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Contents

1 Introduction 5

2 Chiral conformal algebras 11

2.1 The conformal group in D=1 and D=2 on Minkowski space. 2D conformal field
theories and chiral theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The stress–energy tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Representations of the Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Chiral algebras and their field content. Minimal models . . . . . . . . . . . . . 17

2.6 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Algebraic approach to chiral conformal field theories 21

3.1 Conformal nets on the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Classification of conformal nets with c < 1 on the circle . . . . . . . . . . . . . 23

3.3 Superselection sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 DHR representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Endomorphism calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Braid statistics operators . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Superselection structure of the conformal nets for c < 1 on the circle . . 34

3.4 Elements of subfactor theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Cohomology and deformations of algebraic structures 39

4.1 Cohomology of algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 General definitions and concepts of cohomology theories . . . . . . . . 40

4.1.2 Examples of cohomology complexes . . . . . . . . . . . . . . . . . . . . 41

4.2 Formal deformations of algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Cohomology and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Superselection sectors of conformal nets for c < 1 51

5.1 DHR sectors for extensions of nets with m = 4n+ 1 and m = 4n+ 2 . . . . . 53

5.1.1 Reducibility and common content among α+ and among α− sectors . . 54

5.1.2 Common content and equivalence among α+ and α− sectors . . . . . . 56

5.2 DHR sectors for (A28, E8) extension with m = 29 . . . . . . . . . . . . . . . . 60

5.3 DHR sectors for the remaining higher index extensions . . . . . . . . . . . . . 61

3



Contents

6 The local commutation relations 65
6.1 The general form of the local commutation relations in 2D chiral conformal field

theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 λcab are intertwiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Bases for the intertwiner spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Transformation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.1 The matrix
(
Yabc

)m1m2

em1 em2

. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Reduction of the field algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6 The reduced Jacobi identity and further constraints on the structure constants

FC
AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.7 Relation between FC
AB and 2- and 3-point amplitudes . . . . . . . . . . . . . . 83

6.8 Axiomatization of chiral conformal QFT . . . . . . . . . . . . . . . . . . . . . 85

7 Cohomology and deformations of the reduced Lie algebra 87
7.1 Zε

B-symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Reduced Lie algebra cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Deformations of the reduced Lie algebra . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusions and outlook 103

A Kac-Moody algebras and coset models 105

B Lie algebra cochain complex 109

C Pochhammer symbol (x)n and useful properties 111

4



1 Introduction

To understand the interplay of quantum theory and special relativity turned out to be a much
harder task than expected, which has remained unsolved for already three quarters of a century.
At the same time it is of great physical importance, for example because essentially all the
crucial information about the micro–structure comes from experiments involving particles at
very high energies, i.e. micro–objects with relativistic speeds.

The problem to establish a relativistic quantum theory, more often called a quantum field
theory because a prominent role in it is played by quantum fields, was attacked in various
constructive ways and many of them had partial success, but none reached the desired goal
of a complete and consistent mathematical description. Then it was realized that starting
from the first physical principles which must underlie every quantum field theory one already
may determine to a great extent its intrinsic characteristics, supplying the constructors with
guiding lights. This was a reason a serious deal of the scientific efforts in quantum field theory
to be redirected to its axiomatic treatment.

The first system of axioms used in quantum field theory was invented by Wightman and sets
up as main objects the fields, which are operator–valued distributions defined on a common
dense domain within a Hilbert space [Streater & Wightman, 1964; Jost, 1965]. It is natural to
formulate the general dynamical principles in terms of fields, but working with these objects
led to considerable technical difficulties and this resulted into introducing a second axiomatic
system [Haag, 1996; Araki, 1999]. The local quantum physics framework, sometimes referred to
as algebraic quantum field theory, has as primary objects nets of algebras of local observables,
relying on the fact that the relevant physical information in a certain theory is carried by its
observable content. Although exhibiting a very beautiful structure and providing us with a rich
new insight, within this second framework the explicit computation of some physically interest-
ing quantities is sometimes too complicated and at the same time easier in the field–theoretical
approach. Also, discussion of concrete models is mostly done in terms of pointlike localized
fields. The conclusion is that we must view the two axiomatic approaches as complementary
rather than as rivaling and that their joint exploitation may provide us with a broader view
in our research.

Obviously then, theoretically interesting is the question how to establish a correspondence
between the two axiomatic descriptions, namely to understand how to assign to a Wightman
field theory a net of algebras, how to reconstruct the fields from the net of algebras and
under which conditions this is possible. In [Fredenhagen & Hertel, 1981; Driessler et al., 1986]
receipts for these are given, however they are applicable only to cases in which strong regularity
requirements are obeyed and they are in general very difficult to be verified.

In this Ph.D project we make use of the advantages of both approaches to study different
features of chiral conformal field theories. A convenient sample of such models consists of
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1 Introduction

those ones with c < 1 — on one hand for them exists a complete classification, achieved in the
algebraic approach [Kawahigashi & Longo, 2004], on the other hand this sample provides some
of the first examples of exactly solvable non-trivial relativistic quantum theories, in the sense
that all correlation functions of fields can be computed [Belavin et al., 1984a]. Actually, for
these models the passage between the two axiomatic approaches is more easy to be understood
than in the general case — the switching from the algebraic to the field–theoretical framework
is easily accomplishable using the vacuum character for the net which indicates the field content
and one obtains it with algebraic methods; the inverse passage is possible using the stress–
energy tensor, an important ingredient of each conformal field theory, to define a net of local
algebras.

A tensor product of two chiral conformal theories lies in the core of every two dimensional
conformal field theory, thus to understand the one dimensional chiral theory is the first step
towards understanding of the two dimensional theory.

From the point of view of the “rigorous research”, conformal field theories are valuable
mainly because of the perspective to exploit them as “toy models” in the quest of constructing
a mathematically consistent theory describing relativistic quantum phenomena. While the goal
to construct in the axiomatic approaches a “realistic” quantum field theory apart from the free
fields ones is unreachable in the present moment, for “easier” models with the simplifying
assumption of low space–time dimensions (one or two) and higher symmetry (conformal) a
huge sample of exactly solvable models is available. There is a hope that using structural
insight from the conformal models, which are better understood, one can understand more
deeply the features of the “proper” theories.

Nevertheless, the role of conformal field theories does not limit to a “virtual assisting agent”
and one can also describe real physics with them, even though not relativistic quantum physics.
Scale invariant systems can be found in two dimensional statistical mechanics. The point is
that in these models the absolute scale is set completely by the correlation lengths, which
diverge at critical points and hence the absolute scale is lost at these points. For this reason,
it becomes possible in separate cases to use the axiomatics of conformal field theory in order
to calculate the critical exponents.

The structures which we want to study in our sample of models are the following. Of obvious
theoretical interest is to find the possible spaces of states in a theory — superselection sectors
— and the algebraic approach is the appropriate framework to treat this problem. On the
other hand, for a specific dynamical interpretation the field–theoretical approach might be
very useful and for this purpose the commutation relations among the fields will provide the
best insight. It is also quite interesting to study the deformation theory of the commutators,
because this allows us to uncover whole families of models described by one parameter. To
classify the superselection sectors, to explore the commutation relations among fields and then
to study the possibility to deform them will be the three final goals of this Ph.D project.

In the considered sample of models there is one particularly intriguing — the (A28, E8)
extension of the “minimal” stress–energy tensor model with central charge c = 144

145
. This

model is the only one from the whole series, for which there is not found a direct field–
theoretical construction as a coset model in terms of well–studied algebras and by simple
current extensions, even though it arises as a miror extension of a coset [Xu, 2007]. (Chiral
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fields apart from the stress energy tensor are interesting, because they are components of
conserved two dimensional tensor fields of higher rank.) While the coset construction at least
in principle can determine the superselection structure and commutators of the remaining
models, this particular one may be studied only by some alternative methods.

Within the algebraic framework to every chiral conformal field theory is assigned a diffeo-
morphism covariant local isotonous net of von Neumann algebras on S1. Algebraic techniques
allow one to obtain a complete classification of such nets when their associated central charge
c is smaller than one. Every irreducible diffeomorphism covariant net is either an irreducible
Virasoro net or its local extension of finite index. The number of such extensions is finite and
is completely classified in [Kawahigashi & Longo, 2004]. Furthermore, to every extension of
a Virasoro net is associated the modular invariant matrix Zµν [Cappelli et al., 1987], which
carries a crucial information about the superselection sectors of the extension.

As we mentioned above, the superselection structure is most efficiently studied with alge-
braic methods. All the representations of the Virasoro nets are known. They are in bijective
correspondence with those of a Virasoro algebra with the same central charge, which are stud-
ied with Lie algebraic techniques and their complete classification is obtained in [Friedan et al.,
1984]. The sectors are labeled by the pairs (c, h) where the central charge c and the spin h take
discrete values. Moreover, their fusion rules, i.e. the decomposition of the tensor product into
a direct sum of irreducible sectors, are also known. These data determine also the statistical
dimensions (see below).

Then our task reduces to finding the superselection sectors of the local extensions. A first
message will be that the conformal nets on S1 with c < 1 are rational [Kawahigashi & Longo,
2004], i.e they possess finitely many inequivalent unitary irreducible sectors with finite sta-
tistical dimensions. In further studying of the sector structure one has as a guiding example
the representation theory of compact groups because it is very well-understood and especially
because it allows defining useful algebraic operations. In four dimensions such an analogy is
accomplished in the celebrated papers of Doplicher–Haag–Roberts [Doplicher et al., 1969a,b,
1971, 1974] who showed that the category of a large class of representations of a QFT net,
selected by a special criterion (DHR1 criterion) is equivalent to the one of the representations
of a compact group. This group can be reconstructed by abstract duality theory and hence
the aimed superselection structure can be completely determined. However, this is not ex-
actly the case in one and two space–time dimensions due to the specific topological situation
there. Indeed, one is still able to define a product of representations as well as a direct sum, a
contragradient representation and even a statistical dimension of the representation, that is in
general non-integer, but additive under direct sums and multiplicable under products, like the
dimensions of representations of a finite group. Especially nice is that with respect to these
definitions every reducible representation is decomposable into a direct sum of irreducible ones,
which allows us to concentrate our study only on them. The analysis is most efficiently done
in terms of “DHR endomorphisms”. (Let us remark at this point that although the DHR
criterion appears to be very restrictive in 4D QFT, in chiral conformal field theory all positive
energy representations satisfy this criterion.) Yet, the analogy with a compact group breaks

1DHR are the first letters of Doplicher, Haag and Roberts
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1 Introduction

at the commutation law for the tensor product, which for a compact group amounts to a per-
mutation. In one and two dimensions π1 × π2 and π2 × π1 still belong to the same sector due
to locality, but the unitary intertwiners among them do not square to identity. Instead, they
define a representation of the Artin Braid Group. Thus, in one and two dimensions we have
braid group statistics, not the Bose–Fermi one. Then the braiding itself produces a unitary
representation of the modular group SL(2,Z) and hence the representations of 1D and 2D
conformal nets give rise to modular (completely rational) braided tensor categories.

For the case of 1D conformal nets on S1 two conjugate to each other braiding operators
were constructed explicitly in [Böckenhauer & Evans, 1998]. Subfactor theory, making use
of the braiding, provides us with the machinery of α- induction — a technique to produce
endomorphisms of the bigger net from the DHR endomorphisms ρ of the subnet [Longo &
Rehren, 1995]. Although in general the obtained endomorphisms are not DHR, they contain
all the DHR endomorphisms of the extension as submorphisms. The two maps α+

ρ and α−
ρ ,

corresponding to the two different braidings, have nice homomorphic properties, namely they
preserve the unitary equivalence and the dimensions of sectors and respect the algebraic oper-
ations in the tensor category. The braiding operators of the DHR endomorphisms intertwine
their α-induced ones, as well. In parallel, to refine the study of the interrelations of the sec-
tors of the two theories, the restriction of sectors of the larger theory is used. In contrast to
α-induction, it preserves the DHR property but it is not a homomorphism. Subfactor theory
tells us also that each DHR endomorphism of the extension appears as a submorphism simul-
taneously of α+

ρ and α−
ρ for at least one ρ and that each such “simultaneous submorphism”

is DHR [Kawahigashi, 2003]. A decisive information about how to distinguish such submor-
phisms comes from the modular invariant matrix Zµν which we associate with the extension
and from the dual canonical endomorphism of the net of subfactors θ. With this machinery in
hand we can recover all superselection sectors of the extension from the already known sectors
of the Virasoro subnet.

At this point we must honestly confess, that after we finished with calculating the superse-
lection sectors for all extensions we observed, that the exact number of superselection sectors
for the four higher index extensions is published in [Kawahigashi, 2009]. However, in this work
there are no further considerations available apart from the exact number of superselection
sectors, which is in principle directly recognizable at first sight of the Zµν matrix without a
deep analysis and exact computations. Moreover, we also computed the fusion rules, which
are not available in this article.

Using the vacuum character of a Diff(S1)-covariant net from the algebraic approach we can
determine in the corresponding Wightman theory all the fields which transform covariantly
under the whole projective Diff(S1) representation. Such fields we call primary and for models
with c < 1 they are a finite number. In addition to the primaries, there is a larger class
of fields which transform covariantly only under the Möbius subgroup and not necessarily
under the whole diffeomorphism group. These fields are called quasiprimary and together with
their derivatives they produce a basis of the space of fields. All the quasiprimaries and their
derivatives, jointly called secondary or descendant, are contained in the OPE of (n copies of)
the stress–energy tensor T (x) with some of the primary fields. Hence, they can be obtained as
properly defined normal products of T nφ which must be constructed in such a way that they
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are conformally covariant.
To understand the general structure of the commutators among these fields we follow closely

the example of the Lüscher–Mack theorem [Mack, 1988], which determined the commutation
relations of the stress–energy tensor just on the basis of the most general properties of a
relativistic quantum theory and conformal invariance. Using the same argument one can fix
the commutators of the stress–energy tensor with an arbitrary primary field and one can
almost fix the commutators of the stress–energy tensor with a quasiprimary field. In our work
we found it more convenient to work with smeared field operators, for which we can construct
a basis entirely from quasiprimary fields. We show that a similar strategy to the Lüscher–Mack
theorem allows us to determine the commutation relations between the basis fields up to some
structure constants. These structure constants carry the model dependent information of the
specific system considered and they are further restricted by Lie algebra structure relations.
The anti–symmetry of commutators immediately produces a symmetry rule for the structure
constants. However, the Jacobi identity cannot be directly exploited, because the different
terms there appear with different test functions, so we must do first some preparatory work.

On the test function level the commutators give rise to (the unique) local intertwiners of the
sl(2,R) action on the test function spaces. The spaces of intertwiners from tensor products
of representations are finite-dimensional, and we define transformation matrices between their
various possible bases (corresponding to subsequent (multiple) action of commutators in differ-
ent order). These transformation matrices allow us to change between different composite test
functions (in particular obtained after actions of commutators) and consequently to be able
to strip off the test functions in the field algebra. In this sense we obtain a reduced form of
the field space, which is equipped with a new bilinear multi-component bracket obeying a new
generalized symmetry rule. The new multi-index Jacobi identity involves certain coefficient
matrices multiplying its three terms. These matrices are universal in the sense that they reflect
only the underlying representation theory of sl(2,R), but not the specific model.

This reduced version of the Jacobi identity produces an infinite number of constraints for
the structure constants of our commutators not involving the test functions anymore. The
solutions of these constraints promote potential candidates for chiral conformal field theories.
The idea to consider constraints in such form was cherished from [Bowcock, 1991], where a
Jacobi identity among structure constants from commutators of Fourier modes of quasiprimary
fields was considered. Our approach emphasizes locality of commutators more clearly.

The inspiration to explore the deformation theory of the commutators of the reduced field
algebra came from [Hollands, 2008], where deformations in the setting of OPE (operator prod-
uct expansion) approach to quantum field theory on curved space–time were studied. We
consider formal deformations, which are defined as perturbative power series and we work in a
setting analogous to that in [Gerstenhaber, 1964], which is the prototype of deformation theory
for algebraic structures. Such deformations are naturally related to cohomology complexes,
whose cohomology groups may give decisive information about rigidity and about classification
of deformations. Thus in all theories of formal deformations of algebraic structures the first
step is to relate the deformation problem to a certain cochain complex. In the first examples
of such theories [Gerstenhaber, 1964], [Nijenhuis & Richardson, 1967] the second step was to
show that the first cohomology groups are directly related to the possibility to deform the
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1 Introduction

algebraic structure considered. The more modern point of view is that the deformation theory
in consideration is mastered by a differential graded Lie algebra (or in some cases a homotopy
Lie algebra or L∞-algebra) which can be obtained from the cochain complex by constructing a
bracket on this complex, which is skew symmetric with respect to the “grading” by dimension
of the cochain spaces and satisfying a graded Jacobi identity [Nijenhuis & Richardson, 1964],
[Manetti, 1999], [Borisov, 2005].

The cochain complex, which we constructed, is built out of functions with a complicated
symmetry property — Zε-symmetry (Section 7.1). The origin of this symmetry can be traced
back to the complicated symmetry rules in the reduced algebra. We showed that the first
perturbations (also infinitesimal perturbations) of the reduced brackets are classes from the
second cohomology group of our complex and we computed the obstruction operators to their
integration. We hope that an explicit computation of the cohomology groups in the future will
allow us to relate the first of these groups to the problem of rigidity of the bracket and the
integrability of the first perturbations.

The thesis is organized as follows. Chapters 1,2 and 3 contain some preliminary general
knowledge, comprising the input and the tools for our Ph.D project. Chapter 1 discusses the
field content of chiral conformal field theories, conformal generators and their representations.
Chapter 2 gives a definition of a conformal field theory from algebraic point of view and the
classification of all such theories when c < 1. The important message of this chapter is that
the study of superselection sectors can be translated into study of DHR endomorphisms and
for the later applications very important are the endomorphism calculus and subfactor theory,
allowing us to obtain (indirectly) DHR sectors of the extensions from DHR sectors of the
subnets. Chapter 3 introduces the Gerstenhaber “muster” theory of formal deformations and
explains how it is related to a cohomology complex and its cohomology groups. Here also is
discussed the possibility to describe deformation theories of algebraic structures in terms of
the deformation theory of a graded Lie algebra. These first chapters are just a review of the
literature and the original personal contribution is contained entirely in the last three chapters,
every of which is dedicated to one of our three final goals, marked earlier in this section. In
Chapter 4 the superselection sectors are found for all local extensions of Virasoro nets with
c < 1. For the (A28, E8) extension for c = 144

145
also the fusion rules and statistical dimensions

are computed. In Chapter 5 the general structure of local Möbius covariant commutators is
explored and a new axiomatization for a chiral conformal theory is offered. In Chapter 6 we
construct a cohomology complex associated to the reduced field algebra for the purpose of
describing the deformations of the reduced commutator and we check that this complex is
indeed a perspective candidate for this aim. The results of Chapters 5 and 6 are also available
in [Kukhtina & Rehren, 2011].
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2 Chiral conformal algebras

In this chapter we will review very basic knowledge about chiral conformal field theories on
the circle. They arise as subtheories of 2D conformal field theories, either Euclidean or on
Minkowski space, and evoke interest because their investigation is the first step towards un-
derstanding the two dimensional theories.

In difference with the situation in D > 2, the conformal group in D = 1 and D = 2 is infinite
dimensional. Even though the maximal group of unbroken symmetry is its finite dimensional
Möbius subgroup, the whole conformal group assists greatly to provide an infinite set of exactly
solvable models, in the sense of finding all their correlation functions. Such models were called
minimal models and their discovery [Belavin et al., 1984a], [Belavin et al., 1984b] was quite
a spectacular event, because it provided some of the first examples of nontrivial relativistic
quantum theories. These minimal models are also of special interest for us in this Ph.D thesis
and we will provide some introductory knowledge about them later in this chapter.

