, ..., θn)

So we have JDn(τk)J = Dn(τn−k), and as the transpositions generate Sn, this shows that
J induces a group automorphism on Sn. The mean over the group, Pn, is therefore left
invariant, JPn = PnJ , and hence H is stable under the action of J .

For Γ we obtain

(Dn(τk)ΓΨn)(θ1, ..., θn) = S2(θk+1 − θk)Ψn(−θ1, ...,−θk+1,−θk, ...,−θn)
= S2(−θk+1 − (−θk)) · Ψn(−θ1, ...,−θk+1,−θk, ...,−θn)
= (ΓDn(τk)Ψn)(θ1, ..., θn) .

So Γ commutes with Dn(τk) and hence with the projections Pn. This implies ΓH = H.
b) We need to check the commutation relations J U(x, λ)J = U(−x, λ) and

ΓU(x, λ)Γ = U(Tx,−λ). So let Ψ ∈ H, (x, λ) ∈ P↑
+ and consider

(J U(x, λ)JΨ)n(θ1, ..., θn) = (U(x, λ)JΨ)n(θn, ..., θ1)

=
n∏

k=1

e−ip(θk)·x · Ψn(θ1 − λ, ..., θn − λ)

= (U(−x, λ)Ψ)n(θ1, ..., θn)

and, taking into account T p(θ) = (−m cosh θ,m sinh θ) = −p(−θ) (4.2.1),

(ΓU(x, λ)ΓΨ)n(θ1, ..., θn) =

n∏

k=1

e−ip(−θk)·x(ΓΨ)n(−θ1 − λ, ...,−θn − λ)

=

n∏

k=1

eip(θk)·TxΨn(θ1 + λ, ..., θn + λ)

= (U(Tx,−λ)Ψ)n(θ1, ..., θn) .

As Ψ and (x, λ) were arbitrary, this proves that J and Γ implement the reflections −1 and
T , respectively. The corresponding property of JΓ follows since J and Γ commute.



66 Chapter 4. A Family of Models with Factorizing S-Matrices

Remark: By a simple calculation which we omit here, one can show

Γz(ψ)Γ = z(Γψ) , Γz†(ψ)Γ = z†(Γψ) , ψ ∈ H1 , (4.2.23)

Γφ(f)Γ = φ(fT ) , fT (x0, x1) = f(−x0, x1) , (4.2.24)

that is, the field φ also transforms covariantly under Γ.

In view of Lemma 4.2.3, we will consider J as the TCP operator of the model.
According to the strategy explained above, we now introduce the field φ′(x) := Jφ(−x)J ,
properly defined by

φ′(f) := Jφ(f∗)J, f∗(x) := f(−x) . (4.2.25)

This field shares many properties with φ.

Lemma 4.2.4. The field φ′ also has the properties a)-f) listed in Proposition 4.2.2 for φ.

Proof. These properties follow in a straightforward manner from the definition of φ′, and
we can be brief about the proof.

As a consequence of the representation properties of J , φ′ transforms covariantly under
U , and in view of the antiunitary of J , the bound in a) and φ′(f)∗Ψ = φ′(f)Ψ, Ψ ∈ D,
follow. As (f∗)± = f±, φ′ is also a solution of the Klein-Gordon equation. The cyclicity
of the vacuum follows from

φ′(f1) · · · φ′(fn)Ω = J φ(f∗1 ) · · · φ(f∗n)Ω (4.2.26)

since J is an involution. Finally, φ′ is local if and only if φ is, and thus we also have f).

Note that φ and φ′ coincide if and only if the underlying scattering function is S2 = 1,
in which case they are given by the free field. In spite of these fields being different in
general, φ and φ′ still create the same single particle state from the vacuum, irrespectively
of S2:

φ′(f)Ω = J (f∗)+ = f+ = φ(f)Ω , f ∈ S (IR2) . (4.2.27)

But the most important property of the fields φ, φ′ is that they are relatively wedge-local
to each other in the following sense: φ(f) and φ′(g) commute (on D) if f has support in
WL and g in WR. This result will enable us to complete the construction of the wedge-
local observables of our model, and a posteriori justifies the interpretation of φ as being
localized in a wedge.

To derive it, we consider the ”reflected” Zamolodchikov operators

z(ψ)′ := Jz(ψ)J , z†(ψ)′ := Jz†(ψ)J , (4.2.28)

and calculate their commutation relations with z(ψ), z†(ψ).

Lemma 4.2.5. Let ψ1, ψ2 ∈ H1. The following commutation relations hold on D:

[z(ψ1)
′, z(ψ2)] = 0 , [z†(ψ1)

′, z†(ψ2)] = 0 . (4.2.29)
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The mixed commutators act as multiplication operators on Hn:

[
z(ψ1)

′, z†(ψ2)
]
Ψn = Bψ1,ψ2

n · Ψn, Bψ1,ψ2
n = +

∫
dθ ψ1(θ)ψ2(θ)

n∏

j=1

S2(θ − θj) , (4.2.30)

[
z†(ψ1)

′, z(ψ2)
]
Ψn = Cψ1,ψ2

n · Ψn, Cψ1,ψ2
n = −

∫
dθ ψ1(θ)ψ2(θ)

n∏

j=1

S2(θj − θ) . (4.2.31)

Proof. We first compute the explicit action of the reflected annihilation operator z(ψ)′ on
Φ ∈ D. On the basis of (4.2.20) and (4.1.25) we find

(z(ψ)′Φ)n(θ1, ..., θn) = (z(ψ)JΦ)n(θn, ..., θ1) =
√
n+ 1

∫
dθ ψ(θ) Φn+1(θ1, ..., θn, θ) .

The claimed commutation relations can be verified by straightforward calculation. Let
ψ1, ψ2 ∈ H1, Φ ∈ D.

(
[z(ψ1)

′, z(ψ2)]Φ
)
n
(θ1, ..., θn) =

√
n+ 1

∫
dθ′ ψ1(θ′)

(
z(ψ2)Φ

)
n+1

(θ1, ..., θn, θ
′)

−
√
n+ 1

∫
dθ ψ2(θ)

(
z(ψ1)

′Φ
)
n+1

(θ, θ1, ..., θn)

=
√

(n + 1)(n + 2)

∫
dθ′ ψ1(θ′)

∫
dθ ψ2(θ)Φn+2(θ, θ1, ..., θn, θ

′)

−
√

(n+ 1)(n + 2)

∫
dθ ψ2(θ)

∫
dθ′ ψ1(θ

′)Φn+2(θ, θ1, ..., θn, θ
′)

= 0 .

So [z(ψ1)
′, z(ψ2)] = 0 on D, and by taking adjoints, we also obtain [z†(ψ1)

′, z†(ψ2)] = 0.
For the calculation of the mixed commutators, recall the formula (4.1.26) for the creation
operator.
(
[z(ψ1)

′, z†(ψ2)]Φ
)
n
(θ1, .., θn)

=
√
n+ 1

∫
dθn+1 ψ1(θn+1)

(
z†(ψ2)Φ

)
n+1

(θ1, .., θn, θn+1)

− 1√
n

n∑

k=1

k−1∏

j=1

S2(θk − θj)ψ2(θk)
(
z(ψ1)

′Φ
)
n−1

(θ1, .., θ̂k, .., θn)

=

n+1∑

k=1

∫
dθn+1ψ1(θn+1)

k−1∏

j=1

S2(θk − θj)ψ2(θk)Φn(θ1, .., θ̂k, .., θn+1)

−
n∑

k=1

k−1∏

j=1

S2(θk − θj)ψ2(θk)

∫
dθn+1ψ1(θn+1)Φn(θ1, .., θ̂k, .., θn+1)

=

∫
dθn+1 ψ1(θn+1)ψ2(θn+1)

n∏

j=1

S2(θn+1 − θj) · Φn(θ1, .., θn)

This calculation identifies the restriction of [z(ψ1)
′, z†(ψ2)] to the n-particle space as the

operator multiplying with the function Bψ1,ψ2
n (4.2.30). By taking adjoints, we also have

[z†(ψ1)
′, z(ψ2)]Φn = −[z(ψ1)

′, z†(ψ2)]
∗Φn = −Bψ1,ψ2

n · Φn .
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The function −Bψ1,ψ2
n agrees with Cψ1,ψ2

n (4.2.31) since S2(θ) = S2(−θ), and the proof is
finished.

After this preparation, we can prove the relative locality of the fields φ and φ′.

Proposition 4.2.6. The field operators φ (4.2.1) and φ′ (4.2.25) are relatively wedge-local
to each other in the following sense: For f ∈ S (WR), g ∈ S (WL), there holds

[φ′(f), φ(g)]Ψ = 0, Ψ ∈ D . (4.2.32)

Proof. We first note that it is sufficient to prove (4.2.32) for compactly supported test
functions f ∈ C∞

0 (WR), g ∈ C∞
0 (WL): According to Proposition 4.2.2 a), the map

(f, g) 7−→ 〈Φ, [φ(f), φ′(g)]Ψ〉, Φ,Ψ ∈ D, is a tempered distribution in f and g. So if
it vanishes on C∞

0 (WR) × C∞
0 (WL), it also vanishes on S (WR) × S (WL), which implies

(4.2.32).

Let f ∈ C∞
0 (WR), g ∈ C∞

0 (WL),Ψn ∈ Hn. In view of Lemma 4.2.5 we have

[φ′(f), φ(g)]Ψn = [z†(f∗+)′ + z(f∗−)′, z†(g+) + z(g−)]Ψn

= [z†(f+)′, z(g−)]Ψn + [z(f−)′, z†(g+)]Ψn

=
(
Cf

+, g−
n +Bf−, g+

n

)
· Ψn ,

where the functions appearing in the last line are defined in (4.2.30) and (4.2.31). So in

order to establish the desired result, we need to show Cf
+, g−

n + Bf−, g+
n = 0. For this

purpose, we recall some analytic properties of the functions involved.

Since g has compact support, its Fourier transform is entire analytic, and hence also its
restriction to the mass shell, g+(θ) = (2π)−1

∫
d2x g(x) exp(ip(θ) · x), is an entire analytic

function. To estimate the exponential factor, note that for Im(p(θ)) ∈ WR, there holds
Im(p(θ)) · x > 0 for all x ∈WL. Using the rapidity parametrization (4.2.1), one calculates
that

Im(p(θ + iµ)) = m sinµ

(
sinh θ
cosh θ

)
∈WR for 0 < µ < π .

Making use of the fact that supp g is compact, it follows that g+ is bounded on the
strip3 S(0, π), and |g+(θ + iλ)| converges rapidly to zero as θ → ±∞ and λ ∈ [0, π] is
fixed. Since p(θ + iπ) = −p(θ), the value at the upper boundary of the strip is given by
g+(θ + iπ) = g−(θ).

All these considerations apply to f∗(x) = f(−x) as well because f∗ ∈ C∞
0 (WL). In

view of (f∗)+ = f− we have analyticity for f− in S(0, π), with f−(θ + iπ) = f+(θ), as
well as exponential decay for Re(θ) → ±∞ in this strip.

Also recall that the scattering function S2 is analytic in S(0, π) and bounded and
continuous on the closure of this region, with boundary values connected by the crossing
symmetry relation S2(θ + iπ) = S2(−θ).

3The notation for the strip regions appearing here is as in (3.2.10).
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We now consider the integrand of Bf−, g+
n (4.2.30), which is analytic on S(0, π) and of

fast decrease for Re(θ) → ±∞. This enables us to shift the integration from IR to IR+ iπ:

Bf−, g+
n (θ1, ..., θn) =

∫
dθ f−(θ)g+(θ)

n∏

j=1

S2(θ − θj)

=

∫
dθ f−(θ + iπ)g+(θ + iπ)

n∏

j=1

S2(θ + iπ − θj)

=

∫
dθ f+(θ)g−(θ)

n∏

j=1

S2(θj − θ)

= −Cf
+ ,g−

n (θ1, ..., θn) .

So Bf−, g+
n + Cf

+, g−
n = 0 follows, and hence [φ(f)′, φ(g)] vanishes on D.

In view of this result, we can consistently interpret φ′ to be localized in the right wedge,
i.e. the localization region of φ′(f) is the wedge (WR + supp f)′′, whereas φ(f) is localized
in (WL + supp f)′′. By choosing the support of f appropriately, we find for every wedge
W ⊂ IR2 quantum field operators which are localized in W , and have thus constructed a
wedge-local quantum field theory as an important intermediate step in the definition of a
local model.

Before we discuss the structure of the wedge algebras generated by φ and φ′, we consider
collision processes of two particles, which can be analyzed in terms of the field operators
φ, φ′.

4.3 Two-Particle Scattering States

The aim of our construction is to find a model theory which has the S-matrix S corre-
sponding to the scattering function S2 we used in the definition of the Hilbert space and
the fields, cf. (3.2.4). In the end, the S-matrix of the constructed model has to be com-
puted and compared to S in order to check if the construction solves the inverse scattering
problem.

The collision theory needed for the computation of the S-matrix relies on quasilocal
one-particle generators to obtain multiparticle scattering states. But for the computation
of two-particle scattering states, the wedge-localized fields φ, φ′ are sufficient, since two
opposite wedges can be spacelike separated by translation. Moreover, these operators are
especially convenient to use in collision theory since they generate single particle states
from the vacuum.

In this section, we analyze scattering processes with two incoming and two outgoing
particles. It will turn out that the incoming and outgoing two-particle scattering states
are indeed connected by the two-particle S-matrix corresponding to S2, as was expected
from the motivation of our construction.

For the analysis of collision processes we employ the Haag-Ruelle scattering theory
[Haa58, Rue62, Ara99] in a form used in [BBS01] for wedge-localized fields. Let us recall
how two-particle scattering states can be constructed in this case.
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Instead of the usual quasi-local operators appearing in scattering theory, we here have
to rely on quasi-wedgelocal fields of the form φ(ft), φ

′(ft), where the functions ft, t ∈ IR,
are defined as usual by

ft(x) :=
1

2π

∫
d2p f̃(p0, p1) e

i(p0−ωp)t e−ipx , ωp :=
(
m2 + p2

1

)1/2
, (4.3.1)

and the f̃ are smooth momentum space wavefunctions of compact support. For the con-
struction of collision states, the asymptotic properties of ft as t → ±∞ are important.
We introduce the velocity support of a test function f ∈ S (IR2) as

V(f) :=
{

(1, p1/ωp) : (p0, p1) ∈ supp f̃
}

(4.3.2)

and recall that the support of ft is essentially contained in tV(f) for t → ±∞ [Hep66].
More precisely, let χ be a smooth function which is equal to 1 on V(f) and vanishes in the
complement of a slightly larger region. Then f̂t(x) := χ(x/t)ft(x) is the asymptotically
dominant part of ft, i.e. ft − f̂t → 0 for t→ ±∞, in the topology of S (IR2) [BBS01].

Furthermore, we adopt the notation to write f ≺ g if V(g) − V(f) ⊂ {0} × (0,∞)
[BBS01].

To construct outgoing two-particle scattering states, we consider test functions ft
and gt with f ≺ g, such that the supports of f̃ , g̃ are disjoint and concentrated around
points on the upper mass shell H+

m. Thus at very late or early times t the operators
φ(ft) and φ′(gt) are essentially localized in WL + tV(f) and WR + tV(g), respectively.
Since f ≺ g, these localization regions are spacelike separated and their distance increases
linearly with t as t→ +∞. In view of φ(f)Ω = f+, φ′(g)Ω = g+, the outgoing two-particle
state (f+ × g+)out is given by the limit

lim
t→∞

φ(ft)φ
′(gt)Ω = (f+ × g+)out , f ≺ g , (4.3.3)

and similarly

lim
t→∞

φ′(gt)φ(ft)Ω = (g+ × f+)out , f ≺ g . (4.3.4)

As the operators φ(ft) and φ′(gt) commute for t → ∞, we have symmetric scattering
states, (g+ × f+)out = (f+ × g+)out, as required for a Boson.

To construct incoming scattering states one has to exchange f and g because the
regions WR + tV(f) and WL + tV(g) are far apart and spacelike separated in the limit
t→ −∞ if f ≺ g. Thus

lim
t→−∞

φ(gt)φ
′(ft)Ω = (g+ × f+)in = (f+ × g+)in , f ≺ g . (4.3.5)

In the models at hand, the limits needed for the computation of these collision states can
be carried out easily. In view of the support properties of f̃ and g̃, there holds f+

t = f+,
g+
t = g+ and f−t = 0, g−t = 0 . Hence all time-dependence drops out and we arrive at

(f+ × g+)out = lim
t→+∞

φ(ft)φ
′(gt)Ω =

√
2P2(f

+ ⊗ g+) , f ≺ g , (4.3.6)

(f+ × g+)in = lim
t→−∞

φ(gt)φ
′(ft)Ω =

√
2P2(g

+ ⊗ f+) , f ≺ g . (4.3.7)
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Varying f and g within the above mentioned limitations, we obtain total sets of incoming
and outgoing two-particle states in H2: Note that f ≺ g implies supp g+ − supp f+ ⊂
(0,∞), as can be seen from the definition of the velocity support (4.3.2). On the other
hand, for smooth one particle functions ψ1, ψ2 ∈ H1 with compact support and suppψ2 −
suppψ1 ⊂ (0,∞), we can find f1, f2 ∈ S (IR2) such that f+

1 = ψ1, f
+
2 = ψ2 and f1 ≺ f2.

Therefore we also write ψ1 ≺ ψ2 in this situation. By continuity of (4.3.6) in f+ and g+,
we obtain

(ψ1 × ψ2)out =
√

2P2(ψ1 ⊗ ψ2) , ψ1 ≺ ψ2 , (4.3.8)

and analogously

(ψ1 × ψ2)in =
√

2P2(ψ2 ⊗ ψ1) , ψ1 ≺ ψ2 , (4.3.9)

Any smooth function with compact support in R := {(θ1, θ2) : θ1 ≤ θ2} can be approx-
imated by linear combinations of functions of the form ψ1 ⊗ ψ2 with ψ1 ≺ ψ2. But the
projection P2 : L2(R, dθ1dθ2) −→ H2 is linear, continuous and onto, implying that the
above constructed scattering states (4.3.8) and (4.3.9) both form total sets in H2.

In particular, the interpretation of H2 as the ”two-particle space” is justified by
these results: Any Ψ2 ∈ H2 can be written as a superposition of incoming or outgoing
two-particle collision states.

We now turn to the computation of the two-particle Møller operators V
(2)
in ,

V
(2)
out : H+

2 −→ H2 and the S-matrix S2,2 = V
(2)∗
out V

(2)
in for 2 → 2 processes. Here

H+
2 denotes the symmetric two-particle subspace of the Bose Fock space H+ over L2(IR),

cf. section 3.1.
The Bosonic scattering states (4.3.8) and (4.3.9) are represented in H+

2 by the vectors

V
(2)∗
out (ψ1 × ψ2)out =

√
2P+

2 (ψ1 ⊗ ψ2) , ψ1 ≺ ψ2 (4.3.10)

V
(2)∗
in (ψ1 × ψ2)in =

√
2P+

2 (ψ1 ⊗ ψ2) , ψ2 ≺ ψ1 . (4.3.11)

The symmetrization projection P+
2 is given by P2 with S2 = 1. Hence V

(2)
out

∗
acts according

to

V
(2)∗
out (ψ1 ⊗ ψ2 + S∗

2(ψ2 ⊗ ψ1)) = ψ1 ⊗ ψ2 + ψ2 ⊗ ψ1 , ψ1 ≺ ψ2 . (4.3.12)

Taking into account the support properties of ψ1 ≺ ψ2, it becomes apparent that V
(2)∗
out is

the multiplication operator multiplying with

V
(2)∗
out (θ1, θ2) =

{
1 ; θ1 ≤ θ2

S2(θ1 − θ2) ; θ1 > θ2
. (4.3.13)

Analogously, V
(2)
in is seen to multiply with

V
(2)
in (θ1, θ2) =

{
S2(θ2 − θ1) ; θ1 ≤ θ2

1 ; θ1 > θ2
. (4.3.14)

Hence the two-particle S-matrix S2,2 = V
(2)∗
out V

(2)
in is given by the operator multiplying with

the symmetric function (θ1, θ2) 7−→ S2(|θ1 − θ2|), θ1, θ2 ∈ IR, and thus coincides with the
two-particle S-matrix given by the scattering function S2 (3.2.4).

We summarize these results in the following Proposition.
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Proposition 4.3.1. Consider a scattering function S2 ∈ S and the associated quantum
field theory defined in terms of the wedge-local fields φ and φ′.

This theory is asymptotically complete at the two-particle level, i.e. there exist total
sets of incoming and outgoing two-particle scattering states in the subspace H2 ⊂ H. These
states have the explicit forms

(ψ1 × ψ2)out =
√

2P2(ψ1 ⊗ ψ2) , ψ1 ≺ ψ2 , (4.3.15)

(ψ1 × ψ2)in =
√

2P2(ψ2 ⊗ ψ1) , ψ1 ≺ ψ2 . (4.3.16)

The two-particle S-matrix S2,2 is given by the underlying scattering function,

(S2,2Ψ2)(θ1, θ2) = S2(|θ1 − θ2|) · Ψ2(θ1, θ2) , Ψ2 ∈ H2 . (4.3.17)

�

This Proposition shows that at least at the two-particle level, our construction is successful
as a solution to the inverse scattering problem: The initial scattering function S2, defining
a particular model, also describes the two-particle collision processes in this theory.

To compute scattering states of more than two incoming or outgoing particles, com-
pactly localized observables are needed. We will return to this question in chapter 6.

4.4 Algebraic Formulation of the Models

Having verified the correct two-particle interaction, we now formulate the family of models
defined by the fields φ and φ′ in the language of algebraic quantum field theory, in order
to make contact with the general construction of chapter 2.

Fixing a scattering function S2 ∈ S, the model we have constructed gives rise to the
net W 7−→ A(W ) of wedge algebras defined by

A(WL + x) :=
{
eiφ(f) : f ∈ S (WL + x) real

}′′
, (4.4.1a)

A(WR + x) :=
{
eiφ

′(f) : f ∈ S (WR + x) real
}′′
. (4.4.1b)

This net inherits its basic properties from the corresponding properties of the fields φ, φ′,
as shown in the following Proposition.

Proposition 4.4.1.

a) The map W 7−→ A(W ) defined in (4.4.1) is a local net of von Neumann algebras
which transforms covariantly under the adjoint action of the extended representation
U (cf. Lemma 4.2.3) of the full Poincaré group P.
Moreover, the vacuum vector Ω is cyclic and separating for each A(W ), W ∈ W.

b) Let Ũ denote the restriction of the representation U to the translations. The triple
(A(WR), Ũ ,H) is a standard right wedge algebra in the sense of Definition 2.1.1.

c) With respect to the net W 7−→ A(W ), the fields φ(f) and φ′(f) are temperate
polarization-free generators in the sense of Definition 2.4.2, affiliated to A((WL +
supp f)′′) and A((WR + supp f)′′), respectively.
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Proof. a) In view of the covariance properties of φ, the exponentiated field operator

satisfies U(x, λ)eiφ(f)U(x, λ)−1 = eiφ(f(x,λ)) for any (x, λ) ∈ P↑
+. The three reflections

U(−1) = J , U(T ) = Γ and U(−T ) = ΓJ (Lemma 4.2.3) satisfy for real test functions f

Jφ(f)J = φ′(f−1) , f−1(x0, x1) = f(−x0,−x1) , (4.4.2)

Γφ(f)Γ = φ(fT ) , fT (x0, x1) = f(−x0, x1) , (4.4.3)

ΓJφ(f)JΓ = φ′(f−T ) , f−T (x0, x1) = f(x0,−x1) . (4.4.4)

The first of these equations is an immediate consequence of the definition of φ′, the second
states the covariance of φ under Γ (4.2.24), and the third one is a consequence of the other
two. All three equations hold accordingly for the exponentiated fields operators eiφ(f),
and also for exponentials of φ′. Since these operators generate the wedge algebras A(W )
and since supp fg = g supp f , g ∈ P, we conclude U(g)A(W )U(g)−1 = A(gW ), g ∈ P,
W ∈ W, from the unitarity of U .

To prove the locality of the net, we consider the selfadjoint operators φ(f), φ′(g),
f ∈ S (WL), g ∈ S (WR), which commute on D in the sense of Prop. (4.2.6). In order to
conclude that also the unitaries eiφ(f) and eiφ

′(g) commute, we apply a theorem of Driessler
and Fröhlich [DF77]: These authors showed that this conclusion is valid if

‖φ(f)(1 +H)−1‖ <∞, ‖φ′(g)(1 +H)−1‖ <∞, (4.4.5)

where H is the Hamiltonian. But such H-bounds follow directly from the proof of Prop.
4.2.2 b) and the fact H ≥ m ·N . Hence eiφ(f) and eiφ

′(g) commute for arbitrary real test
functions f ∈ S (WL), g ∈ S (WR). This implies A(WR) ⊂ A(WL)′, and so locality of the
net follows by covariance.

To show that the vacuum is cyclic and separating for the wedge algebras, we apply
arguments of [BW75, BY90]. Let f1, ..., fn ∈ S (WL) be real, and denote by Ek(t) the
spectral projection of the selfadjoint operator φ(fk), corresponding to spectral values in
[−t, t]. Then Fk(t) := Ek(t)φ(fk) ∈ A(WL) for all t ∈ IR, and Fk(t) → φ(fk) strongly
on D as t → ∞. Hence F1(t) · · ·Fn(t)Ω converges to φ(f1) · · · φ(fn)Ω as t → ∞, and we
conclude the cyclicity of Ω for A(WR) from the cyclicity of Ω for φ (Prop. 4.2.2 e)). The
identical argument can be applied to φ′ as well, yielding the cyclicity of Ω for A(WR). But
A(WL) and A(WR) commute, and so it follows that Ω is cyclic and separating for these
algebras. By covariance of A and the invariance of Ω under U , this statement carries over
to all wedge algebras.

b) The necessary properties of the triple (A(WL), Ũ ,H) have been shown in a).
c) By virtue of the theorem of Driessler and Fröhlich, already used for the proof of a), it
follows that φ(f) commutes with A(WR + x) if WR + x and (WL + supp f)′′ are spacelike
separated, i.e. φ(f) is affiliated with A((WL + supp f)′′), and the same holds true for its

adjoint, φ(f)∗ = φ(f). Moreover, φ(f)Ω = f+ and φ(f)Ω = f
+

are single particle states,
which implies that φ(f) is a polarization-free generator. The temperateness assumptions
made in Definition 2.4.2 are easily seen to be satisfied by taking D as the domain of
temperateness and using the bound from Proposition 4.2.2 a).

The arguments for showing that φ′(f) is a temperate polarization-free generator are
analogous.

Proposition 4.4.1 provides the link between the model constructions in this chapter and the
more abstract analysis in chapter 2, as it shows that the models defined here are examples
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for constructions of quantum field theories in terms of a standard right wedge algebra.
There is, however, a slight difference between the approach taken here and in chapter
2: In the latter context, the algebra of the left wedge was defined as the commutant of
the standard right wedge algebra, resulting in a Haag-dual net. Here the algebras of the
left and right wedge have been constructed in terms of the fields φ and φ′. Below it is
shown that both definitions are equivalent by computing the modular objects of the wedge
algebras.

The following Proposition is due to D. Buchholz [BL04].

Proposition 4.4.2. Consider the net W 7−→ A(W ) of wedge algebras (4.4.1).

a) The Bisognano-Wichmann property holds, i.e. the modular unitaries ∆it and mod-
ular conjugation J̃ affiliated with (A(WR),Ω) are given by

∆it = U(0,−2πt), t ∈ IR, (4.4.6)

J̃ = J . (4.4.7)

b) Haag-duality holds, i.e.

A(W )′ = A(W ′) , W ∈ W . (4.4.8)

Proof. a) It follows from modular theory that any boost U(0, λ) commutes with ∆ and J̃
since Ω is invariant and A(WR) is stable under its (adjoint) action. Hence the unitaries

V (t) := U(0, 2πt)∆it , t ∈ IR , (4.4.9)

commute with any boost U(0, λ), and as a consequence of Borchers’ commutation relations
(2.1.5), also with all translations U(x, 0). Since U acts irreducibly on H1, and V is a
representation of (IR,+), this implies that V (t) ↾ H1 = eitc for fixed real c and any t ∈ R.