We will also discuss briefly the conformal group and its representations on the space of
fields, as well as the field content of chiral algebras. There are several extensive reviews on
the topic [Furlan et al., 1989], [Francesco et al., 1997], [Rehren, Vorlesung Göttingen, WiSe
1997/98], which were useful for us. Throughout this chapter we speak about fields in the sense
of Wightman fields [Streater & Wightman, 1964], [Jost, 1965].

2.1 The conformal group in D=1 and D=2 on Minkowski

space. 2D conformal field theories and chiral theories

The conformal group consists of all transformations that preserve the angles and the orienta-
tion, which means that it leaves also the infinitesimal interval invariant up to a scaling with a
positive factor depending on the position.

In D = 1 dimensions the conformal group is Diff(R).
In D = 1 + 1 dimensions the conformal group is Diff(R)×Diff(R) — a tensor product of

two diffeomorphism groups, each of which acts on one of the light–cones (t ± x). This is a
consequence of the following equality:

dxµdx
µ = d(t+ x)d(t− x) (2.1)

where xµ is a component of the vector (t, x). Clearly, the conformal group in one and two
dimensions is infinite dimensional.

In the next section we will see that also the stress–energy tensor, which is responsible for
infinitesimal conformal transformations of the fields, splits into two commuting parts, every of
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2 Chiral conformal algebras

them depending on one light–cone variable. This indicates that every D=1+1 conformal field
theory has in its core a tensor product of two 1D chiral conformal theories on every of the light
cones. Then, the first step towards understanding the two dimensional theory will be to study
its chiral subtheories. That is why, in our thesis we will concentrate on the chiral theories.

In all that follows we will identify R with S1 \ {−1} by Cayley transformation and we will
regard the fields as distributions on R.

Remark. One can show that the diffeomorphism group cannot have a regular unitary repre-
sentation with an invariant vector. This is possible only for the Möbius subgroup SL(2,R)/Z2 =
SU(1, 1)/Z2 ⊂ Diff(S1), which is therefore the maximal subgroup of unbroken symmetry.

In quantum field theory we are therefore interested in representations not of the group of
coordinate transformations but of its covering group.

Definition 2.1 (Conformal covariance of fields). The covariance law for a conformal chi-
ral field Φ(x) under a transformation from (a subgroup of) Diff(S1) is the following:

U(γ)Φ(x)U−1(γ) =

(
dγ

dx

)dΦ
Φ (γ(x))

where U is a unitary projective representation.

Notation. dΦ is called the scaling dimension of the field.

Note that local chiral fields have integer scaling dimensions.

2.2 The stress–energy tensor

Conformal symmetries in the space of fields are generated by charges, which are integrals of
a conserved current. This current has a meaning of an energy and momentum density and is
called the stress–energy tensor. In a two dimensional theory this tensor, which we will denote
by T µν , has the following properties:

• energy conservation implies that ∂µT
µν = 0

• in D = 1 + 1 the stress–energy tensor is symmetric

• it is traceless in massless theories

• in D = 1 + 1 the stress–energy tensor has scaling dimension 2

In fact, the stress–energy tensor in a dilation invariant theory in any number s+1 of space–
time dimensions must be both conserved and traceless.

Observation. The stress–energy tensor in D=1+1 splits into two chiral components on every
of the light cones (t± x):

12



2.2 The stress–energy tensor

1. symmetry and tracelessness imply that the stress–energy tensor has only two independent
components:

T µν =

(
T 00 T 01

T 01 T 00

)
(2.2)

2. energy conservation implies that:

∂0T
00 + ∂1T

01 = 0
∂0T

01 + ∂1T
00 = 0

−→ (∂0 + ∂1)(T
00 + T 01) = 0

(∂0 − ∂1)(T
00 − T 01) = 0

(2.3)

which means that we have the chiral fields:

1

2
(T 00 + T 01) = TR(t− x)

1

2
(T 00 − T 01) = TL(t+ x) (2.4)

One can compute the commutators of the stress–energy tensor just on the basis of most
general properties of a conformal quantum field theory [Mack, 1988]:

Theorem 2.2 (Lüscher–Mack theorem). The chiral components of the stress–energy ten-
sor have the following commutation relations:

i[TR/L(x), TR/L(y)] = T ′
R/L(y)δ(x− y) − 2TR/L(y)δ′(x− y) +

c

24
δ′′′(x− y)

i[TR/L(x), TL/R(y)] = 0 (2.5)

where c ≥ 0 is a constant, called the central charge.

Proof. The main steps of the proof of this theorem are the following:

1. Locality implies: [TR/L(x), TR/L(y)] =
∑n

l=0 δ
(l)(x− y)Ol(y)

2. Scaling invariance implies n = 3, Ol(y) is a local field of scaling dimension 3 − l.
(Note that the scaling dimension of δ is 1, the scaling dimension of T is 2 and every
derivative contributes with a scaling dimension 1)

3. Anti-symmetry of commutators and translation covariance allow to determine O0, O1, O2

and O3

The terms in the commutation relations from the Lüscher–Mack theorem correspond to the
singular terms in the operator product expansion of two chiral stress–energy tensors:

2πT (x1)T (x2) =
c

4π(x12 − iǫ)4
− 2

T (x2)

(x12 − iǫ)2
− T ′(x2)

x12 − iǫ
+O(1)

=
c

4π(x12 − iǫ)4
− T (x1) + T (x2)

(x12 − iǫ)2
+O(1) (2.6)

having in mind the relation:

(−1)nn!

(
1

(x− iε)n+1
− 1

(x+ iε)n+1

)
= 2πiδ(n)(x) (2.7)

This expansion determines the possible singularities of the correlation functions.

13



2 Chiral conformal algebras

2.3 Virasoro algebra

The Fourier modes of the stress–energy tensor defined as:

Ln =
1

2
T (f (2)

n ) =
1

2

∫
dx(1 − ix)1−n(1 + ix)1+nT (x) (2.8)

with f
(2)
n := (1 − ix)1−n(1 + ix)1+n a test function, have the following commutation relations:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (2.9)

which follow directly from the Lüscher–Mack theorem from the previous section. This algebra
is called Virasoro algebra. It is a central extension of the Witt algebra [lm, ln] = (m− n)lm+n

— the algebra of Diff(S1), which confirms the rule that the algebra of field transformations is
a central extension of the algebra of coordinate transformations. c is the central charge, which
is a c-number and commutes with all the other generators:

[Ln, c] = 0 (2.10)

Observation. Certain linear combinations of the modes Lm for m = 0,±1:

P =
1

2
(L+1 + L−1) + L0 =

∫
T (x)dx

D =
1

2i
(L+1 − L−1) =

∫
xT (x)dx

K = −1

2
(L+1 + L−1) + L0 =

∫
x2T (x)dx (2.11)

give rise to generators of the Möbius group with the following commutation relations:

[P,D] = iP, [P,K] = 2iD, [D,K] = iK (2.12)

Here P is the generator of translations, D is the generator of dilations and K is the generator
of special conformal transformations.

The transformation laws of the field φ(x) with scaling dimension dφ under these generators
are:

i [P, φ(x)] = ∂φ(x)

i [D, φ(x)] = (x∂ + dφ)φ(x)

i [K,φ(x)] = (x2∂ + 2dφx)φ(x) (2.13)

Remark. A positive energy unitary representation of the Virasoro algebra with an invariant
vector, i.e. such that LmΩ = 0, is possible only for c = 0, which would lead to T (x) = 0, Lm =
0, so we have a broken symmetry. Such a representation is possible only for the Möbius group,
because for m = 0,±1 the central term vanishes.
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2.4 Representations of the Virasoro algebra

Representations of the stress–energy tensor are defined through representations of the Vira-
soro algebra. As we are interested only in the representations with positive energy, we require
that P is a positive operator. Then L0 = 1

2
(P + K) must be positive as well, because K is

related to P by conjugation with an unitary operator, hence it is also positive.

Remark. 2D conformal field theories have two commuting Virasoro algebras which share the
same central charge but may be represented with two different lowest weights h and h. h + h
gives the scaling dimension of the field, h− h gives the spin.

2.4 Representations of the Virasoro algebra

The irreducible positive energy representation spaces of the Virasoro algebra have the Verma
module structure — a structure very familiar in physics, which has a “ground state” out of
which one can recover the whole space by “rising operators”. The “ground state” realizes the
lowest (or the highest) eigenvalues of the energy and certain charges and the whole space can
be decomposed as a direct sum of simultaneous eigenspaces of these operators. The Verma
module is turned into a Hilbert space by factoring out its null vectors. One can assign to such
structure a character function which describes the spectrum and determines the representation
uniquely.

The role of the energy operator in the Virasoro case will be played by L0, the creation
operators will be L−n and the annihilation operators will be Ln, ∀n > 0, which have the
following commutation relations with L0:

[L0, L−n] = nL−n, [L0, Ln] = −nLn (2.14)

A concrete realization of the ground state for a Virasoro representation may be achieved the
following way. Suppose that in the theory exists apart from the stress–energy tensor also a
quantum field φ(x), which obeys the following commutation relations:

i[T (x), φ(y)] = φ′(y)δ(x− y) − hφ(y)δ′(x− y) (2.15)

Let us construct the vector |h〉 := eiPaφ(x)Ω|a=i,x=0 = φ(i)Ω. One can show that this vector
is an eigenvector of L0 with eigenvalue h. Moreover, this vector is annihilated by Ln, ∀n > 0.
Then |h〉 is a lowest weight vector with lowest weight h of the Verma module, generated by
the action of polynomials of L−n on |h〉. There is one-to-one correspondence between the
lowest weight vectors in the different representations and the conformal fields of the theory
with commutation relations as above.

One can recover the whole representation space by successive action of the rising operators
L−n(n > 0) on |h〉:

Vh := Span{L−n1
...L−nr |h〉 : n1 ≥ ... ≥ nr > 0} (2.16)

The space Vh can be decomposed as a direct sum of eigenspaces V
(k)
h of L0 with eigenvalue

k + h such that:

V
(k)
h := Span{L−n1

...L−nr |h〉 : n1 + ... + nr = k} (2.17)
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2 Chiral conformal algebras

To turn the Verma module Vh into a Hilbert space we need to define a scalar product (·, ·)h,c
such that we have the hermiticity property L†

n = L−n. This property fixes the scalar product
up to normalization ‖|h〉‖2 because it yields:

(L−n1
...L−nr |h〉, L−m1

...L−ms |h〉)h,c = (|h〉, Ln1
...LnrL−m1

...L−ms |h〉)h,c (2.18)

Further, we can perform the standard procedure and move by successive commutations all
annihilation operators to the right and all creation operators to the left. In the cases when∑
ni ≷

∑
mj there will be L operators “left uncompensated”, which will annihilate either 〈h|

or |h〉. This implies that the spaces V
(k)
h are pairwise orthogonal. When

∑
ni =

∑
mj one

gets in general:

(|h〉, Ln1
...LnrL−m1

...L−ms |h〉)h,c = (|h〉, Pn,m(h, c)|h〉)h,c (2.19)

with Pn,m(h, c) polynomials in h and c depending on (n,m). If we choose the normalization
(|h〉, |h〉)h,c = 1 (for example), then the scalar product will be completely fixed.

In order to ensure that Vh is really a Hilbert space we have to show that the scalar product
on this space is positive (semi-)definite. In case that it is positive semi-definite, in order to
turn Vh into a Hilbert space we have to factor out the space of null vectors. The null vectors
correspond to non-trivial linear combinations of products of creation operators which annihilate
the ground state.

It can also happen that the scalar product is indefinite, which means that there is one or
more states |ψ〉 in Vh, such that 〈ψ|ψ〉 is negative, which we call ghosts. In such case we do
not have a Hilbert space representation.

The positivity constraint for the scalar product is equivalent to the requirement that the
matrix of scalar products among the basis vectors has no negative eigenvalues. We can consider
separately the subspaces V

(k)
h , since they are orthogonal to each other. We can approach the

positivity problem for each V
(k)
h by studying the zeros of the Kac determinant det(Mk), where

Mk is the P (k) × P (k) matrix of inner products of vectors of the form L−n1
...L−ns |h〉 with

n1 + ...+ns = k, such that P (k) is the number of ways the positive integer k can be presented
as a sum of positive integers ni with i < j → ni < nj . The formula for this determinant, up
to an overall positive normalization constant, is the following:

det(Mk) ∼
k∏

i=1

[ ∏

pq=i

(h− hp,q (c))

]P (k−i)
(2.20)

with p, q positive integers and the explicit expression for the functions hp,q(c) will be displayed
later.

If for a given representation labelled by the pair (c,h) det(Mk) is positive for every integer
k, we have a positive scalar product on Vh. If the Kac determinant is negative for some k,
we have an indefinite scalar product and the corresponding representation cannot occur in
any unitary theory. A zero Kac determinant indicates the presence of null vectors, but does
not give enough information about the existence of ghost states and we have to perform our
analysis in some alternative way.
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2.5 Chiral algebras and their field content. Minimal models

In the general case, the (semi-)positivity on the subspace V
(1)
h , meaning that the scalar

product of the only basis vector |1〉 = L−1|h〉 with itself 〈1|1〉 = 2h is non-negative, yields
h ≥ 0. Also, the state |n〉 = L−n|h〉 has a scalar product 〈n|n〉 = 2nh + cn(n2 − 1)/12 and its
(semi-)positivity when n is large requires c ≥ 0.

Further studying of Kac determinant shows that for c ≥ 1 and h ≥ 0 we always have a
positive definite scalar product.

More interesting is the situation when h ≥ 0, c < 1. In this region the Kac determinant is
almost everywhere negative, with the exception when (c, h) lies on one or more of the curves
hp,q(c) — det(Mk) will be zero on every of these curves for which k > pq. After a more involved
analysis it was shown in [Friedan et al., 1984] that even on these curves almost all the points
correspond to representations containing ghosts and that the only possible candidates for ghost
free representations occur for the discrete infinite series of numbers c and h given by:

hp,q(c) =
[(m+ 1)p−mq]2 − 1

4m(m+ 1)
, p ∈ [1, m− 1], q ∈ [1, m]

c = 1 − 6

m(m+ 1)
, m = 2, 3, 4, ... (2.21)

Such representations contain necessarily a null state and as we will discuss in the next section
such states give rise to infinite sets of linear differential equations on the correlation functions.
To obtain a (possibly) unitary representation, we have to factor out the space with null vectors.

For c = 1, h ≥ 0 the scalar product is almost everywhere positive definite, with the exception
of the points (c = 1, h = k2

4
), k ∈ N, where it is positive semi-definite.

If c = 0 we have h = 0 and the only representation (the trivial one) exists with Ln vanishing.
In [Goddard & Olive, 1985], [Goddard et al., 1985] it was shown that every representation

from the list (2.21) can be obtained from a coset construction of known algebras. The represen-
tations of those algebras are unitary and this guarantees the unitarity of all the representations
from the discrete series (for more details see Appendix A).

2.5 Chiral algebras and their field content. Minimal models

One shows that fields with the commutation relations (2.15) transform covariantly (see Defi-
nition 2.1) under a projective representation of the whole diffeomorphism group Diff(S1) and
such fields will be called primary. As we saw in the previous section, they are in one-to-one
correspondence with the representation spaces of the Virasoro algebra. Primary fields appear
as intertwining maps from the vacuum representation to other lowest weight modules.

It was recognized that primary fields cannot exhaust the field content in the theory, for
example because in every conformal theory there must be the stress–energy tensor T (x), which
is responsible for conformal transformations of the fields. T (x) does not transform covariantly
under the whole diffeomorphism group, but only under its Möbius subgroup and such fields
are called quasiprimary. They obey the following commutation relations with T (x):

i[T (x), φ(y)] = φ′(y)δ(x− y) − hφ(y)δ′(x− y) +
∑

3≤k≤h+1

δ(k)(x− y)φk(y) (2.22)
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2 Chiral conformal algebras

where φk are either quasiprimary fields or derivatives of quasiprimary fields of lower dimensions
and h is the scaling dimension of the field.

Further, together with the quasiprimary fields there are additional fields (derivatives of
quasiprimary fields) which appear in the operator product expansion of primary fields with
T (x). All the fields present in this operator product expansion are called secondary or descen-
dant.

A primary field together with all of its secondary fields forms a conformal family. The
conformal family includes naturally all the derivatives of each field involved. A transformation
law mixes only among members of the same conformal family — therefore, each conformal
family corresponds to some irreducible representation of the conformal algebra on the space
of fields. Note that all fields appearing in the right–hand side of (2.22) are from the same
conformal family as φ(y).

If a conformal family contains a null field, then it will be called a degenerate conformal
family. Also the corresponding primary field is called degenerate.

One can show that every vector in a Verma module can be created from the vacuum by a
linear combination of quasiprimary fields and their derivatives for x = i. This is called state–
field correspondence. Then existence of null vectors corresponds to a linear relation among
these fields.

The correlation functions of all fields in the chiral algebra are related via differential ope-
rators to the correlation functions of the primary fields. Hence, all the information about the
conformal quantum field theory is contained in these correlators. One can show that these
correlators are built up out of some basic bricks, called conformal blocks (see [Belavin et al.,
1984a] for more details). The problem of calculating the conformal blocks is extremely difficult
and is worked out completely only in separate cases. The presence of null vectors, however,
assists greatly for the solving of concrete models (in the sense of finding of all the correlation
functions), because they give rise to additional differential equations for the conformal blocks.

Especially favourable is the situation for the models with a central charge from the discrete
series (2.21) where the number of conformal families is finite and each of them is degenerate.
Such models contain much less fields than usual and that is why the proposed name for these
theories is minimal models. Actually, the only observable field there is the stress–energy
tensor. All correlation functions in these models can be obtained as solutions of infinitely many
differential equations, called Ward identities, which means that these models are completely
solvable.

2.6 Correlation functions

A conformally–invariant two point correlation function is restricted to be of the form:

W (2)(x1, x2) = (Ω, ϕ1 (x1)ϕ2 (x2) Ω)

= Cϕ1ϕ2
δh1h2

∆(x1 − x2)
2h := Cϕ1ϕ2

δh1h2

( −i
x1 − x2 − iε

)2h

(2.23)

18



2.6 Correlation functions

Translation invariance tells us that W (2) is a function only of the difference x12 := x1 − x2,
dilation invariance requires that W (2) ∼ ∆(x12)

(h1+h2) and because of the special conformal
transformations invariance h1 must be equal to h2. The sign in front of iǫ is foxed from the
spectral condition.

By a similar argument we can find also the conformal three point function W (3)(x1, x2, x3):

W (3)(x1, x2, x3) = (Ω, ϕ1 (x1)ϕ2 (x2)ϕ3 (x3) Ω)

= Cϕ1ϕ2ϕ3
∆(x1 − x2)

h1+h2−h3∆(x1 − x3)
h1+h3−h2∆(x2 − x3)

h2+h3−h1

(2.24)

In the general case, conformal invariance fixes W (N)(x1, ..., xN ) only up to arbitrary functions

of the so called conformal ratios xijkl :=
(xi−xj)(xk−xl)
(xi−xk)(xj−xl) , which are Möbius invariant:

W (N)(x1, ..., xN ) =
∏

s<t

∆(xs − xt)
pstF (xijkl),

∑

s

pst = 2ht (2.25)

Obviously the choice of pst is not unique, but the various choices differ up to factors, which
can be absorbed in F (xijkl).