Now, for real f with suppf ⊂ WR, φ′(f) is a selfadjoint operator which is affiliated
with A(WR), and the same holds for φ′t(f) := V (t)φ′(f)V (t)−1, t ∈ R, because of the
stability of A(WR) under the adjoint action of V (t). So both operators commute with all
elements of A(WR)′. Since Ω is invariant under the action of V (t) and since φ′(f)Ω ∈ H1,
the preceding result implies

(
φ′t(f) − eitcφ′(f)

)
A′Ω = 0, A′ ∈ A(WR)′. (4.4.10)

It will be shown below that the dense set of vectors A(WR)′Ω is a core for both, φ′(f) and
φ′t(f). Hence φ′t(f) = eitcφ′(f), which, in view of the selfadjointness of the field operators,
is only possible if c = 0. This holds for any choice of f within the above limitations, so V (t)
acts trivially on P(WR)Ω, where P(WR) denotes the algebra consisting of polynomials in
φ′(f), with test functions f supported in WR. As P(WR)Ω ⊂ H is dense, one arrives at
V (t) = 1, t ∈ R, from which the claimed action of the modular unitaries follows.

Similarly, modular theory and the theorem of Borchers mentioned above imply that
the unitary operator I := J̃J commutes with all Poincaré transformations U(x, λ). Fur-
thermore, we have Jeiφ

′(f)J = eiφ(f−), f−(x) = f(−x), for real test functions f , and

IA(WR)I = J̃
{
eiφ

′(f) : f ∈ S (WR) real
}′′
J̃ = A(WR) .
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Hence, putting φ′I(f) := Iφ′(f)I−1, one finds by the same reasoning as in the preceding
step that φ′I(f) = φ′(f). Thus I = 1 and J̃ = J .

The statement b) about Haag duality then follows from the equalities

A(WR)′ = J̃A(WR)J̃ = JA(WR)J = A(WL) (4.4.11)

and covariance.

It remains to prove the assertion that A(WR)′Ω is a core for the selfadjoint operators
φ′(f), φ′t(f) and φ′I(f), respectively. To this end one makes use of the bound given in
Proposition 4.2.2 a): For Ψ ∈ D one has ‖φ(f)Ψ‖ ≤ cf ‖(N + 1)1/2Ψ‖, where N is
the particle number operator and cf := ‖f+‖ + ‖f−‖. Denoting the generator of the
time translations by P0 and recalling the structure of U (4.1.19), it is also clear that
m (N + 1) ≤ (P0 +m1). So for Ψ ∈ D ∩D0, where D0 is the domain of P0, one arrives at
the inequalities

‖φ′(f)Ψ‖ ≤ cf ‖(N + 1)1/2Ψ‖ ≤ m−1/2cf ‖(P0 +m1)1/2Ψ‖ . (4.4.12)

It follows from this estimate by standard arguments that any core for P0 is also a core for
the field operators φ(f). Since the unitary operators V (t) and I in the preceding steps
were shown to commute with the time translations, this domain property is also shared
by the transformed fields φ′t(f) and φ′I(f), respectively.

In order to complete the proof, one has only to show that A(WR)′Ω∩D0 is a core for P0.
Now A(WR)′Ω is mapped into itself by all translations U(x), x ∈WR. Hence, taking into
account the invariance of Ω under translations, one finds that f̃(P )A(WR)′Ω ⊂ A(WR)′Ω∩
D0 for any test function f with supp f ⊂WR. But this space of functions contains elements
f such that f̃(P ) is invertible. Hence (P0 ± i1)f̃ (P )A(WR)′Ω ⊂ (P0 ± i1)(A(WR)′Ω∩D0)
both are dense subspaces of H, proving the statement.

Having identified the modular objects as stated above, the net (4.4.1) coincides with
the net generated from the standard right wedge algebra (A(WR), Ũ ,H) as in chapter 2.
Accordingly, we can define a net of local algebras by taking intersections of wedge algebras:
The algebra of observables localized in a double cone O = W1 ∩W2 is defined as

A(W1 ∩W2) := A(W1) ∩ A(W2) , (4.4.13)

and for arbitrary open regions Q ⊂ IR2 we put4

A(Q) :=
∨

O⊂Q
O∈O

A(O) . (4.4.14)

As was shown in chapter 2, it follows that O 7−→ A(O) is a local net of von Neumann
algebras which transforms covariantly under the representation U of P, and we take this
net as the definition of the model theory associated to a scattering function S2.

In doing so, we avoid the subtle problem of finding explicit expressions for local
quantum fields associated to S2, which is the construction strategy in the form factor
program. The formulation of such local fields is not uniquely fixed by S2. Rather, it is

4As before, O denotes the family of all double cones in IR2.
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long since known that a given S-matrix S may have a multitude of different Wightman
fields realizing S as their scattering operator [Bor60]. Moreover, the construction of local
interacting quantum fields can be expected to lead to complicated convergence questions,
as witnessed by the bootstrap approach.

Using Smirnov’s axiomatic formulation of the form factor equations, Schroer and
Wiesbrock proposed a construction of elements of the local algebras (4.4.13) as certain
infinite series of the Zamolodchikov operators [SW00]. But the convergence of such series
can presently not be controlled, in close analogy to the problem the form factor program
faces in the construction of n-point functions.

In contrast, we do not try to derive formulae for local observables or fields affili-
ated to the above defined net, but rather analyze the structure of the local algebras.
Our strategy is the same as in chapter 2: For the net (4.4.13) to describe a physically
meaningful theory, it must at least satisfy the basic assumptions of local quantum physics.
Most of these assumptions, like locality and covariance, follow automatically from the
corresponding properties of the wedge algebras. What remains to be proven in the models
at hand is the Reeh-Schlieder property of the vacuum, and in particular, the existence
of local observables. In the following chapter, we will investigate the modular nuclearity
condition, introduced in chapter 2, as a sufficient condition for these properties.



Chapter 5

The Modular Nuclearity

Condition in Models with

Factorizing S-Matrices

The models discussed in the previous chapter are defined in terms of the wedge-local fields
φ and φ′. Since these field operators are explicitly known, we have good control over
all wedge-local quantities, as exemplified in the calculation of the two-particle scattering
states and the modular data of the wedge algebras. In contrast, observables localized in
bounded spacetime regions are not given by explicit formulae, but characterized in a less
concrete way as elements of intersections of certain wedge algebras, and their properties
are therefore more difficult to extract.

According to the general construction in chapter 2, it is possible to derive local prop-
erties, like the Reeh-Schlieder property for bounded regions, by a refined analysis of the
wedge algebras. A sufficient condition for the models to comply with all principles of
quantum field theory is the modular nuclearity condition (section 2.3) for these algebras,
because this condition implies the split property for wedges and all of its consequences
(section 2.2).

In the present chapter, we consider the modular nuclearity condition in the family
of the previously defined models. We begin by recalling some basic facts about nuclear
maps between Banach spaces and outline our strategy for the verification of the nuclearity
condition in section 5.1. As a prerequisite for this proof, analytic properties of wedge-local
wavefunctions are studied in section 5.2, which depend on the structure of the underlying
scattering function S2 ∈ S. Two subfamilies S−

0 ⊂ S0 ⊂ S of the family S of all scattering
functions are defined, and we establish the modular nuclearity condition for inclusions of
sufficiently far separated wedges if S2 ∈ S0 (Theorem 5.3.2), and without restriction on
the splitting distance if S2 ∈ S−

0 (Theorem 5.3.4).

Thematically, also appendix A belongs to this chapter. There the two special models
given by the constant scattering functions S2 = ±1 are considered, and due to the simpler
structure of Zamolodchikov’s algebra in these cases, the modular nuclearity condition can
be proven by different methods than in the main text.

Most of the results of this chapter have been published in [Lec06], and a preliminary
version can be found in [Lec05b].

77
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5.1 How to Prove the Modular Nuclearity Condition

As in the previous chapter, we consider the family of models defined in terms of scattering
functions S2 ∈ S. Within such a model, the algebra A(WR) of observables localized in the
right wedge WR is generated by the field φ′,

A(WR) = {eiφ′(f) : f ∈ S (WR) real }′′ . (5.1.1)

Recall that this algebra, and hence the whole model theory, depends on the underlying
scattering function S2 ∈ S, although this dependence is not reflected in our notation.

It has been shown that the vacuum vector Ω is cyclic and separating for A(WR)
(Prop. 4.4.1), and that the associated modular operator ∆1/2 acts geometrically as a
boost transformation with imaginary rapidity parameter iπ (Prop. 4.4.2). The modular
nuclearity condition is the condition that the maps

Ξ(s) : A(WR) −→ H , Ξ(s)A := ∆1/4U(s)AΩ, s = (0, s), s > 0, (5.1.2)

are nuclear for each s > 0. In view of the covariance properties of the theory, the nuclearity
of Ξ(s) implies that the maps ΞA(W1),A(W2) (2.3.5) corresponding to arbitrary inclusions
A(W1) ⊂ A(W2), W1 ⋐ W2, of wedge algebras are nuclear, as discussed in section 2.3.

In (5.1.2), H is the S2-symmetric Fock space over L2(IR, dθ), and the translations
U(s) are defined in (4.1.19). The notation s = (0, s), s > 0, will be used throughout, and
we refer to the parameter s as the splitting distance.

To begin with, let us recall the definition and some basic properties of nuclear
maps between two Banach spaces X and Y. The proofs of the statements made here can
be found in [Jar81, Pie72, BDL90b], and also in appendix C.1 of this thesis.

Definition 5.1.1. Let X and Y be two Banach spaces. A linear map T : X −→ Y is
said to be nuclear if there exists a sequence of vectors {Ψk}k ⊂ Y and a sequence of linear
functionals {ρk}k ⊂ X∗ such that

T (X) =
∞∑

k=1

ρk(X)Ψk ,
∞∑

k=1

‖ρk‖X∗‖Ψk‖Y <∞ . (5.1.3)

The nuclear norm of such a mapping is defined as

‖T‖1 := inf
ρk,Ψk

∞∑

k=1

‖ρk‖X∗‖Ψk‖Y , (5.1.4)

where the infimum is taken over all sequences {Ψk}k ⊂ Y, {ρk}k ⊂ X∗ complying with the
above conditions.

There also exist more specific versions of nuclearity, known as ”p-nuclearity” [FOP05],
but the above defined notion is sufficient for our purposes.

To interpret the maps in question (5.1.2) as linear maps between two Banach spaces,
we consider the von Neumann algebra A(WR) as a Banach space with norm ‖ · ‖B(H), and
the Hilbert space H is of course also a Banach space with its norm ‖ · ‖H. As no confusion
is likely to arise, we keep on using the same symbol ‖ · ‖ for both, ‖ · ‖B(H) and ‖ · ‖H.
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Equipping A(WR) and H with these norms, Ξ(s) becomes a bounded operator, as can be
seen with the help of modular theory as follows. (We denote by J the modular conjugation
of (A(WR),Ω).) In view of the (anti-) unitarity of U(s) and J and the selfadjointness of
∆, we have

‖Ξ(s)A‖2 = 〈U(s)AΩ, ∆1/2U(s)AΩ〉 = 〈U(s)AΩ, JU(s)A∗Ω〉 ≤ ‖A‖2 ,

and hence the norm of Ξ(s) as a linear operator between (A(WR), ‖ ·‖B(H)) and (H, ‖ ·‖H)
is not larger than 1. To show that Ξ(s) is also nuclear, however, requires a much more
detailed analysis.

Some properties of nuclear maps are collected in the following well-known Lemma
and will be used throughout, mostly without any further mentioning. A proof of these
statements can be found in appendix C.1.

We denote by N (X ,Y) the set of nuclear maps between two Banach spaces X ,Y, and
by K(X ,Y) the set of compact operators between X and Y.

Lemma 5.1.2. Let X ,X1,Y,Y1 be Banach spaces.

a) (N (X ,Y), ‖ · ‖1) is a Banach space.

b) N (X ,Y) ⊂ K(X ,Y), and ‖T‖ ≤ ‖T‖1 for T ∈ N (X ,Y).

c) Let T ∈ N (X ,Y), A1 ∈ B(Y,Y1), A2 ∈ B(X1,X ). Then A1TA2 ∈ N (X1,Y1), and

‖A1TA2‖1 ≤ ‖A1‖ · ‖T‖1 · ‖A2‖ . (5.1.5)

d) Let H be a separable Hilbert space. Any trace class operator T on H lies in N (H,H)
and satisfies ‖T‖1 ≤ Tr |T |.

Having recalled these facts about nuclear maps, we now outline our strategy for the proof
of the nuclearity of the maps Ξ(s). To establish this property, we need to estimate the
”size” of the image of A(WR) under Ξ(s) in H by exploiting the localization of A(WR) in
WR and the form of the operator ∆1/4U(s) appearing in the definition of Ξ(s). We will
therefore study properties of state vectors AΩ, A ∈ A(WR), which reflect the localization
of A in the right wedge and the boundedness ‖A‖ <∞.

Note that in view of the second quantization structure of the modular operator ∆1/4

and the translation U(s), these operators can be restricted to the n-particle spaces Hn,
n ∈ N0. We may thus introduce the n-particle restrictions of Ξ(s),

Ξn(s) : A(WR) −→ Hn , Ξn(s)A := PnΞ(s)A = ∆1/4U(s)(AΩ)n , (5.1.6)

where (AΩ)n denotes the n-particle rapidity wavefunction of A,

(AΩ)n := PnAΩ ∈ Hn ⊂ L2(IRn) , n ∈ N0 . (5.1.7)

The original map Ξ(s) is the sum of its n-particle restrictions,

Ξ(s) =
∞∑

n=0

Ξn(s) . (5.1.8)
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To show that Ξ(s) is nuclear, we must prove that all the maps Ξn(s) are nuclear, with
summable nuclear norms,

∑∞
n=0 ‖Ξn(s)‖1 < ∞. For in this case, the series (5.1.8) con-

verges in nuclear norm, and since the nuclear maps between A(WR) and H form a Banach
space with respect to the norm ‖ · ‖1, this implies the desired result.

Recall that the translation U(s), s = (0, s), acts by multiplication with∏n
k=1 e

−ims sinh θk (4.1.19), and ∆1/4 acts by translation in the center of mass rapidity
by − iπ

2 (4.4.6). As sinh(θ − iπ
2 ) = −i cosh θ, the functions Ξn(s)A take the explicit form

(Ξn(s)A)(θ1, ..., θn) =

n∏

k=1

e−ms cosh θk · (AΩ)n(θ1 − iπ
2 , ..., θn − iπ

2 ) . (5.1.9)

This equation has to be understood in terms of analytic continuation, and will be made
more precise later. From (5.1.9), it is apparent that the map Ξ(s) can be studied in terms
of the wavefunctions (AΩ)n, A ∈ A(WR), in particular in terms of the analytic properties
of these functions.

Intuitively speaking, the localization of A in the right wedge corresponds to a kind of
support restriction in position space, and by Fourier transformation, we therefore expect
analytic properties of the wavefunctions (AΩ)n(θ1, ..., θn) and improper matrix elements
〈θ1, ..., θk|A | θ′1, ..., θ′l〉 in rapidity space. As analyticity is a very strong property, such
features of (AΩ)n indicate that the image of Ξ(s) is ”small” in an appropriate sense, and
will be useful for the proof of the nuclearity condition.

We therefore study analytic properties of the wavefunctions (AΩ)n in the following
section. After some steps of successive analytic continuation, we will find that (AΩ)n
extends to a bounded analytic function in a tube domain in Cn, the shape of which
depends on the underlying scattering function (Prop. 5.2.7). This result will enable us to
derive bounds on the nuclear norm of Ξn(s) in the models at hand.

5.2 Analytic Properties of Wedge-Local Wavefunctions

One possibility of extracting information about the analytic structure of the functions
(AΩ)n from the localization of A ∈ A(WR) is to consider the commutators of A with the
time zero fields ϕ, π of φ,

ϕ(x1) :=
√

2π φ(0, x1) , π(x1) :=
√

2π (∂0φ)(0, x1) , x1 ∈ IR . (5.2.1)

The prefactor
√

2π appearing here is chosen solely for convenience.

As φ is localized in WL, its time zero fields are localized on the left half line. To formu-
late this property precisely, we must take into account that the assignments (5.2.1) have to
be understood in the sense of (operator-valued) distributions. Evaluated on testfunctions
f ∈ S (IR), we find

ϕ(f) = z†(f̂) + z(f̂−), f̂(θ) := f̃(m sinh θ), (5.2.2)

π(f) = i
(
z†(ωf̂) − z(ωf̂−)

)
, f̂−(θ) := f̂(−θ) , (5.2.3)

as can be easily inferred from the definition (4.2.2) of φ. The one particle Hamiltonian ω
acts by multiplication with ω(θ) = m cosh θ on its domain in H1.
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The operators ϕ(f), π(f) are well-defined on the subspace D ⊂ H of finite particle
number and satisfy ϕ(f)∗ ⊃ ϕ(f), π(f)∗ ⊃ π(f). In particular, they are hermitian for real
f . Along the same lines as in Proposition 4.2.6, one can prove (A ∈ A(WR))

〈Ψ1, [ϕ(f), A] Ψ2〉 = 0 , 〈Ψ1, [π(f), A] Ψ2〉 = 0 , supp f ⊂ IR− , Ψ1,Ψ2 ∈ D .

These commutators are studied in more detail in the following Lemma. Here and in the
following, it turns out be convenient to formulate our results in terms of the Hardy spaces
H2(T ), where T = IRn + i C ⊂ Cn is a tube based on an open convex domain C ⊂ IRn.
Recall that the elements of H2(T ) are those analytic functions F : T → C for which
Fλ : θ 7−→ F (θ + iλ) is an element of L2(IRn) for each λ ∈ C, and which have finite Hardy
norm

|||F ||| := sup
λ∈C

‖Fλ‖2 = sup
λ∈C

(∫

IRn
dnθ |F (θ + iλ)|2

)1/2

<∞ . (5.2.4)

Some important properties of Hardy spaces on tube domains, such as their completeness
with respect to ||| · |||, or the L2-convergence of Hardy functions to their boundary values,
are collected in appendix C.2.

We will use the symbols θ,λ for real and ζ for complex vectors in n-dimensional space,
their components being written as ζ = (ζ1, ..., ζn), θ = (θ1, ..., θn) etc. Also the notation
Fλ(θ) := F (θ+ iλ) for functions F defined on a tube T = IRn+ i C, θ ∈ IRn, λ ∈ C ⊂ IRn,
will be used without further mentioning. Finally, S(a, b) denotes the open strip region in
C consisting of the complex numbers ζ with a < Im ζ < b, as before.

Lemma 5.2.1. Let A ∈ A(WR), n1, n2 ∈ N0, Ψ1 ∈ Hn1, Ψ2 ∈ Hn2 and consider the two
functionals C± : S (IR) −→ C,

C−(f) := 〈Ψ1, [ϕ(f), A] Ψ2〉 , C+(f) := 〈Ψ1, [π(f), A] Ψ2〉 , (5.2.5)

where f̂(θ) := f̃(m sinh θ).
There exist functions Ĉ± ∈ H2(S(−π, 0)) (depending linearly on Ψ2 and A, and conjugate
linearly on Ψ1) which satisfy

C±(f) =

∫

IR
dθ Ĉ±(θ)f̂(θ) , f ∈ S (IR) . (5.2.6)

Their Hardy norms are bounded by

|||Ĉ±||| ≤ c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖ , c(n1, n2) :=
√

2n1 + 1 +
√

2n2 + 1 , (5.2.7)

and there holds

Ĉ±(θ − iπ
2 + iµ) = ± Ĉ±(−θ − iπ

2 − iµ) , −π
2 ≤ µ ≤ π

2 . (5.2.8)

Proof. Recall the form (5.2.2) of the time zero field ϕ. To derive bounds on |C−(f)|, we
first note (with ‖f‖2 := (

∫
dx|f(x)|2)1/2)

‖ω1/2f̂‖2 =

∫
dθm cosh θ |f̂(θ)|2 =

∫
dp |f̃(p)|2 = ‖f‖ 2

2 , f ∈ L2(IR, dx) . (5.2.9)
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Combining this equation with the particle number bound (4.1.36) and taking into account
the Fock structure of H, we obtain, j = 1, 2,

‖ϕ(ω1/2f)Ψj‖2 = ‖z†(ω1/2f̂)Ψj‖2 + ‖z(ω1/2f̂−)Ψj‖2 ≤ (2nj + 1)‖Ψj‖2‖f‖ 2
2 . (5.2.10)

So the Schwarz inequality gives

|C−(ω1/2f)| ≤ ‖ϕ(ω1/2f)Ψ1‖‖AΨ2‖ + ‖A∗Ψ1‖‖ϕ(ω1/2f)Ψ2‖
≤
(√

2n1 + 1 +
√

2n2 + 1
)
‖Ψ1‖‖Ψ2‖‖A‖‖f‖2 .

Applying an analogous argument to π yields exactly the same bound for |C+(ω−1/2f)|,
|C±(ω∓1/2f)|

‖f‖2
≤ c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖, c(n1, n2) :=

√
2n1 + 1 +

√
2n2 + 1 . (5.2.11)

These estimates imply that C+ and C− are tempered distributions, and by application
of Riesz’ theorem, the functionals f 7−→ C±(ω∓1/2f) are given by integration against
functions in L2(IR) whose norm is bounded by c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖. In particular, the
Fourier transforms C̃± exist as well-defined functions.

In view of the localization of ϕ, π in the negative half line and of A in the right wedge,
we have suppC± ⊂ IR+, and conclude that C̃± has an analytic continuation to the lower
half plane, satisfying polynomial bounds at the boundary and at infinity [RS75, Thm.
IX.16].

In the rapidity picture, we consider

Ĉ+(θ) := C̃+(m sinh θ) , Ĉ−(θ) := m cosh θ · C̃−(m sinh θ). (5.2.12)

As sinh(.) maps S(−π, 0) to the lower half plane, Ĉ± is analytic in this strip. In view of
the estimate on |C±(ω∓1/2f)|, the boundary values (5.2.12) are functions in L2(IR, dθ),
with norm bounded by (ωp = (p2 +m2)1/2)

∫
dθ |Ĉ±(θ)|2 =

∫
dp
(
ω∓1/2
p |C̃±(p)|

)2
≤ c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖ . (5.2.13)

The reflection symmetry (5.2.8) can be read off directly from (5.2.12).
For the proof that Ĉ± lies in the Hardy space H2(S(−π, 0)), we need an estimate on the

L2-norm of θ 7→ Ĉ±(θ − iλ) = Ĉ±,−λ(θ). To this end we consider the ”shifted” functions

Ĉ
(s)
± (ζ) := e−ims sinh ζ · Ĉ±(ζ), s > 0, which decay rapidly for |θ| → ∞, 0 < λ < π:

|Ĉ(s)
± (θ − iλ)| = |e−ims sinh(θ−iλ) Ĉ±(θ − iλ)| = e−ms sinλ cosh θ |Ĉ±(θ − iλ)| . (5.2.14)

As |Ĉ±(θ− iλ)| is bounded by a polynomial in cosh θ for |θ| → ∞, we have Ĉ
(s)
±,−λ ∈ L2(IR)

for all λ ∈ [0, π] and s > 0. In view of the previous estimates and (5.2.8), ‖Ĉ±‖2 and
‖Ĉ±,−π‖2 are bounded by c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖. So the three lines theorem (see appendix
C.2) can be applied and we get

‖Ĉ(s)
±,−λ‖2 ≤ c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖ , 0 ≤ λ ≤ π . (5.2.15)

But as (5.2.14) is monotonically increasing as s → 0, this uniform bound holds also for
Ĉ±,−λ, 0 ≤ λ ≤ π. Hence we have proven

Ĉ± ∈ H2(S(−π, 0)) , |||Ĉ±||| ≤ c(n1, n2)‖Ψ1‖‖Ψ2‖‖A‖ , (5.2.16)

as claimed above.
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Instead of using the time zero fields, one could also study the wedge-localized field φ itself,
and obtain analyticity results from the commutators [φ(f), A]. In the context of free field
theory on four-dimensional Minkowski space, such an analysis has been carried out by J.
Bros [Bro03]. The support properties of [φ(f), A] in IR2 lead to analytic properties in two-
dimensional complex momentum space, whereas the support properties of the time zero
commutators [ϕ(f), A], [π(f), A] in IR lead to analytic properties on the one-dimensional
complex mass shell, i.e. to analytic continuation in the rapidity. Since this is the feature
we are interested in, we work in the time zero formalism.

The following corollary of Lemma 5.2.1 is our basic tool for the derivation of analytic
properties of the wavefunctions (AΩ)n.

Corollary 5.2.2. With the notations introduced in Lemma 5.2.1, consider the two func-
tionals C,C† : S (IR) −→ C,

C(f) := 〈Ψ1, [z(f̂ ), A] Ψ2〉, C†(f) := 〈Ψ1, [z†(f̂), A] Ψ2〉 . (5.2.17)

There exists a function Ĉ ∈ H2(S(−π, 0)) satisfying the bound (5.2.7) and

C(f) =

∫

IR
dθ Ĉ(θ)f̂(θ), C†(f) = −

∫

IR
dθ Ĉ(θ − iπ)f̂(θ) . (5.2.18)

Proof. We define the function Ĉ in terms of Ĉ± from Lemma 5.2.1 as

Ĉ(ζ) :=
1

2
(Ĉ−(ζ) + i Ĉ+(ζ)) , ζ ∈ S(−π, 0) . (5.2.19)

Clearly Ĉ lies in H2(S(−π, 0)) and satisfies the bound (5.2.7). To show that its boundary
values reproduce the functionals C, C†, we express the Zamolodchikov operators in terms
of the time zero fields (5.2.2). The annihilation operator is z(f̂) = 1

2(ϕ(f−) + iπ(ω−1f−)),
f−(x) = f(−x). Inserted in C(f), this gives

C(f) =
1

2
(C−(f−) + i C+(ω−1f−)) =

1

2

∫
dp

(
C̃−(p) +

i C̃+(p)√
p2 +m2

)
f̃(p)

=
1

2

∫
dθ
(
Ĉ−(θ) + i Ĉ+(θ)

)
f̂(θ) =

∫
dθ Ĉ(θ)f̂(θ) .

For the creation operator we have z†(f̂) = 1
2(ϕ(f)− iπ(ω−1f)) and, by taking into account

the symmetry relation Ĉ±(θ − iπ) = ±Ĉ±(−θ) (5.2.8),

C†(f) =
1

2
(C−(f) − i C+(ω−1f)) =

1

2

∫
dθ
(
Ĉ−(−θ) − i Ĉ+(−θ)

)
f̂(θ)

= −1

2

∫
dθ
(
Ĉ−(θ − iπ) + i Ĉ+(θ − iπ)

)
f̂(θ) = −

∫
dθ Ĉ(θ − iπ)f̂(θ) .

Corollary 5.2.2 can be used to derive analytic properties of single particle wavefunctions
(AΩ)1 corresponding to operators A ∈ A(WR). In fact, by putting Ψ1 = Ψ2 = Ω in
(5.2.17) we obtain, f̂ ∈ L2(IR, dθ),

∫
dθ f̂(θ) Ĉ(θ) = 〈Ω, [z(f̂), A] Ω〉 = 〈f̂ , AΩ〉 =

∫
dθ f̂(θ) (AΩ)1(θ) .
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Hence the single particle wavefunctions of operators localized in WR are boundary values
of functions in H2(S(−π, 0)), with norm1 |||(AΩ)1||| ≤ 2‖A‖. This observation leads to a
proof of the nuclearity of the single particle map Ξ1(s) (5.1.6) as follows.

We consider Ξ1(s) as the concatenation of two maps, the first mapping A(WR) into
H2(S(−π, 0)) according to A 7−→ (AΩ)1, and the second mapping H2(S(−π, 0)) into
L2(IR, dθ) according to (AΩ)1 7−→ (A(s)Ω)1,−π/2 = Ξ1(s)A. We have shown above that
the former map is bounded as a linear map between the Banach spaces (A(WR), ‖ · ‖B(H))
and (H2(S(−π, 0)), ||| · |||). The latter is explicitly given by (cf. (5.1.9))

∆1(s) : H2(S(−π, 0)) −→ H1 , (∆1(s)F )(θ) := e−ms cosh θ · F (θ − iπ
2 ) . (5.2.20)

Making use of the analyticity and boundedness properties of F ∈ H2(S(−π, 0)), as well as
of its convergence to its boundary values, we may express F (θ − iπ

2 ) as a Cauchy integral
over a closed curve γ around θ− iπ

2 , and then deform γ to the boundary of S(−π, 0). This
yields

F (θ − iπ
2 ) =

1

2πi

∮

γ
dζ ′

F (ζ ′)

ζ ′ − θ + iπ
2

=
1

2πi

∫

IR
dθ′

(
F (θ′ − iπ)

θ′ − θ − iπ
2

− F (θ′)

θ′ − θ + iπ
2

)
.

Hence we find

∆1(s)F =
1

2
(T−
s F−π − T+

s F0) , (5.2.21)

where T±
s are integral operators on L2(IR), defined by the integral kernels

T±
s (θ, θ′) :=

1

πi

e−ms cosh θ

θ′ − θ ± iπ
2

. (5.2.22)

It is shown in appendix B.2 by a standard argument that T±
s are trace class operators on

L2(IR) for any s > 0. As F 7−→ F0 and F 7−→ F−π are bounded maps from H2(S(−π, 0))
to L2(IR), we conclude that Ξ1(s) is nuclear (cf. Lemma 5.1.2 c), d)).

Corollary 5.2.3. Consider a model theory with scattering function S2 ∈ S. The map
Ξ1(s) : A(WR) −→ H1, A 7−→ ∆1/4U(s)(AΩ)1 (5.1.6) is nuclear for arbitrary splitting
distances s > 0. �

The property of (A(s)Ω)1 which was used in the proof was that this function extends
analytically to the one-dimensional tube IR + i (−π, 0) and defines a Hardy type function.
The tube IR + i (−π, 0) contains the line IR − iπ

2 , and analytic continuation to this line

yields ∆1/4(AΩ)1 (5.1.9).
The same mechanism will also be used to establish the nuclearity of Ξn(s) for n > 1,

namely, we will prove that (A(s)Ω)n extends to a function in the Hardy space H2(T )
over an n-dimensional tube T containing the subspace IRn − i(π2 , ...,

π
2 ). Expressing

(A(s)Ω)n(θ1 − iπ
2 , ..., θn− iπ

2 ) as a Cauchy integral over the boundary of T , we then arrive
at the nuclearity of Ξn(s). But in contrast to the situation on the single particle space,
the properties of the underlying scattering function S2 have an important influence on
the analyticity domain of (AΩ)n, and hence on the nuclearity properties of Ξn(s), in

1It is not difficult to see that in this case, the bound can be improved to |||(AΩ)1||| ≤ ‖A‖.
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the higher-dimensional case. We will have to restrict to a subclass S0 ⊂ S of scattering
functions, and now motivate the choice of S0.

It is well known from the study of analytic properties of scattering amplitudes
that in general, analyticity of the S-matrix in a domain larger than the physical region
(which in the present setting is S(0, π)) cannot be expected [Mar69]. However, if the
theory is required to have decent thermodynamical properties, one is led to consider
only models whose scattering functions can be analytically continued to a slightly larger
region, as the following heuristic argument suggests.

Poles of S2 lying in the strip S(−π, 0) are usually interpreted as evidence for unstable
particles with a finite lifetime [ELOP66], cf. also section 3.2. The lifetime of such a
resonance becomes arbitrarily long if the corresponding pole lies sufficiently close to the
real axis. In fact, there exist scattering functions having a sequence of zeros βk ∈ S(0, π)
(which is accompanied by a sequence of poles at −βk because of S2(−θ) = S2(θ)

−1) giving
rise to infinitely many resonances with arbitrarily long lifetimes and “masses” mk so that∑

k e
−mk/T diverges for all temperatures T > 0. But a model with these characteristics

cannot be expected to have a regular thermodynamical behavior or only a finite partition
function [BW86, BJ89].

On the other hand, if the modular nuclearity holds in a given model, also the thermo-
dynamically significant map Θβ,O : A(O) → H, A 7→ e−βHAΩ, which is at the basis of the
energy nuclearity condition satisfies certain nuclearity properties, as discussed in section
2.3. We therefore expect the maps Ξ(s) (5.1.2) not to be nuclear in a model with the
previously described distribution of poles in its scattering function (although there might
still exist local observables even in this situation). To exclude such models, we require
(3.2.12)

κ(S2) := inf
{
Im ζ : ζ ∈ S(0, π2 ) , S2(ζ) = 0

}
> 0 . (5.2.23)

In this case all singularities of S2 lie a finite distance off the real axis so that the lifetimes
of all resonances are bounded from above. Hence regular thermodynamical properties can
be expected, and the modular nuclearity condition might be satisfied.

In addition to this requirement we make a second, more technical restriction on the
scattering function, namely we require that S2 is bounded on the strip S(−κ, π + κ) for
0 ≤ κ < κ(S2). This is a condition on the phase shift we need in order to get bounds
on the analytic continuations of the wavefunctions (AΩ)n, see [KTTW77] for a similar
assumption.

In the following, we will therefore restrict ourselves to scattering functions which are
contained in the following subfamily of S.

Definition 5.2.4. The subfamily S0 ⊂ S consists of those scattering functions S2 which
satisfy κ(S2) > 0 and for which

‖S2‖κ := sup
{
|S2(ζ)| : ζ ∈ S(−κ, π + κ)

}
<∞ , κ ∈ (0, κ(S2)) . (5.2.24)

Note that the boundedness condition requires the parameter a in the factorization formula
(3.2.9) to vanish. The family S0 contains in particular all scattering functions with finitely
many zeros in S(0, π) and parameter a = 0 (3.2.9), i.e. functions of the form

S2(ζ) = ±
M∏

k=1

sinhβk − sinh ζ

sinhβk + sinh ζ
, 0 < Imβ1, ..., ImβM <

π

2
. (5.2.25)
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A prominent example is given by the scattering function of the Sinh-Gordon model, which
consists of a single factor in the product (5.2.25).

It should also be noted that scattering functions S2 ∈ S0 have smooth boundary
values on the real line. Moreover, by application of Cauchy’s integral formula to the
functions S2 ∈ S0, it follows that all derivatives of S2 are uniformly bounded on IR, i.e.
there exist constants cm (depending on S2) such that |∂mθ S2(θ)| ≤ cm for all θ ∈ IR.

Having clarified which class of scattering functions will be considered in the follow-
ing, we now turn to the study of the analyticity and boundedness properties of the
wavefunctions (AΩ)n, n > 1. We begin by analyzing matrix elements of the form
〈z†(θk+1) · · · z†(θn)Ω, A z†(θk) · · · z†(θ1)Ω〉, A ∈ A(WR), with certain contractions
between the variables θk+1, ..., θn on the left and θ1, ..., θk on the right hand side.

Some notations need to be introduced. Given two integers 0 ≤ k ≤ n, we define the
set Cn,k of contractions to be the power set of {k+ 1, ..., n}× {1, ..., k}. We parametrize a
contraction C ∈ Cn,k by an ordered set of ”right” indices 1 ≤ r1 < r2 < ... < rN ≤ k, an
unordered set of pairwise different ”left” indices k + 1 ≤ l1, ..., lN ≤ n, and a permutation
of {l1, ..., lN} to form the pairs (li, ri) ∈ C. The number of such pairs will be referred to
as the length of C, and denoted |C| := N ≤ min{k, n − k}.

Writing lC := (l1, ..., lN ), rC := (r1, ..., rN ) for the ”left” and ”right” indices of a given
C ∈ Cn,k, we define for A ∈ B(H)

〈lC |A |rC〉n,k := 〈z†k+1 · · · ẑ
†
l1
· · · ẑ†lN · · · z†nΩ , A z†k · · · ẑ

†
rN · · · ẑ†r1 · · · z†1Ω〉 , (5.2.26)

where z†a := z†(θa) is considered as an operator-valued distribution in θa and the hats
indicate omission of the corresponding creation operators. Note that in view of the particle
number bounds (4.1.36) and the boundedness of A, these contracted matrix elements
are well-defined tempered distributions on S (IRn−2|C|). For square-integrable functions
FL ∈ L2(IRn−k−|C|), FR ∈ L2(IRk−|C|), there hold the bounds

|〈lC |A |rC〉n,k(FL ⊗ FR)| ≤
√

(n− k − |C|)!
√

(k − |C|)! ‖FL‖‖FR‖‖A‖ . (5.2.27)

Employing the shorthand notations

δl,r := δ(θl − θr), Sa,b := S2(θa − θb), S
(k)
a,b :=

{
Sb,a ; a ≤ k < b or b ≤ k < a
Sa,b ; otherwise

,

(5.2.28)

we associate with each contraction C ∈ Cn,k the following distributions and functions:

δC :=

|C|∏

j=1

δlj ,rj , S
(k)
C :=

|C|∏

j=1

lj−1∏

mj=rj+1

S(k)
mj ,rj ·

∏

ri<rj
li<lj

S
(k)
rj ,li

. (5.2.29)

Here and in the following, the indices li, ri refer to the pairs in C, with the convention
r1 < ... < r|C|.

The main objects of interest will be the completely contracted matrix elements of
observables A ∈ A(WR), defined as

〈A〉conn,k :=
∑

C∈Cn,k

(−1)|C| · δC · S(k)
C · 〈lC |A |rC〉n,k . (5.2.30)
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The product δC · S(k)
C · 〈lC |A |rC〉n,k is defined in the sense of distributions. Note

that the product of δC and 〈lC |A |rC〉n,k is well-defined because these distributions act on

different variables. For the product of δC · 〈lC |A |rC〉n,k and the function S
(k)
C to be well-

defined, too, we require S2 ∈ S0. In this case, S2 is smooth and has bounded derivatives

on IR. Hence δC · S(k)
C · 〈lC |A |rC〉n,k exists as a tempered distribution on S (IRn).

The relevant properties of the contracted matrix elements 〈A〉conn,k are explained in the
following Lemma.

Lemma 5.2.5. In a model with scattering function S2 ∈ S0, consider A ∈ A(WR).

a) 〈A〉conn,k has an analytic continuation in the variable θk+1 to the strip S(−π, 0), k ≤
n− 1. The boundary value at Im(θk+1) = −π is given by

〈A〉conn,k (θ1, ..., θk+1 − iπ, ..., θn) = 〈A〉conn,k+1(θ1, ..., θk+1, ..., θn) . (5.2.31)

b) There holds the bound, f1, ..., fn ∈ S (IR), 0 ≤ λ ≤ π,
∣∣∣∣∣∣

∫
dnθ〈A〉conn,k (θ1, ..., θk+1 − iλ, ..., θn)

n∏

j=1

fj(θj)

∣∣∣∣∣∣
≤ 2n

√
n! ‖A‖

n∏

j=1

‖fj‖2 . (5.2.32)

Proof. a) We will need to distinguish between those contractions C ∈ Cn,k which do not
contract k+1, i.e. fulfill k+1 6= l1, ..., l|C|, and those contractions which satisfy lj = k+1

for some j ∈ {1, ..., |C|}. The former set will be denoted Ĉn,k, and the latter Čn,k. The

set of all contractions is the disjoint union Cn,k = Ĉn,k ⊔ Čn,k.
Note that a contraction C ′ ∈ Čn,k is always a union C ′ = C ∪ {(k + 1, r)}, where

C ∈ Ĉn,k has length |C| = |C ′| − 1, and r /∈ rC . In this situation, there holds

(−1)|C
′| = −(−1)|C| , δC′ = δk+1,r · δC , (5.2.33)

S
(k)
C′ =

|C|∏

j=1

lj−1∏

mj=rj+1

S(k)
mj ,rj ·

k∏

m=r+1

S(k)
m,r ·

∏

ri<rj
li<lj

S
(k)
rj ,li

·
∏

ri<r
li<k+1

S
(k)
r,li

·
∏

r<rj
k+1<lj

S
(k)
rj ,k+1

= S
(k)
C ·

k∏

m=r+1

Sm,r ·
∏

r<rj

Sk+1,rj , (5.2.34)

since l1, ..., l|C| > k + 1. Taking into account Sa,b = Sb,a
−1, we get

δC′ · S(k)
C′ = δC · S(k)

C · δk+1,r ·
k∏

m=r+1
m6=rj for rj>r

Sm,k+1 . (5.2.35)

Similarly, contractions C ′′ ∈ Čn,k+1 contracting k + 1 (as a ”right” index) are unions

of the form C ′′ = {(l, k + 1)} ∪ C, with C ∈ Ĉn,k+1 and l /∈ lC . By a computation similar
to the one above one finds in this situation

(−1)|C
′′| = −(−1)|C|, δC′′ = δC · δl,k+1 , S

(k+1)
C′′ = S

(k+1)
C ·

l−1∏

m=k+2
m6=li for li<l

Sk+1,m .

(5.2.36)
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After these preparations, consider C ∈ Ĉn,k and A ∈ A(WR). By repeated application
of the relations of Zamolodchikov’s algebra, we find

〈lC |A |rC〉n,k =〈z†k+2 · · · ẑ
†
l1
· · · ẑ†l|C|

· · · z†nΩ , zk+1Az
†
k · · · ẑ

†
r|C|

· · · ẑ†r1 · · · z†1Ω〉
= 〈lC ∪ {k + 1}| [zk+1, A] |rC〉n,k (5.2.37)

+

1∑

r=k
r/∈rC

δk+1,r

r+1∏

m=k
m6=ri for rj>r

Sm,k+1 · 〈lC ∪ {k + 1}|A |rC ∪ {r}〉n,k .

Consider the second term, multiplied with (−1)|C|δCS
(k)
C and summed over all C ∈ Ĉn,k.

Taking into account the remarks made at the beginning of the proof, there holds∑1
r=k,r /∈rC

∑
C∈Ĉn,k

=
∑

C′∈Čn,k
, with C and C ′ being related by C ′ = C ∪ {(k + 1, r)}.

Moreover, the delta distributions and scattering functions appearing in (5.2.37) are the
same as in (5.2.35), and |C ′| = |C| + 1. So we conclude

∑

C∈Ĉn,k

(−1)|C|δCS
(k)
C 〈lC |A |rC〉n,k =

∑

C∈Ĉn,k

(−1)|C|δCS
(k)
C 〈lC ∪ {k + 1}| [zk+1, A] |rC〉n,k

−
∑

C′∈Čn,k

(−1)|C
′|δC′S

(k)
C′ 〈lC′ |A |rC′〉n,k ,

and since Cn,k = Ĉn,k ⊔ Čn,k,

〈A〉conn,k =
∑

C∈Ĉn,k

(−1)|C| · δC · S(k)
C · 〈lC ∪ {k + 1}| [zk+1, A] |rC〉n,k . (5.2.38)

This form of 〈A〉conn,k is most convenient to discuss its analytic properties. Consider a single
term of (5.2.38), smeared with test functions f1(θ1), ..., fk(θk), fk+2(θk+2), ..., fn(θn) in all
variables but θk+1.

As k + 1 is not contracted in C ∈ Ĉn,k, the delta distribution δC does not depend on

θk+1. The function S
(k)
C depends on θk+1 only via mj = k + 1 in S

(k)
mj ,rj in (5.2.29) since

li, rj 6= k + 1. The factor S
(k)
k+1,rj

= Srj ,k+1 has an analytic continuation in θk+1 to the

strip S(−π, 0), with the crossing-symmetric boundary value Sk+1,rj = S
(k+1)
k+1,rj

. All other

factors in S
(k)
C are of the form S

(k)
a,b , a, b 6= k+ 1, and therefore satisfy S

(k)
a,b = S

(k+1)
a,b . Thus

S
(k)
C can be analytically continued in θk+1 to the strip S(−π, 0), with boundary value at

Im(θk+1) = −π given by S
(k+1)
C .

According to Corollary 5.2.2, also the matrix element 〈lC∪{k+1}| [zk+1, A] |rC〉n,k has
an analytic continuation in θk+1 ∈ S(−π, 0), and its boundary value at Im(θk+1) = −π is

obtained by exchanging [zk+1, A] with [A, z†k+1]. So the statement about the analytic struc-
ture of 〈A〉conn,k follows, and it remains to show that the boundary value of this distribution
at Im(θk+1) = −π is 〈A〉conn,k+1. We have shown already

〈A〉conn,k (θ1, ..., θk+1 − iπ, ..., θn) =
∑

C∈Ĉn,k

(−1)|C|δCS
(k+1)
C 〈lC ∪ {k + 1}| [A, z†k+1] |rC〉n,k .
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Making use of the relations of Zamolodchikov’s algebra once again, we obtain

〈lC ∪ {k + 1}| [A, z†k+1] |rC〉n,k = 〈lC |A |rC〉n,k+1 (5.2.39)

−
n∑

l=k+2

l/∈lC

δl,k+1

l−1∏

m=k+2
m6=li for li<l

Sk+1,m · 〈lC |A |{k + 1} ∪ rC〉n,k+1 .

As C ∈ Ĉn,k does not contract k + 1, we may consider C also as an element of Ĉn,k+1.
According to the remarks made at the beginning of the proof, the contractions C ′′ :=
C ∪ {(l, k + 1)}, l /∈ lC , form all of Čn,k+1, i.e.

∑n
l=k+2,l /∈lC

∑
C∈Ĉn,k+1

=
∑

C′′∈Čn,k+1
.

Taking into account the relations (5.2.36), it follows that the second term on the right

hand side in (5.2.39), multiplied with (−1)|C|δCS
(k+1)
C and summed over C ∈ Ĉn,k+1, gives∑

C′′∈Čn,k+1
(−1)|C

′′|δC′′S
(k+1)
C′′ 〈lC′′ |A |rC′′〉n,k+1. Together with the first term in (5.2.39),

we obtain

〈A〉conn,k (θ1, ..., θk+1 − iπ, ..., θn) =
∑

C∈Cn,k+1

(−1)|C|δCS
(k+1)
C 〈lC |A |rC〉n,k+1 = 〈A〉conn,k+1(θ) ,

completing the proof of part a) of the Lemma.

b) Let C ∈ Cn,k and put θr := (θr1, ..., θr|C|
). Note that each factor in the product S

(k)
C

(5.2.29) depends either on one contracted variable and one uncontracted variable, or on two

contracted variables θrj , θli . Hence we may split the product S
(k)
C into three factors S

(k)
C =

S
(k)
C,L ·S

(k)
C,M ·S(k)

C,R, where the ”left” factor S
(k)
C,L depends on {θk+1, ..., θn}\{θl1 , ..., θl|C|

} and

θr , the ”middle” factor S
(k)
C,M depends on θl1 , ..., θl|C|

, θr1, ..., θr|C|
, and the ”right” factor

S
(k)
C,R depends on {θ1, ..., θk}.

For f1, ..., fn ∈ S (IR), let

FLθr
:= S

(k)
C,L ·

(
fk+1 ⊗ ...⊗ f̂l1 ⊗ ...⊗ f̂l|C|

⊗ ...⊗ fn
)
, (5.2.40)

FRθr
:= S

(k)
C,R ·

(
fk ⊗ ...⊗ f̂r|C|

⊗ ...⊗ f̂r1 ⊗ ...⊗ f1

)
, (5.2.41)

where the hats indicate omission of the corresponding factors. The functions F
L/R
θr

are

considered as functions of n− k−|C| and k−|C| variables, respectively, which depend on
the parameter θr ∈ IR|C|. In view of the boundedness of the scattering function S2, the

L2-norms of F
L/R
θr

are bounded by

‖FLθr
‖ ≤

n∏

j=k+1

j /∈lC

‖fj‖2 , ‖FRθr
‖ ≤

k∏

j=1
j /∈rC

‖fj‖2 , θr ∈ IR|C| . (5.2.42)

With these notations, we consider the distribution 〈A〉conn,k , smeared with a test function
of the product form f1(θ1) · · · fn(θn). After carrying out the integration over the delta
distributions in (5.2.30), we find

〈A〉conn,k (f1 ⊗ ...⊗ fn)

=
∑

C∈Cn,k

(−1)|C|

∫
d|C|θr S

(k)
C,M (θr ;θr)

|C|∏

j=1

(
flj (θrj)frj(θrj )

)
· 〈lC |A |rC〉n,k(FLθr

⊗ FRθr
) .
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Taking into account (5.2.27) and the bounds on ‖FL/R
θr

‖ and |S(k)
C,M(θr;θr)| = 1, Cauchy-

Schwarz gives

∣∣〈A〉conn,k (f1 ⊗ ...⊗ fn)
∣∣ ≤

∑

C∈Cn,k

√
(n− k − |C|)!(k − |C|)! · ‖A‖ · ‖f1‖2 · · · ‖fn‖2 .

(5.2.43)

In particular, it follows that θk+1 7→
∫
〈A〉conn,k (θ)

∏
j=1

j 6=k+1
fj(θj)dθj is an element of L2(IR).

Making use of the fact that S2 is bounded on S(0, π), and the bounds of Cor. 5.2.2,
it follows that also θk+1 7→

∫
〈A〉conn,k (θ1, ..., θk+1 − iλ, ..., θn)

∏
j=1

j 6=k+1
fj(θj)dθj is square-

integrable, for any 0 ≤ λ ≤ π. By virtue of the three lines theorem, this implies that the
bound (5.2.43) also holds for |

∫
〈A〉conn,k (θ1, ..., θk+1 − iλ, ..., θn)

∏
j=1 fj(θj)dθj | instead of

|〈A〉conn,k (f1 ⊗ ...⊗ fn)|.
It remains the combinatiorial problem to estimate the sum over all contractions. Note

that the number of all contractions C ∈ Cn,k with fixed length |C| = N is N !
(
k
N

)(
n−k
N

)
,

since each such contraction is given by two N -element subsets {r1, ..., rN} ⊂ {1, ..., k} and
{l1, ..., lN} ⊂ {k + 1, ..., n}, and a permutation of {1, ...,N} to determine which element
of {l1, ..., lN} is contracted with which element of {r1, ..., rN}. Using |C| ≤ min{k, n − k}
and the simple inequality a!b! ≤ (a+ b)!, a, b ∈ N, we find

∑

C∈Cn,k

√
(n− k − |C|)!(k − |C|)! =

min{k,n−k}∑

N=0

√
(n − k −N)!(k −N)!N !

(
k

N

)(
n− k

N

)

≤
√
n!

min{k,n−k}∑

N=0

(
k

N

)(
n− k

N

)

≤
√
n!

k∑

N=0

n−k∑

M=0

(
k

N

)(
n− k

M

)
=

√
n! 2k · 2n−k =

√
n! 2n .

In combination with (5.2.43), this yields the desired bound (5.2.32).

The analytic properties of the contracted matrix elements 〈A〉conn,k imply analytic prop-
erties of the wavefunctions (AΩ)n as follows. Noting that Cn,0 = Cn,n = ∅, we find

〈A〉conn,0 (θ) = 〈z†(θ1) · · · z†(θn)Ω, AΩ〉 =
√
n! · (AΩ)n(θ) , (5.2.44)

〈A〉conn,n(θ) = 〈Ω, Az†(θn) · · · z†(θ1)Ω〉 =
√
n! · (A∗Ω)n(θn, ..., θ1) =

√
n! · (JA∗Ω)n(θ) .

By successive application of Lemma 5.2.5 a) to 〈A〉conn,0 , it follows that (along a certain
path) (AΩ)n has an analytic continuation from IRn to IRn− i(π, ..., π). The corresponding
boundary value is given by (JA∗Ω)n(θ) = (∆1/2AΩ)n(θ), in agreement with modular
theory (cf. (4.4.6)). But whereas the strong analyticity of ζ 7−→ ∆iζAΩ in S(−1

2 , 0),
following from modular theory, implies analyticity of (AΩ)n only in the center of mass
rapidity n−1(θ1+...+θn) in the strip S(−π, 0), the results of Lemma 5.2.5 lead to analyticity
of (AΩ)n considered as a function of n complex variables, in a certain tube domain, which
is formulated as a corollary below (Cor. 5.2.6).



5.2. Analytic Properties of Wedge-Local Wavefunctions 91

In the following, we use the same symbol (AΩ)n also for the analytic continuation of the
wavefunction (5.1.7) in order not to overburden our notation. The domain of holomorphy
is the tube

Tn := IRn − iΛn, Λn := {λ ∈ IRn : π > λ1 > λ2 > ... > λn > 0} . (5.2.45)

Corollary 5.2.6. Let A ∈ A(WR).

a) (AΩ)n has an analytic continuation to the tube Tn. The wavefunctions (5.1.7) are
recovered from (AΩ)n( .− iλ) as a limit in S (IRn)′ for λ → 0 in Λn.

b) Let

d(λ) := min
{
π − λ1,

1
2 (λ1 − λ2),

1
2(λ2 − λ3), ...,

1
2 (λn−1 − λn), λn

}
. (5.2.46)

There holds the bound, θ ∈ IRn, λ ∈ Λn,

|(AΩ)n(θ − iλ)| ≤
(

4

π d(λ)

)n/2
· ‖A‖ . (5.2.47)

Proof. a) Let f ∈ S (IRn). We claim that the convolution (AΩ)n ∗ f , considered as a
function of θ1, ..., θk, with θk+1, ..., θn ∈ IR fixed, is analytic in the tube IRk − iΛk and
continuous on its closure. Our proof is based on induction in k ∈ {1, ..., n}. In view of√
n!(AΩ)n = 〈A〉conn,0 (5.2.44) and IR1− iΛ1 = S(−π, 0), the claim for k = 1 follows directly

from Lemma 5.2.5 a).
So assume analyticity of (θ1, ..., θk) 7−→ ((AΩ)n ∗ f)(θ1, ..., θn) in IRk − iΛk. According

to Lemma 5.2.5, the boundary value at Im θ1 = ... = Im θk = −π is given by 〈A〉conn,k/
√
n!,

which in turn has an analytic continuation in θk+1 ∈ S(−π, 0). By application of the flat
tube theorem (cf., for example, [Eps66]), we conclude that (AΩ)n ∗ f , considered as a
function of the first k + 1 variables, has an analytic continuation to the convex closure of
the set

IRk+1 − i
(
{(λ1, ..., λk , 0) : (λ1, ..., λk) ∈ Λk} ∪ {(π, ..., π, λk+1) : π > λk+1 > 0}

)
.

This convex closure is easily seen to coincide with IRk+1−iΛk+1. So by induction, (AΩ)n∗f
is analytic on Tn and continuous on Tn. As f was arbitrary, statement a) follows [BLT90].

To prove b), let f1, ..., fn ∈ S (IR) and put f := f1 ⊗ ... ⊗ fn. Lemma 5.2.5 c) implies
that at points θ − iλ ∈ Tn with λ = (π, ..., π, λk+1, 0, ..., 0), 0 ≤ λk+1 ≤ π, there holds the
bound

|((AΩ)n ∗ f)(θ − iλ)| ≤ 2n‖A‖
n∏

j=1

‖fj‖2 . (5.2.48)

By a standard argument (cf., for example the proof of [Lec05b, Lemma A.2]), this bound
can be seen to hold for arbitrary λ ∈ Λn. Moreover, it extends to f1, ..., fn ∈ L2(IR) by
continuity.