19



2 Chiral conformal algebras

20



3 Algebraic approach to chiral conformal
field theories

The function of this chapter is to prepare theoretically the ground for attacking the first final
goal of this thesis — the classification of superselection sectors of conformal field theories
for c < 1. The algebraic approach has proven to be the right framework for such a study.
Moreover, within the algebraic framework we are able to obtain a complete classification of
chiral conformal theories on the circle when the associated central charge is smaller than one.
Therefore, in this chapter we will review general definitions and results from algebraic quantum
field theory, especially in relation to conformal field theories, which we will need in our analysis.
We will be minimalistic in our exposition and we will rather focus on the concepts involved in
our study and on interrelations among them and their properties. We will omit the proofs and
we will rather refer the reader to the original literature.

The main messages of this chapter are the following. All conformal field theories with c < 1
correspond either to Virasoro nets or to their local extensions. All these nets are completely
rational — i.e. they possess a finite number of inequivalent irreducible sectors with finite
statistical dimensions and non-degenerate braiding. The sectors of Virasoro nets are well-
known and the sectors of the extensions can be gained with the α-induction and σ-restriction
mechanisms of subfactor theory. In analogy to DHR theory (a sector theory for 4D relativistic
quantum theories) the analysis was done in terms of localized and transportable von Neumann
algebra endomorphisms, which represent the sectors, and it can be shown that they form a
tensor category which resembles a lot the category of representations of a compact group.

3.1 Conformal nets on the circle

In this section we will give precise mathematical definitions of conformal field theories and
related concepts from algebraic point of view. The basic literature which we used for the main
line of section was [Gabbiani & Fröhlich, 1993] and [Kawahigashi & Longo, 2004].

Definition 3.1 (Möbius covariant net). Let {A(I)}I⊂S1 be a set of von Neumann algebras
acting on the Hilbert space H, s.t. I are proper (non-empty, non-dense, open and connected)
intervals on the circle. Suppose that the set {A(I)}I⊂S1 satisfy the following properties:

1. isotony: I1 ⊆ I2 =⇒ A(I1) ⊆ A(I2)

2. locality: I1 ⊆ I ′2 =⇒ A(I1) ⊆ A(I2)
′, I ′ = S1\Ī , A(I)′ denotes the commutant1 of

1Let us remind that the commutant of A(I) in B(H) is defined as A(I)′ := {x ∈ B(H)| xy = yx, ∀y ∈ A(I)}
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3 Algebraic approach to chiral conformal field theories

A(I) in B(H)

3. covariance: the local algebras A(I) transform covariantly under a strongly continuous
and unitary projective representation U of the Möbius group on H:

U(g)A(I)U(g)∗ = A(gI), ∀g ∈ PSL(2,R), I ⊂ S1 (3.1)

4. positive energy representation: the spectrum of the generator of rotations of PSL(2,R)
is positive

5. existence of a vacuum: there exists a unique vector Ω ∈ H which is invariant under
PSL(2,R)

6. cyclicity of a vacuum: Ω is cyclic for the von Neumann algebra A := {⋃I⊂S1 A(I)}′′

Then the set {A(I)}I⊂S1 is called a Möbius covariant net.

Definition 3.2 (Conformal net). A Möbius covariant net is called a conformal (diffeomor-
phism–covariant) net if there exists a projective unitary representation U of Diff(S1) on H
extending the unitary representation of PSL(2,R) such that for all I ⊂ S1 we have:

U(g)A(I)U(g)∗ = A(gI), g ∈ Diff(S1)

U(g)AU(g)∗ = A A ∈ A(I), g ∈ Diff(I ′) (3.2)

where Diff(I) denotes the group of smooth endomorphisms g of S1, such that g(t) = t for all
t ∈ I ′.

All the physical properties of a theory are encoded in the assignment of local algebras A(I)
to every interval I ⊂ S1 in such a way that the conditions above hold.

In general U(g)Ω = Ω is not true for all g ∈ Diff(S1). Otherwise the Reeh–Schlieder theorem
would be violated.

Example. The theories, whose chiral algebras are generated by the stress–energy tensor, give
rise to Virasoro nets on the circle. The local algebras of such theories may be defined, for
example, in terms of the left-moving part of the stress–energy tensor:

A(I) := {exp (iTL (f)) | f a realC∞ function with suppf ⊂ I}′′ (3.3)

We consider the operator algebra A(I) generated by exponentiated smeared fields localized
in the given interval I of S1 and take its closure in the weak operator topology.

Definition 3.3 (Isomorphic nets). Two conformal nets {A1(I)}I⊂S1 and {A2(I)}I⊂S1 are
called isomorphic if exists a unitary operator V from H1 to H2, such that V maps Ω1 to
Ω2 and VA1(I)V

∗ = A2(I) for all I ⊂ S1. Then V intertwines also the Möbius covariant
representations of {A1(I)}I⊂S1 and {A2(I)}I⊂S1. In this thesis we will work with a weaker
notion of isomorphism, where V is not required to preserve the vacuum vector.
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3.2 Classification of conformal nets with c < 1 on the circle

Let us note that the isomorphism class of a given net corresponds to the Borchers class for
the generating field, i.e. (by Haag duality, see below) two fields generate isomorphic nets iff
they are relatively local [Haag, 1996].

Definition 3.4 (Irreducible net). We will call a conformal net {A(I)}I⊂S1 irreducible if:

∨I∈S1A(I) = B(H) (3.4)

We may always consider only irreducible nets, because we can obtain all reducible nets as
direct integrals of irreducible nets.

Definition 3.5 (Vacuum representation of a net). {H, U, A, Ω} determine the vacuum
sector of the conformal field theory, or the vacuum representation of the conformal net {A(I)}I⊂S1.

Next, we review a property of the conformal nets, which is crucial for the applicability of the
algebraic framework to the analysis of the superselection structure of quantum field theories:

Definition 3.6 (Haag duality). In the vacuum sector of a conformal field theory, the net
{A(I)}I⊂S1 is said to satisfy Haag duality, if for any proper interval I ⊂ S1 holds:

A(I)′ = A(I ′) (3.5)

where I ′ := (S1 \ I)0 is the interior of the complement of I in S1.

Haag duality was proven to hold for conformal field theories in [Buchholz & Schulz-Mirbach,
1990]. The authors used arguments of Bisognano and Wichmann [Bisognano & Wichmann,
1975] and proved that some regularity conditions, which guarantee Haag duality, are satisfied.
Another proof of Haag duality, which is independent on the underlying Wightman theory, is
presented in [Gabbiani & Fröhlich, 1993].

Observation. If {A(I)}I⊂S1 is a local conformal net on S1, then by Haag duality:

U(Diff(I)) ⊂ A(I) (3.6)

With arguments of Driessler [Driessler, 1975] one can prove the following lemma:

Lemma 3.7. In the vacuum sector of a conformal field theory the local algebras A(I), I ⊂ S1

are factors of type III1. Moreover —they are hyperfinite type III1 factors (which is related to
the split property, see Section 3.2). Hence, conformal nets are nets of factors.

3.2 Classification of conformal nets with c < 1 on the circle

A naturally interesting problem is the classification of all conformal nets with c < 1 on the
circle. We start from the following key fact:
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3 Algebraic approach to chiral conformal field theories

Observation. Because of diffeomorphism covariance, all conformal nets on the circle contain
a Virasoro subnet. (A subnet would be the smaller net in a net of subfactors, see Section 3.4.)
This subnet is generated by the unitary projective representation of the diffeomorphism group
of S1, and its central charge will be considered also a characteristic of the bigger net. Let us
remind that for a given conformal net {A(I)}I⊂S1 we have U(Diff(I)) ⊂ A(I). Then the local
algebras of the Virasoro subnet of {A(I)}I⊂S1 are defined as:

Virc(I) = U(Diff(I))′′
(

= (3.3)
)

(3.7)

One proves that for c < 1 this subnet is of finite index and if the conformal net is irreducible
then the subnet is also irreducible.

The classification problem for c < 1 then becomes to classify the irreducible local finite-index
extensions of Virasoro nets for c < 1. Moreover, these nets have another very important
property — complete rationality:

Definition 3.8 (Complete rationality). The following set of conditions is referred to as
complete rationality:

1. split property: given a net {A(I)}I⊂S1 and two intervals I1 ⊂ I2, I1 ⊂ Io2 , we say that
{A(I)}I⊂S1 has the split property if exists a type I∞ factor M such that A(I1) ⊆ M ⊆
A(I2)

2. strong additivity: let I be an interval and p — a point on it, let I1, I2 be two connected
components of I r {p}, then we have A(I) = A(I1) ∨A(I2)

3. finiteness of the Jones index for the 2-interval inclusion: (measures the size of the
tensor category) let us split the circle to four intervals I1, I2, I3, I4 in a counterclockwise
order, then the µ-index of the net A is defined to be the Jones–Kosaki index (see Section
3.4) of the subfactor A(I1) ∨ A(I2) ⊂ [A(I3) ∨A(I4)]

′

Under the assumption of complete rationality one proves that the conformal net has only finitely
many inequivalent irreducible representations, such that all of them have finite statistical dimen-
sions (rationality) and that the associated braiding (defined in Section 3.3.3) is non-degenerate.
Non-degeneracy of the braiding is often called modularity, or invertibility of the S-matrix (see
Section 3.3.3). Which means that the irreducible DHR endomorphisms of the net (which basi-
cally correspond to primary fields, see Section 3.3.2) produce a modular tensor category.

Complete rationality is difficult to prove, but it is inherited by a subnet or an extension with
finite index. One can show that the Virasoro nets are completely rational for c < 1 as they
can be obtained as a coset construction of known algebras, possessing this property:

Proposition 3.9. The Virasoro net on the circle with central charge c = 1 − 6
m(m+1)

and the

coset net arising from the diagonal embedding SU(2)m−1 ∈ SU(2)m−2×SU(2)1 are isomorphic.

Corollary. The Virasoro net on the circle with central charge c < 1 is completely rational,
then so are also its local extensions of finite index.
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3.3 Superselection sectors

Note that Virasoro nets for c < 1 correspond to minimal models and they are indeed in a sense
minimal, because they contain no nontrivial subnet.

Further, an important role plays the modular invariant matrix Zµν , associated to every
extension of a Virasoro net, which carries a decisive information about the superselection
structure of the theory. It is defined as:

Zµν := 〈α+
λ , α

−
µ 〉 (3.8)

The objects α±
λ are induced representations of the extension and will be defined in Section

3.4, the bracket among them (see Section 3.3.2) gives information about their equivalence and
decomposability. The matrix Zµν is in the commutant of the unitary representation of SL(2,Z)
produced by the braiding and this gives very strong constraints of the possible extensions of
the Virasoro net. Zµν is a modular invariant, in the sense that ZS = SZ, ZT = TZ (where S
and T are generators of PSL(2,Z)). For a given unitary representation of SL(2,Z) the number
of modular invariants is always finite and they are classified in [Cappelli et al., 1987]. They
are labelled by a pair of Dynkin diagrams. For each modular invariant of this classification the
existence and uniqueness of corresponding extensions is checked [Kawahigashi & Longo, 2004]
and the following classification result is achieved with the methods of subfactor theory:

Theorem 3.10. All irreducible Virasoro nets for c = 1− 6
m(m+1)

with m = 4n+1 and m′ = 4n′

have a local irreducible index 2 extension which is labelled by the pairs of Dynkin diagrams
(A4n, D2n+2) and (D2n′+2, A4n′+2) and for them the dual canonical endomorphisms (see Defini-
tion 3.38) are θ = λ11 + λ1m and θ = λ11 + λm−1,1. For the four exceptional and more compli-
cated cases with m = 11, 12, 29 and 30 there exists an additional local extension of larger index
with the corresponding labelling (A10, E6), (E6, A12), (A28, E8) and (E8, A30) and corresponding
dual canonical endomorphisms θ = λ11 + λ17, θ = λ11 + λ71, θ = λ11 + λ1,11λ1,19 + λ1,29 and
θ = λ11 +λ11,1λ19,1 +λ29,1. The index of the first two are 3+

√
3 and the last two have an index√

30−6
√

5

2sin(π/30)
. These, together with the Virasoro nets themselves for any c < 1, give the complete

list of local conformal nets on S1 with c < 1.

In the theorem above by local extension of the conformal net A is meant a conformal net B,
such that there is an inclusion of the local algebras B(I) ⊃ A(I), U(Diff(I))B ↾A= U(Diff(I))A
and B is a local net. Note that there can exist also extensions B for which the requirement of
locality is relaxed and they are called non-local extensions.

In fact, for all these nets exists a coset construction in terms of well–studied algebras, which
simplifies our investigation a lot. There is one exception, though — the (A28, E8) extension of
a Virasoro net with m = 29 and c = 144

145
, which is not easily identifiable with a coset net (it

arises as a mirror extension of a coset [Xu, 2007]) and our aim will be to invent an independent
approach to study it.

3.3 Superselection sectors

In this section we will discuss the representations of a conformal net and their properties. Our
main literature sources are [Gabbiani & Fröhlich, 1993], [Haag, 1996] and [Araki, 1999]. From
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3 Algebraic approach to chiral conformal field theories

now on we will call the net simply A and will speak about representations of the net A.
One can show that there is a bijective correspondence among positive energy representations

of the iniversal C∗ algebra C∗(A) (constructed as in [Fredenhagen et al., 1989]) and those of
the net A.

Let us provide a rigorous definition for a representation of a conformal net:

Definition 3.11 (Representation of a conformal net). A representation of the confor-
mal net A on the separable Hilbert space Hπ is a family of representations π = {πI}I∈S1

of the local algebras A(I) such that the following conditions are satisfied:

1. consistence: if I ⊆ J then πJ ↾A(I)= πI

2. covariance: under projective unitary representation of Diff(S1)

3. positive spectrum: the spectrum of the infinitesimal generator of rotations on Hπ is
positive

Such representations always respect the local structure of A.

Let us remind that by Definition 3.5 the identity representation of the net is called a vacuum
representation (or vacuum sector) and will be denoted by π0.

We will be interested in classification of irreducible representations: the building blocks of
all other representations:

Definition 3.12 (Irreducible representation). A representation π of the conformal net A
is called irreducible if the von Neumann algebra

π(A)′ := {πI(A(I)), I ⊂ S1}′ (3.9)

is equal to C · 1Hπ .

Not all of the irreducible representations really differ from each other, i.e. some of them
describe the same physics and will be called equivalent:

Definition 3.13 (Equivalent representations). Two representations π1 and π2 are unita-
rily equivalent if there exists an unitary operator U : Hπ1

→ Hπ2
such that:

π2I(·)U = Uπ1I(·), ∀I ⊂ S1 (3.10)

Definition 3.14 (Sector). An equivalence class of representations of a conformal net A is
called a sector. The sector associated to the representation π will be denoted by [π].

The representations of a conformal net have a remarkable property, described by the following
lemma [Buchholz et al., 1988]:

Lemma 3.15. Any representation π of a conformal net A is locally unitarily equivalent to the
vacuum representation:

π ↾A(I)
∼= π0 ↾A(I), ∀I ⊂ S1 (3.11)

26



3.3 Superselection sectors

As we will see later, this lemma allows us to describe conveniently all representations of a
conformal net in the same space — the Hilbert space H on which the vacuum representation
is defined. Since H and Hπ are separable Hilbert spaces for every representation, there exists
a unitary V such that V : Hπ → H. Hence, instead of π acting on Hπ we may consider the
equivalent representation:

πH(A) = V π(A)V ∗, ∀A ∈ A (3.12)

acting on H.
In our analysis a central role will be played by the localized representations:

Definition 3.16 (Localized representation). A representation π of the conformal net A
on the vacuum Hilbert space H is called localized in the interval I if:

π ↾A(I′)= π0 ↾A(I′) (3.13)

The following lemma tells us that localized representations are very wide–spread and present
in every sector:

Lemma 3.17. In every sector [π] of representations of A for each interval I ⊂ S1 exists at
least one representation π localized in I.

Indeed, since by Lemma 3.15 π ↾A(I)
∼= π0 ↾A(I), ∀I ⊂ S1, in particular for every commutant

I ′, we can choose one interval I and a bijective isometry U : Hπ → H such that:

ρI(A) = Uπ(A)U∗ = π0(A), ∀A ∈ A(I ′) (3.14)

Then ρI(A) = Uπ(A)U∗, ∀A ∈ A is a representation on H localized in I. In this way we can
construct a representation localized in every interval I ⊂ S1.

The interpretation is that ρI corresponds to the operation of creating some charge in I
(excitation of the vacuum).

Observation. One can show a number of useful properties of ρI :

• ρI is a von Neumann algebra endomorphism of A(I) and a C∗ algebra endomorphism of
C∗(A)

• ρI is a localized endomorphism

• ρI is a transportable endomorphism

• the set of all localized in an interval I and transportable endomorphisms of the conformal
net A forms a semi–group and its equivalence classes are in one–to–one correspondence
with the equivalence classes of representations of the conformal net

This means that, in analogy to DHR theory [Doplicher et al., 1969a], [Doplicher et al., 1969b],
we can “translate” our study of superselection structure in the language of endomorphisms —
this allows us to observe a lot of structure and easy manipulations. Here we give the definitions
of localized and of transportable endomorphisms:
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3 Algebraic approach to chiral conformal field theories

Definition 3.18 (Localized endomorphism). An endomorphism ρI of the conformal net
A is called localized in the interval I ∈ S1 if it acts trivially at space–like distances from I on
S:

ρI(a) = a, ∀a ∈ A(I ′), ρI (A (I)) ⊂ A(I) (3.15)

Definition 3.19 (Transportable endomorphism). A localized endomorphism ρI of the con-
formal net A is called transportable if for all J ⊂ S1 there are unitary operators UρI ;I,J called
charge transporters such that ρJ = Ad(UρI ;I,J) ◦ ρI is localized in J . With ∆A(I) we denote the
set of all localized in I ⊂ S1 transportable endomorphisms of A.

3.3.1 DHR representations

DHR representations (DHR is an abbreviation taking the first letters of Doplicher, Haag and
Roberts) are a large class of representations in 4D relativistic quantum theories selected by
the following criterion:

Definition 3.20 (DHR criterion). We are interested in irreducible representations π of the
net A such that:

1. local excitations of vacuum: the representation differs from the vacuum representa-
tion only on some open double cone region O, i.e.:

π ↾ A(O′) ≃ π0 ↾ A(O′) (3.16)

interpretation: if the charged states are observed only in O, they cannot be distinguished
from a state carrying a zero charge — i.e. the effect of the charge dies out at a large
enough distance, in O′ no effect can be propagated from O.

2. transportable excitations: If (3.16) holds for O it should be valid also for the trans-
ported domain O + a.

3. Haag duality:
interpretation: A(O) ⊂ A(O′)′ by locality anyway, then A(O) = A(O′)′ indicates some
maximality of the local algebras.

It was proven in [Doplicher et al., 1969a] and [Doplicher et al., 1969b] that the representa-
tions, which obey this criterion in four or higher dimensions, form a tensor category equivalent
to the tensor category of representations of a compact group. Moreover, they were able to re-
cover exactly this compact group by abstract duality theory and hence to determine completely
the superselection structure of DHR representations.

Actually, the DHR criterion appears to be very restrictive in 4D relativistic quantum theory,
because it excludes long–range interactions and thus electromagnetic charges because of the
Gauss theorem. It also excludes topological charges — charges accompanied by correlation
effects which are discernable at arbitrary large distances. The second problem is attacked
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3.3 Superselection sectors

by Buchholz–Fredenhagen analysis for theories without massless particles [Buchholz & Fre-
denhagen, 1982]. The idea there is to use cone instead of double cone localization and it is
believed that this theory describes topological charges.

In conformal field theory, though, every sector is a DHR sector. This is because every
representation is locally equivalent to the vacuum representation by Lemma 3.15, because
every conformal field theory is Haag dual and because the representations are transportable
due to Haag duality and their localization properties. From solidarity, we will call also in our
analysis the localized and transportable endomorphisms DHR endomorphisms.

3.3.2 Endomorphism calculus

In analogy to DHR theory, one can define operations among the DHR endomorphisms ρ of a
given conformal net A, similar to operations in the category of representations of a compact
group. This subject is well-treated for example in [Gabbiani & Fröhlich, 1993] and [Rehren,
Vorlesung Göttingen, WiSe 1997/98]. Before we do that, let us define two related important
objects:

Definition 3.21 (Intertwiner). An intertwiner between two endomorphisms ρ1 and ρ2 is an
element U ∈ A such that:

U · ρ1(a) = ρ2(a) · U, ∀a ∈ A (3.17)

Definition 3.22 (Projection). A projection of an endomorphism is an intertwiner
E : ρ → ρ such that E ∈ A ∩ ρ(A)′. Then exists an endomorphism ρ1 and an intertwiner
W : ρ1 → ρ, W ∈ A such that E = WW ∗, W ∗W = 1 and we will call later in this section ρ1

a submorphism of ρ.

Definition 3.23 (Tensor product of intertwiners). Let us have the two intertwiners
T1 : ρ1 → σ1 and T2 : ρ2 → σ2. Then their tensor product is defined as the intertwiner
T1 × T2 : ρ1 ◦ ρ2 → σ1 ◦ σ2. One finds that T1 × T2 = T1 · ρ1(T2) = σ1(T2) · T1.

Remark. The operator W is an isometry. Its existence is related to the type III1 property
of the net, which says that there are no finite traces, no minimal projections and that every
two projections e1 and e2 can be connected:

e1 = W̃W̃ ∗, e2 = W̃ ∗W̃ (3.18)

where W̃ ∈ A is an isometry.

Then one can define the following operations among DHR endomorphisms ρ of the conformal
net A:

1. equivalence of endomorphisms: if two representations are equivalent and ρ1 and ρ2

are their corresponding endomorphisms defined as in Section 3.3, then it follows by Haag
duality that there exists an unitary intertwiner U ∈ A such that U ·ρ1(a) = ρ2(a)·U, ∀a ∈
A. It gives rise to an equivalence relation, the equivalence classes of endomorphisms [ρ]
are called also sectors and are in one–to–one correspondence with the equivalence classes
of the related representations. If two sectors are equivalent, we will write [ρ1] ∼ [ρ2]
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3 Algebraic approach to chiral conformal field theories

2. product: we define a product of two representations π1 ×π2 through composition of the
corresponding endomorphisms ρ1 ◦ ρ2

3. direct sum: in order to define the direct sum of two endomorphisms, one chooses an
arbitrary projection E ∈ A and two isometries W1, W2 ∈ A such that:

W1W
∗
1 = E, W2W

∗
2 = 1 −E, W ∗

i Wj = δij (3.19)

We construct:

ρ(a) := W1 · ρ1(a) ·W ∗
1 +W2 · ρ2(a) ·W ∗

2 , ∀a ∈ A (3.20)

ρ(a) is also a localized and transportable endomorphism of A. Then we define:

ρ =: ρ1 ⊕ ρ2 (3.21)

This operation is well defined also among sectors [ρ] = [ρ1] ⊕ [ρ2]. Moreover it holds for
the related representations:

[π] ≃ [π1] ⊕ [π2] (3.22)

We can generalize the construction above to adding an arbitrary number of represen-
tations. Let us consider the set of endomorphisms ρi, i = 1, 2, ..., n. Since we have an
infinite algebra A, we can take a set of isometries Wi ∈ A, i = 1, 2, ..., n forming a Cuntz
algebra:

W ∗
i Wj = δij1,

n∑

i=1

WiW
∗
i = 1 (3.23)

Then we define the direct sum of ρi as:

ρ(a) = ⊕n
i=1Wi · ρi(a) ·W ∗

i , ∀a ∈ A (3.24)

4. submorphism: representations may be reducible. Suppose that π1 is a subrepresenta-
tion of π, then on the level of endomorphisms we will write ρ1 ≺ ρ and we will call ρ1 a
submorphism of ρ. In such case there exists a projection:

E : ρ→ ρ, E · ρ(a) = ρ(a) · E ∀a ∈ A (3.25)

We choose again two isometries W1 and W2 ∈ A satisfying relations (3.19) and such that:

ρ1(a) = W ∗
1 · ρ(a) ·W1, E = W1W

∗
1 (3.26)

Let us compose ρ2(a) = W ∗
2 · ρ(a) ·W2, s.t W2W

∗
2 = 1 − E. One checks that in case

of compact groups and von Neumann algebras always holds that ρ ≃ ρ1 ⊕ ρ2, i.e. the
representation is fully decomposable.

In analogy, we define a subsector [ρ1] ≺ [ρ]. A related concept is:
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3.3 Superselection sectors

Definition 3.24 (Irreducible endomorphism). The endomorphism λ of A is called
irreducible if it holds:

λ(A)′ ∩ A = C1 (3.27)

Such an endomorphism does not possess subobjects.

5. conjugated endomorphism:

Definition 3.25 (Conjugated endomorphism). ρ and ρ̄ are conjugated to each other
if:

• irreducible case: 1 ≺ ρ ◦ ρ̄ and 1 ≺ ρ̄ ◦ ρ
• reducible case: there exist two operators R and R̄ such that:

R : 1 → ρ ◦ ρ̄, R∗ ◦R = 1

R̄ : 1 → ρ̄ ◦ ρ, R̄∗ ◦ R̄ = 1

and satisfying certain regularity conditions:

(R∗ × 1ρ) ◦ (1ρ × R̄) : ρ→ ρ is invertible

(R̄∗ × 1ρ̄) ◦ (1ρ̄ × R) : ρ̄→ ρ̄ is invertible (3.28)

where 1ρ is an identity intertwiner for ρ.

The existence of conjugated representations is guaranteed in the conformal case.

We can also speak about a conjugated sector.

6. statistical dimension of a representation:

Definition 3.26 (Statistical dimension). If the interval of localization of a DHR en-
domorphism ρ is I, then its statistical dimension d(ρ) is defined just as the Jones-Kosaki
index [A(I) : ρ(A(I))] (see Section 3.4).

The statistical dimension obeys the following properties:

• d(ρ) ≥ 1, d(id) = 1

• d(ρ⊕ σ) = d(ρ) + d(σ)

• d(ρ ◦ σ) = d(ρ) · d(σ)

• d(ρ) = d(ρ)

• d(ρ) is an invariant for a sector

Statistical dimensions are not integers in general, but they are integers for compact
groups.
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3 Algebraic approach to chiral conformal field theories

Let ρ and σ be endomorphisms of the conformal net A and let us denote with Hom(ρ, σ) the
space of intertwiners among ρ and σ. It is a vector space, whose dimension we will denote as:

〈ρ, σ〉 := dim Hom(ρ, σ) = dim Hom(σ, ρ) (3.29)

In case that we want to emphasize that the intertwiners must belong to some space X, we
will write also HomX(ρ, σ) and 〈ρ, σ〉X . The bracket 〈·, ·〉 is linear in its two arguments, and
it carries information about subobjects and multiplicities. For example, it is easy to see that
for two irreducible endomorphisms ρ and σ it holds that 〈ρ, σ〉 = 1 if ρ ∼ σ and 〈ρ, σ〉 = 0 if ρ
and σ are not equivalent. The following property is quite useful for calculations:

Definition 3.27 (Frobenius reciprocity). If µ and λ have conjugates, then the following
relations are satisfied:

〈λ ◦ µ, ν〉 = 〈λ, ν ◦ µ̄〉 = 〈µ, λ̄ ◦ ν〉 (3.30)

Definition 3.28 (Fusion rules). The decomposition of the tensor product of two irreducible
DHR endomorphisms in the basis of all irreducible DHR endomorphisms of a conformal net A
is called fusion rules:

ρi ◦ ρj ≃ ⊕Nk
ijρk (3.31)

The fusion rules can be expressed in terms of the bracket 〈·, ·〉 as:

〈ρi ◦ ρj , ρk〉 = Nk
ij (3.32)

3.3.3 Braid statistics operators

Let us again consider the conformal net A and two of its DHR endomorphisms ρ1 and ρ2. Due
to locality, there is a canonically defined (see below) unitary operator ε(ρ1, ρ2) : ρ1 ◦ ρ2 →
ρ2 ◦ ρ1, ε(ρ1, ρ2) ∈ A such that:

ε(ρ1, ρ2) · ρ1 ◦ ρ2(a) = ρ2 ◦ ρ1(a) · ε(ρ1, ρ2) ∀a ∈ A (3.33)

In d > 2 ρ1 ◦ ρ2 and ρ2 ◦ ρ1 are intertwined by a unitary operator which gives rise to a
representation of the permutation group.

In d = 1, 2 ρ1 ◦ ρ2 and ρ2 ◦ ρ1 still belong to the same sector, however the statistics operator
does not square to one due to the topology there, but rather defines a representation of the
Artin braid group and we speak about braid group statistics.

Definition 3.29 (Braid group). Let Bn denote the braid group on n strands with generators
σ1, ..., σn−1 and relations:

σiσi+1σi = σi+1σiσi+1, i = 1, ..., n− 2

σiσj = σjσi if |i− j| > 1, i, j = 1, ..., n− 1 (3.34)
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In the category of DHR endomorphisms the braiding relations arise when we define σn :=
ρn−1(ε), σ1 = ε, where ρ is a DHR endomorphism and ε is the statistics operator, intertwining
ρ ◦ ρ and ρ ◦ ρ, which we will define constructively below.

The braiding on a rational tensor category produces two finite–dimensional scalar–valued
matrices S and T , which are generators of PSL(2,Z). The T -matrix is always unitary, but
the S-matrix can be non-invertible in general. When we have this invertibility property, in
addition to rationality, we say that the tensor category is modular, since we have a unitary
representation of the modular group SL(2,Z).

The following lemma tells us that certain couples of endomorphisms do commute:

Lemma 3.30. Let I1, I2 ⊂ S1 and I1 ∩ I2 = 0. Let λI1 ∈ ∆A(I1) and λI2 ∈ ∆A(I2). Then λI1
and λI2 commute, i.e λI1 ◦ λI2 = λI2 ◦ λI1.

Assume now that we have two endomorphisms, λI and µI , which are localized in the same
interval I ⊂ S1 and are transportable, i.e λI , µI ∈ ∆A(I). Then, in general, they will not
commute, but λI ◦µI and µI ◦λI are intertwined by a unitary operator. To obtain this operator,
choose I1, I2 ⊂ S1 such that I1 ∩ I2 = ∅ and consider the unitary operators U1 := UλI ;I,I1 and
U2 := UµI ;I,I2 such that λI1 = Ad(U1) ◦ λI ∈ ∆A(I1) and µI2 = Ad(U2) ◦ µI ∈ ∆A(I2). Then
we construct:

εI1,I2U1,U2
(λI , µI) = µI(U

∗
1 )U∗

2U1λI(U2) (3.35)

Let us now consider the point at infinity z ∈ S1 and let us denote I2 >z I1 if the intervals I1
and I2 are disjoint, if I1 lies clockwise to I2 relative to the point z and if the closure of neither
of them contains z.

Lemma 3.31. The operators εI1,I2U1,U2
(λI , µI) do not depend on the special choice of U1 and U2.

Moreover, varying I1 and I2 such that the relation “>z” is preserved, εI1,I2U1,U2
(λI , µI) remains

constant.

Let us then choose I1 = I and U1 = 1. Let us set UµI ,+ := U2 whenever I2 >z I1 and
UµI ,− := U2 whenever I1 >z I2. Then we show that there are only two operators ε, which are
in general different:

ε±(λI , µI) = U∗
µI ,±λI(UµI ,±) (3.36)

We call ε±(λI , µI) statistics operators.

Observation. The statistics operators ε±(λI , µI) have the following properties:

• they yield the following commutation law:

ε±(λI , µI) · λI ◦ µI(a) = µI ◦ λI(a) · ε±(λI , µI), a ∈ A, λI , µI ∈ ∆A(I) (3.37)

• they belong to the local algebra A(I)
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• the two statistics operators are related via conjugation:

ε+(λI , µI) = (ε−(µI , λI))
∗ (3.38)

• we have the following composition laws:

ε±(λI ◦ µI , νI) = ε±(λI , νI)λI(ε
±(µI , νI))

ε±(λI , µI ◦ νI) = µI(ε
±(λI , νI))ε

±(λI , µI) (3.39)

• if we assume strong additivity (i.e. irrelevance of points, A(I) = A(I1)∨A(I2) whenever
the intervals I1 and I2 are obtained from I by removing one single point) we have the
naturality equation for λI , µI , ρI ∈ ∆A(I) and T ∈ HomA(I)(λI , µI , ):

ρ(T )ε±(λI , ρI) = ε±(µI , ρI)T

Tε±(ρI , λI) = ε±(ρI , µI)ρ(T ) (3.40)

• for λI , µI , νI , ρI ∈ ∆A(I) and S ∈ HomA(I)(λI ◦ µI , νI) we have the braiding fusion
equations:

ρ(S)ε±(λI , ρI)λ(ε±(µI , ρI)) = ε±(νI , ρI)S

SλI(ε
±(ρI , µI))ε

±(ρI , λI) = ε±(ρI , νI)ρ(S) (3.41)

• we have also the Yang–Baxter equation for λI , µI , ν ∈ ∆A(I):

ν(ε±(λI , µI))ε
±(λI , νI)λI(ε

±(µI , νI)) = ε±(µI , νI)µ(ε±(λI , νI))ε
±(λI , νI) (3.42)

A similar analysis can be done for the case when I1 ∩ I2 6= 0, I1 6= I2, I1 ∪ I2 6= S1.
The braid group statistics issue in conformal field theories is treated in [Böckenhauer &

Evans, 1998], [Fredenhagen et al., 1992], [Fredenhagen et al., 1989].

3.3.4 Superselection structure of the conformal nets for c < 1 on the
circle

From Section 3.3 we know that conformal nets on the circle with associated central charge
smaller than one are completely rational, so they possess finitely many inequivalent superse-
lection sectors with finite statistical dimensions.

The representations of the Virasoro subnet with central charge c < 1 are in a bijective
correspondence with those of a Virasoro algebra with the same central charge. For every
admissible value of the central charge c there exists exactly one irreducible (unitary, positive
energy) representation U of the Virasoro algebra (projective unitary representation of Diff(S1))
such that the lowest eigenvalue of the conformal hamiltonian L0 is 0 (lowest weight) — this is
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the vacuum representation with central charge c. Any other unitary irreducible positive energy
representation with a given central charge c is determined up to unitary invariance by its spin
h, which is the lowest eigenvalue of the conformal hamiltonian. The set of all possible spins
for a given central charge c(m) = 1 − 6

m(m+1)
, (m = 2, 3, 4, ...) is the following:

hR,S(m) =

[
(m+ 1)R−mS

]2 − 1

4m(m+ 1)
, 1 ≤ R ≤ m− 1, 1 ≤ S ≤ m

hR,S(m) = hm−R,m+1−S(m) (3.43)

We will denote the corresponding DHR endomorphisms with λRS. Their fusion rules are:

λRS ◦ λR′S′ = ⊕min(R+R′−1, 2m−R−R′−1)

p=|R−R′|+1, p+R+R′:odd
⊕min(S+S′−1, 2(m+1)−S−S′−1)

q=|S−S′|+1, q+S+S′:odd
λpq (3.44)

Knowing the sectors of the Virasoro subnet, we can recover the sectors of the extension using
the machinery of subfactor theory, which we will discuss in the next section. The sectors will
be computed explicitly in the next chapter.

3.4 Elements of subfactor theory

The main tool in our study of superselection structure of conformal nets with c < 1 will be
subfactor theory and in this section we will review some basic definitions and theorems of this
theory. This section is based mainly on [Longo & Rehren, 1995] and [Böckenhauer & Evans,
1998].

Definition 3.32 (Factor). We recall, that a von Neumann algebra is a weakly closed subal-
gebra M ⊂ B(H) of the algebra of bounded operators on some Hilbert space H. It is called a
factor if its center is trivial: M ′ ∩M = C1.

Definition 3.33 (Subfactor). An inclusion N ⊂ M of factors with common unit is called a
subfactor. A subfactor is called irreducible if the relative commutant is trivial N ′ ∩M = C1.

We are interested in pairs of theories, in which one extends the other in a local way., i.e for
every space–time region one has the inclusion of the corresponding local algebras.

Definition 3.34 (Nets of subfactors on S1). A net of subfactors on S1 consists of two nets
of factors N and M such that for every I ∈ S1 N (I) ⊂ M(I) is an inclusion of factors. A
net M is called standard if there is a vector Ω ∈ H which is cyclic and separating for every
M(I). The net of subfactors N ⊂ M is called standard if M is standard (on H) and N is
standard (on H0 ⊂ H) with the same cycling and separating vector Ω ∈ H0.

Important concepts in subfactor theory are the index of the subfactor and the canonical
endomorphism, which we clarify in the following set of definitions.
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3 Algebraic approach to chiral conformal field theories

Definition 3.35 (Conditional expectation). Conditional expectation ε : M → N is a
completely positive normalized map with the property:

ε(n∗mn) = n∗ε(m)n (n ∈ N, m ∈M) (3.45)

A conditional expectation is called normal if it is weakly continuous. The set of faithful normal
conditional expectations is denoted by C(M,N). An arbitrary pair N ⊂M may not possess any
conditional expectation at all, i.e. C(M,N) may be empty. If there is any normal conditional
expectation for an irreducible inclusion, then it is unique and faithful.

Definition 3.36 (Jones-Kosaki index). The Jones-Kosaki index is defined as:

Ind(ε) := ε−1(1) ∈ [1,∞] (3.46)

It is ∞ when the unity is not in the domain of ε−1. For reducible subfactors:

Ind(ε0) = infεInd(ε) =: [M : N ] (3.47)

The Jones-Kosaki index is constant in a directed standard net of subfactors with a standard
conditional expectation.

Definition 3.37 (Modular conjugation). Let us consider the von Neumann algebra M act-
ing on a Hilbert space H and let Ω ⊂ H be a cyclic and separating vector. Then exists a densely
defined, unbounded and anti–linear operator S : mΩ → m∗Ω with the polar decomposition
S = J∆

1
2 , ∆ = S∗S, J2 = 1. ∆

1
2 is a positive operator and J is an antiunitary operator,

which we call a modular conjugation operator with the property:

JMJ = M ′ (3.48)

Definition 3.38 (Canonical endomorphism). Let N ⊂ M be an infinite subfactor on a
separable Hilbert space H. Then there is a vector Ξ ∈ H which is cyclic and separating for both
M and N . Let JM and JN be the modular conjugations of M and N with respect to Ξ. The
endomorphism

γ = Ad(JNJM)|M ∈ End(M) (3.49)

satisfies γ(M) ⊂ N and is called a canonical endomorphism from M into N and is unique up
to conjugation by a unitary in N . (The freedom of choice comes from the freedom of choice of
Ξ.) The restriction θ = γ|N is called a dual canonical endomorphism.

Proposition 3.39. Let N ⊂ M be a standard net of subfactors with a standard conditional
expectation. For every I ⊂ S1 there is an endomorphism γ of the C∗ algebras M into N such
that γ|M(J) is a canonical endomorphism of M(J) into N (J) whenever I ⊂ J .