To establish (5.2.47), we consider discs Dr(ζk) ⊂ C of radius r and center ζk ∈ C. In
view of the mean value property for analytic functions,

(AΩ)n(ζ) = (πr2)−n
∫

Dr(ζ1)

dθ′1dλ
′
1 · · ·

∫

Dr(ζn)

dθ′ndλ
′
n (AΩ)n(θ

′ + iλ′) , (5.2.49)
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as long as the polydisc Dr(ζ1) × ... × Dr(ζn) is contained in the analyticity domain Tn.
Denoting the imaginary part of ζ by −λ, this is the case if the conditions (cf. the definition
(5.2.45) of Tn)

0 < λn − r, π > λ1 + r λj − r > λj+1 + r, j = 1, ..., n − 1,

hold. So we have to choose a radius r < d(λ), with

d(λ) := min{π − λ1,
1
2(λ1 − λ2),

1
2(λ2 − λ3), ...,

1
2(λn−1 − λn), λn} . (5.2.50)

Let r(λ′k) :=
√
r2 − (λ′k)

2. Then

(AΩ)n(θ − iλ) = (πr2)−n
r∫

−r

dλ′1

r(λ′1)∫

−r(λ′1)

dθ′1 · · ·
r∫

−r

dλ′n

r(λ′n)∫

−r(λ′n)

dθ′n (AΩ)n(θ + θ′ − iλ + iλ′)

= (πr2)−n
∫

[−r,r]×n

dnλ′
(
(AΩ)n ∗ (χr(λ′1) ⊗ ...⊗ χr(λ′n))

)
(θ − iλ + iλ′) ,

where χr(λ′k) denotes the characteristic function of [−r(λ′k), r(λ′k)]. Taking into account
(5.2.48), this leads us to the estimate

|(AΩ)n(θ − iλ)| ≤ (πr2)−n · (2r)n · 2n ‖A‖
n∏

k=1

sup
r(λ′k)≤r

‖χr(λ′k)‖2 =

(
32

π2 r

)n/2
· ‖A‖ .

(5.2.51)

This bound can be slightly improved as follows: By virtue of Cauchy’s integral formula,
(AΩ)n(θ − iλ) can be written as an n-fold contour integral over ∂Dr(ζ1) × ...× ∂Dr(ζn).
Since (AΩ)n(θ − iλ) is bounded in θ ∈ IRn for fixed λ ∈ Tn (5.2.51), the integration
contour ∂Dr(ζk) can be deformed to (IR − iλk − ir) ∪ (IR − iλk + ir), yielding

(AΩ)n(θ − iλ) = (2πi)−n
∑

ε

ε1 · · · εn
∫

IRn
dnθ′ (AΩ)n(θ

′ − iλ − irε)∏n
k=1(θ

′
k − θk − irεk)

.

Here the sum
∑

ε runs over ε = (ε1, ..., εn), εk = ±1. Using the bound (5.2.48) and the
L2-norm of the Cauchy kernel, ‖θ 7→ (θ ± ir)−1‖2 = π1/2r−1/2, we arrive at

|(AΩ)n(θ − iλ)| ≤ 2n ‖A‖ · (πr)−n/2 . (5.2.52)

Letting r → d(λ) yields the claim.

In order to mimic the proof of the nuclearity condition in the one particle case (Corol-
lary 5.2.3), we need to extend the domain of analyticity of (AΩ)n in such a way that it
contains (− iπ

2 , ...,− iπ
2 ), because continuation of (AΩ)n to IRn− ( iπ2 , ...,

iπ
2 ) corresponds to

the action of the modular operator ∆1/4 (cf. (5.1.9)). To achieve an enlargement of the
domain Tn of analyticity (which contains the point (− iπ

2 , ...,− iπ
2 ) only in its boundary),

more specific information on the underlying scattering function is needed. To this end, we
exploit the fact that S2 ∈ S0 can be continued to the enlarged strip S(−κ(S2), π+κ(S2)),
where

κ(S2) := inf{Im ζ : ζ ∈ S(0, π2 ) , S2(ζ) = 0} > 0 . (5.2.53)
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For simplicity, let us consider the two-dimensional case first. In view of the S2-symmetry
(4.1.18) of (AΩ)2 ∈ H2, we have

(AΩ)2(θ1, θ2) = S2(θ2 − θ1) · (AΩ)2(θ2, θ1) , θ1, θ2 ∈ IR . (5.2.54)

We know from Corollary 5.2.6 that (AΩ)2 is analytic in T2 = IR2 − iΛ2, and hence
(θ1, θ2) 7−→ (AΩ)2(θ2, θ1) has an analytic continuation to the ”flipped” tube IR2 − iΛ′

2,
with Λ′

2 = {(λ1, λ2) : 0 < λ1 < λ2 < π}. As (θ1, θ2) 7−→ S2(θ2 − θ1) is analytic in
−κ(S2) < Im θ2− Im θ1 < π+κ(S2), it follows that also the right hand side of (5.2.54) has
an analytic continuation. Since the right and left hand sides agree on the real subspace,
we may apply Epstein’s generalization of the edge of the wedge theorem [Eps60] to enlarge
the domain of holomorphy of (AΩ)2. The enlarged region is depicted in figure 5.1. Note
in particular that it contains the cube with center (−π

2 ,−π
2 ) and side length κ(S2).

The proof for the n-dimensional case is carried out in Proposition 5.2.7 below.

00
Im ζ1Im ζ1

Im ζ2Im ζ2

κ(S2)

κ(S2)(−π, 0)

(−π, 0)

(0,−π) (0,−π)
−(π, π)−(π, π)

〈θ1, θ2|AΩ〉〈Ω | [z(θ2), A] | θ1〉

〈A∗Ω |θ2, θ1〉

(∆1/4AΩ)2(θ1, θ2)

Figure 5.1: Base of the tube of analyticity of (AΩ)2 (shaded region) with (right) and
without (left) continuation of S2 to the enlarged strip S(−κ(S2), π + κ(S2))

As a higher-dimensional analogue of the situation depicted in figure 5.1, we consider for
κ > 0 the region

Bn(κ) :=
{
λ ∈ IRn : 0 < λ1, ..., λn < π, λk − λl < κ, 1 ≤ l < k ≤ n

}
(5.2.55)

and the cube Cn(κ) + λ0 ⊂ Bn(κ) defined by

λ0 := (−π
2 , ...,−π

2 ) , Cn(κ) := (−κ
2 ,

κ
2 )×n . (5.2.56)

The tube based on this cube is denoted

Tn(κ) := IRn + i(λ0 + Cn(κ)) . (5.2.57)

Proposition 5.2.7. Consider a model with scattering function S2 ∈ S0, and A ∈ A(WR).

a) (AΩ)n is analytic in the tube IRn − iBn(κ(S2)).

b) Let 0 < κ < κ(S2). There holds the bound,

|(AΩ)n(ζ)| ≤
(

2
√

2 ‖S2‖κ√
π(κ(S2) − κ)

)n
· ‖A‖ , ζ ∈ Tn(κ) . (5.2.58)
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Proof. a) Let Sn denote the group of permutations of n objects and consider the “per-
muted wavefunctions”

(AΩ)ρn(θ) := (AΩn)(ρ
−1θ) = (AΩ)n(θρ(1), ..., θρ(n)) , ρ ∈ Sn ,

which by Corollary 5.2.6 are analytic in the permuted tubes T ρ
n := IRn − iΛρn ,

Λρn := ρΛn =
{
λ ∈ IRn : π > λρ(1) > ... > λρ(n) > 0

}
.

Recall that (AΩ)n ∈ Hn is invariant under the representation Dn of Sn (4.1.11),

(AΩ)n(θ) = (Dn(ρ)(AΩ)n)(θ) = Sρ(θ) · (AΩ)ρn(θ) , (5.2.59)

Sρ(θ) =
∏

1≤l<k≤n
ρ(l)>ρ(k)

S2(θρ(l) − θρ(k)) . (5.2.60)

As S2 ∈ S0 is analytic in S(−κ(S2), π + κ(S2)), all the functions Sρ, ρ ∈ Sn, are analytic
in the tube IRn + iB′

n(κ(S2)) with base (see figure 5.2)

B′
n(κ(S2)) :=

{
λ ∈ IRn : −κ(S2) < λk − λl < π + κ(S2), 1 ≤ l < k ≤ n

}
.

Hence the right hand side of (5.2.59) can be analytically continued to the tube based on
B′
n(κ(S2)) ∩ (−Λρn). But the left hand side of (5.2.59) is analytic in IRn − iΛn, and both

sides converge in the sense of distributions to the same boundary values on IRn. So we
may apply Epstein’s generalization of the Edge of the Wedge Theorem [Eps60] to conclude
that (AΩ)n has an analytic continuation to the tube whose base is the convex closure of

⋃

ρ∈Sn

B′
n(κ(S2)) ∩ (−Λρn) .

Since the convex closure of
⋃
ρ Λρn is the cube (0, π)×n, it follows that (AΩ)n is analytic in

the tube based on −(0, π)×n ∩ B′
n(κ(S2)) = −Bn(κ(S2)).

0 Im ζ1

Im ζ2

−κ(S2)

−π

B′
2(κ(S2))

B2(κ(S2))

−Λ2

−Λτ1

2

Figure 5.2: The bases of the tubes involved in the proof of Proposition 5.2.7

b) To derive the desired bound, we proceed along the same lines as in the proof of Corollary
5.2.6. Firstly, (5.2.48) needs to be generalized to (AΩ)n(θ + iλ), with λ ∈ Cn(κ) + λ0,
0 < κ < κ(S2). To this end, we need to estimate Sρ (5.2.59). Clearly, the functions Sρ are
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bounded on IRn+iλ0+iCn(κ) for 0 < κ < κ(S2), because each factor S2(ζk−ζl) is bounded
(Def. 5.2.4). By the multidimensional analogue of the three lines theorem [BM48], the
supremum of Sρ over this tube is attained on a subspace of the form IRn+ iλ0 + iξ, where
ξ is a vertex of Cn(κ), i.e. ξk = ±κ

2 and hence ξk − ξl ∈ {0, κ,−κ}. We have |S2(0)| = 1,
|S2(iκ)| ≤ 1, and |S2(−iκ)| ≤ ‖S2‖κ < ∞. At most (n − 1) of the differences ξk − ξl
can equal −κ simultaneously. So we arrive at |Sρ(ζ)| ≤ ‖S2‖n−1

κ ≤ ‖S2‖nκ, ζ ∈ Tn(κ),
and conclude that the bound (5.2.48) holds for λ − λ0 ∈ Cn(κ) if the right hand side is
multiplied with ‖S2‖nκ, i.e.

|(AΩ)n ∗ (f1 ⊗ ...⊗ fn)(θ + iλ)| ≤ (2‖S2‖κ)n ‖A‖
n∏

k=1

‖fk‖2 , fk ∈ L2(IR) . (5.2.61)

As before, we can use the mean value property to represent (AΩ)n(θ − iλ) as an integral
over a polydisc Dr(θ1 − iλ1) × ...×Dr(θn − iλn) ⊂ Tn(κ(S2)). But the radius r can now
be chosen larger, as only λ+(−r, r)×n ⊂ Cn(κ(S2))+λ0 has to be satisfied. The maximal

admissible radius is R := min
k=1,...,n

{κ(S2)
2 ± (π2 + λk)}. Note that for λ − λ0 ∈ Cn(κ), this

entails R ≥ 1
2(κ(S2) − κ).

Now we can repeat the arguments leading to the bounds (5.2.52) for λ ∈ λ0 + Cn(κ),
the only differences being the different radius R of the polydisc and the additional factor
‖S2‖nκ . So we end up with the claimed bound

|(AΩ)n(ζ)| ≤ 2n‖S2‖nκ ‖A‖ (πR)−n/2 ≤
(

2
√

2‖S2‖κ√
π (κ(S2) − κ)

)n
· ‖A‖ , ζ ∈ Tn(κ) .

The following corollary provides the appropriate generalization of the Hardy space
structure of the single particle wavefunctions to the higher-dimensional setting, and is the
final result of this section.

Corollary 5.2.8. Consider a model with S2 ∈ S0, and let 0 < κ < κ(S2). The restrictions
of the functions (A(s)Ω)n to the tube Tn(κ) (5.2.57) are elements of the Hardy space
H2(Tn(κ)), and their Hardy norms are bounded by

|||(A(s)Ω)n||| ≤ σ(2s, κ)n · ‖A‖ . (5.2.62)

The constants σ(2s, κ) can be chosen as

σ(2s, κ) :=
2
√

2 e−2ms cos κ‖S2‖κ√
ms cos κ · (κ(S2) − κ)

. (5.2.63)

Proof. The analyticity of (AΩ)n in Tn(κ) has been shown before, and as U(s)
acts by multiplication with the entire function un,s(ζ) :=

∏n
k=1 e

−ims sinh ζk , also
(A(s)Ω)n(ζ) = un,s(ζ) · (AΩ)n(ζ) is analytic in this tube. Since |un,s(ζ + iλ0)| =∏n
k=1 exp(−ms cos(Imζk) cosh(Reζk)) and |Imζk| ≤ κ < π

2 for ζ ∈ Cn(κ), it follows that
un,s is an element of H2(Tn(κ)) for any s > 0. Using cosh θ ≥ 1 + 1

2θ
2 yields

|||un,s||| =

(∫

IR
dθ e−2ms cos κ cosh θ

)n/2
≤
(
π1/2e−ms cos κ

(ms cos κ)1/2

)n
. (5.2.64)
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As (AΩ)n is uniformly bounded on Tn(κ), κ < κ(S2), this implies (A(s)Ω)n ∈ H2(Tn(κ),
and the bound (5.2.63) is given by the product of (5.2.58) and (5.2.64).

The concrete structure of σ(s, κ) specified in (5.2.63) is not essential in the following. It
should only be noticed that for fixed κ, σ(s, κ) is a monotonously decreasing function of
s > 0, with the σ(s, κ) → 0 for s→ ∞ and σ(s, κ) → ∞ for s→ 0.

5.3 Proof of the Nuclearity Condition

We now exploit the analytic structure of the wavefunctions (AΩ)n to prove the nuclearity
of the maps Ξn(s) (5.1.6), and later on, the nuclearity of the total map Ξ(s).

As in the proof of the nuclearity of Ξ1(s), we also treat Ξn(s), n > 1, as the concate-
nation of two maps, as depicted in the following commutative diagram.

A(WR)

H2(Tn(κ)) Hn

Ξn(s)
Σn(s, κ)

∆n(s, κ)

Here κ is chosen in the interval (0, κ(S2)), and the notations

λ0 = −
(
π
2 , ...,

π
2

)
∈ IRn , Cn(κ) =

(
−κ

2 ,
κ
2

)×n
, Tn(κ) = IRn + i(λ0 + Cn(κ))

are the same as before (5.2.56). The maps Σn(s, κ) and ∆n(s, κ) appearing in the diagram
are defined as

Σn(s, κ) : A(WR) → H2(Tn(κ)) , Σn(s, κ)A := (A(1
2s)Ω)n , (5.3.1)

∆n(s, κ) : H2(Tn(κ)) → Hn , (∆n(s, κ)F )(θ) :=

n∏

k=1

e−
ms
2

cosh θk · F (θ + iλ0) , (5.3.2)

and in view of (5.1.9) we have

Ξn(s)A = (∆n(s, κ) ◦ Σn(s, κ))A , A ∈ A(WR) . (5.3.3)

Corollary 5.2.8 states that Σn(s, κ) is a bounded linear map between the Banach spaces
(A(WR), ‖ · ‖B(H)) and (H2(Tn(κ)), ||| · |||), and that its operator norm is bounded by
‖Σn(s, κ)‖ ≤ σ(s, κ)n (5.2.63). To show that Ξn(s) is nuclear, it therefore suffices to
establish the nuclearity of ∆n(s, κ).

Lemma 5.3.1. Let s > 0, κ > 0, and ∆n(s, κ) be defined as in (5.3.2).

a) ∆n(s, κ) is a nuclear map between the Banach spaces (H2(Tn(κ)), |||·|||) and (Hn, ‖·‖).
b) Define Ts,κ as the integral operator on L2(IR, dθ) with kernel

Ts,κ(θ, θ
′) =

e−
ms
2

cosh θ

iπ (θ′ − θ − iκ
2 )

. (5.3.4)

Ts,κ is of trace class, and there holds the bound

‖∆n(s, κ)‖1 ≤ ‖Ts,κ‖n1 <∞ . (5.3.5)
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In the proof, we will need the following two properties of functions F ∈ H2(Tn(κ)): Firstly,
Fλ(θ1, ..., θk, ..., θn) → 0 for |θk| → ∞ if θ1, ..., θk−1, θk+1, ..., θn ∈ IR are held fixed, and this
limit is uniform in λ if λ varies over a compact subset of Cn(κ). Secondly, Fλ converges
in the norm topology of L2(IRn) as λ − λ0 approaches the boundary of Cn(κ). For the
functions F = (A(1

2s)Ω)n, these properties can be derived in a straightforward manner
from Proposition 5.2.7, but they also hold for arbitrary F ∈ H2(Tn(κ)) since Cn(κ) is a
polyhedron (see appendix C.2).

Proof. Let F ∈ H2(Tn(κ)), and pick θ ∈ IRn and a polydisc Dn(θ) ⊂ Tn(κ) with center
θ + iλ0. By virtue of Cauchy’s integral formula, we can represent F (θ + iλ0) as a contour
integral over Dn(θ),

F (θ + iλ0) =
1

(2πi)n

∮

Dn(θ)
dnζ ′ F (ζ ′)∏n

k=1(ζ
′
k − θk + iπ

2 )
.

Taking advantage of the two properties of F mentioned above, we can deform the contour
of integration to the boundary of Tn(κ). After multiplication with the exponential factor
(5.3.2) we arrive at

(∆n(s, κ)F )(θ) =
1

(2πi)n

∑

ε

∫

IRn
dnθ′

(
n∏

k=1

εk e
−ms

2
cosh θk

(θ′k − θk − iεkκ
2 )

)
· Fλ0−

κ
2
ε(θ′) ,

where the summation runs over ε = (ε1, ..., εn), ε1, ..., εn = ±1. Expressed in terms of the
integral operator Ts,κ, this equation reads

∆n(s, κ)F = 2−n
∑

ε

ε1 · · · εn(Ts,ε1κ ⊗ ...⊗ Ts,εnκ)Fλ0−
κ
2
ε . (5.3.6)

The integral operators Ts,±κ are of trace class on L2(IR), as is shown in appendix B.2 by
a standard argument. Hence Ts,ε1κ ⊗ ... ⊗ Ts,εnκ is a trace class operator on L2(IRn) for
any ε1, ..., εn = ±1. Note that as Ts,−κ is unitary equivalent to Ts,κ (the equivalence being
implemented by V , (V f)(θ) := i · f(−θ)), there holds ‖Ts,ε1κ ⊗ ...⊗ Ts,εnκ‖1 = ‖Ts,κ‖n1 .

Moreover, it follows from the L2-convergence of F to its boundary values that the maps
F 7−→ Fλ0−

κ
2
ε are bounded as operators from H2(Tn(κ)) to L2(IRn) for any ε, with norm

not exceeding one. Hence the nuclearity of ∆n(s, κ) (5.3.6) follows, and since the sum in
(5.3.6) runs over 2n terms, we also obtain the claimed bound ‖∆n(s, κ)‖1 ≤ ‖Ts,κ‖n1 .

Lemma 5.3.1 implies our first nuclearity result for the maps Ξ(s) =
∑∞

n=0 Ξn(s) (5.1.8).

Theorem 5.3.2. For each model theory with scattering function S2 ∈ S0, there exists a
splitting distance smin <∞ such that Ξ(s) is nuclear for all s > smin.
Hence in these models, for each double cone Oa,b = (WR+a)∩(WL+b) with b−a ∈WR and
−(b− a)2 > s2min, the corresponding observable algebra A(Oa,b) = A(WR+ a)∩A(WL− b)
has Ω as a cyclic vector.

Proof. Let κ ∈ (0, κ(S2)). We have Ξn(s) = ∆n(s, κ) ◦ Σn(s, κ), and in view of the
previously established bounds (5.2.63, 5.3.5),

‖Ξn(s)‖1 ≤ ‖Σn(s, κ)‖ · ‖∆n(s, κ)‖1 ≤ (σ(s, κ) · ‖Ts,κ‖1)
n . (5.3.7)
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For s → ∞, ‖Ts,κ‖1 and σ(s, κ) converge strictly monotonously to zero (cf. (5.2.63) and
(5.3.4), see also appendix B.2 for an explicit bound on ‖Ts,κ‖1). So there exists smin <∞
such that σ(s, κ)‖Ts,κ‖1 < 1 for all s > smin. But for these values of s, there holds

∞∑

n=0

‖Ξn(s)‖1 ≤
∞∑

n=0

(σ(s, κ) ‖Ts,κ‖1)
n <∞ , (5.3.8)

and hence the series
∑∞

n=0 Ξn(s) of nuclear operators converges in nuclear norm to Ξ(s).
Since the set of nuclear operators between two Banach spaces is closed with respect to
convergence in ‖ · ‖1, the nuclearity of Ξ(s) follows.

The Reeh-Schlieder property for the double cone algebras A(WR ∩ (WL + (0, s))),
s > smin, is a consequence of the nuclearity of Ξ(s) (Theorem 2.3.4). As the double
cone Oa,b, b − a ∈ WR, −(b − a)2 > s2min, can be transformed to WR ∩ (WL + (0, s)),
s > smin, by a translation and a boost, the Reeh-Schlieder property for A(Oa,b) follows by
covariance.

Theorem 5.3.2 establishes the Reeh-Schlieder property (and all the other consequences
of the modular nuclearity condition listed in Thm. 2.3.4) for double cones having a minimal
”relativistic size”. This size is measured by the length smin and depends on the scattering
function S2 and the mass m. For example, if we consider the scattering function with a
simple pole at − iπ

4 ,

S2(θ) =
i−

√
2 sinh θ

i+
√

2 sinh θ
, (5.3.9)

one can use the estimates on ‖Ts,κ‖1 calculated in Lemma B.2.1 in appendix B.2 to show
that smin < k/m, where k is a constant of the order of magnitude 1. In SI units, the
bound reads smin <

k ~

mc , and is in good agreement with the Compton wavelength λC = 2π~

mc
corresponding to the mass m. For example, if m is taken to be the mass of the electron,
this implies that smin is of the order of magnitude 10−12m. But as ‖Ts,κ‖1 and σ(s, κ)
diverge for s → 0, we cannot establish the nuclearity of Ξ(s) for arbitrary small s with
these methods.

Whereas the occurrence of a minimal localization length (the Planck length
λP ≈ 10−35m) in theories describing quantum effects of gravity is expected for physical
reasons, we strongly believe that the minimal length smin appearing here is an artifact of
our estimates, without any physical content. This conjecture is supported by a second
theorem, stated below, which improves the previous one under an additional assumption
on the underlying scattering function. Namely, we establish the nuclearity of Ξ(s) without
restriction on the splitting distance s if S2(0) = −1.

The estimate ‖Ξn(s)‖1 ≤ (σ(s, κ)‖Ts,κ‖1)
n used above is rather crude because it

does not fully take into account the effects of the “S2-statistics”, i.e. the symmetry struc-
ture (4.1.18) of the functions in Hn. In principle, it is an estimate on the unsymmetrized
Fock space FH1 =

⊕
nH⊗n

1 describing states of distinguishable particles, and can be
improved by working on the much smaller subspace H ⊂ FH1 .

The symmetry properties of H can most easily be used for an enhanced estimate on
‖Ξn(s)‖1 in the two special cases of the constant scattering functions S2 = ±1, where the
Hilbert space H of the model coincides with the Bosonic or Fermionic Fock space over H1.
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Here the combinatorial problems appearing in estimating the nuclear norms of Ξ(s) have
been settled in [BW86] and [Lec05a], respectively. The proofs of the modular nuclearity
condition in these two models (without restriction on the splitting distance s) can be found
in appendix A.

In the generic case of a non-constant scattering function, we map the model formulated
on the S2-symmetric Hilbert space H to the Bose or Fermi Fock space with a certain
unitary operator to be constructed below. The Bose/Fermi alternative corresponds here
to the sign of the scattering function at the origin, where it can take only the values
S2(0) = ±1. We thus subdivide S and S0 into a ”Bosonic” and a ”Fermionic” class
according to

S± := {S2 ∈ S : S2(0) = ±1} , S = S+ ∪ S− , (5.3.10)

S±
0 := {S2 ∈ S0 : S2(0) = ±1} , S0 = S+

0 ∪ S−
0 . (5.3.11)

It has to be kept in mind, however, that independently of the scattering function, all the
models under consideration describe Bosons, as follows from the symmetry properties of
their two-particle scattering states (section 4.3). But the choice of sign in S2(0) = ±1
implies certain similarities between the wavefunctions (θ1, ..., θn) 7−→ Ψn(θ1, ..., θn) ∈ Hn

and Bose/Fermi wavefunctions for small rapidity differences |θl − θk| < ε, which will be
exploited in the following.

In order to distinguish between the different scattering functions involved, we adopt
the convention that the usual notations z, z†,Dn, Pn,Hn,H refer to the generic scattering
function under consideration. All objects corresponding to the special functions S2 = ±1
are tagged with an index ”±”, i.e. we write z±, z

†
±,D

±
n , P

±
n ,H±

n ,H±.

In preparation for the construction of the mentioned unitaries, recall that each
scattering function S2 ∈ S0 is analytic and nonvanishing in the strip S(−κ(S2), κ(S2)).
So there is an analytic function δ : S(−κ(S2), κ(S2)) → C (the phase shift) such that

S2(ζ) = S2(0)e
2iδ(ζ), ζ ∈ S(−κ(S2), κ(S2)) . (5.3.12)

Since S2 has modulus one on the real line, δ takes real values on IR, and we fix it uniquely
by the choice δ(0) = 0. Note that in view of S2(−θ) = S2(θ), θ ∈ IR, δ is odd.

Lemma 5.3.3. Let S2 ∈ S±
0 and δ : S(−κ(S2), κ(S2)) −→ C be defined as above. Consider

the functions

Y ±
n (ζ) :=

∏

1≤k<l≤n

(
±eiδ(ζk−ζl)

)
, n ≥ 2 , Y0 = 1, Y1(ζ) = 1 , (5.3.13)

and the corresponding multiplication operators (denoted by the same symbol Y ±
n ).

a) Let κ ∈ (0, κ(S2)). Viewed as an operator on H2(Tn(κ)), Y ±
n is a bounded map with

‖Y ±
n ‖B(H2(Tn(κ))) ≤ ‖S2‖n/2κ .

b) Viewed as an operator on L2(IRn), Y ±
n is a unitary intertwining the representations

Dn and D±
n of the symmetric group Sn, and hence mapping the subspace Hn ⊂

L2(IRn) onto the subspace H±
n ⊂ L2(IRn).
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Proof. a) Since δ is analytic in S(−κ, κ), so is the function Y ±
n in S(−κ

2 ,
κ
2 )×n. Depending

only on differences of rapidities, Y ±
n is also analytic in S(−κ

2 ,
κ
2 )×n + iλ0 = Tn(κ). By

application of the same argument as in the proof of the bounds in Prop. 5.2.7 b), it follows
that

∣∣Y ±
n (ζ)

∣∣ ≤ ‖S2‖n/2κ , ζ ∈ Tn(κ) . (5.3.14)

Hence |||Y ±
n · F ||| ≤ ‖S2‖n/2κ · |||F |||, F ∈ H2(Tn(κ)), which proves a).

b) Considered as a multiplication operator on L2(IRn), Y ±
n multiplies with a phase

and is hence unitary. Let τj ∈ Sn denote the transposition exchanging j and j + 1,
j ∈ {1, ..., n}, and pick arbitrary Ψn ∈ L2(IRn), θ ∈ IRn.

(D±
n (τj)Y

±
n Ψn)(θ) = ±

∏

1≤k<l≤n
(k,l) 6=(j,j+1)

(
±eiδ(θk−θl)

)
·
(
±eiδ(θj+1−θj)

)
Ψn(θ1, ..., θj+1, θj , ..., θn)

=
∏

1≤k<l≤n

(
±eiδ(θk−θl)

)
· S2(θj+1 − θj) · Ψn(θ1, ..., θj+1, θj, ..., θn)

= (Y ±
n Dn(τj)Ψn)(θ)

As the transpositions τj generate Sn, this calculation shows that Y ±
n intertwines D±

n and
Dn. In particular, Y ±

n restricts to a unitary mapping Hn onto H±
n .

The operator

Y ± :=

∞⊕

n=0

Y ±
n : H −→ H± (5.3.15)

will be used to improve the estimate on ‖Ξn(s)‖1 underlying Theorem 5.3.2. A similar
construction of distinguished isomorphisms between Fock spaces with different ”statistics”
has been carried out by Liguori and Mintchev [LM95]. But whereas in that work, the
essential quality of Y ±

n was property b) of the preceding Lemma, here also the preservation
of the Hardy space structure, as stated in part a) of Lemma 5.3.3, is important. For it
allows us to use a splitting of Ξn(s) into a bounded and a nuclear operator as before
(5.3.3), and to work at the same time with a simpler symmetry structure.