In the usual representation theory we have the machinery of induction and restriction of
representations for a group G and its subgroup H . For the representations of conformal nets
of subfactors on the circle a similar theory was established and we will review some basics of
this theory in the rest of this subsection.
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Definition 3.40 (α-induction). Let N ⊂ M be a net of subfactors. For λ ∈ ∆N (I) we
define the α–induced endomorphism αλ ∈ End(M) by:

α±
λ = γ−1 ◦ Ad(ε±(λ, θ)) ◦ λ ◦ γ (3.50)

(In order such a definition to make sense, one has to establish that Ad(ε±(λ, θ)) ◦ λ ◦ γ is in
the range of γ.)

Observation. α±-induction has the following properties:

• α±
λ is an extension of λ, i.e.:

αλ(n) = λ(n), n ∈ N (3.51)

• α-induction respects sector structure, i.e. for some λ, µ ∈ ∆N (I):

[λ] = [µ] →
[
α±
λ

]
=
[
α±
µ

]
(3.52)

This means that:

t · λ(n) = µ(n) · t −→ t ∈ HomM(α±
λ , α

±
µ ) (3.53)

• α± is a homomorphic map, i.e. for any µ, ν ∈ ∆N (I) we have:

α±
µ◦ν = α±

µ ◦ α±
ν (3.54)

• α-induction preserves also sums of sectors, i.e for any λ, λ1, λ2 ∈ ∆N (I):

[λ] = [λ1] ⊕ [λ2] →
[
α±
λ

]
=
[
α±
λ1

]
⊕
[
α±
λ2

]
(3.55)

• α-induction preserves sector conjugation, i.e for λ, λ̄ ∈ ∆N (I):

[αλ̄] = [αλ] (3.56)

• α-induction preserves the statistical dimension of the sector:

d[α±

λ ] = d[λ] (3.57)

• α-induction respects the braiding, i.e. for any µ, ν ∈ ∆N (I) we have:

α±
µ ◦ α±

ν = Ad(ε±(ν, µ))α±
ν ◦ α±

µ (3.58)

• for λ, µ, ν ∈ ∆N (I) we have the Yang–Baxter equation:

α±
ν (ε±(λ, µ))ε±(λ, ν)α±

λ (ε±(µ, ν)) = ε±(µ, ν)α±
µ (ε±(λ, ν))ε±(λ, µ) (3.59)
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• α±
µ is in general not localized (it is localized if and only if the monodromy ε(µ, θ)ε(θ, µ)

is trivial)

Theorem 3.41. For λ, µ ∈ ∆N (I) we have:

〈α±
λ , α

±
µ 〉M(I) = 〈θ ◦ λ, µ〉N (I) (3.60)

We will use later the following proposition:

Proposition 3.42. For λ ∈ ∆N (I) the following are equivalent:

1.
[
α+
λ

]
=
[
α−
λ

]

2. α+
λ = α−

λ

3. the monodromy is trivial: ε(λ, θ)ε(θ, λ) = 1

Definition 3.43 (σ-restriction). For β ∈ End(M) the σ-restricted endomorphism σβ ∈
End(N ) is defined by:

σβ = γ ◦ β|N (3.61)

where γ is the canonical endomorphism of M into N .

The next lemma tells us, that σ-restriction, in difference with α-induction, respects the DHR
property of endomorphisms:

Lemma 3.44. If β ∈ ∆M(I) then σβ ∈ ∆N (I).

In the following we will discuss some properties of σ-restriction.

Observation. For λ ∈ ∆N (I) we have:

σαλ = θ ◦ λ→ [λ] ≺ [σαλ ] (3.62)

It is natural to ask whether also β ∈ ∆M(I) is a subsector of ασβ . The following theorem
assures that the answer is positive:

Theorem 3.45 (α− σ reciprocity). For λ ∈ ∆N (I) and β ∈ ∆M(I) we have the following
property, called α− σ reciprocity:

〈αλ, β〉M(I) = 〈λ, σβ〉N(I) (3.63)

Observation. σ-restriction obeys the following properties:

• If [β1] = [β2] then [σβ1
] = [σβ2

]

• Let β, β1, β2 ∈ End(M(I)). If [β] = [β1] ⊕ [β2], then [σβ] = [σβ1
] ⊕ [σβ2

]

σ-restriction in general does not preserve the sector product, i.e [σβ1
] ◦ [σβ2

] is in general dif-
ferent from [σβ1◦β2

], for example for β1 = β2 = id because σid = θ.
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algebraic structures

One of the main goals of this thesis is to study the deformation theory of the commutators
(6.1) with “disentangled” test functions. Of interest for us is whether these “reduced” brackets
give rise to new inequivalent theories or they are stable under deformations. The deformation
question is directly related to the question whether extensions are possible and whether there
are whole families of models depending on a continuous parameter.

In our study we will consider formal deformations, i.e. deformations such that the new
bracket is obtained from the old as a perturbative formal power series:

[·, ·]λ = [·, ·] +
∞∑

i=1

[·, ·]iλi (4.1)

We will follow the example of the existing deformation theories of algebras, which we will
review shortly in this chapter.

Due to an extensive research from the middle of the last century, the deformation theory
of a large class of algebraic structures was well–understood and systematically described in
an algebraic–cohomological setting. The pioneering work was done by Gerstenhaber [Ger-
stenhaber, 1964], who established the deformation theory of associative algebras involving
Hochschild cohomology and using a lot of insight and concepts from the deformation theory
of complex–analytic structures on compact manifolds. The latter was extensively developed
shortly before that in a series of papers mostly by Kodaira, Spencer and Kuranishi [Kodaira
et al., 1958], [Kuranishi, 1962] and has been the most prominent deformation theory of math-
ematical structures. It was observed by Nijenhuis and Richardson [Nijenhuis & Richardson,
1964], [Nijenhuis & Richardson, 1966] that the two theories have in their common core graded
Lie algebras. In their further work they showed that the deformation theory of graded Lie
algebras can be applied to describe as well the deformations of ordinary Lie algebras [Nijen-
huis & Richardson, 1967], commutative and associative algebras (see also [Knudson, 1969]),
extensions of all of the types above and representations of all these algebras.

After these first foundational works formal deformation theories of various other algebraic
structures were studied in an analogous manner. Further generalization showed that the
Hochschild complex controls deformations of a whole family of algebras called A∞-algebras
[Lazarev, 2003], of which the associative algebras are a particular case. There is also an exam-
ple in theoretical physics, where perturbations of a given quantum field theory are characterized
in terms of a certain cohomology ring of a Hochschild type [Hollands, 2008]. Also a number
of separate cases were considered, such as Landweber–Novikov algebras (a subset of Hopf al-
gebras) [Yau, 2006], Poisson algebras, Hom-associative and Hom-Lie algebras [Makhlouf &
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4 Cohomology and deformations of algebraic structures

Silvestrov, 2010]. In all cases a cohomology theory adapted to the deformation theory was
constructed and in some cases a mastering differential graded Lie algebra was recognized.

In fact, nowadays there is the basic philosophy that over a field of characteristic 0 every defor-
mation problem is governed by a differential graded Lie algebra via solutions of a deformation
equation moduli some gauge action [Manetti, 1999]. However, it has been realized recently that
a more sophisticated analysis often involves homotopy Lie algebras and L∞-algebras instead
[Manetti, 1999], [Borisov, 2005].

In our thesis we will be interested in deformation theory of the Lie algebra of field operators
in conformal chiral theories (from the sample of minimal models and their extensions) which
is reduced in the sense that the test function part is “disentangled” from the operator part.
Again, we will rely on the algebraic–cohomological method.

The function of this chapter will be to provide some preliminary knowledge about coho-
mology and algebraic deformations, which we will use in our analysis. We will not provide
a consistent survey on the topic, we will rather be as minimalistic and sketchy as possible in
our exposition and we will exhibit technical details only when it is directly needed for our
calculations.

In the first section we will give a rough definition of a cohomology theory and examples of
three cohomology complexes will be considered — a Hochschild complex, because it is related to
associative deformation theory, which is our guiding example; a Chevalley–Eilenberg complex,
because the complex in our analysis will be constructed in a close analogy; and finally a
complex of a differential Lie algebra, whose deformation theory is believed to dominate every
deformation theory. We will also discuss how one can obtain the cohomology groups of a Lie
algebra and of an associative algebra from those of a differential graded Lie algebra.

In the second section we will review briefly most general concepts and results of Gersten-
haber’s deformation theory and we will generalize them to Lie algebras and differential graded
Lie algebras. The most important message will be that the first three cohomology groups of
an algebra are tightly related to its deformation theory.

In the last section we will describe very shortly the relation between the second cohomology
group of an algebra and its extensions.

4.1 Cohomology of algebras

Cohomology has been in the last fifty years a powerful tool in mathematics with numerous
applications reaching even beyond topology and abstract algebra. The cohomology theory of
an algebra is in tight relation with its inner structure, deformations and extensions. In this
section we will discuss briefly cohomology theories of three algebras which provide important
ideas for our computations.

4.1.1 General definitions and concepts of cohomology theories

In this subsection we would like to give a definition in a most general sense for a cohomology
associated to a space X. But before that we need to introduce the notion of a cochain complex
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associated to this space and also of several other concepts related to it:

Definition 4.1 (Cochain complex associated to a space X). Let us introduce a sequence
of abelian groups Cn(X), containing in some sense information about X, and also the sequence
of dual groups Cn(X,A) := Hom(Cn, A) with coefficients in A, which consists of the spaces of
homomorphisms of Cn into some group A. We define as well the sequence of homomorphisms
δn : Cn → Cn+1, such that δn◦δn−1 = 0. Then Cn together with δn compose a cochain complex:
C(X,A) := {Cn(X,A), δn}.
Definition 4.2 (Some concepts from cohomology theory). We define some objects re-
lated to cochain complexes and important for cohomology theories:

• the elements of Cn(X,A) are called cochains

• the δn’s are called coboundary operators and also differentials

• define Zn(X,A) := Ker(δn) = {φn ∈ Cn(X,A)| δnφn = 0}, the elements of Zn(X,A) are
called n-cocycles

• define Bn(X,A) := Im(δn−1) = {φn ∈ Cn(X,A)|φn = δn−1φn−1, φn−1 ∈ Cn−1(X,A)},
the elements of Bn(X,A) are called n-coboundaries

Now we are ready to define a cohomology:

Definition 4.3 (Cohomology associated to a space X). The nth cohomology group of a
cochain complex C(X,A) = {Ck(X,A), δk}, k ∈ Z is defined as Hn(X,A) = Zn(X,A)/Bn(X,A).
The elements of the cohomology group Hn(X,A) are called cohomology classes.

Remark. A cochain complex is called exact at the position n if Im(δn) coincides with Ker(δn).
Hence, a cochain complex is exact at the position n iffHn(X,A) = 0. It means that cohomology
measures how strong the deviation of a cochain complex is from exactness.

4.1.2 Examples of cohomology complexes

In this subsection we will define cohomology complexes for three algebras so that to prepare
the ground for the description of their deformation theories later.

Associative algebra cohomology

Let us consider an associative algebra A, which is not necessary finite–dimensional. A co-
homology complex associated to such algebras was constructed by Hochschild [Hochschild,
1945]:

Definition 4.4 (Hochschild complex). A Hochschild complex consists of:

1. Cochain spaces Cm(A,B) of dimension m with coefficients in B: the additive
groups of m-linear maps fm : A⊗ ...⊗ A︸ ︷︷ ︸

m

→ B, where B is a two sided A-module.
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4 Cohomology and deformations of algebraic structures

2. Coboundary operators δmH of dimension m: linear maps fromm-dimensional cochains
fm to m+ 1-dimensional cochains fm+1 such that:

(δmHf
m)(a1, ..., am+1) = a1 · fm(a2, ..., am+1) +

m∑

i=1

(−1)ifm(a1, ..., aiai+1, ..., am+1)

+(−1)m+1fm(a1, .., am) · am+1 (4.2)

“·” is the two sided action of A on B. One proves by induction on the dimension m that
δmH ◦ δm−1

H = 0.

Then the Hochschild cohomology groups of A with coefficients in B will be defined as:

HHn(A,B) = Ker(δnH)/Im(δn−1
H ) (4.3)

Notation. We will denote the Hochschild cohomology groups of an algebra A with coefficients
into itself simply by HHn(A).

One can also define the cohomology algebra as a direct sum of the cohomology groups of all
dimensions:

HH(A) = ⊕i∈NHH
i(A) (4.4)

Observation. The first cohomology group HH1(A,B) determines all the higher dimension
groups HHn(A,B), which means that the cohomology theory arising from a Hochschild com-
plex is degenerate in a sense. A root of this degeneracy can be found in the relation:

HHm(A,B) ∼= HHm−1
(
A,C1(A,B)

)
, for m ≥ 2 (4.5)

where C1(A,B) is a two sided A-module with a two-sided action defined in a special way
[Hochschild, 1945].

The first cohomology group HH1(A,B) is interpreted as the space of derivations of A into
itself modulo the inner derivations.

There are deep relations between the structure of the algebra A and its cohomology groups
HHn(A,B). For example, it is shown that A is separable if and only if its cohomology groups
vanish, which is equivalent to the vanishing of HH1(A,B) for every two-sided A-module B.

Lie algebra cohomology

The Lie algebra cohomology was defined by Chevalley and Eilenberg, originally for the purpose
of reducing topological questions concerning Lie groups to algebraic questions concerning Lie
algebras [Chevalley & Eilenberg, 1948]. We will consider a Lie algebra L over a field K of
characteristic 0. The cochain complex in this case is strongly correlated to the Koszul complex:

Definition 4.5 (Lie algebra cochain complex). Lie algebra cochain complex consists of:
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1. Cochain spaces Cm(L, V ) of dimension m with coefficients in V : the additive
groups of m-linear alternating maps ωm : L⊗ ...⊗ L︸ ︷︷ ︸

m

→ V , where V is a vector space

over K, such that there is a representation π of L by linear transformations.

2. Coboundary operators δmLA of dimension m: maps of m-dimensional cochains ωm

into m+ 1-dimensional cochains ωm+1 such that:

(δm
LAωm)(x1, ..., xm+1) =

1

m + 1

m+1∑

i=1

(−1)i+1π(xi)ω
m(x1, ..., x̂i, ..., xm+1) +

+
1

m + 1

∑

i<j

(−1)i+j+1ωm ([xi, xj ] , x1, ..., x̂i, ..., x̂j , ..., xm+1) (4.6)

Here [·, ·] is the Lie bracket, the hat means omitting the corresponding argument. One
proves also that δmLA ◦ δm−1

LA = 0. A proof for the case of the adjoint representation is
displayed in the Appendix B for the purpose of further applications.

Then the Lie algebra cohomology groups of L with coefficients in V will be defined as:

LHn(L, V ) = Ker(δnLA)/Im(δn−1
LA ) (4.7)

One can prove that the cohomology groups LHn(L, V ) of a semi-simple Lie algebra vanish for
all dimensions n and for all non-trivial irreducible representations π. Moreover, to show that
a Lie algebra L over a field of characteristic 0 is semi-simple, it is enough to check only that
LH1(L, V ) = {0} for every representation π of L. This means essentially that in the case of
semi-simple Lie algebras nothing is gained by studying cohomology groups over representations.
However, if one constructs the cohomology LHn(L,K) of a Lie algebra L with coefficients in
K and with δmLA as in (4.6) restricted to the second term, one proves that LH3(L,K) 6= {0}
in the case of semi-simple algebras, even though LHn(L,K) = {0} for n = 1, 2, 4. Moreover,
one shows that the cohomology ring LH(L,K) = ⊕qLH

q(L,K) of a semi-simple Lie algebra L
(over K) is isomorphic to the direct sum of the cohomology rings (over K) of a finite number
of odd-dimensional spheres.

Differential graded Lie algebra (DGLA) cohomology

Let us first introduce the notion of a graded Lie algebra [Nijenhuis & Richardson, 1964]:

Definition 4.6 (Graded Lie algebra). A graded Lie algebra consists of:

1. Vector space: a graded vector space E =
∑
n≥0

En over a field K of characteristic 0.

2. Multiplication: a bilinear bracket [·, ·] : E ×E → E such that:

• [·, ·] is skew symmetric for homogeneous elements, which means that for x ∈ Em

and y ∈ En follows that [x, y] ∈ Em+n and [x, y] = −(−1)mn[y, x]
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• the nested bracket of every three homogeneous elements x ∈ Em, y ∈ En and z ∈ Ep

satisfies a graded Jacobi identity in the form:

(−1)mp [[x, y], z] + (−1)nm [[y, z], x] + (−1)pn [[z, x], y] = 0 (4.8)

An important part in the theory of graded Lie algebras will be played by the derivations of
degree 1. Let us give the following definitions:

Definition 4.7 (Derivation of degree n). A linear map f : E → E is called a derivation
of degree n if f(Ei) ⊂ Ei+n and if it satisfies the graded Leibniz rule f([a, b]) = [f(a), b] +
(−1)na[a, f(b)].

Definition 4.8 (Differential). A differential d of a graded Lie algebra {E, [·, ·]} is a deriva-
tion of degree 1 such that d ◦ d = 0.

Observation. There are natural candidates for derivations and differentials:

1. If a ∈ Ei then ada : E → E, ada(b) = [a, b], is a derivation of degree i.

2. Let M = {x ∈ E1|[x, x] = 0}. Then ∀x ∈M holds that δx := adx is a differential of E.

With the notion of a differential we can give a definition for a differential graded Lie algebra
[Manetti, 1999]:

Definition 4.9 (Differential graded Lie algebra (DGLA)). A differential graded Lie al-
gebra {E, [·, ·], d} is a graded Lie algebra {E, [·, ·]} equipped with a differential d.

Now we can already define a cohomology theory of a differential graded Lie algebra:

Definition 4.10 (DGLA Cohomology). In differential graded Lie algebras arises naturally
a cochain complex with a differential d and cochain spaces of dimension m — the homogeneous
spaces Em of degree m. In a standard way we define Zn(E, d) = En ∩Ker(d) and Bn(E, d) =
d(En−1), then the cohomology groups will be DHn(E, d) = Zn(E, d)/Bn(E, d).

Remark. DH(E, d) := ⊕nDH
n(E, d) inherits naturally the structure of a graded Lie algebra.

Lie algebra cohomology and associative algebra cohomology from DGLA cohomology

In this subsection we will demonstrate how one can obtain the cohomology groups of a finite
Lie algebra from those of a DGLA [Nijenhuis & Richardson, 1967], [Lecomte, 1987]. We will
also explain how one can recognize a graded Lie algebra in a Hochschild complex [Stasheff,
1993].

Let V be a vector space over a field K of characteristic 0. Let Altn(V ) be the vector spaces of
alternating linear maps of V n+1 into V and Alt(V ) := ⊕n≥−1Alt

n(V ). We define a “⊼-product”
on Alt(V ) of two homogeneous elements f ∈ Altp(V ) and h ∈ Altq(V ):

f ⊼ h(u0, ..., up+q) =
∑

η

sign(η)f
(
h(uη(0), ..., uη(q)), uη(q+1), ..., uη(q+p)

)
(4.9)
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f⊼h ∈ Altp+q(V ), η are the possible divisions of 0, ..., p+ q into two ordered sets {η(0), ..., η(q)}
and {η(q + 1), ..., η(q + p)}. Then a bracket, turning Alt(V ) into a graded Lie algebra, will be:

[f, h] = f ⊼ h− (−1)pqh ⊼ f (4.10)

A differential, turning {Alt(V ), [·, ·]} into a DGLA, will be δf with f ∈ M defined as in the
previous subsection.

One can prove that the points of M are precisely the Lie algebra multiplications on V . Let
f ∈ M and let L be the Lie algebra with an underlying vector space V equipped with the
bracket f . Then a computation shows that:

DHn (Alt(V ), δf) ∼= LHn+1(L,L) (4.11)

Let us consider the associative case, which is a little bit more tricky due to the infinite
dimensionality. The Hochschild cochain spaces of an associative algebra A over K may be

identified with the spaces of graded coderivations Coder(T cA), where T cA := ⊕n≥0A
⊗n

is a
tensor coalgebra and A = A as a K-module. We have:

∆(ā1 ⊗ ...⊗ ān) = 1 ⊗ (ā1 ⊗ ...⊗ ān) + (ā1 ⊗ ...⊗ ān) ⊗ 1 +

+

n−1∑

p=1

(ā1 ⊗ ...⊗ āp) ⊗ (āp+1 ⊗ ...⊗ ān) (4.12)

The coderivation h of degree |h| is a k-linear map A⊗k → A⊗k−|h| such that:

∆h[ā1|...|ān] =
∑

h[ā1|...|āp] ⊗ [āp+1|...|ān] +

+(−1)p|h|[ā1|...|āp] ⊗ h[āp+1|...|ān] (4.13)

The graded bracket of two coderivations is defined as:

[θ, φ] = θ ◦ φ− (−1)|θ||φ|φ ◦ θ (4.14)

It remains to provide a differential D:

Dθ := θd± dθ

d[a1|...|an] :=
n−1∑

i=1

(−1)i[...|aiai+1|...] (4.15)

Then we have the DGLA {Coder(T cA), [·, ·], D}. As before one can show:

DHn−1(Coder(T cA), D) ∼= HHn(A) (4.16)
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4.2 Formal deformations of algebras

In this section we will review shortly most general concepts and results of the theory of formal
deformations of algebraic structures. We will present partially the deformation theory of as-
sociative algebras by Gerstenhaber, which was the foundational work on formal deformations
of algebras [Gerstenhaber, 1964] and serves a prototype for many theories of algebraic defor-
mations. Most of the definitions and theorems hold or can be straightforward generalized for
wider classes of algebras.

Let us give a more explicit definition for a formal deformation of an associative algebra:

Definition 4.11 (Deformation of an associative algebra). Let A be an associative alge-
bra over a field k, which may be finite or infinite dimensional, let V be its underlying vector
space and let µ : V × V → V be its multiplication. Let K contain the power series in t over
k an let VK = V ⊗k K, i.e it is obtained from V by extending the coefficient domain from k
to K. Then a deformation of A will be an algebra Aλ with an underlying vector space VK and
with an associative product µλ : VK × VK → VK:

µλ(a, b) = µ(a, b) + λµ1(a, b) + λ2µ2(a, b) + ... (4.17)

such that λ ∈ R, µi : VK×VK → VK , i ∈ N are extensions of bilinear functions f : V ×V → V
and µ on VK is an extension of µ on V . We consider Aλ as “the generic element of a one-
parameter family of deformations of A”.

The associativity condition for the deformed product yields:

µλ (µλ(a, b), c) = µλ (a, µλ(b, c)) →
∑

i+j=const
i,j∈N0

µi (µj(a, b), c) − µi (a, µj(b, c)) = 0 (4.18)

This condition must hold ∀ν ∈ N, ν = i+ j.
Among the families of deformations there are some, that will not be considered as “proper

deformations”:

Definition 4.12 (Trivial deformations). Deformations Aλ, such that:

Φλµλ(a, b) = µ(Φλa,Φλb) =⇒ µλ(a, b) = Φ−1
λ µ(Φλa,Φλb) (4.19)

with a non-singular linear map Φλ of the form:

Φλ(a) = a+ λϕ1(a) + λ2ϕ2(a) + ... (4.20)

and ϕi : VK → VK linear maps, will be called trivial.

Obviously, a trivial deformation amounts to a mere λ-dependent basis redefinition and hence
to an isomorphism between Aλ and the algebra AK with the extended vector space VK and
the extension of the initial product µ(a, b). The isomorphism is in fact the linear map Φλ.
Therefore, such deformations do not produce new algebras and we would like to exclude them
from our discussion.

There are algebras for which the only admissible deformations are trivial:
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Definition 4.13 (Rigid algebra). An associative algebra is said to be rigid if there exist no
deformations obeying the associativity law (4.18) apart from the trivial.

Naturally comes the definition for equivalent deformations:

Definition 4.14 (Equivalent deformations). Two one-parameter families of deformations
Afλ and Agλ will be called equivalent if µfλ(a, b) = Φ−1

λ µgλ(Φλa,Φλb) for some Φλ as in (4.20).

The “factorization” of trivial deformations gives the possibility to formulate the theory of de-
formations in an algebraic–cohomological setting. In the rest of this section we will explain how
the first three Hochschild cohomology groups control the deformation theory of an associative
algebra A. We will use the definitions from Subsection 4.1.2.

In our discussion a special role will be played by µ1:

Definition 4.15 (Infinitesimal deformation). µ1 is viewed as an “infinitesimal deforma-
tion” or a “differential” of the family Aλ.

Observation (1). δ2
Hµ1 = 0, which is a direct corollary from the associativity law (4.18)

written for i+ j = 1:

µ(id⊗ µ1) − µ(µ1 ⊗ id) + µ1(id⊗ µ) − µ1(µ⊗ id) = 0 (4.21)

Thus µ1 ∈ Z2(A,A). Moreover, one can argue that, if µ1 = 0, then the first non-zero µi is
again in Z2(A,A).

Observation (2). For a trivial deformation as in (4.19) one proves that µ1(a, b) = δ1
Hϕ1(a, b),

so µ1 ∈ B2(A,A).

Observation (3). One shows that the infinitesimal deformations of two equivalent deforma-
tions differ with δ1

Hϕ1.

Remark. The equivalence classes of associative deformations of an algebra A correspond to
certain cohomology classes from HH2(A) = Z2(A)/B2(A). These cohomology classes can be
interpreted as their infinitesimal deformations.

An interesting question is whether every element [µ̃1] of HH2(A) is an infinitesimal deforma-
tion for some equivalence class of non-trivial deformations. If it is such, then we will say that
[µ̃1] is integrable. Suppose now that we have chosen an element µ1 of Z2(A) which is integrable
and that we want to lift the perturbation to second order µ2. In such case the associativity
law for i+ j = 2 must be obeyed:

µ1(µ1(a, b), c) − µ1(a, µ1(b, c)) = [δ2
Hµ2](a, b, c) (4.22)

For a general element µ̃1 ∈ Z2(A) we define:

G2[µ̃1](a, b, c) := µ̃1(µ̃1(a, b), c) − µ̃1(a, µ̃1(b, c)), µ̃1 ∈ HH2(A) (4.23)
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4 Cohomology and deformations of algebraic structures

It is easy to verify that δ3
HG

2[µ̃1] = 0 ∀µ̃1 ∈ Z2(A), thus G2(a, b, c) ∈ Z3(A). If µ̃1 is also
integrable, then G2 must be of the form G2 = δ2

H µ̃2 and thus G2(a, b, c) ∈ B3(A). Therefore,
for an integrable µ̃1 the cohomology class of G2[µ̃1] in HH3(A) must vanish. This cohomology
class is viewed as the first obstruction to the integration of µ̃1.

In analogy, provided that we have lifted the perturbation to order m− 1, we examine under
which circumstances we can lift the perturbation to order m. Assume that we have a set of
perturbations µ̃1, ..., µ̃m−1 ∈ C2(A) which obey the associativity conditions:

µ(id⊗ µ̃i)−µ(µ̃i⊗ id)+ µ̃i(id⊗µ)− µ̃i(µ⊗ id) = −
i−1∑

j=1

µ̃i−j(id⊗ µ̃j)− µ̃i−j(µ̃j⊗ id) (4.24)

for i ∈ [1, m− 1]. Then the obstruction to lift the perturbation to order m is:

Gm[µ̃1, ..., µ̃m−1](a, b, c) = −
m−1∑

j=1

µ̃m−j(a, µ̃j(b, c)) − µ̃m−j(µ̃j(a, b), c) (4.25)

A theorem by Gerstenhaber states that δ3
HG

m[µ̃1, ..., µ̃m−1] = 0, then Gm(a, b, c) ∈ Z3(A).

Again, in case that we are allowed to proceed the integration to the mth order, associativity
requires that Gm is of the form Gm = δ2

Hµm and consequently that its cohomology class
vanishes in HH3(A).

In summary, the second cohomology group HH2(A) of an associative algebra A may be
interpreted as the group of infinitesimal deformations of A and the obstructions to their inte-
gration lie in HH3(A). It follows that the vanishing of HH2(A) is a sufficient condition for
the rigidity of A and the vanishing of HH3(A) implies that every [µ1] ∈ HH2(A) is integrable.

In a close parallel to the argument above it was shown that the first cohomology group
HH1(A) is interpreted as the group of infinitesimal automorphisms of A and the obstructions
to their integration are elements of HH2(A). Hence, the vanishing of HH2(A) implies not only
the rigidity of A but also the integrability of any ϕ̃1 ∈ HH1(A) to a one-parameter family of
automorphisms of A.

In the Lie algebra case one obtains analogous results to the ones of Gerstenhaber [Nijenhuis
& Richardson, 1967]. Namely, a Lie algebra L is rigid if LH2(L) = {0} and the obstruc-
tions to integrating an infinitesimal deformation µ1 from Z2(L) to a one-parameter family of
deformations µλ lie in LH3(L).

The deformation theories both of associative and Lie algebras can be derived from the
deformation theory of graded Lie algebras associated with them as in Subsection 4.1.2. In this
way the computations are greatly simplified and put onto a more conceptual basis, also one may
apply the already existing general theorems for deformations of graded Lie algebras [Nijenhuis
& Richardson, 1966]. In this theory rigidity is a property of the points a ∈M0 ⊂ E1 (E is the
graded vector space of the graded Lie algebra in consideration) such that M0 is the algebraic
set of all solutions of a deformation equation Da + 1

2
[a, a] = 0, where D is a differential. In

specific applications M0 will be the set of Lie algebra brackets, associative products, etc. We
say that an element a is rigid provided that DH1(E,Da) = {0}, with Dab = Db + [a, b] for
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b ∈ E. Let G be the group of automorphisms of E, whose Lie algebra is E0, acting on E by
the adjoint representation. M0 is stable under an appropriate action of G and the points of
M0 on the same orbit under G are called equivalent. The vanishing of DH1(E,Da) is in direct
relation to the fact that the G-orbit of a is a neighbourhood of a in M0 and this result is a
bridge to the deformation theory of complex analytic structures. The deformation theorems
from the complex case have their precise algebraic analogues.

From the discussion above follows that every associative separable algebra and every semi-
simple Lie algebra over C are rigid. Also, the Lie algebra of endomorphisms of a finite–
dimensional vector space is rigid.

4.3 Cohomology and extensions

The 2-dimensional cohomology groups of an algebra are directly related to the extensions of this
algebra. Let us consider the following definitions [Hochschild, 1945], [Chevalley & Eilenberg,
1948]:

Definition 4.16 (Extension of an algebra). Let A be an algebra over K. An extension of
A is a pair (B, σ) such that B is an algebra over K and σ is a homomorphism of B onto A.

Definition 4.17 (Inessential extension). An extension is called inessential if there exists
a subalgebra A′ of B such that σ(A′) ≃ A. Then B ≃ A+ Ker(σ).

In the case of associative algebras one has:

Definition 4.18 (Singular extension). An extension (B, σ) of an associative algebra A is
called singular if K := Ker(σ) satisfies K2 = {0}.

It is possible to prove [Hochschild, 1945]:

Theorem 4.19. There is one-to-one correspondence between the classes of isomorphic singu-
lar extensions of the associative algebra A and the 2-dimensional cohomology classes of A. In
order every extension of A to be inessential it is necessary and sufficient that HH2(A,B) = {0}
for every two-sided A-module B.

Very similar results are obtained for Lie algebras [Chevalley & Eilenberg, 1948].

Definition 4.20 (Extension of L by π). Suppose that the space V and the representation
π of the Lie algebra L in V are given. Any extension (L∗, φ), such that Ker(φ) = V and
[V, V ] = 0 will be called an extension of L by π.

The classification theorem is:

Theorem 4.21. The elements of LH2(L, π) are in a one-to-one correspondence with the iso-
morphism classes of extensions of L by π. In order every extension of a Lie algebra L to be
inessential, it is necessary and sufficient to prove that LH2(L, π) = 0 for every representation
π.
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4 Cohomology and deformations of algebraic structures

Corollary. Having in mind the Theorems 4.19 and 4.21 and remembering from Section 4.1.2
that the corresponding cohomology groups vanish, it follows immediately that:

1. Every extension of an associative separable algebra is inessential.

2. Every extension of a semi-simple Lie algebra over a field characteristic 0 is inessential.

Remark. In the context of this section an extension is related to a quotient of an algebra over
a kernel of a homomorphism, while in the chapters that follow the extension of an algebra A
is simply an algebra B containing A as a subalgebra.

50



5 Superselection sectors of conformal
nets for c < 1

In this chapter our task will be to find all the irreducible DHR-sectors [β] of all local extensions
B ⊃ A (see Section 3.2) such that A is a Virasoro net with central charge c(m) = 1 −

6
m(m+1)

, m = 2, 3, 4.... To remind, the sectors of the Virasoro net for a given central charge

are labelled by hR,S(m) =

[
(m+1)R−mS

]2
−1

4m(m+1)
such that 1 ≤ R ≤ m − 1, 1 ≤ S ≤ m, hR,S(m) =

hm−R,m+1−S(m). We denote the corresponding DHR endomorphism sectors by λR,S (we will
omit the sector brackets of λ for simplicity throughout this section).

We will consider first the series m1(n) = 4n + 1, m2(n) = 4n + 2, which have one local
extension of index 2 and after that — the four special cases with higher indices for m =
11, 12, 29 and 30. A special case is (A28, E8) extension for m = 29 — the only extension which
cannot be presented as a coset model of familiar models and thus the only extensions for which
there is no available other method to compute the superselection sectors.

We will use for this purpose the machinery of α-induction and σ-restriction introduced in
Section 3.4, and in our case A and B will play the roles of N and M. In all cases we use a
similar strategy, which we will explain in the following.

Observation. The key observation is that the DHR-sectors [β] of the extension B are sub-
sectors of [α+

σβ
] and of [α−

σβ
] simultaneously. Indeed, σβ is a localized and transportable endo-

morphism of the subnet (see Lemma 3.18 [Böckenhauer & Evans, 1998]), even though it is in
general reducible. Then, by α–σ reciprocity:

〈α±
σβ
, β〉B = 〈σβ, σβ〉A ≥ 1 (5.1)

which means that [β] ≺ [α±
σβ

].

We can reduce the statement above to:

Lemma 5.1. If β ∈ ∆B(I) then [β] ≺ [α+
µ ] and [β] ≺ [α−

µ ] for at least one µ ∈ ∆A(I)

Proof. The proof of this lemma is based on the following observations:

1. [σβ ] is in general reducible. Then we can write:

[σβ] ∼= ⊕i[σ
i
β ] (5.2)

such that σiβ ∈ ∆A(I) are irreducible. Then by linearity:

[α+
σβ

] ∼= ⊕i[α
+
σi
β

], [α−
σβ

] ∼= ⊕i[α
−
σi
β

] (5.3)

where [α+
σi
β

] and [α−
σi
β

] are not necessarily irreducible.
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5 Superselection sectors of conformal nets for c < 1

2. We know that [β] ≺ [α+
σβ

], then [β] ≺ [α+
σi
β

] for at least one i. Analogously, [β] ≺ [α−
σβ

],

then [β] ≺ [α−
σj
β

] for at least one j.

3. Suppose that exist i 6= j such that [β] ≺ [α+
σi
β

] and [β] ≺ [α−
σjβ

]. Then Lemma 3.1 from

[Böckenhauer & Evans, 1999] implies that also [β] ≺ [α−
σi
β

] and [β] ≺ [α+

σj
β

].

Observation. [α±
µ ] localized is equivalent to ε(µ, θ)ε(θ, µ) = 1 ([Longo & Rehren, 1995], Prop

3.9) and [α+
µ ] = [α−

µ ] is equivalent to ε(µ, θ)ε(θ, µ) = 1 ([Böckenhauer & Evans, 1998], Prop),
where θ is the dual canonical endomorphism from Definition 3.38. It means that [α±

µ ] localized
is equivalent to [α+

µ ] = [α−
µ ].

There is the following, even stronger statement by [Kawahigashi, 2003]:

Proposition 5.2. If {λpq} is the set of inequivalent irreducible DHR sectors of a Virasoro net
with c < 1, then the intersection of the irreducible endomorphisms appearing in the decompo-
sitions of α+

λpq
and α−

λpq
is exactly the system of irreducible inequivalent DHR endomorphisms

of the local extension of the Virasoro net.

So, our general strategy will contain the following steps, which will be worked out in
detail in the following sections (in the following we will omit the sector brackets of α±

λpq
for

simplicity):

1. check reducibility of α±
λpq

as well as common content and equivalence among α+
λpq

-sectors

and among α−
λpq

-sectors. For this purpose calculate the dimensions of intertwiner spaces
between them. Use that:

〈α±
λpq
, α±

λp′q′
〉 = 〈λpq, θ ◦ λp′q′〉

2. check common content and equivalence among α+- and α−-sectors. Use that:

〈α+
λpq
, α−

λp′q′
〉 = Zλpqλp′q′

Use the explicit expression for Z(τ) from [Cappelli et al., 1987] such that:

Z(τ) =
∑

p,q
p′,q′

Zλpqλp′q′χλpqχ
∗
λp′q′

(5.4)

With this information we will be able to classify all irreducible DHR representations of the
extensions of Virasoro subnets.
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5.1 DHR sectors for extensions of nets with m = 4n + 1 and m = 4n+ 2

5.1 DHR sectors for extensions of nets with m = 4n + 1 and

m = 4n + 2

All nets with m = 4n + 1 have (A4n, D2n+2) extensions with index 2 and θ = λ11 + λ1m.
Respectively, all nets with m = 4n + 2 have (D2n+2, A4n+2) extensions with index 2 and
θ = λ11 + λ1m.

The following observation will assist us at choosing the convenient set of irreducible sectors
of the Virasoro subnet and at studying the decompositions of the induced sectors:

Observation. If we have a model with central charge c(m), then λ1m ≡ λm−1,1 has a specific
action on the lattice of m× (m− 1) irreducible Virasoro sectors:

• m-odd: according to the fusion rules (3.44):

λ1mλpq = λp,m+1−q, λ1mλp,m+1
2

= λp,m+1
2

(5.5)

i.e λ1m, acting on the lattice of irreducible Virasoro sectors (with central charge c(m))
via composition, behaves like a reflection operator with respect to the axis λf,m+1

2
, f =

1, ..., m− 1, preserving the elements on this axis (the red axis on the figure below).

R

S

λ1,1 λ1,m+1
2

irreducible object

object, reducible into two subobjects

λ1,m

λm−1,mλm−1,m+1
2

λm−1,1

Figure 5.1: Lattice of irreducible sectors for minimal models with m = 2n+ 1
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5 Superselection sectors of conformal nets for c < 1

• m-even: according to the fusion rules (3.44):

λm−1,1λpq = λm−p,q, λm−1,1λm
2
,q = λm

2
,q (5.6)

i.e λm−1,1, acting on the lattice of irreducible Virasoro sectors (with central charge c(m))
via composition, behaves like a reflection operator with respect to the axis λm

2
,g, g =

1, ..., m, preserving the elements on this axis (the red axis on the figure below).