Explicitly, we consider in a model theory with scattering function S2 ∈ S±
0 the maps

Ξ±
n (s) := Y ±

n Ξn(s) : A(WR) −→ H±
n , Ξ±(s) := Y ±Ξ(s) .

Since Y ± : H → H± is unitary, Ξ(s) is nuclear if and only if Ξ±(s) is, and in this case
‖Ξ(s)‖1 = ‖Ξ±(s)‖1. Moreover, as Y ±

n acts by multiplication with a function depending
only on differences of rapidities, we see that this operator commutes with the translation
U(s) and the modular operator, i.e. we have

Ξ±
n (s)A = ∆1/4U(1

2s)Y ±
n (A(1

2s)Ω)n =:
(
∆±
n (s, κ) ◦ Y ±

n Σn(s, κ)
)
A , A ∈ A(WR).

Here Σn(s, κ) is defined as in (5.3.1) and ∆±
n (s, κ) acts as ∆n(s, κ) (5.3.2), but is now

considered as a map from the subspace H2
±(Tn(κ)) ⊂ H2(Tn(κ)), consisting of the totally

(anti-) symmetric functions in H2(Tn(κ)), to H±
n .



5.3. Proof of the Nuclearity Condition 101

By Proposition 5.2.7 and Lemma 5.3.3 a), Y ±
n Σn(s, κ) is a bounded linear map from

A(WR) to H2
±(Tn(κ)), κ ∈ (0, κ(S2)). Its norm is bounded by

‖Y ±
n Σn(s, κ)‖ ≤

(
‖S2‖1/2

κ · σ(s, κ)
)n

. (5.3.16)

The worsening of this bound in comparison to ‖Σn(s, κ)‖ ≤ σ(s, κ)n is more than balanced
by the improvement we get for the bound on ‖∆−

n (s, κ)‖1 in the case S2 ∈ S−
0 , where the

Pauli principle becomes effective.

Theorem 5.3.4. In a model theory with scattering function S2 ∈ S−
0 , the maps Ξ(s) are

nuclear for every splitting distance s > 0, and there holds the bound, κ ∈ (0, κ(S2)),

‖Ξ(s)‖1 ≤
∞∑

n=0

(
σ(s, κ) ‖S2‖1/2

κ ‖Ts,κ‖1

)n
√
n!

< ∞ . (5.3.17)

In particular, in these models Ω is a cyclic vector for the observable algebras A(O) localized
in arbitrarily small open regions O ⊂ IR2.

Proof. Proceeding along the same lines as in the proof of Lemma 5.3.1, we infer that
∆−
n (s, κ) is nuclear and can be represented as in (5.3.6). With the notations ε = (ε1, ..., εn),

εk = ±1, there holds for F− ∈ H2
−(Tn(κ))

∆−
n (s, κ)F− = 2−n

∑

ε

ε1 · · · εn(Ts,ε1κ ⊗ ...⊗ Ts,εnκ)F
−
λ0−

κ
2
ε
. (5.3.18)

Consider the positive operator T̂s,κ := (|T ∗
s,κ|2 + |T ∗

s,−κ|2)1/2, which is of trace class on

L2(IR) and satisfies ‖T̂s,κ‖1 ≤ ‖Ts,κ‖1 + ‖Ts,−κ‖1 = 2 ‖Ts,κ‖1 [Kos84]. We choose an
orthonormal basis {ψk}k of L2(IR), consisting of eigenvectors ψk of T̂s,κ, with eigenvalues
tk ≥ 0. So T̂s,κ acts as T̂s,κξ =

∑∞
k=1 tk〈ψk, ξ〉ψk, ξ ∈ L2(IR), and its trace norm is

‖T̂s,κ‖1 =
∑∞

k=1 tk <∞.
As a consequence of the Pauli principle, the vectors

Ψ−
k

:= z†−(ψk1) · · · z†−(ψkn)Ω =
√
n!P−

n (ψk1 ⊗ ...⊗ ψkn)

=
1√
n!

∑

ρ∈Sn

sign(ρ)ψρ(k1) ⊗ ...⊗ ψρ(kn) (5.3.19)

form an orthonormal basis of H−
n if k = (k1, ..., kn) varies over k1 < k2 < ... < kn,

k1, ..., kn ∈ N.
Expanding the right hand side of (5.3.18) in this basis, we find

∆−
n (s, κ)F− = 2−n

∑

ε

ε1 · · · εn
∑

k1<...<kn

〈Ψ−
k
, (Ts,ε1κ ⊗ ...⊗ Ts,εnκ)F

−
λ0−

κ
2
ε
〉 · Ψ−

k

=
2−n√
n!

∑

ε,ρ

ε1 · · · εn signρ
∑

k1<...<kn

〈T ∗
s,ε1κψρ(k1) ⊗ ..⊗ T ∗

s,εnκψρ(kn), F
−
λ0−

κ
2
ε
〉 · Ψ−

k
.

Taking into account ‖T ∗
s,±κψkj

‖ ≤ ‖T̂s,±κψkj
‖ = tkj

and ‖F−
λ0−

κ
2
ε
‖ ≤ |||F−||| as well as∑

ε,ρ 1 = 2n · n!, this expansion leads to the estimate

‖∆−
n (s, κ)‖1 ≤

√
n!

∑

k1<...<kn

tk1 · · · tkn ≤ 1√
n!

∑

k1,...,kn

tk1 · · · tkn =
‖Ts,κ‖n1√

n!
. (5.3.20)
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In view of the bound (5.3.16) on Y −
n Σn(s, κ), we arrive at the following estimate for the

nuclear norm of Ξ−(s) =
∑∞

n=0 ∆−
n (s, κ) ◦ Y −

n Σn(s, κ),

‖Ξ−(s)‖1 ≤
∞∑

n=0

(
σ(s, κ) ‖S2‖1/2

κ ‖Ts,κ‖1

)n
√
n!

. (5.3.21)

This series converges for each σ(s, κ)‖S2‖1/2
κ ‖Ts,κ‖1, i.e. for each s > 0, and yields the

claimed bound (5.3.17).

Theorem 5.3.4 provides the full proof of the modular nuclearity condition for wedge
algebras in the class of theories with scattering functions S2 ∈ S−

0 . Consequently, the
models with such scattering functions enjoy all the properties derived from the modular
nuclearity condition in chapter 2. In particular, these models are hereby rigorously es-
tablished as examples of interacting quantum field theories in the sense of local quantum
physics.

For the sake of clarity, we restate the results of chapter 2 (Theorem 2.3.4) for the
present more concrete situation.

Theorem 5.3.5. Consider a scattering function S2 ∈ S−
0 and the associated model theory,

defined in terms of the local net A (4.4.1), (4.4.13).

a) The net A has the split property for inclusions of wedges (and hence, also for inclu-
sions of double cones).

b) The wedge algebras and the double cone algebras are all isomorphic to the hyperfinite
type III1 factor.

c) Haag duality holds, i.e. A(O)′ = A(O′) for any region O ⊂ IR2.

d) Strong additivity as expressed by Lemma 2.2.4 and Lemma 2.2.5 holds.

e) The Reeh-Schlieder property holds, i.e. the vacuum vector Ω is cyclic and separating
for any algebra A(O) of observables localized in a non-empty open bounded region O
with non-empty causal complement.

For models with scattering function S2 from the larger class S0 ⊃ S−
0 , the above statements

hold for double cones above a minimal size (cf. Thm. 5.3.2).

To conclude the chapter, we discuss the quality of the bound (5.3.17), and mention
some related conjectures.

The proof of Theorem 5.3.4 relies on the Pauli principle, and does not carry over
to the family S+

0 . In particular, the free field theory, corresponding to the scattering
function S2 = +1 ∈ S+

0 , cannot be treated by these methods. However, the underlying
Zamolodchikov algebra simplifies to the CCR algebra in the free case, and allows for an
alternative estimate of the nuclear norm of Ξ(s) in this particular model. This alternative
proof heavily relies on the analysis of nuclear maps on the Bose Fock space developed by
Buchholz and Wichmann [BW86], and it is demonstrated in appendix A. It is shown there
that for scattering function S2 = +1, the maps Ξ(s) are nuclear for any splitting distance
s > 0.
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Furthermore, appendix A contains an analysis of the nuclearity properties of the model
with the other constant scattering function, S2 = −1 ∈ S−

0 . This model is also more easily
manageable by algebraic methods, since the Zamolodchikov algebra coincides here with
the CAR algebra. It can be shown that for S2 = −1, there holds a bound of the form

‖Ξ(s)‖1 ≤ e2(‖Tϕ(s)‖1+‖Tπ(s)‖1) , (5.3.22)

where Tϕ(s), Tπ(s) are trace class integral operators on L2(IR), similar to Ts,κ (5.3.4).
A comparison of (5.3.22) with (5.3.17) shows that the bound obtained in Thm. 5.3.4
is not optimal. Rather, the factor

√
n! appearing there in the denominator can be

replaced by n!. We conjecture that by a more refined analysis, the sharpened bound
given by this replacement is true for arbitrary S2 ∈ S−

0 , i.e. that the series in (5.3.17)
can be replaced by an exponential function. Although the actual value of ‖Ξ(s)‖1

does not matter for the nuclearity condition, which only requires ‖Ξ(s)‖1 < ∞, it is
useful to have a sharp bound on this quantity if one is interested in estimating the ther-
modynamical partition function of such models. This point will be discussed in section 6.2.

In conclusion, we mention that already the result of Thm. 5.3.2, namely the Reeh-
Schlieder property for double cones above a minimal size, is completely sufficient for the
investigation of the interaction by doing scattering theory, in any model with S2 ∈ S0.
This opens up the possibility to calculate the S-matrix of such models, which is the topic
of the following chapter.



104 Chapter 5. The Nuclearity Condition in Models with Factorizing S-Matrices



Chapter 6

Physical Properties of the

Constructed Models

The results obtained in the previous chapters show that the model theories defined here
comply with all principles of quantum field theory if the scattering function is chosen from
an appropriate class. In this chapter, we discuss two aspects of the interaction in these
models: In the first section, we do collision theory and obtain formulae for multiparticle
scattering states. We find that the constructed theories are asymptotically complete, and
that their S-matrices coincide with the ones associated to the scattering functions S2 used
in their definition.

In the second section, we briefly consider the thermodynamical behavior of the models
and show that their partition function is finite for any bounded region and any tempera-
ture.

6.1 The Reconstruction of the S-Matrix

To compute n-particle collision states, it is sufficient to restrict to the family S0 of
scattering functions (Definition 5.2.4), as Theorem 5.3.2 ensures that in this case there
exist compactly localized observables, at least in double cones above some minimal size.
Since arbitrarily many double cones of any size can be spacelike separated by translation,
it is possible to apply the usual methods of collision theory in this class of theories –
localization in arbitrarily small regions is not needed.

In the following, we employ the Haag-Ruelle scattering theory [Ara99, BS05a] in
the same form as in [BBS01], where scattering properties of polarization-free generators
have been analyzed. As usual in this approach, we consider quasilocal operators of the
form

A(ft) =

∫
d2x ft(x)A(x) , A(x) = U(x)AU(x)−1 , (6.1.1)

where A ∈ A(O) is localized in a double cone O and the functions ft, t ∈ IR, are defined
in terms of momentum space wavefunctions f̃ by

ft(x) :=
1

2π

∫
d2p f̃(p0, p1) e

i(p0−ωp)t e−ip·x , ωp :=
(
m2 + p2

1

)1/2
. (6.1.2)

105
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The functions f̃ are taken to be Schwartz test functions, such that the integral (6.1.1)
converges in operator norm.

V(f) :=
{
(1, p1/ωp) : (p0, p1) ∈ supp f̃

}
. (6.1.3)

Recall that the support of ft is essentially contained in tV(f) for asymptotic times t
[Hep66]. More precisely, let χ be a smooth function which is equal to 1 on V(f) and
vanishes in the complement of a slightly larger region. Then f̂t(x) := χ(x/t)ft(x) is the
asymptotically dominant part of ft, i.e. the difference ft − f̂t converges to zero in the
topology of S (IR2) as t→ ±∞ [BBS01].

As in section 4.3, we adopt the notation to write f ≺ g if V(g)−V(f) ⊂ {0} × (0,∞).

If the support of f̃ is concentrated around a point (ωp, p1) on the upper mass shell
and does not intersect the energy momentum spectrum elsewhere, A(ft)Ω is a single
particle state which does not depend on the time parameter t. Moreover, we have the
strong limits

lim
t→∞

A(ft)Ψ = A(f)outΨ , lim
t→−∞

A(ft)Ψ = A(f)inΨ , (6.1.4)

to the asymptotic creation operators A(f)out and A(f)in, creating the single particle state
A(f)Ω from the vacuum. The adjoint operators converge to the corresponding annihilation
operators,

lim
t→∞

A(ft)
∗Ψ = A(f)out

∗Ψ , lim
t→−∞

A(ft)
∗Ψ = A(f)in

∗Ψ , (6.1.5)

These limits are known to hold for a certain dense set of collision states Ψ [Hep66, Ara99].
But by a result of Buchholz [Buc90], it follows that they are also valid for all scattering
states Ψ of finite energy, in particular, for all single particle states of the form φ(f)Ω = f+,
where f+ has compact support [BBS01].

These operators are related to the Bose creation and annihilation operators through
the Møller operators Vin/out : H+ −→ Hin/out ⊂ H. These creators and annihilators

coincide with the Zamolodchikov operators z†+, z+ with scattering function S2 = 1, and
act on the subspace of finite particle number of the totally symmetric Bose Fock H+ space
over H. In the terminology of chapter 5,

A(f)in/out = Vin/outz
†
+(A(f)Ω)V ∗

in/out, A(f)in/out
∗ = Vin/outz+(A(f)Ω)V ∗

in/out. (6.1.6)

Having recalled these basic facts of scattering theory, we now compute n-particle collision
states in the model theory based on a scattering function S2 ∈ S0. To this end, we use
the field φ and follow the analysis in [BBS01]. Recall that φ(f) is affiliated to the wedge
algebra A(WL + supp f), f ∈ S (IR2).

Lemma 6.1.1. Consider testfunctions f̃1, ..., f̃n ∈ S (IR2) having ordered, pairwise dis-
joint, compact supports concentrated around points on the upper mass shell such that
f1 ≺ ... ≺ fn. Then

φ(f1) · · · φ(fn)Ω = (f+
1 × ...× f+

n )out , (6.1.7)

φ(fn) · · ·φ(f1)Ω = (f+
1 × ...× f+

n )in . (6.1.8)
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Proof. The proof is based on induction in the particle number n. For n = 1, we have

φ(f1)Ω = f+
1 = (f+

1 )out = (f+
1 )in , (6.1.9)

since f+
1 is a single particle state. For the step from n to (n + 1), let A1, ..., An ∈ A(O)

be operators localized in an arbitrary double cone O. We want to establish commutation
relations between φ(f) and the creation operators Ak(gk)out, where f ≺ g1 ≺ ... ≺ gn and
the test functions f, g1, ..., gn have the same support properties as the f1, ..., fn. We first
note that

φ(f)Ψ = φ(ft)Ψ = lim
t→∞

φ(f̂t)Ψ , Ψ ∈ D . (6.1.10)

The first equality follows from f+
t = f+, f−t = 0, since the support of f̃ does not intersect

the lower mass shell. The second equality in (6.1.10) follows because we have the limit
ft− f̂t → 0 in S (IR2) and f 7−→ φ(f)Ψ is a vector valued tempered distribution1. Taking
into account the strong convergence Ak(ĝk,t) → Ak(gk)out for t→ ∞, we obtain

〈φ(f)Ψ, (A1(g1)Ω × ...×An(gn)Ω)out〉 = lim
t→∞

〈φ(f̂ t)Ψ , A1(ĝ1,t) · · ·An(ĝn,t)Ω〉 . (6.1.11)

But f̂t and ĝk,t have supports in small neighborhoods of tV(f) and tV(gk), respectively.

Hence φ(f̂ t) is localized in a wedge WL(ft) slightly larger than WL + tV(f), and Ak(ĝk,t)
is localized in a neighborhood of O + tV(gk). For large enough t > 0, these regions are

spacelike separated, and their distance increases linearly with t. As φ(f̂ t) is affiliated with
A(WL(ft)), it follows that this operator commutes with Ak(ĝk,t), k = 1, ..., n. Hence

〈φ(f)Ψ, (A1(g1)Ω × ...×An(gn)Ω)out〉 = lim
t→∞

〈Ψ , A1(ĝ1,t) · · ·An(ĝn,t)φ(f̂t)Ω〉

= lim
t→∞

〈Ψ , A1(ĝ1,t) · · ·An(ĝn,t) f̂+
t 〉 .

Applying stationary phase methods, one can show that f̂+
t converges rapidly in L2-norm

to f+ as t → ∞. Namely, for any N ∈ N there exists a constant CN such that for large
enough t there holds ‖f̂+

t − f+‖2 ≤ CN · t−N [RS79, Cor. to Thm. XI.14]. On the other
hand, a straightforward estimate shows ‖Ak(ĝk,t)‖ ≤ cgk ,Ak

· t2 with constants cgk,Ak
> 0.

As the operators Ak(ĝk,t) converge strongly to the asymptotic creation operators Ak(gk)out

on the one particle state f+, we find

〈φ(f)Ψ, (A1(g1)Ω × ...×An(gn)Ω)out〉 = 〈Ψ, A1(g1)out · · ·An(gn)outf
+〉

= 〈Ψ, (A1(g1)Ω × ...×An(gn)Ω × f+)out〉
= 〈Ψ, (f+ ×A1(g1)Ω × ...×An(gn)Ω)out〉 ,

where in the last step we used the Bose symmetry of the scattering states. In view of the
Reeh-Schlieder property of A(O), we can approximate f+

k with Ak(gk)Ω. Given any ε > 0,
there exist operators A1, ..., An ∈ A(O) and testfunctions g1, ..., gn, with gk having support
in an arbitrarily small neighborhood of the support of fk, such that ‖f+

k −Ak(gk)Ω‖ < ε.
As the left and right hand side of the above equation are continuous in the single particle
states Ak(gk)Ω, we conclude

〈φ(f)Ψ, (f+
1 × ...× f+

n )out〉 = 〈Ψ , (f+ × f+
1 × ...× f+

n )out〉 . (6.1.12)

1This can for example be inferred from the estimate in Proposition 4.2.2 a).
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Taking into account that Ψ ∈ D was arbitrary and D ⊂ H is dense, this implies via the
induction hypothesis that for f ≺ f1 ≺ ... ≺ fn,

φ(f)φ(f1) · · · φ(fn)Ω = φ(f)(f+
1 × ...× f+

n )out = (f+ × f+
1 × ...× f+

n )out , (6.1.13)

proving (6.1.7).

For incoming n-particle states, the order of the velocity supports of f1, ..., fn has to be
reversed, since WL + tV(f1) becomes spacelike separated from O + tV(fk) for t→ −∞ if
f ≻ fk. Apart from this modification, the same argument can be used to derive formula
(6.1.8).

Remark: In principle, our proof can also be applied to the more general situation of
temperate polarization-free generators G affiliated to A(WL) in a local net A (Def. 2.4.2).
In this setting, we have to assume that the generators leave their domain of temperateness
D invariant, i.e. GD ⊂ D . Given this invariance property, we can apply the same
argument as above and obtain, f1 ≺ ... ≺ fn,

G(f1) · · ·G(fn)Ω = (G(f1)Ω × ...×G(fn)Ω)out , (6.1.14)

G(fn) · · ·G(f1)Ω = (G(f1)Ω × ...×G(fn)Ω)in . (6.1.15)

We now derive the explicit form of scattering states as vectors in the S2-symmetric Fock
space H. Note that in (6.1.7), (6.1.8), the annihilation part of φ(fk) vanishes: Since the
support of f̃ does not intersect the lower mass shell, we have f−k = 0, and φ(fk) = z†(f+

k ).
The relation f ≺ g implies in particular supp (g+) − supp (f+) ⊂ (0,∞), as can be

seen from the definition of the velocity support (6.1.3). On the other hand, for single
particle functions ψ1, ψ2 ∈ C∞

0 (IR) with suppψ2 − suppψ1 ⊂ (0,∞) we can find f1, f2 ∈
S (IR2) such that f+

1 = ψ1, f
+
2 = ψ2 and f1 ≺ f2. We therefore also write ψ1 ≺ ψ2 if

suppψ2 − suppψ1 ⊂ (0,∞). By continuity of (6.1.7),(6.1.8) in f+
1 ,...,f+

n , we arrive at the
following form of n-particle collision states.

(ψ1 × ...× ψn)out = z†(ψ1) · · · z†(ψn)Ω =
√
n!Pn(ψ1 ⊗ ...⊗ ψn) , ψ1 ≺ ... ≺ ψn ,

(ψ1 × ...× ψn)in = z†(ψn) · · · z†(ψ1)Ω =
√
n!Pn(ψn ⊗ ...⊗ ψ1) , ψ1 ≺ ... ≺ ψn .

Both, the incoming and outgoing scattering states, form total sets in H. To prove this,
note that the functions ψ1 ⊗ ... ⊗ ψn, ψ1 ≺ ... ≺ ψn, form a total set in L2(En, d

nθ),
En = {(θ1, ..., θn) ∈ IRn : θ1 ≤ ... ≤ θn}. But Pn : L2(En, d

nθ) −→ Hn is linear,
continuous and onto, and hence the totality of the constructed outgoing collision states
in Hn follows. Analogously, one can also show that the incoming n-particle states form
a total set in Hn. Since the space D of vectors of finite particle number is dense in H,
any vector Ψ ∈ H can be approximated by linear combinations of incoming or outgoing
scattering states, i.e. the theory is asymptotically complete.

Having derived explicit formulae for the scattering states, we can now compute the
Møller operators Vin, Vout and the S-matrix S of the model.

The asymptotic states span the Bosonic Fock space H+ =
⊕∞

n=0 H+
n over H1 = L2(IR),

whose n-particle spaces H+
n contains all totally symmetric functions in L2(IRn). Denoting



6.1. The Reconstruction of the S-Matrix 109

the orthogonal projection onto H+
n by P+

n , we infer from the above derived form of the
collision states that the Møller operators are given by

VoutP
+
n (ψ1 ⊗ ...⊗ ψn) = Pn(ψ1 ⊗ ...⊗ ψn) , ψ1 ≺ ... ≺ ψn , (6.1.16)

VinP
+
n (ψn ⊗ ...⊗ ψ1) = Pn(ψn ⊗ ...⊗ ψ1) , ψ1 ≺ ... ≺ ψn . (6.1.17)

Note that as ‖P+
n (ψ1 ⊗ ... ⊗ ψn)‖ = ‖Pn(ψ1 ⊗ ... ⊗ ψn)‖ = (n!)−1/2‖ψ1‖ · · · ‖ψn‖, these

equations uniquely determine Vin and Vout as isometries mapping H+ onto H.
Analogously to the reasoning in section 4.3, the n-particle Møller operators can be

seen to be multiplication operators. Recall that the S2-symmetrization operator Pn has
the explicit form (Lemma 4.1.1)

(PnΨn)(θ1, ..., θn) =
1

n!

∑

π∈Sn

Sπn(θ1, ..., θn) · Ψn(θπ(1), ..., θπ(n)) , (6.1.18)

Sπn(θ1, ..., θn) =
∏

1≤l<k≤n
π(l)>π(k)

S2(θπ(l) − θπ(k)) . (6.1.19)

Inserting this decomposition into (6.1.16) yields

Vout
∗
∑

π∈Sn

Sπn · ψπ−1(1) ⊗ ...⊗ ψπ−1(n) =
∑

π∈Sn

ψπ−1(1) ⊗ ...⊗ ψπ−1(n) . (6.1.20)

Taking into account the support properties of ψ1 ≺ ... ≺ ψn, we see that Vout
∗ acts on

n-particle states by multiplication with the function

V
(n)∗
out (θ1, ..., θn) = Sπ(θ1, ..., θn)

−1 , θπ(1) ≤ ... ≤ θπ(n) . (6.1.21)

Analogously, Vin is seen to multiply n-particle states with

V
(n)
in (θ1, ..., θn) = Sπ(θ1, ..., θn) , θπ(1) ≥ ... ≥ θπ(n) . (6.1.22)

So the S-matrix, defined as Ŝ = Vout
∗Vin, also acts as a multiplication operator on H+

n ,

(ŜΨ+)n(θ1, ..., θn) = Sn(θ1, ..., θn) · Ψ+
n (θ1, ..., θn) , Ψ+ ∈ H+ . (6.1.23)

The functions Sn(θ1, ..., θn) are according to (6.1.21) and (6.1.22) given by

Sn(θ1, ..., θn) = Sπn(θ1, ..., θn)
−1 · Sπ◦ιnn (θ1, ..., θn) , θπ(1) ≤ ... ≤ θπ(n) , (6.1.24)

where ιn ∈ Sn is the total inversion permutation, ιn(k) := n− k + 1. In view of the form
(6.1.19), we can compute Sn(θ1, ..., θn) in the region θπ(1) ≤ ... ≤ θπ(n) as

Sn(θ1, ..., θn) =
∏

1≤l<k≤n
π(l)>π(k)

S2(θπ(l) − θπ(k))
−1 ·

∏

1≤l<k≤n
π(n−l+1)>π(n−k+1)

S2(θπ(n−l+1) − θπ(n−k+1))

=
∏

1≤l<k≤n
π(l)>π(k)

S2(θπ(k) − θπ(l)) ·
∏

1≤l′<k′≤n
π(l′)<π(k′)

S2(θπ(k′) − θπ(l′))

=
∏

1≤l<k≤n

S2(θπ(k) − θπ(l)) .
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(In the computation, the primed indices l′ := n − k + 1, k′ := n− l + 1 have been used.)
Note that the rapidity differences appearing in the last line, θπ(k) − θπ(l), l < k, are all
positive as a consequence of the ordering θπ(1) ≤ ... ≤ θπ(n). Hence we arrive at

Sn(θ1, ..., θn) =
∏

1≤l<k≤n

S2(|θπ(k) − θπ(l)|) =
∏

1≤l<k≤n

S2(|θk − θl|) . (6.1.25)

This formula is valid for arbitrary (θ1, ..., θn) ∈ IRn since all reference to the permutation
π has been eliminated. We have thus proven that Ŝ indeed coincides with the S-matrix
corresponding to S2 (3.2.4). As the Møller operators and the S-matrix Ŝ are multiplication
operators in these models, it also follows that the S-matrix on H, S := VinVout

∗, agrees
with Ŝ.

Theorem 6.1.2. Consider a model with scattering function S2 ∈ S0. This theory is
asymptotically complete, a total set of n-particle scattering states being given by

(ψ1 × ...× ψn)out = z†(ψ1) · · · z†(ψn)Ω , ψ1 ≺ ... ≺ ψn , (6.1.26)

(ψ1 × ...× ψn)in = z†(ψ1) · · · z†(ψn)Ω , ψ1 ≻ ... ≻ ψn . (6.1.27)

The S-matrix is S : H −→ H,

(SΨ)n(θ1, ..., θn) =
∏

1≤k<l≤n

S2(|θk − θl|) · Ψn(θ1, ..., θn) , (6.1.28)

and coincides with the S-matrix corresponding to S2. �

Theorem 6.1.2 shows that the construction presented here is the solution of the inverse
scattering problem for factorizing S-matrices with scattering functions in S0. Altough the
property of asymptotic completeness is expected to hold in most quantum field theories,
the above result is, to the best of our knowledge, the first proof of it in an interacting model.

In terms of improper n-particle states with sharp rapidities, we have shown that

z†(θ1) · · · z†(θn)Ω = | θ1, ..., θn〉out , θ1 < ... < θn , (6.1.29a)

z†(θ1) · · · z†(θn)Ω = | θ1, ..., θn〉in , θ1 > ... > θn , (6.1.29b)

are asymptotic collision states in the sense of the Haag-Ruelle scattering theory.
The identification of incoming and outgoing n-particle states with n-fold products of

Zamolodchikov creation operators acting on the vacuum, arranged in order of decreasing,
respectively increasing, rapidities, is one of the basic assumptions in the framework of
the form factor program. In fact, it has motivated the very definition of Zamolodchikov’s
algebra (cf. section 3.3).