R

S

λ1,1

irreducible object

object, reducible into two subobjects

λ1,m

λm
2
,mλm

2
,1

λm−1,1 λm−1,m

Figure 5.2: Lattice of irreducible sectors for minimal models with m = 2n

Let us now remind, that the sectors in the m × (m − 1) lattice are pairwise equivalent —
every sector from the lattice is equivalent to the inverse sector with respect to the “center” of
the lattice (this center is not a knot of the lattice itself). Having in mind the observation above,
we will choose the following complete sets of inequivalent irreducible sectors of the Virasoro
subnet:

• m-odd: we will work with {λpq}p=1...m−1
2

q=1...m

• m-even: we will work with {λpq}p=1...m−1
q=1...m

2

5.1.1 Reducibility and common content among α+ and among α− sectors

In this subsection we will perform Step 1 of the strategy discussed in the introductory part of
this chapter. We will calculate 〈α±

λpq
, α±

λp′q′
〉 which is equal to 〈λpq, θ ◦ λp′q′〉 (Theorem 3.41)
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5.1 DHR sectors for extensions of nets with m = 4n + 1 and m = 4n+ 2

and for this reason we will use essentially the observation from Section 5.1 and the explicit
expression θ = λ11 + λ1m. Let us also remind that λ11 ◦ λpq = λpq.

Let us first calculate 〈λpq, θ ◦ λp′q′〉 for odd m:

〈λpq, θ ◦ λp′q′〉 = 〈λpq, λp′q′〉︸ ︷︷ ︸
I

+ 〈λpq, λ1m ◦ λp′q′〉︸ ︷︷ ︸
II

(5.7)

Since we work with a set of inequivalent sectors, it holds that:

I = 〈λpq, λp′q′〉 =

{
1 if p = p′, q = q′

0 otherwise
(5.8)

For the second term in the r.h.s of (5.7) we obtain:

II = 〈λpq, λ1m ◦ λp′q′〉 = 〈λpq, λp′,m+1−q′〉 =

{
1 if p = p′, q = m+ 1 − q′

0 otherwise
(5.9)

Then the sum of these terms gives:

I+II = 〈λpq, θ◦λp′q′〉 = 〈α+
λpq
, α+

λp′q′
〉 = 〈α−

λpq
, α−

λp′q′
〉 =





1 if p = p′, q = q′ 6= m+1
2

1 if p = p′, q = m+ 1 − q′ 6= m+1
2

2 if p = p′, q = q′ = M+1
2

0 otherwise

(5.10)

Then we arrive at the following:

Results for odd m:

i. α+
λpq

and α−
λpq

are:

– irreducible iff q 6= m+1
2

– reducible into two inequivalent sectors for q = m+1
2

ii. α+
λpq

∼ α+
λp′q′

and α−
λpq

∼ α−
λp′q′

iff λpq is the inverse of λp′q′ w.r.t reflection by the axis

λf,m+1
2

iii. α+
λ
p,m+1

2

does not contain any sector α+
λp′q′

and α−
λ
p,m+1

2

does not contain any sector α−
λp′q′

if q′ 6= m+1
2

Let us now calculate 〈λpq, θ ◦ λp′q′〉 for even m with completely analogous strategy:

〈λpq, θ ◦ λp′q′〉 = 〈λpq, λp′q′〉︸ ︷︷ ︸
I′

+ 〈λpq, λm−1,1 ◦ λp′q′〉︸ ︷︷ ︸
II′

(5.11)
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5 Superselection sectors of conformal nets for c < 1

Again, we show that:

I′ = 〈λpq, λp′q′〉 =

{
1 if p = p′, q = q′

0 otherwise
(5.12)

The second term in the r.h.s of (5.11) becomes:

II ′ = 〈λpq, λm−1,1 ◦ λp′q′〉 = 〈λpq, λm−p′,q′〉 =

{
1 if p = m− p′, q = q′

0 otherwise
(5.13)

Then we sum these two terms and obtain:

I′+II′ = 〈λpq, θ◦λp′q′〉 = 〈α+
λpq
, α+

λp′q′
〉 = 〈α−

λpq
, α−

λp′q′
〉 =





1 if p = p′ 6= m
2
, q = q′

1 if p = m− p′ 6= m
2
, q = q′

2 if p = p′ = m
2
, q = q′

0 otherwise

(5.14)

Then we obtain the following:

Results for even m:

i. α+
λpq

and α−
λpq

are:

– irreducible iff p 6= m
2

– reducible into two inequivalent sectors for p = m
2

ii. α+
λpq

∼ α+
λp′q′

and α−
λpq

∼ α−
λp′q′

iff λpq is the inverse of λp′q′ w.r.t reflection by the axis

λm
2
,g

iii. α+
λm

2
,q

does not contain any sector α+
λp′q′

and α−
λm

2
,q

does not contain any sector α−
λp′q′

if

p′ 6= m
2

5.1.2 Common content and equivalence among α+ and α− sectors

To be able to understand which of the irreducible sectors in the decomposition of the α±
λpq

sectors are DHR-sectors, we have to know the quantities 〈α+
λpq
, α−

λp′q′
〉, which are equal to

the matrix elements Zλpq,λp′q′ . These matrix elements can be obtained from the sesquilinear
form Z(τ) =

∑
p, q, p′, q′ Zλpqλp′q′χλpqχ

∗
λp′q′

associated to the concrete extension we work with.

Classification of all sesquilinear forms is given in [Cappelli et al., 1987].
Before we make use of this classification, let us first settle down a small notation issue. In

the notations of the article, the central charge and the spin are parameterized by two successive
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5.1 DHR sectors for extensions of nets with m = 4n + 1 and m = 4n+ 2

integers p and p′ instead of m:

c(p, p′) = 1 − 6(p− p′)2

pp′
, p′ = m̃− 1, p = m̃ or p′ = m̃, p = m̃− 1

hr,s(p, p
′) =

(rp− sp′)2 − (p− p′)2

4pp′
≡ hp′−r,p−s(p, p

′), 0 < r < p′, 0 < s < p

(5.15)

Let us remind, that the notation which we have chosen for this thesis is:

c(m) = 1 − 6

m(m+ 1)

hR,S(m) =
[(m+ 1)R−mS]2 − 1

4m(m+ 1)
≡ hm−R,m+1−S(m), 1 ≤ R ≤ m− 1, 1 ≤ S ≤ m

It is clear that:

(p− p′)2

pp′
=

1

m(m+ 1)
⇒ 1

(m̃− 1)m̃
=

1

m(m+ 1)
→ m̃ = m+ 1 (5.16)

In [Cappelli et al., 1987] the cases p′ = 4ρ and p′ = 4ρ+ 2 are classified. Then we obtain for
the interesting for us cases:

• m = 4n + 1 is realized for

p′ = 4ρ+ 2 = m̃ = m+ 1 = 4n+ 2, ρ = n ≥ 1

p = m̃− 1 = m = 4n+ 1

• m = 4n + 2 is realized for

p′ = 4ρ+ 2 = m̃− 1 = m = 4n+ 2, ρ = n ≥ 1

p = m̃ = m+ 1 = 4n+ 3

Let us first consider the case m = 4n+ 1. With r = S, s = R and χRS := χλRS the relevant
sesquilinear form is:

Z(τ) =
1

2

m−1∑

R=1

[
∑

S=1,odd
S 6=m+1

2

|χRS |2+2|χR,m+1
2
|2+

m−1
2

−1∑

S=1,odd

(
χRSχ

∗
R,m+1−S+χR,m+1−Sχ

∗
RS

)]
(5.17)
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Let us remind that the sectors in the m× (m−1) lattice are pairwise equivalent, then we want
to exclude half of them and we rewrite Z(τ) as:

Z(τ) =
1

2

m−1
2∑

R=1

[
∑

S=1,odd
S 6=m+1

2

|χRS|2 + 2|χR,m+1
2
|2 +

m−1
2

−1∑

S=1,odd

(
χRSχ

∗
R,m+1−S + χR,m+1−Sχ

∗
RS

)]
+

+
1

2

m−1∑

R=m+1
2

[
∑

S=1,odd
S 6=m+1−m+1

2

|χm−R,m+1−S|2 + 2|χm−R,m+1−m+1

2
|2 +

+

m+1
2

−1∑

S=1,odd

(
χm−R,m+1−Sχ

∗
m−R,S + χm−R,Sχ

∗
m−R,m+1−S

)]
(5.18)

It is easy to check that:

m−1∑

R′=m+1
2

F (χm−R′,f(S)) =

m−1
2∑

R=1

F (χR,f(S)), for a fixed S and R := m− R′

m∑

S′=1,odd
S′ 6=m+1−m+1

2

G(χg(R),m+1−S′) =
∑

S=1,odd
S=m+1

2

G(χg(R),S), for a fixed R and S := m+ 1 − S ′

(5.19)

and then we can prove that the two big terms in the r.h.s of (5.18) are equal. Further, we show
that:

M−1
2

−1∑

S′=1,odd

χR,m+1−S′χ∗
R,S′ =

m∑

S=M+1
2

,odd

χR,Sχ
∗
R,m+1−S (5.20)

and all of this allow us to simplify Z(τ) significantly:

Z(τ) =

m−1
2∑

R=1

[
m∑

S=1,odd
S 6=m+1

2

|χRS|2 + 2|χR,m+1
2
|2 +

m∑

S=1,odd
S 6=m+1

2

χRSχ
∗
R,m+1−S

]
(5.21)

Results for m = 4n+ 1:

The non-zero entries of the Z-matrix are:

• ZλRSλRS = 1 for R = 1...M−1
2

; S = 1...M, S = odd, S 6= M+1
2
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5.1 DHR sectors for extensions of nets with m = 4n + 1 and m = 4n+ 2

• Zλ
R,M+1

2

λ
R,M+1

2

= 2 for R = 1...M−1
2

• ZλR,M+1−SλRS = 1 for R = 1...M−1
2

; S = 1...M, S = odd, S 6= M+1
2

It means that:

i. α+
λpq

= α−
λpq

for odd q

ii. α+
λpq

= α−
λp′q′

if λpq is inverse to λp′q′ with respect to reflection by λf,M+1
2

axis

Conclusion for m = 4n+ 1:

The complete set of irreducible DHR sectors of the index 2 extension for a fixed m = 4n+ 1
is
{α+

λpq
}p=1...m−1

2
, q=1...m−1

2
,q: odd ≡ {α−

λpq
}p=1...m−1

2
, q=1...m−1

2
,q: odd plus the two irreducible sectors of

every α+
λ
pm+1

2

, p = 1, ..., m−1
2

.

Let us now consider the case m = 4n + 2. With r = R and s = S the corresponding
sesquilinear form is:

Z(τ) =
1

2

m∑

S=1

[
∑

R=1,odd
R6=m

2

|χRS |2 + 2|χm
2
,S|2 +

m
2
−2∑

R=1,odd

(
χRSχ

∗
m−R,S + χm−R,Sχ

∗
RS

)]
(5.22)

Following the same way as in the previous case we are able to simplify Z(τ):

Z(τ) =

m
2∑

S=1

[
m∑

R=1,odd
R6=m

2

|χRS|2 + 2|χm
2
,S|2 +

m∑

R=1,odd
R6=m

2

χRSχ
∗
m−R,S

]
(5.23)

Results for m = 4n+ 2:

The non-zero entries of the Z-matrix are:

• ZλRS ,λRS = 1 for R = 1...M − 1, R = odd, R 6= M
2

S = 1...M
2

• ZλM
2
,S
,λM

2
,S

= 2 for S = 1...M
2

• ZλRS ,λM−R,S
= 1 for R = 1...M − 1, R = odd, R 6= M

2
S = 1...M

2

It means that:

i. α+
λpq

= α−
λpq

for odd p

ii. α+
λpq

= α−
λp′q′

if λpq is inverse to λp′q′ with respect to reflection by λM
2
,g axis
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5 Superselection sectors of conformal nets for c < 1

Conclusion for m = 4n+ 2:

The complete set of irreducible DHR sectors of the index 2 extension for a fixed m = 4n+ 2
is
{α+

λpq
}p=1...m

2
−1, q=1...m

2
,p: odd ≡ {α−

λpq
}p=1...m

2
−1, q=1...m

2
,p: odd plus the two irreducible sectors of

every α+
λm+1

2

,q, p = 1, ..., m
2
.

5.2 DHR sectors for (A28, E8) extension with m = 29

In this section we will calculate the DHR sectors of the only model from the minimal series,
which does not correspond to Virasoro and which is not proven to be expressible as a coset
model.

The (A28, E8) extension with m = 29, θ = λ1,1 + λ1,29 + λ1,11 + λ1,19 and index

√
30−6

√
5

2sin(π/30)
,

is realized in the [Cappelli et al., 1987] notation as p′ = 30 = m̃, p = 29 = m̃ − 1, for
s = R, r = S and the corresponding sesquilinear form is:

Z(τ) =
1

2

28∑

R=1

[
|χR,1 + χR,11 + χR,19 + χR,29|2 + |χR,7 + χR,13 + χR,17 + χR,23|2

]

=

14∑

R=1

[
|χR,1 + χR,11 + χR,19 + χR,29|2 + |χR,7 + χR,13 + χR,17 + χR,23|2

]
(5.24)

Having in mind Proposition 5.2, one can see straightforward from this formula that the DHR
sectors of the extension are 28, half of them is contained in or coincides with α±

λR,1
, α±

λR,11
,

α±
λR,19

, α±
λR,29

, the other half is contained in or coincides with α±
λR,7

, α±
λR,13

, α±
λR,17

, α±
λR,23

. So
from now on we will concentrate our investigation for this sectors.

Let us now compute 〈α±
λpq
, α±

λp′q′
〉, which is equal to 〈λpq, θ ◦ λp′q′〉 (Theorem 3.41) and in

this case θ = λ1,1 + λ1,29 + λ1,11 + λ1,19. To calculate these brackets we take into consideration
the following fusion rules:

λ1,11 ◦ λpq = ⊕S
s=|11−q|+1

smod2=qmod2

λps S = min

{
11 + q − 1 = 10 + q

60 − q + 12 = 48 − q

λ1,19 ◦ λpq = ⊕S
s=|19−q|+1

smod2=qmod2

λps S = min

{
19 + q − 1 = 18 + q

60 − q + 20 = 40 − q
(5.25)

and the observation from Section 5.1. As we discussed before, the explicit computation of the
set of the brackets 〈α±

λpq
, α±

λp′q′
〉 gives us the complete information about the reducibility and

common content of the induced sectors α±
λRS

. This information, combined with the analysis of
the Z-matrix above, allows us to find the complete set of DHR sectors of the extension and
we present them on the following picture:
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5.3 DHR sectors for the remaining higher index extensions

S

R α+
λ1,1

α+
λR,1

≡ βDHR
R,1 α+

λR,7
≡ α+

λR,5
⊕ βDHR

R,2

α+
λ1,29

irreducible object

object, reducible into two subobjects

object, reducible into three subobjects

object, reducible into four subobjects

α+
λ24,1

Figure 5.3: Irreducible sectors βDHRR,1 and βDHRR,2 of the (A28, E8) extension for m = 29

On the picture above each knot on the lattice accounts for the induced endomorphism α+
λRS

.
(We obtain exactly the same scheme for the α−

λRS
endomorphisms, although α+

λRS
in general do

not coincide with α−
λRS

.) We see the set of inequivalent and irreducible DHR endomorphisms

of the extension is βDHRR,1 := α+
λR,1

, βDHRR,2 is hidden in the decomposition α+
λR,7

= α+
λR,5

⊕ βDHRR,2

and in both cases R = 1...14. (Similarly, βDHRR,1 := α−
λR,1

and α−
λR,7

= α−
λR,5

⊕ βDHRR,2 ).

We can also calculate the fusion rules of {βDHRR,i }R=1...14
i=1,2

, using the homomorphism property

αλ ◦ αµ = αλ◦µ and linearity αλ⊕µ = αλ ⊕ αµ:

βDHRR,i ◦ βDHRR′,j = ⊕min(R+R′−1, 2m−R−R′−1)

p=|R−R′|+1

R+R′+1:odd

⊕max(i,j)
q=|i−j|+1 β

DHR
pq (5.26)

We also compute the statistical dimensions in terms of the statistical dimensions of the Virasoro
subnet, using that α-induction preserves the dimensions and that the dimension of a sum of
two sectors is equal to the sum of the dimensions of these two sectors:

d(βDHRR,1 ) = d(λR,1), d(βDHRR,2 ) = d(λR,7) − d(λR,5) (5.27)

5.3 DHR sectors for the remaining higher index extensions

The strategy to find the inequivalent irreducible DHR sectors of the remaining three higher
local extensions is the same as for the (A29, E8)-extension for m = 29. Therefore, in this section
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5 Superselection sectors of conformal nets for c < 1

we will just present the graphics with final results with a short comment on them. Again, these
graphics will represent only the induced endomorphisms α+

λRS
and they are equivalent to the

graphics representing the induced endomorphisms α−
λRS

, even though α+
λRS

and α−
λRS

do not
coincide in general.

The DHR sectors of the (E8, A30) extension with m = 30, θ = λ1,1 + λ29,1 + λ11,1 + λ19,1

and index

√
30−6

√
5

2sin(π/30)
are presented on fig.5.4. Note that fig.5.3 and fig.5.4 are equivalent up

to exchange of the axes S and R and the second figure has one more row of sectors. This
equivalence is due to the specific structure of the fusion rules, the very similar canonical endo-
morphisms of the two models and the fact, that the two extensions share the same sesquilinear
from Z(τ) from the list in [Cappelli et al., 1987]. Note also that the presence of λ1,m in the
expressions for θ together with the symmetry of Z(τ) associated to the extensions in consi-
deration allow us to find all the inequivalent DHR sectors just in one quarter of the lattice
α±
λRS

, R ∈ [1..m− 1], S ∈ [1..m].
The same equivalence is observed for the second couple of models: (A10, E6) extension

corresponding to m = 11 with index 3 +
√

3 and θ = λ1,1 + λ1,7 and (E6, A12) extension
corresponding to m = 12 with index 3 +

√
3 and θ = λ1,1 + λ7,1, whose DHR sectors are

presented respectively on fig.5.5 and fig.5.6. Here we have to consider a larger part of the lattice
α±
λRS

because the canonical endomorphism now does not contain λ1,m and the corresponding
sesquilinear form does not possess the symmetry from the previous case.

S

R

α+
λ1,S

≡ βDHR
1,S α+

λ7,S
≡ α+

λ5,S
⊕ βDHR

2,S

α+
λ1,1

α+
λ29,1

irreducible object

object, reducible into two subobjects

object, reducible into three subobjects

object, reducible into four subobjects

α+
λ1,25

Figure 5.4: Irreducible sectors βDHR1,S and βDHR2,S of the (E8, A30) extension for m = 30
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S

R

irreducible object

object, reducible into two subobjects

α+

λR,11
≡ βDHR

R,3

α+

λ5,1

α+

λR,4
≡ α+

λR,10
⊕ βDHR

R,2α+

λR,1
≡ βDHR

R,1

α+

λ1,11
α+

λ1,1

Figure 5.5: Irreducible sectors βDHRR,1 , βDHRR,2 and βDHRR,3 of the (A10, E6) extension for m = 11

α+

λ1,6

irreducible object

object, reducible into two subobjects

S

R

α+

λ1,1
α+

λ11,1

α+

λ11,S
≡ βDHR

3,Sα+

λ4,S
≡ α+

λ10,S
⊕ βDHR

2,Sα+

λ1,S
≡ βDHR

1,S

Figure 5.6: Irreducible sectors βDHR1,S , βDHR2,S and βDHR3,S of the (E6, A12) extension for m = 12
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6 The local commutation relations

In this chapter we will explore the commutation relations among quasiprimary fields in chiral
conformal invariant theories. We will perform our study following closely the example of the
Lüscher–Mack theorem, which determines completely the commutation relations of the stress–
energy tensor with itself. We will show that our commutators are intrinsically determined
up to model dependent structure constants. These structure constants must further obey an
infinite set of constraints coming from the Lie algebra structure relations.