In the usual approach to the construction of quantum field theories with a factorizing
S-matrix, local quantum fields are characterized in terms of their form factors, which are
the primary objects of interest. However, due to the complicated structure of the form
factors of local operators, this strategy has not led to a construction of model theories
in most cases. In particular, no manageable one particle generators are available and the
interpretation of expressions like (6.1.29) cannot be checked in collision theory; but rather
has to be taken for granted.
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It is therefore gratifying that with the help of the approach presented here, the heuris-
tic picture motivating Zamolodchikov’s algebra can be rigorously justified. As we have
seen, this point of view allows for a complete construction of models with factorizing S-
matrices in the algebraic framework of quantum field theory. By giving the Zamolodchikov
operators z†(θ) a spacetime interpretation in terms of the associated wedge-local field φ,
we arrived at a family of asymptotically complete models in which the idea of factor-
ized scattering underlying the equations (6.1.29) can be proven in Haag-Ruelle scattering
theory.
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6.2 The Thermodynamical Partition Function

In addition to the results concerning scattering theory, also gross thermodynamical
properties of the constructed models can be derived from the results of chapter 5. In
this section, we will briefly discuss within the framework of the theories with S2 ∈ S−

0

the thermodynamical partition function Z(β,O) at inverse temperature β > 0 and in
restriction to a bounded spacetime volume O. The results found in this context do not
give very accurate estimates on Z(β,O), but rather serve to illustrate the fact that with
the help of the nuclearity theorems on the modular structure of wedge algebras, also
interesting local information can be obtained.

The mechanism to be used is the well-known connection between the modular nu-
clearity condition and the energy nuclearity condition, related to the Hamiltonian H = P0

(see section 2.3). As usual, the nuclear norm of

Θβ,r : A(Or) −→ H , Θβ,r(A) := e−βHAΩ , Or := ({0} × (−r, r))′′ , (6.2.1)

is interpreted as the thermodynamical partition function of the system at temperature
β−1, confined to the spacetime volume Or (see figure 6.1) [BW86].

Following closely the analysis in [BDL90b], we show how estimates on ‖Θβ,r‖1 can be
inferred from the modular nuclearity condition. We consider two concentric double cones

Os := (WR − s) ∩ (WL + s), s = (0, s), s > 0 , (6.2.2)

Or := (WR − r) ∩ (WL + r), r = (0, r), r > 0 , (6.2.3)

as depicted in figure 6.1 below. (The ratio s/r will be fixed in the course of the argument.)

x0

x1s−s r−r

Os

Or

Figure 6.1: The geometrical situation considered for the proof of the nuclearity of Θβ,r.

Using the geometric action of the modular operator ∆ of (A(WR),Ω), it has been shown
in [BDL90b] that there exist two bounded operators Q± ∈ B(H), ‖Q±‖ ≤ 1, such that

e− sin(2πµ)sHAΩ = Q+∆µU(cos(2πµ)s)AΩ +Q−∆−µU(− cos(2πµ)s)AΩ . (6.2.4)

This equation is valid for 0 < µ < 1
4 , and for all A ∈ A(Or), with r ≤ s cos(2πµ). The

left hand side of (6.2.4) coincides with Θs sin(2πµ),r(A), and the right hand side bears some
similarity with the maps Ξ(s) appearing in the modular nuclearity condition.
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We define the maps

Ξ(µ; s) : A(WR) −→ H , Ξ(µ; s)A := ∆µU(s)AΩ , (6.2.5)

Ξ′(µ; s) : A(WL) −→ H , Ξ′(µ; s)A′ := ∆−µU(−s)A′Ω . (6.2.6)

The map Ξ(s) (5.1.2) considered in the modular nuclearity condition is a special member
of this family, given by Ξ(s) = Ξ(1

4 ; s). Note that Ξ′(µ; s) is nuclear if and only if Ξ(µ; s)
is, with the same nuclear norm.

We will now use (6.2.4) to estimate ‖Θβ,r‖1 in terms of ‖Ξ(µ; s cos 2πµ)‖1. Putting
r := 1

2 cos(2πµ)s, β := 2r tan(2πµ) yields

e−βHAΩ = Q+∆µU(2r)AΩ +Q−∆−µU(−2r)AΩ , A ∈ A(Or) , (6.2.7)

where µ = 1
2π arctan β

2r depends on β > 0. In view of U(±r)A(Or)U(∓r) ∈ A(WR/L) and
‖Q±‖ ≤ 1, this implies the estimate

‖Θβ,r‖1 ≤ 2 ‖Ξ( 1
2π arctan β

2r ; r)‖1 . (6.2.8)

This bound will be used to estimate the thermodynamical partition function.2 This
bound will be used to estimate the thermodynamical partition function.

The nuclearity of Ξ(r) = Ξ(1
4 ; r) for any r > 0 is not quite sufficient to derive the

nuclearity of Θβ,r, since µ = 1
4 is only realized in the limits β → ∞ and r → 0. In order

to prove the energy nuclearity condition, we need to show that in the considered models,
Ξ(µ; r) is also nuclear for µ < 1

4 .
Recall how the nuclearity of Ξ(r) has been proven in chapter 5: Exploiting the ana-

lyticity and boundedness properties of the wavefunctions (AΩ)n, A ∈ A(WR), we showed
that A 7−→ (A(1

2r)Ω)n is a bounded map from A(WR) into the Hardy space on a certain
tube domain. The nuclearity of Ξ(s) then followed by expressing

(A(r)Ω)n(θ) =
n∏

k=1

e−mr cosh θk · (AΩ)n(θ1 − iπ
2 , ..., θn − iπ

2 ) (6.2.9)

as a Cauchy integral over the boundary of this tube.
The maps Ξ(µ; r) act on A ∈ A(WR) explicitly as

(Ξ(µ; r)A)n(θ1, ..., θn) =

n∏

k=1

e−irm sinh(θk−2πiµ) · (AΩ)n(θ1 − 2πiµ, ..., θn − 2πiµ) ,

(6.2.10)

and thus have a structure very similar to Ξ(s) (5.1.9). Taking into account the slightly
weaker decay of the exponential function in (6.2.10), and the possibly shorter distance of
(θ1 − 2πiµ, ..., θn − 2πiµ) to the boundary of the tube in which (AΩ)n is analytic, one can
apply the arguments of chapter 5 also to this map. It follows that Ξ(µ, r) is nuclear for
any 0 < µ < 1

4 and any r > 0 if the underlying scattering function S2 is in the class S−
0 .

2It has been noticed only recently that this bound can be slightly improved [BDL06]: Considering the
tensor product nets A(O)⊗n on H⊗n, n ∈N, also the maps (6.2.1) and (6.2.5) are given by n-fold tensor
products Θ⊗n

β,r and Ξ(µ; r)⊗n, respectively. Hence (6.2.8) also holds if the nuclear norms on both sides are

replaced by arbitrary powers ‖Θβ,r‖
n
1 and ‖Ξ( 1

2π
arctan β

2r
; r)‖n

1 . This implies that actually there holds

the bound ‖Θβ,r‖1 ≤ ‖Ξ( 1
2π

arctan β
2r

; r)‖1.
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Proposition 6.2.1. Consider a model theory with scattering function S2 ∈ S0. Then the
energy nuclearity condition holds, i.e. the maps

Θβ,O : A(O) −→ H , A 7−→ e−βHAΩ (6.2.11)

are nuclear for any bounded region O and any inverse temperature β. �

Repeating the analysis of chapter 5, one can also derive bounds on ‖Ξ(µ; r)‖1, and
hence on the thermodynamical partition function ‖Θβ,r‖1. However, these bounds are
rather crude and not sharp enough to to give meaningful estimates on the partition
function. In particular, the thermodynamically motivated bound ‖Θβ,r‖1 ≤ e(β0/β)n

(2.3.2) cannot be established without improving these estimates.

As explained in chapter 5, we surmise that the bounds given in Thm. 5.3.4 can
be improved to

‖Ξ(s)‖1 ≤ exp(σ(s, κ) ‖S2‖1/2
κ ‖Ts,κ‖1) , S2 ∈ S−

0 . (6.2.12)

The symbols used in this formula are the same as in chapter 5.
If this bound was established, similar bounds on ‖Ξ(µ; r)‖1 could be derived in a

straightforward manner, and these could then be used to compute meaningful estimates
on the partition function with the help of (6.2.8). Employing the estimates on the trace
norms of the integral operators Ts,κ derived in appendix B.2, it would in particular follow
that the partition function behaves like eβ0/β for β → 0.

Such a behavior of the partition function can be expected to hold in particle theories.
In view of the results obtained in the preceding section, the models considered here have
a complete particle interpretation. Therefore the mentioned form of the partition func-
tion seems likely to be valid, and further supports the conjecture of the improved bound
(6.2.12).



Chapter 7

Conclusion and Outlook

In the present work, a new construction method for two-dimensional quantum field theories
has been presented. The main idea of this approach is to base the construction of models
not on pointlike localized quantum fields, but rather on wedge-localized polarization-free
generators. It has been shown that these generators are much easier to construct, and
that they can be used for the definition of interacting theories.

Such a construction was carried out in full detail for a family of models with fac-
torizing S-matrices. Employing an inverse scattering approach, we started from a pre-
scribed factorizing S-matrix, specified by its scattering function S2. We then considered
the Zamolodchikov-Faddeev algebra associated with S2 and investigated the correspond-
ing quantum fields invented by Schroer [Sch99, Sch00a, SW00]. These fields were shown
to be localizable in wedges, and were used to generate a covariant net of wedge algebras on
two-dimensional Minkowski space. Algebras of observables localized in bounded spacetime
regions could then be defined as appropriate intersections of wedge algebras.

As a crucial step in the construction, we verified the modular nuclearity condition of
Buchholz, D’Antoni and Longo [BDL90a, BDL90b] for wedge algebras for a large class of
scattering functions. This condition ensures that the local observables of the theory have
all basic properties needed in relativistic quantum physics. In particular, it implies that
the considered S-matrices are related to meaningful quantum field theories.

Furthermore, we assured ourselves of the fact that the models constructed in this way
solve the inverse scattering problem for the considered family of S-matrices. Namely, the
S-matrix corresponding to a particular scattering function S2 can be recovered from the
collision states from the model defined in terms of S2.

The approach presented here provides an alternative point of view on the form factor
program, which aims at the construction of local quantum fields and their n-point functions
associated with a given factorizing S-matrix. The question whether a particular S-matrix is
realized as the scattering operator of a quantum field theory and the rigorous construction
of the corresponding models are problems which are very difficult to solve in the setup
of the form factor program. As we have seen, the algebraic framework is better suited
for the investigation of such problems. Although no formulae for interacting local fields
are obtained in this approach, it is possible to compute all collision states and to derive
estimates on the thermodynamical partition function of the theory.

For more detailed local information on these models, like the determination of
correlation functions or the field content, the approach of the form factor program
seems to be better suited. In fact, the bootstrap form factor program and the algebraic
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construction complement each other, and the combination of both approaches is likely to
lead to a thorough understanding of the family of models with factorizing S-matrices.

In this thesis, we considered theories describing a single species of scalar massive
particles, but a generalization to theories with a richer particle spectrum seems possible.
To this end, the Zamolodchikov operators z(θ), z†(θ) have to be replaced by vector-valued

objects zk(θ), z
†
k(θ), where the index k denotes the species of particles in the model.

The scattering functions of such models are matrix-valued, and the determination of the
possible two-particle S-matrices becomes more complicated, because also the Yang-Baxter
equations have to be solved. Such scattering operators have been analyzed extensively in
the form factor program, and we surmise that the results obtained there can be used for
the construction of wedge-local fields similar to the case discussed here.

An intriguing and in my point of view more important extension of the approach
presented here would be a generalization to higher-dimensional spacetime. Such a gen-
eralization faces two major problems: Firstly, in more than two dimensions, factorizing
S-matrices do not exist, and hence the input for the construction has to be chosen
differently. In particular, as no non-trivial S-matrix is known in higher dimensions, a
construction in an inverse scattering approach is presently out of sight. But it might well
be possible that wedge algebras can also be constructed in physical spacetime by other
methods.

Such wedge algebras can then be used analogously to the construction in chapter 2
to generate a net of local algebras, only the representation U of the translation group
has to be replaced by a representation of the identity component of the Poincaré group.
Although the characterization of the interaction in these theories will be more difficult, it
should be possible to analyze two-particle scattering processes, which can be treated with
the help of wedge-localized observables.

The second major problem for the generalization to higher dimensions is the fact that
inclusions of wedge algebras cannot be split in more than two dimensions. Hence the
modular nuclearity condition for wedges, which was a tool of crucial importance here,
cannot be applied.

On the other hand, it is well-known that the split property for wedges is not necessary
for relative commutants of wedge algebras to be nontrivial, and in fact, this condition is
much too strong if one is merely interested in the existence of local observables. What is
needed for the construction of higher-dimensional quantum field theories is a new effective
criterion to control the structure of the local observable algebras in models defined in
terms of wedge-localized objects.

The generalization of the construction demonstrated here to four dimensions would be
a major advance in rigorous quantum field theory, for it might provide a way to finally
settle the long-standing existence problem for interacting quantum field theories in physical
spacetime.



Appendix A

The Modular Nuclearity

Condition for Constant Scattering

Functions

In this appendix we consider the modular nuclearity condition in two special models within
the family of theories constructed in chapter 4. These are the models given by the two
constant scattering functions S2 = ±1 in which the underlying Zamolodchikov algebra
Z(S2) simplifies to the CCR (S2 = 1) and CAR (S2 = −1) algebra, respectively. This
simplified algebraic structure allows for an alternative analysis of the modular nuclearity
condition.

A.1 S2 = +1: The Free Bose Field

In this section we consider the free scalar Bose field of mass m > 0, which in the setup
of chapter 4 is given by the constant scattering function S2 = 1. The free field is the
best studied system in quantum field theory, and most of the properties that we want
to derive from the modular nuclearity condition are well-known in this context and have
been proven by other methods already (cf., for example, [Jos65, Ara63]). In fact, only for
the split property for wedges, there seemed to exist no proof in the literature until [BL04],
although also this property was known to hold before [Müg98].

So the proof of the modular nuclearity condition for wedges in the case S2 = 1 provides
little new information about the free field. But as the methods used in chapter 5 did not
suffice to establish this condition for the free field, because of the lacking Pauli principle,
we feel obliged to provide an alternative argument that this simplest system complies with
the condition of modular nuclearity, too.

The proof which we will give heavily relies on the analysis of nuclear subsets of the
Bose Fock space, which was carried out by Buchholz and Wichmann in the context of the
energy nuclearity condition in [BW86], and generalized to the modular setting by Buchholz
and Jacobi [BJ87].

The results of the present section have been published in [BL04].

The construction of the net O 7−→ A(O) carried out in chapter 4 simplifies con-
siderably if S2 = 1, since the fields φ and φ′ coincide in this case, and φ is a local

117
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Wightman field. In contrast to the situation for the other scattering functions, the local
algebras of this model are explicitly known: For any open region O ⊂ IR2, the algebra
A(O) of observables localized in O is generated by the Weyl operators eiφ(f), f ∈ C∞

0 (O)
real.

There exist several formulations of the theory of free fields [Jos65, Ara63, BR97,
BGL02]. In order to use the results of [BW86, BJ87], we need to formulate the the-
ory in terms of the time-zero fields ϕ(x1) = φ(0, x1), π(x1) = (∂0φ)(0, x1), x1 ∈ IR, of the
free field φ. This can be done as follows.

In view of the form (5.2.2) of these field operators, the one particle states localized in
WR that are created from the vacuum by ϕ and π, respectively,. span the spaces

Lϕ(WR) := {f̂ : f ∈ S (IR+)}−, (A.1.1a)

Lπ(WR) := {ωf̂ : f ∈ S (IR+)}− , (A.1.1b)

where the bar denotes closure in L2(IR), and the notations f̂(θ) := f̃(m sinh θ) and
(ωf̂)(θ) = m cosh(θ)f̂(θ) have been used..

These subspaces are related to the algebra of observables localized in WR as follows:
With the help of the antiunitary involution Γ, which was defined in Lemma 4.2.3 and
represents the time reflection, (Γψ)(θ) = ψ(−θ), we define a real linear subspace of H1 as

K(WR) := (1 + Γ)Lϕ(WR) + (1 − Γ)Lπ(WR) . (A.1.2)

The algebra of the right wedge can be expressed as

A(WR) =
{
eiφ(f) : φ(f)Ω ∈ K(WR)

}′′
. (A.1.3)

We will not prove this relation here, but only indicate how it can be understood in terms
of the modular structure of the wedge algebras.

It is known from the work of Brunetti, Guido and Longo [BGL02] that A(WR) is given
by a formula like (A.1.3), but with the space K(WR) replaced by the eigenspace K̂(WR)
of the Tomita operator of (A(WR),Ω), corresponding to eigenvalue one,

K̂(WR) := {ψ ∈ dom∆1/2 ∩H1 : J∆1/2ψ = ψ} . (A.1.4)

In fact, K(WR) = K̂(WR), and we will show the inclusion K(WR) ⊂ K̂(WR) here. Note
that in view of the support restriction supp f ⊂ IR+, the functions f̂ and ωf̂ have an
analytic continuation to the strip S(−π, 0) = {ζ ∈ C : −π < Imζ < 0}. Moreover, as f
is a Schwartz function, θ 7→ f̂(θ − iλ) and θ 7→ (ωf̂)(θ − iλ) are square integrable for any
λ ∈ [0, π]. This implies that f̂ and ωf̂ lie in the domain of the modular operator ∆1/2,
which acts as (∆1/2ψ)(θ) = ψ(θ − iπ), ψ ∈ dom∆1/2.

Taking into account sinh(θ − iπ) = sinh(−θ) and cosh(θ − iπ) = − cosh(−θ), it also
follows that f̂(θ − iπ) = f̂(−θ), (ωf̂)(θ − iπ) = −(ωf̂)(−θ). Hence the corresponding
eigenfunctions of Γ, f̂± := (1 ± Γ)f̂ , Γf̂ = ±f̂ , satisfy

f̂±(θ − iπ) = f̂±(−θ) = ±(Γf̂±)(−θ) = ±f̂±(θ) . (A.1.5)

As Γ and ω commute, we furthermore obtain

(ωf̂−)(θ − iπ) = −(ωf̂−)(−θ) = (Γωf̂−)(−θ) = (ωf̂−)(θ) . (A.1.6)
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But the action of the modular conjugation J on H1 is just complex conjugation, and so
we conclude

J∆1/2f̂+ = f̂+ , J∆1/2ωf̂− = ωf̂− , (A.1.7)

i.e. K(WR) ⊂ K̂(WR). The converse direction can be proven in a similar way.

By systematically exploiting the second quantization structure and Bose symmetry
of the free theory, Buchholz and Wichmann managed to simplify the energy nuclearity
condition to a problem on the single particle space [BW86]. In [BJ87], this analysis was
generalized to cover the modular nuclearity condition as well. The result which we will
use is formulated in terms of the orthogonal projections Eϕ(WR) and Eπ(WR), projecting
onto Lϕ(WR) and Lπ(WR), respectively. As before, we write s = (0, s), s > 0.

Lemma A.1.1. [BJ87, Thm. 2.1]
Consider the free theory, given by the scattering function S2 = 1, and assume that both,
Eϕ(WR)U(−s)∆1/4 and Eπ(WR)U(−s)∆1/4, are trace class operators on H1, with norms
less than one.
Then the map Ξ(s) is nuclear, and its nuclear norm is bounded by

‖Ξ(s)‖1 ≤ det(1 − |Eϕ(WR)U(−s)∆1/4|)−2 · det(1 − |Eπ(WR)U(−s)∆1/4|)−2 . (A.1.8)

We will not repeat the proof of this statement here, but refer the reader to section A.2,
where a similar result is demonstrated for the model given by the scattering function
S2 = −1.

To be able to apply Lemma A.1.1, we need to check if its assumptions are valid
here. We first establish the estimates on the norms of the operators appearing in the
Lemma.

Let ψϕ ∈ Lϕ(WR) ⊂ dom∆1/2. As ψϕ(θ − iπ) = ψϕ(−θ), we have ‖∆1/2ψϕ‖ = ‖ψϕ‖,
and hence ‖∆1/4ψϕ‖ = 〈ψϕ,∆1/2ψϕ〉1/2 ≤ ‖ψϕ‖. As U(s) acts by multiplication with
e−ims sinh θ, we obtain after analytic continuation to θ − iπ/2

(∆1/4U(s)ψ)(θ) = e−sm cosh θ · ψ(θ − iπ
2 ) , (A.1.9)

and consequently

‖∆1/4U(s)ψϕ‖ ≤ e−sm‖ψϕ‖ < ‖ψϕ‖ , s > 0 . (A.1.10)

Since ψϕ ∈ Lϕ(WR) was arbitrary, this estimate implies ‖∆1/4U(s)Eϕ(WR)‖ < 1, s > 0.
But the adjoint operator Eϕ(WR)U(−s)∆1/4 has the same norm, and so the desired bound
follows. In the same manner, one shows that also Eπ(WR)U(−s)∆1/4 has norm less than
one.

It remains to establish the trace class property of these operators. To this end, we use
the analyticity and boundedness properties of ψϕ ∈ Lϕ(WR) in the strip S(−π, 0), as well
as the relation ψϕ(θ − iπ) = ψϕ(−θ), to express (∆1/4U(s)ψϕ)(θ) = e−ms cosh θψϕ(θ − iπ

2 )
as a Cauchy integral,

(∆1/4U(s)ψϕ)(θ) =
1

2πi

∫

IR
dθ′

(
e−sm cosh θ

−θ′ − θ − iπ
2

− e−sm cosh θ

θ′ − θ + iπ
2

)
ψϕ(θ′) . (A.1.11)
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Hence ∆1/4U(s)Eϕ(WR) = Tϕ(s)Eϕ(WR), where Tϕ(s) is the integral operator with kernel

Tϕ(s)(θ, θ′) =
1

2πi

(
e−sm cosh θ

−θ′ − θ − iπ
2

− e−sm cosh θ

θ′ − θ + iπ
2

)
. (A.1.12)

This integral operator is of trace class on H1 = L2(IR, dθ) for any s > 0, cf. appendix
B.2. Given the nuclearity of Tϕ(s), the nuclearity of Eϕ(WR)Tϕ(s)∗ = Eϕ(WR)U(−s)∆1/4

follows since the trace class is a ∗-ideal in B(H1).

The operator Eπ(WR)U(−s)∆1/4 can be treated analogously, the only difference being
that the relation ψπ(θ− iπ) = −ψπ(−θ) results in a minus sign in front of the first term in
(A.1.12). Hence ∆1/4U(s)Eπ(WR) = Tπ(s)Eπ(WR), where Tπ(s) has the integral kernel

Tπ(s)(θ, θ
′) =

1

2πi

(
e−sm cosh θ

θ′ + θ + iπ
2

− e−sm cosh θ

θ′ − θ + iπ
2

)
, (A.1.13)

and is of trace class, too (cf. Lemma B.2.1).

To summarize, we have shown that the model theory given by S2 = 1 complies with
the assumptions of Lemma A.1.1. Consequently, the following Proposition holds.

Proposition A.1.2. [BL04]
Consider the free theory, given by the scattering function S2 = 1.
The maps Ξ(s) (5.1.2) are nuclear for any s > 0, and there holds the bound

‖Ξ(s)‖1 ≤ det(1 − |Eϕ(WR)Tϕ(s)∗|)−2 · det(1 − |Eπ(WR)Tπ(s)
∗|)−2 , (A.1.14)

where Tϕ(s) and Tπ(s) are the trace class integral operators on L2(IR), given by the kernels
(A.1.12) and (A.1.13). �

A.2 The scattering function S2 = −1

In this section we study the nuclearity properties of the model theory given by the scat-
tering function S2 = −1. Although the two-particle scattering states of this model, as
constructed in section 4.3, are of Bose type, the S2-symmetric Hilbert space H (4.1.17)
coincides with the antisymmetric Fermi Fock space over H1 since S2 = −1. This fact
implies a number of algebraic similarities between this model and models of a free (lo-
cal) Fermionic field on d-dimensional Minkowski space, d ≥ 2. Our main interest lies in
proving the modular nuclearity condition for the former theory. But in view of the formal
analogy to systems of free Fermions, it is possible to use a formulation wide enough to be
applicable to nuclearity properties of such theories as well. This has the advantage that,
as a byproduct of our investigation of models with a factorizing S-matrix in two dimen-
sions, we also obtain a proof of the energy nuclearity condition of theories describing free
Fermions in d ≥ 2 dimensions.

In the following section, we study nuclear maps in Fermi Fock space in a slightly more
abstract setting. Subsequently, the results obtained there are applied to prove the modular
nuclearity condition for wedges in the model with scattering function S2 = −1 and the
energy nuclearity condition (for bounded regions) in theories of free Fermions.

The contents of this section can be found in the article [Lec05a].
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A.2.1 Nuclear Maps in Fermionic Fock Space

The mathematical structure which is common to the two kinds of models mentioned above
is the following: We consider a separable Hilbert space H1 (the one particle space) with
scalar product 〈 . , . 〉, and the CAR algebra generated by the symbols a(ψ) and a∗(ψ) =
a(ψ)∗, ψ ∈ H1, and a identity 1. We adopt the convention that a∗(ψ) depends complex
linearly on ψ. The structure of the CAR algebra is fixed by the canonical anticommutation
relations

[a(ψ1), a(ψ2)]+ = 0, (A.2.1)

[a(ψ1), a
∗(ψ2)]+ = 〈ψ1, ψ2〉 · 1 . (A.2.2)

Here [A,B]± = AB ± BA denotes the (anti-) commutator. By second quantization, we
obtain the Fock space H over H1, which is acted upon by the CAR algebra in the standard
representation [BR97], and the Fock vacuum Ω ∈ H. Recall that a(ψ), a∗(ψ) are bounded
operators, ‖a(ψ)‖ = ‖a∗(ψ)‖ = ‖ψ‖ [BR97].

On H1, we consider an antiunitary involution Γ, and two closed, complex subspaces
Lϕ and Lπ of H1, which are invariant under Γ. These are used to define a real linear
subspace K of H1 as

K := (1 + Γ)Lϕ + (1 − Γ)Lπ . (A.2.3)

Furthermore, we introduce a Fermionic field operator

φ[ψ] := a∗(ψ) + a(ψ) , ψ ∈ H1 . (A.2.4)

The square brackets are used in order to distinguish φ[ψ] from the field φ(f) (4.2.1). In
application to the model with scattering function S2 = −1, we will see that φ[ · ] and φ(·)
are closely related. In the present abstract formulation, we consider the von Neumann
algebra generated by the field (A.2.4),

AK :=
{
φ[ψ] : ψ ∈ K}′′ ⊂ B(H) , (A.2.5)

and assume that the vacuum vector Ω is separating for this algebra.
To formulate the maps (5.1.2) in the present setting, we introduce a densely defined,

strictly positive operator X on H1, which commutes with the involution Γ. So X is in
particular assumed to be invertible, but it need not be bounded. We use the same symbol
X to denote its second quantization

⊕∞
n=0X

⊗n and assume that AKΩ is contained in its
domain. It is our aim to find sufficient conditions on the real subspace K and the operator
X that imply the nuclearity of the map

Ξ : AK −→ H , Ξ(A) := XAΩ . (A.2.6)

Denoting by Eϕ, Eπ ∈ B(H) the orthogonal projections onto Lϕ, Lπ, respectively, the
nuclearity properties of (A.2.6) are characterized in the following Proposition.

Proposition A.2.1. [Lec05a]
Assume that EϕX and EπX extend to trace class operators on H1. Then Ξ is a nuclear
map, and its nuclear norm is bounded by

‖Ξ‖1 ≤ e2‖EϕX‖1 · e2‖EπX‖1 . (A.2.7)
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This Proposition has to be seen in analogy to Lemma A.1.1 from the discussion of the
free Bose field in the preceding section. It simplifies the study of nuclear maps on the
full Hilbert space to a problem on the one particle space, which can be solved in concrete
applications, where the operator X is given by ∆1/4U(s) or e−βH .

In comparison with the analogous result for free Bosons one notices two differences:
Firstly, the conditions on EϕX, EπX are relaxed since the bounds ‖EϕX‖ < 1, ‖EπX‖ < 1
on their operator norms are not required here. Secondly, the bound on the nuclearity index
is smaller than the corresponding one for Bosons, det(1 − |EϕX|)−2 · det(1 − |EπX|)−2,
obtained in [BJ87]. This can be seen from the following simple inequality, valid for any
non-zero trace class operator T with norm ‖T‖ < 1. The singular values of T are denoted
by tn, repeated according to multiplicity.

e2‖T‖1 = e2
P∞

n=1 |tn| =

∞∏

n=1

(
e−|tn|

)−2
<

∞∏

n=1

(1 − |tn|)−2 = det(1 − |T |)−2 .

This result is due to the Pauli principle; it may be understood in analogy to the difference
between the partition functions of the non-interacting Bose and Fermi gases in the grand
canonical ensemble.

The rest of this section is devoted to the proof of Proposition A.2.1. To begin
with, we consider the polynomial algebra generated by the field,

PK := span{φ[ψ1] · · · φ[ψn] : n ∈ N , ψ1, ..., ψn ∈ K} . (A.2.8)

As φ[ψ] is bounded, PK is a weakly dense subalgebra of AK. The polynomial algebra has
the structure of a Z2-graded ∗-algebra, with the even and odd parts P

+
K and P

−
K given by

the even and odd field polynomials, respectively. On PK acts the grading automorphism

γ(A+ +A−) := A+ −A− , A± ∈ P
±
K . (A.2.9)

As ‖γ‖ = 1 and A± = 1
2(A± γ(A)), we conclude ‖A±‖ ≤ ‖A‖.

The following Lemma about the interplay of the CAR algebra and PK in connection
with the real linear structure of K is the main technical tool in the proof of Proposition
A.2.1. We will use the analogues of the time-zero fields (5.2.2), which are here defined as

ϕ(ψ) := a∗(ψ) + a(Γψ) , (A.2.10)

π(ψ) := i
(
a∗(ψ) − a(Γψ)

)
. (A.2.11)

Note that ϕ(ψ)∗ = ϕ(Γψ), π(ψ)∗ = π(Γψ). Furthermore, these operators anticommute:
Using the CAR relations and the fact that Γ is an antiunitary involution, we find for
arbitrary ψ1, ψ2 ∈ H1:

[ϕ(ψ1), π(ψ2)]+ = [a∗(ψ1), −i a(Γψ2)]+ + [a(Γψ1), i a
∗(ψ2)]+

= −i 〈Γψ2, ψ1〉 + i 〈Γψ1, ψ2〉 = 0 .

For later use we also state

a(Γψ) =
1

2

(
ϕ(ψ) + iπ(ψ)

)
. (A.2.12)
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In preparation for the Lemma stated below, recall that the symplectic complement of K
is

K′ = {ψ ∈ H1 : 〈ψ, ξ〉 = 〈ξ, ψ〉 ∀ξ ∈ K} , (A.2.13)

and that an odd derivation on a Z2-graded algebra P is a linear map δ : P → P which
satisfies δ(P±) ⊂ P∓ and obeys the graded Leibniz rule

δ(AB) = δ(A)B + γ(A)δ(B), A,B ∈ P , (A.2.14)

where γ is the grading automorphism (A.2.9).

Lemma A.2.2. For arbitrary ψ ∈ H1, the assignments

δ±ψ (A) := 1
2

[
ϕ((1 ∓ Γ)ψ) + iπ((1 ± Γ)ψ), A+

]
−

(A.2.15)

+1
2

[
ϕ((1 ∓ Γ)ψ) + iπ((1 ± Γ)ψ), A−

]
+

define two odd derivations on PK which are real linear in ψ. These maps satisfy the
bounds

‖δ+ψ (A±)‖ ≤
(
‖(1 − Γ)Eϕψ‖2 + ‖(1 + Γ)Eπψ‖2

)1/2 · ‖A±‖ , (A.2.16)

‖δ−ψ (A±)‖ ≤
(
‖(1 + Γ)Eϕψ‖2 + ‖(1 − Γ)Eπψ‖2

)1/2 · ‖A±‖ . (A.2.17)

Moreover, if ψ ∈ K′,

δ+ψ = 0 , δ−iψ = 0 . (A.2.18)

Proof. The real linearity of ψ 7−→ δ±ψ follows directly from the definition (A.2.15) and the
real linearity of ϕ, π and Γ.

As δ±ψ are complex linear maps on PK, it suffices to consider their action on field
monomials φ[ξ1] · · · φ[ξn], ξ1, ..., ξn ∈ K to prove the assertion about the derivation property
and (A.2.18). We also write φk := φ[ξk] and carry out a proof based on induction in the
field number n. For n = 0, we have δ±ψ (1) = 0 ∈ P

−
K for any ψ ∈ H1, and (A.2.18) holds

trivially. For n = 1, the canonical anticommutation relations (A.2.1,A.2.2) imply

δ±ψ (φ[ξ]) = 1
2 [ϕ((1 ∓ Γ)ψ) + iπ((1 ± Γ)ψ), φ[ξ]]+

= 1
2 (〈ξ, (1 ∓ Γ)ψ〉 ∓ 〈(1 ∓ Γ)ψ, ξ〉 − 〈ξ, (1 ± Γ)ψ〉 ± 〈(1 ± Γ)ψ, ξ〉) · 1

= (〈Γψ, ξ〉 ∓ 〈ξ,Γψ〉) · 1 . (A.2.19)

As K is Γ-invariant, so is K′, and hence ψ ∈ K′ implies δ+ψ (φ[ξ]) = 0, δ−iψ(φ[ξ]) = 0. Being

a multiple of the identity, δ±ψ (φ[ξ]) is contained in P
+
K for arbitrary ψ ∈ H1. The step

from n to n+ 1 fields is achieved by considering

[F, φ1 · · ·φ2n]− = [F, φ1 · · ·φ2n−1]+ · φ2n − φ1 · · ·φ2n−1 · [F, φ2n]+ ,

[F, φ1 · · ·φ2n+1]+ = [F, φ1 · · ·φ2n]− · φ2n+1 + φ1 · · ·φ2n · [F, φ2n+1]+ ,
(A.2.20)

with F = 1
2(ϕ((1 ∓ Γ)ψ) + iπ((1 ± Γ)ψ)). It follows from these formulae inductively that

δ±ψ turn even elements of PK into odd ones and vice versa. Moreover, δ+ψ = 0, δ−iψ = 0 for
ψ ∈ K′ because of the corresponding result for n = 1. By direct calculation, one can also
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verify the Leibniz rule (A.2.14). We have thus shown that δ±ψ are odd derivations of PK

satisfying (A.2.18).
To prove the norm estimate (A.2.16), we first note that

ψ′ :=
(

1
2(1 + Γ)(1 −Eπ) + 1

2(1 − Γ)(1 − Eϕ)
)
ψ (A.2.21)

is an element of the symplectic complement K′ for arbitrary ψ ∈ H1, as can be easily
verified using (A.2.3). Since δ+ψ′ = 0 and δ+ψ is real linear in ψ, we have

‖δ+ψ (A±)‖ = ‖δ+ψ−ψ′(A
±)‖

= 1
2‖[ϕ((1 − Γ)Eϕψ) + i π((1 + Γ)Eπψ), A±]∓‖

≤ ‖ϕ((1 − Γ)Eϕψ) + i π((1 + Γ)Eπψ)‖ · ‖A±‖ . (A.2.22)

To proceed to the estimate (A.2.16), let χ− := (1 − Γ)Eϕψ, χ+ := (1 + Γ)Eπψ. As
(ϕ(χ−) + iπ(χ+))∗ = −(ϕ(χ−) + iπ(χ+)) and ϕ(χ−) anticommutes with π(χ+),

‖ϕ(χ−) + iπ(χ+)‖ = ‖ϕ(χ−)2 − π(χ+)2‖1/2 =
(
‖χ−‖2 + ‖χ+‖2

)1/2
.

Together with (A.2.22) this implies the claimed norm bound (A.2.16) for δ+ψ . To establish

the corresponding inequality (A.2.17) for δ−ψ , consider the vector

ψ′′ :=
(

1
2(1 − Γ)(1 − Eπ) + 1

2 (1 + Γ)(1 − Eϕ)
)
ψ , (A.2.23)

which is contained in iK′ for any ψ ∈ H1. The norms of δ−ψ (A±) = δ−ψ−ψ′′(A±) can then
be estimated along the same lines as before.

After these preparations, we now turn to the proof of the nuclearity of Ξ by estimating
the size of its image in H. Let ψ1, ..., ψn ∈ H1 ∩ dom(X) and A ∈ PK. In view of the
second quantization structure of X and the annihilation property of a(ψj), we have

〈a∗(Γψ1) · · · a∗(Γψn)Ω,XA±Ω〉 = 〈Ω, a(XΓψn) · · · a(XΓψ1)A
±Ω〉 (A.2.24)

= 〈Ω, [a(XΓψn), [ ... [a(XΓψ2), [a(XΓψ1), A
±]∓]± ... ]±]∓Ω〉 .

From the inside to the outside, commutators and anticommutators are applied alternat-
ingly. We start with a commutator [a(XΓψ1), A

+]− if A = A+ is even and with an
anticommutator [a(XΓψ1), A

−]+ if A = A− is odd. Writing the annihilation operator as
a linear combination of the auxiliary fields (A.2.12) and recalling that X commutes with
Γ, one notes that the innermost (anti-) commutator is

[a(XΓψ1), A
±]∓ =

1

2
(δ+Xψ1

+ δ−Xψ1
)(A±) . (A.2.25)

Making use of this equality for all of the n (anti-) commutators, it becomes apparent that
(A.2.24) can be rewritten as

〈a∗(Γψ1) · · · a∗(Γψn)Ω,XA±Ω〉 = 2−n 〈Ω, ((δ+Xψn
+ δ−Xψn

) · · · (δ+Xψ1
+ δ−Xψ1

)(A±))Ω〉 .
(A.2.26)

We now turn to the operators

Tϕ := EϕX , Tπ := EπX , (A.2.27)
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which are of trace class on H1 according to the assumptions of Proposition A.2.1. Taking
into account that δ±Xψj

are odd derivations on PK, an application of the bounds (A.2.16,

A.2.17) to (A.2.26) yields

|〈a∗(Γψ1) · · · a∗(Γψn)Ω,XA±Ω〉| ≤2−n
n∏

j=1

((
‖(1 − Γ)Tϕψj‖2 + ‖(1 + Γ)Tπψj‖2

) 1
2

+
(
‖(1 + Γ)Tϕψj‖2 + ‖(1 − Γ)Tπψj‖2

) 1
2
)
· ‖A±‖ .

Following [BW86, BJ87] we now consider the positive operator

T :=
(
|Tϕ|2 + |Tπ|2

)1/2
(A.2.28)

which is in the trace class, too, satisfies ‖T‖1 ≤ ‖Tϕ‖1 + ‖Tπ‖1 [Kos84] and commutes
with Γ since Tϕ and Tπ do. As T 2 ≥ |Tϕ|2, T 2 ≥ |Tπ|2,

‖1
2 (1 ∓ Γ)Tϕψj‖2 + ‖1

2 (1 ± Γ)Tπψj‖2 ≤ ‖1
2(1 ∓ Γ)Tψj‖2 + ‖1

2 (1 ± Γ)Tψj‖2 = ‖Tψj‖2 .

In terms of T , we thus arrive at the estimate

|〈a∗(Γψ1) · · · a∗(Γψn)Ω,XA±Ω〉| ≤ 2n ‖A±‖ ·
n∏

j=1

‖Tψj‖ . (A.2.29)

Although this bound was derived for ψ1, ..., ψn ∈ H1 ∩ dom(X) only, it holds for arbitrary
ψ1, ..., ψn ∈ H1 since K ∩ dom(X) ⊂ K is dense and the left- and right hand sides of
(A.2.29) are continuous in the ψj. Moreover, it can be extended to A ∈ AK as follows.

The polynomial algebra PK is a weakly dense subalgebra of AK, and the grading
automorphism γ extends to AK. In view of Kaplansky’s density theorem [Tak79], given
A± = 1

2(1 ± γ(A)) ∈ AK, we can find a sequence {A±
k } ⊂ PK such that A±

k Ω → A±Ω
weakly and ‖A±

k ‖ ≤ ‖A±‖. This implies that (A.2.29) holds for A ∈ AK also, and we are
now able to give a bound on the nuclear norm of Ξ (A.2.6).

The positive trace class operator T acts on ξ ∈ H1 as Tξ =
∑∞

k=1 tk〈ψk, ξ〉ψk, where
ψk , k ∈ N, is an orthonormal basis of H1 and tk the (positive) eigenvalues of T , repeated
according to multiplicity, i.e.

∑∞
k=1 tk = ‖T‖1 < ∞. Moreover, since Γ and T commute,

we may choose the basis vectors ψk to be eigenvectors of Γ as well. As a consequence of
the Pauli principle, the vectors

Ψk := a∗(Γψk1) · · · a∗(Γψkn)Ω = ± a∗(ψk1) · · · a∗(ψkn)Ω , (A.2.30)

form an orthonormal basis of the totally antisymmetric subspace of H⊗n
1 (the fermionic

n-particle space Hn in the terminology of chapter 4) if the multi-index k := (k1, ..., kn)
varies over k1 < k2 < ... < kn, k1, ..., kn ∈ N.

Note that XAΩ has even (odd) particle number if A ∈ AK is even (odd). By the Fock
structure of H, we have for each Ξ(A) = XAΩ, A ∈ AK, the decomposition

Ξ(A) =

∞∑

n=0

∑

k1<...<k2n

〈Ψk,XA
+Ω〉 · Ψk +

∞∑

n=0

∑

k1<...<k2n+1

〈Ψk,XA
−Ω〉 · Ψk , (A.2.31)
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as an example for a representation of the type (5.1.3) of Ξ. As ‖Ψk‖ = 1 for all k1, ..., kn ∈N, and ‖A±‖ ≤ ‖A‖, the sum of the expansion coefficients can be estimated with the help
of (A.2.29) as follows:

∞∑

n=0

( ∑

1≤k1<...<k2n

|〈Ψk,XA
+Ω〉| +

∑

1≤k1<...<k2n+1

|〈Ψk, XA
−Ω〉|

)

≤ ‖A+‖
∞∑

n=0

22n
∑

1≤k1<...<k2n

2n∏

j=1

‖Tψkj
‖ + ‖A−‖

∞∑

n=0

22n+1
∑

1≤k1<...<k2n+1

2n+1∏

j=1

‖Tψkj
‖

≤ ‖A‖ ·
∞∑

n=0

∑

1≤k1<...<kn

n∏

j=1

2tkj
. (A.2.32)

According to (5.1.4), the sum (A.2.32) provides an upper bound for the nuclear norm of
Ξ. To compute this sum, note that (A.2.32) is nothing else but the partition function of
the ideal Fermi gas with Hamiltonian e−βH = 2T and zero chemical potential in the grand
canonical ensemble. This leads to the estimate (cf., for example, [BR97])

‖Ξ‖1 ≤
∞∑

n=0

∑

1≤k1<...<kn

n∏

j=1

2tkj
=

∞∏

j=1

(1 + 2tj) = det(1 + 2T ) . (A.2.33)

As det(1 + 2T ) ≤ exp(2‖T‖1) <∞, the nuclearity of Ξ follows. Taking into account

‖T‖1 ≤ ‖Tϕ‖1 + ‖Tπ‖1 = ‖EϕX‖1 + ‖EπX‖1, (A.2.34)

we also obtain the bound (A.2.7), finishing the proof of Proposition A.2.1. �

A.2.2 Application to the Scaling Ising Model

Our main interest in Proposition A.2.1 derives from the fact that this result can be used
to prove the modular nuclearity condition for wedges in the model given by the scattering
function S2 = −1. This quantum field theory is related to the two-dimensional Ising
model, which is a model of Z2-spins on a two-dimensional lattice with nearest neighbor
interaction. For detailed information on the Ising model and a guide to the literature, see
the textbook [MW73]. We only note here that the Ising model is known to undergo a
second order phase transition at some critical temperature.

Contact to quantum field theory is made by interpreting the n-spin correlation func-
tions, evaluated in a suitable scaling limit, as n-point Schwinger functions of a field theory.
Explicit expressions for these functions have been found in [MTW77, BMTW76]. The
field theory obtained in the scaling limit can be described by a Majorana Fermion, and is
known to have a factorizing S-matrix, which is given by the scattering function S2 = −1
[BKW79, SMJ77].

This field theory has also been studied in the framework of the form factor program
[BKW79, YZ91, BK04]. Starting from the scattering function S2 = −1, the form factors
and Greens functions of this model have been calculated in [BKW79], and the results
are in agreement with the findings in the Ising model. Thus this model is one of the few
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examples where the form factor program can be carried out to the end, yielding expressions
for n-point functions [BK04].

So as the scattering function S2 = +1, also S2 = −1 gives rise to a well-studied model
theory. But despite the detailed information one has about the structure of this theory,
there seems to exist no proof of the Wightman axioms for the emerging family of n-point
functions. Thus an inspection from the algebraic point of view taken in our approach
seems warranted, as it establishes this model in a rigorous manner.

It is interesting to note that the model with scattering function S2 = −1 can also
be formulated in higher dimensions, in contrast to the models with generic S2 ∈ S. To
do so, one considers a Klein-Gordon field on d-dimensional Minkowski space, d ≥ 2,
whose positive and negative frequency parts obey canonical equal time anticommutation
relations. This model was studied by Jost in [Jos65] as an example of a weakly local but
nonlocal quantum field. More recently, Buchholz and Summers reexamined the model in
an algebraic setting [BS05b]. Defining the net of wedge algebras and double cone algebras
as in chapter 2, they proved that the vacuum vector is cyclic for intersection of opposite
wedge algebras by different methods than the ones presented in chapter 2.

We now turn to the proof of the modular nuclearity condition for wedge algebras
in this model. For this proof, we use Proposition A.2.1, and are therefore obliged to
explain how the mathematical framework used in the preceding section translates to the
more concrete setting of the model theory.

The one particle space is H1 = L2(IR, dθ) and the full Hilbert space H is the Fermionic
Fock space over H1, in agreement with the general construction (4.1.17). The representa-
tion of the CAR algebra is related to the Zamolodchikov-Faddeev algebra with scattering
function S2 = −1 by

z†(ψ) = a∗(ψ) , z(ψ) = a(ψ) , ψ ∈ H1 . (A.2.35)

The involution Γ on H1 is given by the antiunitary representing time reflection, (Γψ)(θ) =
ψ(−θ), and the two closed subspaces Lϕ,Lπ ⊂ H1 are defined similarly to (A.1.1). But
in order to use the field φ instead of φ′, we here consider observables localized in the left
wedge and thus put

Lϕ := Lϕ(WL) := {f̂ : f ∈ S (IR−)}− , (A.2.36)

Lπ := Lπ(WL) := {ωf̂ : f ∈ S (IR−)}− , (A.2.37)

and write Eϕ(WL) = Eϕ, Eπ(WL) = Eπ for the associated orthogonal projections.
With these assignments, K (A.2.3) is the eigenspace of the Tomita operator J∆−1/2 of
(A(WL),Ω), with eigenvalue one.

In the context of the family of models with a factorizing S-matrix, the field operator
φ(f) (4.2.1) is defined as an operator-valued distribution on two-dimensional Minkowski
space, whereas here φ[ψ] (A.2.4) takes one-particle vectors ψ ∈ H1 as its arguments. As
the vacuum is separating for the field φ(f), it can be uniquely described by the one-particle
vector φ(f)Ω = f+, and the correspondence between the two formulations of φ is given by
φ(f) = φ[f+], f ∈ S (WL) real. Namely, for real f ∈ S (WL) we have f+ ∈ K and thus

f+(θ) = (J∆−1/2f+)(θ) = f+(θ + iπ) = f−(θ) . (A.2.38)
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Hence

φ(f) = z†(f+) + z(f−) = a∗(f+) + a(f−) = a∗(f+) + a(f+) = φ[f+] .

Therefore the algebra AK (A.2.5) is

AK = {φ[ψ] : ψ ∈ K}′′ = {φ(f) : f ∈ S (WL) real}′′ .
But the field φ(f) is bounded, and so AK can equivalently be written as [KR83]

AK = {eiφ(f) : f ∈ S (WL) real}′′ = A(WL) , (A.2.39)

coinciding with the definition of the algebra of the left wedge made in chapter 4 (4.2.12).
Finally, X := U(s)∆−1/4U(−s) is strictly positive, contains A(WL)Ω in its domain

for s > 0, and has the required second quantization structure. Moreover, the involution Γ
commutes with U(±s) and ∆−1/4, and hence with X.

The map (A.2.6) is thus

Ξ : A(WL) −→ H, A 7−→ U(s)∆−1/4U(−s)AΩ , (A.2.40)

and is nuclear if and only if Ξ(s) (5.1.2) is, with the same nuclear norm. (Ξ and Ξ(s) are
related by the antiunitary modular involution J .) So the result of Proposition A.2.1 is
the desired modular nuclearity condition for wedges in the model with scattering function
S2 = −1.

To conclude the proof of this property, we only need to establish that
Eϕ(WL)U(s)∆−1/4U(−s) and Eπ(WL)U(s)∆−1/4U(−s) are trace class operators on H1.
But the projections Eϕ(WL), Eπ(WL) are related to Eϕ(WR), Eπ(WR) by the adjoint
action of J , and so we can apply the results obtained in the analysis of the free field in
the previous section to arrive at

Eϕ(WL)U(s)∆−1/4U(−s) = JEϕ(WR)U(−s)∆1/4U(s)J = JTϕ(s)∗U(s)J , (A.2.41)

Eπ(WL)U(s)∆−1/4U(−s) = JEπ(WR)U(−s)∆1/4U(s)J = JTπ(s)
∗U(s)J , (A.2.42)

where Tϕ(s) and Tπ(s) are the integral operators with kernels (A.1.12) and (A.1.13). As
these have been shown to be nuclear, and U(s) and J are (anti-) unitary, we obtain

‖Eϕ(WL)U(s)∆−1/4U(−s)‖1 = ‖Tϕ(s)‖1 <∞ , (A.2.43)

‖Eπ(WL)U(s)∆−1/4U(−s)‖1 = ‖Tπ(s)‖1 <∞ , (A.2.44)

and see that the assumptions of Proposition A.2.1 are satisfied in this model.

Proposition A.2.3. Consider the model theory with scattering function S2 = −1.
The maps Ξ(s) (5.1.2) are nuclear for any s > 0, and there holds the bound

‖Ξ(s)‖1 ≤ e2‖Tϕ(s)‖1 · e2‖Tπ(s)‖1 , (A.2.45)

where Tϕ(s) and Tπ(s) are the trace class integral operators on L2(IR) given by the kernels
(A.1.12) and (A.1.13). �

According to Theorem 2.3.4, this implies in particular that all double cone algebras
are isomorphic to the hyperfinite type III1 factor, and that the Reeh-Schlieder property
holds in this model.

In comparison to the estimate (5.3.17) obtained in chapter 5, we note that the bound
(A.2.45) is much smaller. As mentioned before, we conjecture that by a more refined anal-
ysis, an exponential bound similar to (A.2.45) can be shown to hold for generic scattering
functions, but this remains to be proven.
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A.2.3 Application to the Thermodynamics of Relativistic Free Fermions

The original work of Buchholz and Wichmann [BW86] applies to Bose fields only, but in
view of the thermodynamical interpretation of the energy nuclearity condition, it can be
expected to hold for Fermi fields as well. For the case of a free Dirac field on a globally
hyperbolic spacetime, such a proof has been given by D’Antoni and Hollands in [DH06].

Without going into any details, we briefly mention how Proposition A.2.1 can be
used to prove the energy nuclearity condition for free Fermi fields on d-dimensional
Minkowski space (d ≥ 2).

Consider a net O 7−→ A(O) on the antisymmetric Fock space H over H1 which is gen-
erated by a free quantum field satisfying canonical equal time anticommutation relations.
Fixing a double cone Or of radius r, the corresponding algebra A(Or) can be formulated
in terms of subspaces Lϕ(r),Lπ(r) ⊂ H1 as in (A.2.3). Putting X := e−βH , the map Ξ
(A.2.6) coincides with

Θβ,r : A(Or) −→ H, A 7−→ e−βHAΩ . (A.2.46)

By Prop. A.2.1, the nuclearity of Θβ,r can be derived from the nuclearity of e−βHEϕ/π(r),
where Eϕ/π(r) ∈ B(H1) are the orthogonal projections onto the subspaces Lϕ/π(r) ⊂ H1.

Realizing the single particle space as a direct sum of L2-spaces (depending on the
spin of the underlying field), the operators e−βHEϕ/π(r) can be shown to be of trace
class. Hence Θβ,r is nuclear, and as usual, the nuclear norm ‖Θβ,r‖1 is interpreted as
the thermodynamical partition function of the system restricted to the region Or, at
temperature β−1.

For explicit estimates on the trace norms ‖e−βHEϕ/π(r)‖1in terms of β and r, we refer
to [BW86].



130 Appendix A. The Nuclearity Condition for Constant Scattering Functions



Appendix B

Technical Proofs

B.1 The General Form of a Scattering Function

In this section we give an explicit characterization of the family S of scattering functions
(Definition 3.2.1) in terms of their zeros by proving Proposition 3.2.2, which is repeated
below. A similar computation has been carried out by Mitra [Mit77].

Proposition 3.2.2 The set S of scattering functions is

S =

{
ζ 7−→ ε · eia sinh ζ ·

∏

k

sinhβk − sinh ζ

sinhβk + sinh ζ
: ε = ±1, a ≥ 0, {βk} ∈ Z

}
, (B.1.1)

where the family Z consists of the finite or infinite sequences {βk} ⊂ C satisfying the
following conditions:

i) 0 < Imβk ≤ π
2 ,

ii) βk and −βk appear the same finite number of times in the sequence {βk},

iii) {βk} has no finite limit point,

iv)
∑

k Im 1
sinhβk

<∞.

The product in (B.1.1) converges absolutely and uniformly in ζ on compact subsets of the
strip S(0, π).

Proof. We first show that any S2 ∈ S has a representation of the form (3.2.9). To this
end, let ε := S2(0), and define {βk} as the sequence of zeros of S2 in S(0, π2 ), repeated
according to multiplicity. The constraining equations for S2 (3.2.6),

S2(θ) = S2(θ)
−1 = S2(−θ) = S2(θ + iπ) , θ ∈ IR , (B.1.2)

imply ε = ±1. Since S2 has modulus unity on the real line, and S2(−ζ) = S2(ζ) holds for
ζ ∈ S(0, π) by analytic continuation, the sequence {βk} has the properties i) and ii).

In the derivation of (B.1.1), we may restrict to scattering functions without purely
imaginary zeros. For if S2 vanishes at iα1, ..., iαK , 0 < αk ≤ π

2 (There can be only

131
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finitely many such points in view of the analyticity and continuity of S2 and the fact that
|S2(0)| = 1), consider

R(ζ) :=
K∏

k=1

sinh(iαk) − sinh ζ

sinh(iαk) + sinh ζ
. (B.1.3)

It is readily verified that R ∈ S, and its only zeros in S(0, π2 ) are iα1, ..., iαK . But as
the equations (B.1.2) are stable under taking products and reciprocals, it follows that
S2(ζ)/R(ζ) is a scattering function as well, without imaginary zeros. This implies that
formula (B.1.1) holds for scattering functions with imaginary zeros if it can be proven for
those without.

The not purely imaginary zeros a scattering function has in S(0, π2 ) occur in
pairs of the form (βk,−βk). We denote the zeros with positive real part by γk, i.e.
{βk : k ∈ N} = {γk,−γk : k ∈ N}, and assume that there are infinitely many of them.
(The case of finitely many zeros leads only to simplifications in the proof.)

The hyperbolic sine is a biholomorphic map between the strip S(0, π2 ) and the up-
per half plane with a cut along i [1,∞). The points iπ

2 ± θ, θ ∈ IR, are mapped onto
opposite sides of the cut. Since (B.1.2) implies S2(

iπ
2 + θ) = S2(

iπ
2 − θ), the function

Ŝ2(z) := S2(arsinh(z)) is analytic in the upper half plane and bounded and continuous
on its closure. The zeros of Ŝ2 are precisely gk := sinh γk and −gk = sinh(−γk), k ∈ N.
Taking into account |S2(θ)| = |S2(θ + iπ)| = 1, θ ∈ IR, we conclude |Ŝ2(z)| ≤ 1 for
Im z ≥ 0 from the three lines theorem [Con73, Thm. 3.7].

In the context of Hardy spaces, it is well-known (cf., for example [Dur00, Thm. 11.3])
that a function like Ŝ2 admits a factorization of the form Ŝ2(z) = H(z)B(z), where H is
an analytic and nonvanishing function bounded by unity on the upper half plane, and B
is the Blaschke product with zeros {gk,−gk},

B(z) =

∞∏

k=1

( |g2
k + 1|
g2
k + 1

z − gk
z − gk

· |gk
2 + 1|

gk
2 + 1

z + gk
z + gk

)
=

∞∏

k=1

(
gk − z

gk + z
· −gk − z

−gk + z

)
. (B.1.4)

The boundedness of Ŝ2 implies the Blaschke condition for the upper half plane,∑
k Im sinhβk/(1 + | sinhβk|2) < ∞ [Dur00]. This condition is equivalent to the con-

vergence (absolute and uniform as z varies over compact subsets of the upper halfplane)
of the product (B.1.4). In view of the continuity of Ŝ2 on the real axis, and |S2(θ)| = 1,
θ ∈ IR, it also follows that {βk} has no finite limit point (that is, property iii) of {βk}
holds), and the Blaschke condition simplifies to property iv). In particular, B extends
continuously to the real axis [Gar81].

As H is nonvanishing, we find a function h analytic in the upper halfplane such that
H(z) = ε eih(z). Since Ŝ2(0) = ε and B(0) = 1, we may choose h(0) = 0 to fix h uniquely.
Moreover, using the factorization theorem for bounded analytic functions on the upper
half plane and the fact that Ŝ2 has modulus one on the real line, we conclude that there
exists a constant a ≥ 0 such that Imh(z) = a · Im z [Boa54, Thm. 6.5.4]. Taking into
account the analyticity of h, we arrive at h(z) = a · z + h(0) = a · z.

Mapping back to the strip yields the claimed expression

S2(ζ) = H(sinh ζ)B(sinh ζ) = ε eia sinh ζ ·
∞∏

k=1

sinhβk − sinh ζ

sinhβk + sinh ζ
, ζ ∈ S(0, π2 ) . (B.1.5)
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By reflection about IR + iπ
2 (recall S2(iπ − ζ) = S2(ζ)), this formula extends to S(0, π).

To establish the converse direction, assume a ≥ 0, ε = ±1 and a sequence {βk}
satisfying i)-iv) are given. The product (B.1.5) converges to a bounded analytic function
due to the Blaschke condition iv), and the absence of finite limit points iii) of {βk}
implies continuous boundary values. Taking into account a ≥ 0 and ii), the boundedness
and the relations (3.2.6) can be checked by direct computation.
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B.2 The Family of Integral Operators Ts,κ

In this section we consider the integral operators Ta,b on L2(IR), given by the kernels

Ta,b(x, y) =
e−a coshx

x− y + ib
, a > 0, b ∈ IR\{0} , (B.2.1)

which play a role in the proof of the modular nuclearity condition in chapter 5. The result
we want to establish is

Lemma B.2.1. The integral operators Ta,b (B.2.1) are trace class operators for any a > 0,
b ∈ IR\{0}. Their trace norms are bounded by

‖Ta,b‖1 ≤ 21/4π3/4 · e
−a

a1/4

(√
π

2
+

1

4a

)1/2

·
(
b4 + 4b2 + 24

b5

)1/2

. (B.2.2)

Proof. By a Fourier transformation of the kernel Ta,b(x, y) in y, one notes that Ta,b can
be expressed in terms of the quantum mechanical position and momentum operators
(Xψ)(x) = x · ψ(x), (Pψ)(x) = −ψ′(x), as

Ta,b = −2πε(b)i e−a coshXΘ(ε(b)P )e−bP , (B.2.3)

where ε(b) = b/|b| is the sign of b and Θ = χIR+ the Heaviside step function. We write
fa(x) := e−a coshx and gb(p) = −2πε(b)iΘ(ε(b)p)e−bp, and decompose Ta,b according to

Ta,b = Ra · Sb , (B.2.4)

Ra := fa(X)(i + P )−2(i+X) , Sb := (i+X)−1(i+ P )2gb(P ) . (B.2.5)

Thus Ra and Sb are integral operators with the kernels

Ra(x, y) =
1√
2π

e−a coshx i+ y

(i+ (x− y))2
(B.2.6)

Sb(x, y) = −
√

2πε(b)i
(i+ x− y)2

i+ x
Θ(ε(b)(x − y))e−b(x−y) (B.2.7)

By inspection of these kernels, we find that Ra and Sb are Hilbert Schmidt operators, and
hence Ta,b is of trace class. Their Hilbert Schmidt norms can be estimated as

‖Ra‖2 ≤
( π

2a

)1/4
e−a

(√
π

2
+

1

4a

)1/2

, (B.2.8)

‖Sb‖2 =
√

2π

√
b4 + 4b2 + 24

b5
, (B.2.9)

and since ‖Ta,b‖1 ≤ ‖Ra‖2‖Sb‖2, this gives the claimed bound.
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Mathematical Topics

C.1 Nuclear Maps between Banach Spaces

The material in this subsection provides the mathematical background for the discussion
of nuclearity criteria in quantum field theory, it is primarily used in chapter 5. The basic
notion is the following:

Definition C.1.1. Let X and Y be two Banach spaces. A linear map T : X −→ Y is said
to be nuclear if there exists a sequence of vectors {Ψn}n ⊂ Y and a sequence of bounded
linear functionals {ρn}n ⊂ X∗ such that

T (ξ) =
∞∑

n=1

ρn(ξ)Ψn ,
∞∑

n=1

‖ρn‖X∗‖Ψn‖Y <∞ . (C.1.1)

The nuclear norm of such a mapping is defined as

‖T‖1 := inf
ρn,Ψn

∞∑

n=1

‖ρn‖X∗‖Ψn‖Y , (C.1.2)

where the infimum is taken over all sequences {Ψn}n ⊂ Y, {ρn}n ⊂ X∗ complying with the
above conditions.

The set of all nuclear maps between two Banach spaces X , Y is denoted by N (X ,Y),
the compact operators are K(X ,Y), and the bounded operators B(X ,Y). The operator
norm of B(X ,Y) is written as ‖ · ‖.

The following well-known Proposition summarizes some basic properties of nuclear
maps. For the convenience of the reader, we give the proof here, see also [Pie72, Jar81].

Proposition C.1.2. Let X ,X1,Y,Y1 be Banach spaces.

a) ‖T‖ ≤ ‖T‖1 for T ∈ N (X ,Y).

b) N (X ,Y) ⊂ K(X ,Y).

c) (N (X ,Y), ‖ · ‖1) is a Banach space.
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Proof. Let T ∈ N (X ,Y) be given by a representation of the form (C.1.1), and ξ ∈ X .
Then

‖Tξ‖Y ≤
∞∑

n=1

|ρn(ξ)| ‖Ψn‖Y ≤
∞∑

n=1

‖ρn‖X ∗ ‖Ψn‖Y · ‖ξ‖X .

Hence T is bounded, with operator norm ‖T‖ ≤ ‖T‖1, as claimed in a). Moreover, the
operators TN :=

∑N
n=1 ρn(·)Ψn have finite rank, and ‖T −TN‖ ≤∑∞

n=N+1 ‖ρn‖X ∗‖Ψn‖ →
0 for N → ∞. Thus T is the ‖ · ‖-limit of a sequence of finite rank operators and hence
compact, i.e. b) holds.

c) Let T1, T2 ∈ N (X ,Y) be given by decompositions of the form (C.1.1), with linear

functionals ρ
(1)
n , ρ

(2)
n ∈ X ∗ and vectors Ψ

(1)
n , Ψ

(2)
n ∈ Y. Then T1 + T2 is, ξ ∈ X ,

(T1 + T2)ξ =

∞∑

n=1

ρ(1)
n (ξ)Ψ(1)

n +

∞∑

n=1

ρ(2)
n (ξ)Ψ(2)

n , (C.1.3)

and thus also of the form (C.1.1). As N (X ,Y) is clearly invariant under scalar multipli-
cation, this shows that N (X ,Y) is a linear space. For the nuclear norm of T1 + T2 we
find

‖T1 + T2‖1 ≤
∞∑

n=1

‖ρ(1)
n ‖X ∗‖Ψ(1)

n ‖X +
∞∑

n=1

‖ρ(2)
n ‖X ∗‖Ψ(2)

n ‖X ,

and hence ‖T1 + T2‖1 ≤ ‖T1‖1 + ‖T2‖1. As ‖λT‖1 = |λ| ‖T‖1, λ ∈ C, holds trivially and
‖T‖1 = 0 ⇔ T = 0, it follows that ‖ · ‖1 is a norm on N (X ,Y).

To show completeness of N (X ,Y) with respect to this norm, we consider a ‖·‖1-Cauchy
sequence Tk and pick numbers αr ∈ N such that

‖Tk − Tl‖1 ≤ 2−r , k, l ≥ αr .

Since Tαr+1−Tαr ∈ N (X ,Y), there exist functionals {ρ(r)
n }n ⊂ X∗ and vectors {Ψ(r)

n }n ⊂ Y
such that

(Tαr+1 − Tαr)ξ =

∞∑

n=1

ρ(r)
n (ξ)Ψ(r)

n ,

∞∑

n=1

‖ρ(r)
n ‖X ∗‖Ψ(r)

n ‖Y ≤ 2−r .

Consequently, we have

(Tαr+m − Tαr)ξ =

r+m−1∑

s=r

∞∑

n=1

ρ(s)
n (ξ)Ψ(s)

n .

Note that T := lim
m→∞

Tαr+m exists as a bounded operator in view of a). So by taking the

limit m→ ∞ we obtain

(T − Tαr)ξ =

∞∑

s=r

∞∑

n=1

ρ(s)
n (ξ)Ψ(s)

n ,

and the nuclear norm of T − Tαr can be estimated by

‖T − Tαr‖1 ≤
∞∑

s=r

2−s = 2 · 2−r .
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Hence T is nuclear. Finally,

‖T − Tk‖1 ≤ ‖T − Tαr‖1 + ‖Tαr − Tk‖1 ≤ 2 · 2−r + 2−r , k ≥ αr ,

shows ‖T − Tk‖1 → 0 for k → ∞.

Nuclear maps can be regarded as a generalization of the concept of trace class operators
to Banach spaces. In the following Lemma, it is shown that in the case of Hilbert spaces,
the nuclear operators form precisely the trace class. The familiar ideal properties of trace
class operators are shown to hold also for nuclear maps.

Lemma C.1.3.

a) Let T ∈ N (X ,Y), A1 ∈ B(Y,Y1), A2 ∈ B(X1,X ). Then A1TA2 ∈ N (X1,Y1), and

‖A1TA2‖1 ≤ ‖A1‖ · ‖T‖1 · ‖A2‖ . (C.1.4)

b) Let H be a separable Hilbert space. Then any trace class operator T on H lies in
N (H,H) and satisfies ‖T‖1 ≤ Tr |T |.

Proof. a) Consider T,A1, A2 as above, where T ∈ N (X ,Y) is given by a decomposition of
the form (C.1.1). Then A1TA2 acts on ξ1 ∈ X1 according to

A1TA2ξ1 =

∞∑

n=1

ρn(A2ξ1)A1Ψn ,

and its nuclear norm can be estimated by

∞∑

n=1

‖ρn ◦ A2‖X ∗
1
‖A1Ψn‖Y1 ≤ ‖A2‖B(X1,X ) ·

∞∑

n=1

‖ρn‖X ∗‖Ψn‖Y · ‖A1‖B(Y ,Y1) <∞ .

Hence A1TA2 ∈ N (X1,Y1), and varying the nuclear decomposition (C.1.1) of T gives
‖A1TA2‖1 ≤ ‖A1‖‖T‖1‖A2‖.

b) Given a trace class operator T ∈ B(H), there exist two orthonormal systems {Ψk}k
and {Φk}k in H, and numbers λk ≥ 0 (the singular values of T ) such that

Tξ =
∞∑

k=1

λk〈Φk, ξ〉Ψk , Tr|T | =
∞∑

k=1

λk <∞ . (C.1.5)

Clearly, this decomposition of T is a decomposition of the form (C.1.1), implying that T is
nuclear. As the vectors Ψk and Φk have norm one, we also find ‖T‖1 ≤∑k λk = Tr|T |.
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C.2 Hardy Spaces on Tube Domains

In the investigation of the analytic properties of wedge-local wavefunctions in section 5.2,
it turns out to be convenient to formulate some results in terms of Hardy spaces on certain
tube domains. In this section, we collect the necessary definitions and results.

Definition C.2.1. Let C ⊂ IRn be an open, bounded, convex domain. The tube Tn(C) over
C is defined as

Tn(C) := IRn + i C ⊂ Cn . (C.2.1)

Note that as a convex tube, Tn(C) is a domain of holomorphy in Cn. The Hardy space
H2(Tn(C)) on the tube Tn(C) is defined as follows.

Definition C.2.2. The Hardy space H2(Tn(C)) on the tube Tn(C) consists of the functions
F : Tn(C) −→ C having the following three properties.

i) F is analytic in Tn(C).

ii) For each λ ∈ C, the function

Fλ : IRn −→ C , Fλ(θ) := F (θ + iλ) (C.2.2)

is an element of L2(IRn, dnθ).

iii) Let ‖ · ‖2 denote the usual L2-norm. Then for F ∈ H2(Tn(C)),

|||F ||| := sup
λ∈C

‖Fλ‖2 <∞ . (C.2.3)

Clearly H2(Tn(C)) is a linear space, and ||| · ||| is a norm on it. Note that in view of the
boundedness of C, H2(Tn(C)) ⊂ L2(Tn(C)), where in L2(Tn(C)) the tube Tn(C) is regarded
as a domain in IR2n. Furthermore, H2(Tn(C)) is complete with respect to the norm |||·|||, i.e.
it is a Banach space. This and other results can be derived from the following inequality:

Lemma C.2.3. Let F ∈ H2(Tn(C)) and θ ∈ IRn, λ ∈ C. Then

|F (θ + iλ)| ≤
(

2

π d∞(λ)

)n/2
· |||F ||| , (C.2.4)

where d∞(λ) denotes the distance of λ to the boundary of C, measured in maximum norm.

Proof. Let θ ∈ IRn, λ ∈ C and consider the n-dimensional polydisc Dn(ζ) with center
ζ := θ + iλ and sufficiently small radius such that the tube T ρ

n (ζ) := ζ + IRn + i [−ρ, ρ]×n
is contained in Tn(C). (This is possible if and only if ρ < d∞(λ).) By the mean value
property for analytic functions [Kra92] and the Cauchy-Schwarz inequality in L2(T ρ

n (ζ)),
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we have

|F (ζ)| =
1

(πρ2)n

∣∣∣∣∣

∫

Dn(ζ)
dnζ ′ F (ζ ′)

∣∣∣∣∣

≤
√

vol(Dn(ζ))

(πρ2)n

(∫

T ρ
n (ζ)

dnζ ′ |F (ζ ′)|2
)1/2

= (πρ2)−n/2

(∫

[−ρ,ρ]×n

dnλ′ ‖Fλ+λ′‖2
2

)1/2

≤
(

2

πρ

)n/2
· |||F ||| .

In the limit ρ→ d∞(λ) we arrive at the claimed inequality.

We now show the completeness of the Hardy space.

Proposition C.2.4. (H2(Tn(C)), ||| · |||) is a Banach space.

Proof. Everything is clear except for completeness. So let {Fk}k ⊂ H2(Tn(C)) be a Cauchy
sequence in the norm ||| · |||. In view of ‖Fk,λ −Fl,λ‖2 ≤ |||Fk−Fl||| → 0 for k, l → ∞, λ ∈ C,
we find that Fk,λ converges in L2(IRn) to a limit function Fλ. As this convergence is
uniform in λ, the function F : θ + iλ 7→ Fλ(θ), θ ∈ IRn, satisfies |||F ||| ≤ limk |||Fk||| < ∞,
and we have limk |||Fk − F ||| = 0.

To show that F is analytic, note that the previous Lemma implies that the convergence
Fk → F is uniform on tubes of the form IRn + iK, where K ⊂ C is compact. So F is a
normal limit [Kra92] of analytic functions and hence analytic, too.

Besides its completeness, the following facts about H2(Tn(C)) are needed in chapter 5.

Proposition C.2.5. For F ∈ H2(Tn(C)), the following holds.

i) Let k ∈ {1, ..., n}, θ1, ..., θk−1, θk+1, ..., θn ∈ IR, and K ⊂ C compact. Then

lim
|θk|→∞

sup
λ∈K

|F (θ + iλ)| = 0 . (C.2.5)

ii) Assume C is a polyhedron, i.e. the convex closure of finitely many points in IRn.
Then F can be extended to Tn(C) such that Fλ ∈ L2(IRn) for λ ∈ C, and C ∋ λ 7−→
Fλ ∈ L2(IRn) is continuous. These boundary values satisfy

|||F ||| = sup
λ∈∂C

‖Fλ‖2 . (C.2.6)

Proof. i) Consider θ ∈ IRn, λ ∈ C and a polydisc Dn(θ + iλ) ⊂ Tn(C) with center θ + iλ.
As in Lemma C.2.3, we obtain

|F (θ + iλ)| ≤ (πρ2)−n/2

(∫

Tn(C)
dnζ ′ |F (ζ ′)|2 · χDn(θ+iλ)(ζ

′)

)1/2

, (C.2.7)
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where χDn(θ+iλ)(ζ
′) is the characteristic function of the Dn(θ + iλ) = Dn(0) + θ + iλ.

The functions Gθ(ζ ′) := |F (ζ ′)|2 · χDn(θ+iλ)(ζ
′) are integrable over Tn(C) for any choice

of θ ∈ IRn, and we have the integrable majorant Gθ(ζ ′) ≤ |F (ζ ′)|2. But as |θk| → ∞, θ =
(θ1, ..., θk, ..., θn), the integrand Gθ(ζ ′) converges to zero pointwise in ζ ′. By dominated
convergence, this implies that the above integral (C.2.7) converges to zero for |θk| → ∞.
If λ is allowed to vary over a compact subset of C, the right hand side of (C.2.7) can be
chosen independently of λ ∈ K, and hence the claim follows.

ii) For the existence of L2-boundary values for tubes based on polyhedrons, see [SW71,
Ch. III, Cor. 2.9]. (This assumption on the shape of C is necessary.) The second statement
is a multidimensional analogue of the three-lines theorem [Con73, Thm. 3.7], which can
be derived from the maximum principle: Let F ∈ H2(Tn(C)) and f ∈ L2(IRn). Then F ∗f
is analytic on Tn(C), and bounded and continuous on its closure. By application of the
maximum principle [Kra92, Cor. 1.3.5],

|(F ∗ f)(iλ)| ≤ sup
λ0∈∂C

sup
θ∈IRn

|(F ∗ f)(θ + iλ0)| ≤ ‖f‖2 sup
λ0∈∂C

‖Fλ0
‖2 , λ ∈ C . (C.2.8)

Since f ∈ L2(IRn) was arbitrary, we have ‖Fλ‖ ≤ supλ0∈∂C ‖Fλ0
‖2. On the other hand,

‖Fλ0
‖2 ≤ |||F ||| by the continuity of C ∋ λ 7−→ Fλ ∈ L2(IRn), and hence the claimed

equality (C.2.6) follows.
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Sitter space, Ann. H. Poincaré A 70 (1999), 23–40, [gr-qc/9803036].

[BBS01] H.-J. Borchers, D. Buchholz, and B. Schroer, Polarization-free generators and
the S-matrix, Commun. Math. Phys. 219 (2001), 125–140, [hep-th/0003243].

[BDF87] D. Buchholz, C. D’Antoni, and K. Fredenhagen, The universal struc-
ture of local algebras, Commun. Math. Phys. 111 (1987), 123–135,
[euclid.cmp/1104159470].

[BDFS00] D. Buchholz, O. Dreyer, M. Florig, and S. J. Summers, Geometric modular
action and spacetime symmetry groups, Rev. Math. Phys. 12 (2000), 475–560,
[math-ph/9805026].

[BDL90a] D. Buchholz, C. D’Antoni, and R. Longo, Nuclear maps and modular struc-
tures. 1. General properties, J. Funct. Anal. 88 (1990), 233–250.

[BDL90b] , Nuclear maps and modular structures. 2. Applications to
quantum field theory, Commun. Math. Phys. 129 (1990), 115–138,
[euclid.cmp/1104180648].

[BDL06] , Nuclearity and thermal states in conformal field theory, preprint
(2006), [math-ph/0603083].

1References to internet archives are abbreviated as follows: math-ph/yymmxxx or hep-th/yymmxxx
refer to the preprint archive at http://www.arXiv.org, tags like euclid.cmp/1104248958 refer to the
Project Euclid page at http://projecteuclid.org and LQP/yymmddnn refers to the LQP archive at
http://www.uni-goettingen.de/papers.

141

http://arxiv.org/abs/gr-qc/9803036
http://arxiv.org/abs/hep-th/0003243
http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104159470
http://arxiv.org/abs/math-ph/9805026
http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104180648
http://arxiv.org/abs/math-ph/0603083


142 Bibliography

[BEG65] J. Bros, H. Epstein, and V. Glaser, A proof of the crossing property for two-
particle amplitudes in general quantum field theory, Commun. Math. Phys. 1
(1965), 240–264, [euclid.cmp/1103758775].

[BF82] D. Buchholz and K. Fredenhagen, Locality and the structure of particle states,
Commun. Math. Phys. 84 (1982), 1–54, [euclid.cmp/1103921044].

[BFKZ99] H. M. Babujian, A. Fring, M. Karowski, and A. Zapletal, Exact form factors in
integrable quantum field theories: The sine-Gordon model, Nucl. Phys. B538
(1999), 535–586, [hep-th/9805185].

[BGL02] R. Brunetti, D. Guido, and R. Longo, Modular localization and Wigner par-
ticles, Rev. Math. Phys. 14 (2002), 759–786, [math-ph/0203021].

[BI83] J. Bros and D. Iagolnitzer, Structure of scattering functions at m particle
thresholds in a simplified theory and nonholonomic character of the S-matrix
and Green’s functions, Phys. Rev. D27 (1983), 811–824.

[BJ86] D. Buchholz and P. Junglas, Local properties of equilibrium states and the
particle spectrum in quantum field theory, Lett. Math. Phys. 11 (1986), 51.

[BJ87] D. Buchholz and P. Jacobi, On the nuclearity condition for massless fields,
Lett. Math. Phys. 13 (1987), 313.

[BJ89] D. Buchholz and P. Junglas, On the existence of equilibrium states in
local quantum field theory, Commun. Math. Phys. 121 (1989), 255–270,
[euclid.cmp/1104178066].

[BK01] H. Babujian and M. Karowski, The ’bootstrap program’ for integrable quantum
field theories in 1+1 dimensions, preprint (2001), [hep-th/0110261].

[BK04] , Towards the construction of Wightman functions of integrable quan-
tum field theories, Int. J. Mod. Phys. A 19S2 (2004), 34–49, [hep-th/0301088].

[BKW79] B. Berg, M. Karowski, and P. Weisz, Construction of Green’s functions from
an exact S-matrix, Phys. Rev. D 19 (1979), 2477–2479.

[BL75] J. Bros and M. Lassalle, Analyticity properties and many particle structure
in general quantum field theory. 2. One particle irreducible n-point functions,
Commun. Math. Phys. 43 (1975), 279–309, [euclid.cmp/1103899186].

[BL04] D. Buchholz and G. Lechner, Modular nuclearity and localization, Ann. H.
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A net of local algebras section 1.4, page 10
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0 smooth functions of compact support
D subspace of H of finite particle number section 4.1, page 55
Dn representation of the symmetric group Sn Lemma 4.1.1, page 53
∆ modular operator of (A(WR),Ω) Prop. 4.4.2, page 74
FH1 unsymmetrized Fock space over the one particle

space H1

section 4.1, page 53

φ wedge-local quantum field Def. 4.2.1, page 59
φ′ wedge-local quantum field (4.2.25), page 66
Γ antiunitary implementing the time reflection (4.2.21), page 64
H Hamiltonian, H = P0, generator of time trans-

lations
H Hilbert space (4.1.17), page 55
Hn n-particle spaces (4.1.17), page 55
H± Bose and Fermi Fock spaces over H1

H±
m upper and lower mass shell section 3.1, page 40

H2(T ) Hardy space over the tube T ⊂ Cn Def. C.2.2, page 138
J modular conjugation of (A(WR),Ω) (4.2.20), page 64
κ(S2) distance of singularities of S2 to the real line (3.2.12), page 46
Λ(λ) proper Lorentz boost with rapidity λ (1.3.1), page 8
λ0 special vector in Cn (5.2.56), page 93
M right wedge algebra Def. 2.1.1, page 16
N (X ,Y) space of nuclear operators between two Banach
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section C.2, page 138

O double cone section 1.3, page 8
O family of all double cones section 1.3, page 8
Ω the vacuum vector
P,Pn projections onto S2-symmetric spaces (4.1.14), page 54
P0, P1 energy and momentum operators

P, P+, P↑
+ Poincaré group and subgroups thereof section 1.3, page 8

p(θ) on-shell momentum vector with rapidity θ (3.1.2), page 40



S the S-matrix on H section 3.1, page 39

Ŝ the S-matrix on H+ section 3.1, page 39
Sn,m kernels of the S-matrix section 3.1, page 39
S2 scattering function Def. 3.2.1, page 45
‖S2‖κ supremum norm of S2 (5.2.24), page 85
Sπ function related to the representation Dn Lemma 4.1.1, page 53
S set of all scattering functions Def. 3.2.1, page 45
S0 subfamilies of S Def. 5.2.4, page 85
S±

0 subfamilies of S0 (5.3.10), page 99
S(a, b) strip region in C (3.2.10), page 46Sn the group of permutations of n objects
S Schwartz test functions
T time reflection section 1.3, page 8
Ts,κ integral operators on L2(IR) section B.2 , page 134
Θβ,O map appearing in the energy nuclearity condi-

tion
(2.3.1), page 29

U, Û , Ũ representations of P, P+, P↑
+ or (IR2,+)

Vin, Vout Møller operators section 3.1, page 39
V + forward light cone
W a wedge section 1.3, page 8
W the set of all wedges section 1.3, page 8
WL,WR the left and right wedge section 1.3, page 8
WO
L , WO

R left and right wedges of double cone O section 1.3, page 8
Ξ(s),Ξn(s) maps needed for the modular nuclearity condi-

tion
(5.1.2), page 78

(x, λ) proper orthochronous Poincaré transformation section 1.3, page 8
Y ± unitaries mapping H onto H± Lemma 5.3.3, page 99
Z,Z† abstract Zamolodchikov creation and annihila-

tion operators
section 4.1, page 52

z, z† Zamolodchikov creation and annihilation opera-
tors on H

Lemma 4.1.2, page 56

Z(S2) Zamolodchikov algebra with scattering function
S2

section 4.1, page 52

Z set of zeros of a scattering function Prop. 3.2.2, page 45
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Universities of Hamburg and Leipzig, the FU Berlin, the University of Gainesville, Florida,
the Max Planck Institute in Golm and the Research Institute in Oberwolfach.

153



154 Bibliography



Lebenslauf

Gandalf Lechner
Groner-Tor-Str. 29 A
D-37073 Göttingen
Tel.: 0551-541 762
lechner@theorie.physik.uni-goe.de

Geboren am 12. November 1976 in Hamburg.
Staatsangehörigkeit: deutsch.

Juni 1996 Abitur an der Herderschule in Lüneburg
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