Furthermore, on the level of test functions commutators give rise to (the unique) local in-
tertwiners of the corresponding sl(2,R) action and one verifies that the various intertwiner
spaces of tensor products of representations are finite dimensional. With the help of transfor-
mation matrices among these intertwiner spaces we are able to achieve “reduction” of the field
algebra, which amounts to stripping off the test functions, thus disentangling the “kinematic”
representation details. On the new “reduced space” the commutator turns into a multicom-
ponent “reduced bracket”. The idea how to achieve a reduced version of the Jacobi identity
was cherished from [Bowcock, 1991], where a Jacobi identity among structure constants of
commutators among Fourier modes of quasiprimary fields was considered.

Finally, in our theory there must be a symmetric positive quadratic form representing the
vacuum state and we show that the reduced bracket imposes an invariance condition on this
bracket. Then a new axiomatization of a chiral conformal QFT must consist of a reduced
space, a reduced bracket and an invariant quadratic form, of course subject to some additional
conditions, which we will discuss in the following.

6.1 The general form of the local commutation relations in

2D chiral conformal field theories

In this section we will show that the local commutation relations in conformal chiral quantum
field theories are intrinsically determined up to numerical factors (“structure constants”) by
locality, conformal invariance and Wightman positivity, and that the Lie algebra structure
imposes further constrains on the possible values of the structure constants.

It will be more convenient for us to work with smeared fields. Since A′(f) = −A(f ′), we
do not consider the derivatives of quasiprimary fields as independent fields. Hence, a basis of
the field algebra is an infinite set of quasiprimary fields. In a decent theory, e.g. such that
e−βL0 is a trace-class operator, the number of quasiprimary fields of a given dimension is finite
(because each field of dimension a contributes a power series in t = e−β with leading term ta).
We shall denote the basis of fields of scaling dimension a by Wa and assume without loss of
generality that all A ∈ Wa are hermitian fields.
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6 The local commutation relations

It will be enough to find just the commutators among the basis quasiprimary fields. Our
strategy to understand the general structure of Möbius covariant commutators in chiral con-
formal field theories is similar to that of the Lüscher–Mack theorem:

Proposition 6.1. Locality, scale invariance and Wightman positivity imply the following ge-
neral form of the commutator of two smeared quasiprimary fields A(f) and B(g):

−i [A(f), B(g)] =
∑

c<a+b

∑

C∈Wc

FC
ABC (λcab(f, g)) (6.1)

where a, b are the scaling dimensions of A and B, the sum runs over a basis of quasiprimary
fields of scaling dimension c < a+ b, FC

AB are structure constants and

λcab(f, g) =
∑

p,q≥0
p+q=a+b−c−1

λcab(p, q) ∂
pf · ∂qg (6.2)

are bilinear maps on the test functions such that supp λcab ⊂ supp f ∩ supp g, i.e. λcab preserves
the supports. The maps depend only on the dimensions of the fields involved.

Proof. We present here the main steps of the proof:

1. Locality implies that the commutator −i [A(x), B(y)] has support on the line x = y.
Then follows that −i [A(x), B(y)] =

∑n
l=0 δ

(l)(x − y)Ol(y), where Ol are linear combi-
nations of quasiprimary fields and derivatives. This means that in the smeared version
−i [A(f), B(g)] a quasiprimary field C must appear with a test function of the form∑

p,q≥0 d
C
AB(p, q)∂pf ·∂qg. The coefficients dCAB(p, q) satisfy a recursion in p and q, coming

from Möbius invariance, and the solution of this recursion is fixed, up to some numerical
constant, only by the scaling dimensions of the fields A, B, C. The numerical constant
can be absorbed in the coefficients FC

AB.

2. Scaling invariance implies p+q = n, C(y) is a local field of scaling dimension a+b−n−1.

3. Wightman positivity implies that the scaling dimension of the fields in the theory must
be non-negative (unitarity bound), hence c ∈ [0, a+ b− 1].

Observation. The recursion for λcab(p, q) coming from the Möbius invariance for fixed a, b ≥ 1
and positive c is solved by:

λcab(p, q) =

(
p+ q

p

)
(−1)q

(c+ b− a)p(c+ a− b)q
(2c)p+q

(6.3)

where (x)p denotes the Pocchammer symbol:

(x)n :=
Γ(x+ n)

Γ(x)
(6.4)
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6.1 The general form of the local commutation relations in 2D chiral conformal field theories

In particular, the maps λcab(f, g) =
∑

p+q=a+b−c−1 λ
c
ab(p, q)∂

pf ·∂qg possess the graded symmetry
property:

λcab(f, g) = (−1)a+b−c−1λcba(g, f) (6.5)

Note that this (anti-)symmetry respects the Z2 grading of the source and range spaces, but
the linear maps λcab themselves are not Z2 graded.

The denominator (2c)p+q in (6.3) is a mere convention and was chosen such that for c = 0
the expression λcab(p, q) can be defined as a continuous limit from c > 0 that vanishes if a 6= b,
thus expressing the fact that the unit operator can contribute to the commutator of the two
fields only if these have equal dimensions.

It is noteworthy to recognize that λcab coincide with the Rankin–Cohen brackets arising in
the theory of modular forms. The latter are bilinear differential maps [f, g]n : M2k ×M2l →
M2k+2l+2n on the spaces of modular forms of weights 2k, 2l ([Rankin, 1956; Cohen, 1975; Cohen
et al., 1996]). In this context, of course, the test functions have to be replaced by modular
forms, and the emphasis is on the discrete subgroup SL(2,Z) of SL(2,R), under which modular
forms are invariant. The precise relation is (with notations as in [Cohen et al., 1996]):

[f, g]
(k=1−a,l=1−b)
n=a+b−c−1 ≡ ρcab(f, g) =

(2c)a+b−c−1

(a + b− c− 1)!
· λcab(f, g) (6.6)

We will give some more comments later in Section 6.4.1.
It becomes clear that the overall structure of the commutators in conformal chiral field

theories is to a great extent fixed — we know fields of which dimensions contribute to the
commutator of any pair of fields and with which test functions these fields are smeared. The
only unknown ingredients are the structure constants FC

AB, which are numbers. We shall
now investigate further restrictions of the structure constants due to the Lie algebra structure
relations of the commutator.

Observation. The anti–symmetry of commutators together with the symmetry property (6.5)
of λcab implies the following symmetry rule for the structure constants:

FC
AB = (−1)a+b−c FC

BA (6.7)

Taking adjoints and recalling that the basis consists of hermitian fields, one finds that FC
AB are

real numbers.

Further restrictions for the structure constants FC
AB come from the Jacobi identity for com-

mutators of smeared field operators, as we will see in Section 6.6. We cannot derive this
restrictions directly, because Jacobi identity in its original form would produce constraints
burdened with test functions. A reduction of the field algebra, performed in Section 6.5, will
allow us to strip off the test functions and to achieve a reduced Jacobi identity involving only
the structure constants FC

AB To prepare the ground for that, in the next subsections we study
the effect of the commutator on the test functions level.

The structure constants FC
AB are also related to the amplitudes of 2- and 3-point functions

as we will elaborate in Section 6.7.
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6 The local commutation relations

We also pursued the idea that with the help of the coproduct of a Lie algebra of generating
quasiprimary fields we could recognize the compounds of the quasi–primary fields appearing
in the sum above for some fixed pair of A,B. However, working out some simple examples
showed that this method is not giving us the whole information about the building blocks of
these fields and that we have to search for some more powerful tools.

We then concentrated on the minimal Lie algebra containing the stress–energy tensor T —
its enveloping Lie algebra E(T ). We believed that at least there FAB

C must be intrinsically
determined. The original idea was to determine FAB

C in E(T ) just on the basis of Jacobi
identities involving at least one operator T . The scheme was the following. We wanted first to
obtain recursively the coefficients F TB

C as functions of NTC′

C′′ , where both C ′ and C ′′ have lower
dimensions than B. This relation should come out from imposing Jacobi identity on two copies
of T and a “vector”, consisting of all fields of lower dimensions and B itself. Once having the
coefficients F TB

C in hand and applying Jacobi identity to T and two quasi–primary fields, one
should get also the overall coefficients FAB

C in E(T ). However, after some computations by
hand for low dimensions, we were convinced that the Jacobi identity does not lead to sufficient
knowledge about the desired normalization factors and additional model information is needed
as an input.

6.2 λcab are intertwiners

Quasiprimary fields of scaling dimension a extend to a larger test function space than just the
Schwartz functions, namely to the space πa of smooth functions on R for which x2−2af(x−1)
extends smoothly to x = 0. We regard this space as a representation of sl(2,R) with generators
p, d, and k such that:

(pf)(x) = i∂f(x), (df)(x) = i(x∂+1−a)f(x), (kf)(x) = i(x2∂+2(1−a)x)f(x) (6.8)

We must remark that πa is neither irreducible nor unitary. In particular, the inner product
induced by the 2-point function annihilates the (2a− 1)-dimensional subspace of polynomials
of order 2a− 2.

The direct product πa×πb equals πa⊗πb as a space and carries the representation (πa⊗πb)◦∆,
where the ∆ is the Lie algebra coproduct.

Then the maps

λcab : πa × πb → πc, f ⊗ g → λcab(f, g) =
∑

p+q=a+b−c−1

λcab(p, q) ∂
pf · ∂qg (6.9)

intertwine the corresponding sl(2,R) actions on the spaces of test functions. Their distinguish-
ing feature among all such intertwiners is that they preserve supports (see above), for which
we call them local intertwiners. The constructive argument in the proof of Proposition 6.1
means that they are actually the unique local intertwiners of the sl(2,R) action. Therefore,
our task will be to understand the category of representations πa of sl(2,R) equipped with the
local intertwiners.
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6.3 Bases for the intertwiner spaces

6.3 Bases for the intertwiner spaces

One important observation is that the bound c < a+ b for λcab guarantees that the intertwiner
spaces πa1 × πa2 × ... × πan → πe, where e ≤ ∑n

i=1 ai − n + 1, are finite–dimensional. In this
subsection we will construct bases for intertwiner spaces and will describe the relevant matrices
for a switch between bases.

Our “default” choice of basis, adapted to the structures which appear in our calculations
(nested commutators), will be the following:

Definition 6.2 (Default basis for intertwiners
(
Tan

)mn−1

). Let us define the operator:

(
Tan

)mn−1

= λe
a1ǫ1

◦
(
1a1

× λǫ1
a2ǫ2

◦
(
1a1

× 1a2
× λǫ2

a3ǫ3
◦
(
... ◦

(
1a1

× 1a2
× ... × 1an−2

× λǫn−2

an−1an

)
...
)))

(6.10)

in which xn stands for the n-tuple (x1, ..., xn), an is the n-tuple of scaling dimensions ai and
the indices mi ∈ N0 are defined as:

mn−1 := an−1 + an − ǫn−2 − 1, m1 = a1 + ǫ1 − e− 1,

mi := ai + ǫi − ǫi−1 − 1 for i = 2...n− 2 (6.11)

Then the set of operators
(
Tan

)mn−1

, such that M(an, e) := m1+...+mn−1 =
∑n

i=1 ai−e−n+1,

constitute a basis for the intertwiner space πa1 × πa2 × ...× πan → πe.

Observation. The indices ǫi are subject to a restriction, originating from the bound c < a+ b
for λcab:

ǫn−2 ≤ an−1 +an−1, ǫ1 ≥ e−a1 +1, ǫi ≤
n∑

k=i+1

ak−n+ i+1 for i = 1...n−3 (6.12)

For a fixed n-tuple of the m’s we can obtain the ǫ’s recursively:

ǫi =

n∑

s=i+1

as −
n−1∑

t=i+1

mt − n+ i+ 1, e =

n∑

s=1

as −
n−1∑

t=1

mt − n+ 1 (6.13)

It should be noted that some of the dimensions ǫi may be negative. We shall ignore unitarity
bound (admitting only non-negative dimensions) at this point. It will be imposed later (Section
6.8).

Remark. The operators
(
Tan

)mn−1

are multilinear maps on functions (f1, ..., fn) such that

fi ∈ πai . The images
(
Tan

)mn−1

(f1, ..., fn) are test functions belonging to the space πe with

e =
∑n

s=1 as −
∑n−1

t=1 mt − n+ 1.

Occasionally it will be necessary to consider nested brackets in different order:
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6 The local commutation relations

Definition 6.3 (Basis for intertwiners
(
TB,an

)mn−1

). With
(
TB,an

)mn−1

we denote the el-

ements of an alternative basis of intertwiners, which are constructed similarly to
(
Tan

)mn−1

,

but where λ’s couple arguments and results of previous couplings in a different way and B
carries information about the coupling order. We call B a bracket scheme.

Example. An alternative basis for the intertwiner space πa × πb × πc → πe may be:

(
TS,abc

)m1m2
:= λeǫc ◦ (λǫab × 1c), m1 +m2 = a+ b+ c− e− 2 (6.14)

6.4 Transformation matrices

From (6.5) one immediately has:

(
Tabc

)m1m2(f, g, h) = (−1)m1
(
TS,bca

)m1m2(g, h, f) = (−1)m2
(
Tacb

)m1m2(f, h, g) (6.15)

For the analysis of the Jacobi identity, however, we shall need relations among
(
Tabc

)m1m2
(f, g, h),(

Tbca
)m1m2

(g, h, f) and
(
Tcab

)m1m2
(h, f, g), not covered by (6.15). In this subsection we intro-

duce the transformation matrices for general permutations and rebracketings.

Definition 6.4 (The matrix
(
ZB1B2,an,σin

)
emn−1

mn−1

). Let us define the matrix
(
ZB1B2,an,σin

)
emn−1

mn−1

which relates two bases TB1
and TB2

with permuted arguments:

(
TB1,σin (an)

)
emn−1 ◦ τσin =

(
ZB1B2,an,σin

)
emn−1

mn−1

(
TB2,an

)mn−1

(6.16)

where σin is the permutation of labels (x1, ..., xn) → (xi1 , ..., xin) and τσin : (f1, ..., fn) →
(fi1 , ..., fin) the corresponding permutation on πa1 × ...×πan . In other words, permutations act
on the intertwiner spaces πa1 × ...×πan → πe by permutation of the factors, σ(T ) := T ◦ τσ and(
ZB1B2,an,σin

)
emn−1

mn−1

are the matrix elements of these linear maps between intertwiner spaces in

various bases of the latter.

Of particular interest for us will be the matrix
(
Ybca

)
em1 em2

m1m2

which describes the cyclic per-

mutations of
(
Tabc

)m1m2

(f, g, h):

(
Tbca

)
em1 em2

(g, h, f) =
(
Ybca

)
em1 em2

m1m2

(
Tabc

)m1m2

(f, g, h) (6.17)

By (6.15) the transposition of the last two entries is described by the diagonal matrix:

I em1 em2

m1m2
:= δ em1

m1
δ em2

m2
(−1)m2 (6.18)
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6.4 Transformation matrices

From the definition follows directly that Yabc · Ycab · Ybca = 1 and Yabc · I · Ycba · I = 1, i.e. that
the matrices Y and I generate a representation of S3. In particular we have:

Tbac(g, f, h) = ITbca(g, h, f) = IYbcaTabc(f, g, h) (6.19)

A calculation and explicit expression for the quite non-trivial matrix
(
Yabc

)
em1 em2

m1m2

will be given

in the next subsection. This matrix is closely related to the matrix
(
Xabc

)m1m2

em1 em2

, which describes

the passage from the basis
(
Tabc

)m1m2

to the basis
(
TS,abc

)m1m2

without a permutation (“re-

bracketing”):

(
Tabc

)m1m2

(f, g, h) =
(
Xabc

)m1m2

em1 em2

(
TS,abc

)em1 em2

(f, g, h) (6.20)

Namely, by (6.15) one has:

TS,abc(f, g, h) = (−1)MITcab(h, f, g) = (−1)MIY −1
abc Tabc(f, g, h), M = M(a, b, c; e) = a+b+c−e−2(= m1+m2)

(6.21)

hence:

Xabc = (−1)M(a,b,c;e) · YabcI (6.22)

Moreover, we claim that the matrix elements
(
Yabc

)
em1 em2

m1m2

are the building blocks of every

matrix element (ZB,an,σin )
emn−1
mn−1

. Namely, one can achieve every bracket scheme from the de-
fault bracket scheme (6.10) by a sequence of applications of (6.5) (“flips”), at the price of a
permutation of the arguments. The flips will produce signs (−1)mi , where the label mi refers to
the flipped intertwiner. Now, the permutations can be undone by a sequence of transpositions
without changing the bracket scheme. One sees from (6.19) that in the default basis (6.5) the

transposition k ↔ k + 1 is described by the matrix Ik+1Yak+1ǫk+1ak , where
(
Ik+1

)
emk emk+1

mkmk+1

is the

diagonal matrix with entries (−1)mk+1.

6.4.1 The matrix
(
Yabc

)m1m2

m̃1m̃2

In this subsection we will explain how we determined the matrix
(
Yabc

)m1m2

em1 em2

which transforms
(
Tcab

)
em1 em2

(h, f, g) into
(
Tabc

)m1m2

(f, g, h), and which is the essential ingredient of the reduced

Jacobi identity (6.65). This problem was reduced just to a linear algebra task to find the entries
of a matrix which switches between known vectors with numerical components. The specific

structure of the T ’s allowed us to derive a recursion formula for the entries of
(
Yabc

)m1m2

em1 em2

,

which we were able to solve afterwards.
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6 The local commutation relations

An elegant method would have been to exploit the associativity of a nontrivial, one-parameter
family of products on ⊕kM2k defined in terms of Rankin–Cohen brackets [Cohen et al., 1996],
generalizing an unpublished observation by Eholzer. Varying the parameter, one obtains linear
relations between ρedc ◦ ρdab× 1c and ρead′ ◦ 1a× ρd

′

bc for every fixed a, b, c, e from which one would
read off the matrix Xabc that describes the re-bracketing and then by (6.22) the matrix Yabc.
Unfortunately, due to a symmetry with respect to the parameter, varying the parameter gives
only one half of the necessary relations. This is another puzzling surprise, since one would
have expected that an associative product rather encodes twice as much information than a
(generalized) commutator. Instead, we have to adopt much more down-to-earth linear algebra
approach.

The explicit formulae obtained below are meromorphic functions which may have poles at
real positive values of the dimensions a, b, c. In other words, the intertwiner bases may become
degenerate at these points. These singularities can be regularized, e.g by letting the scaling
dimensions have small positive imaginary parts, while keeping the summation indices p, q andm
integer. While the representation theory of SL(2,R) is perfectly meaningful for complex a, b, c,
the physical dimensions are of course positive integers. For the removal of regularization in
QFT see Section 6.6.

Using (6.3) we write the explicit expression for the two vectors:

(
Tabc

)m1m2

(f, g, h) = λe1

ae2
◦
(
1a × λe2

bc

)
(f, g, h)

=
∑

p+q=m1

s+t=m2

(−1)q+t

(
m1

p

)(
m2

s

)
(2b + 2c − m1 − 2m2 − 3)p(2a − m1 − 1)q[

2(a + b + c − m1 − m2 − 2)
]
m1

×

× (2c− m2 − 1)s(2b − m2 − 1)t[
2(b + c − m2 − 1)

]
m2

∂pf∂q(∂sg∂th) (6.23)

(
Tcab

)em1 em2

(h, f, g) = λee1

cee2
◦
(
1c × λee2

ab

)
(h, f, g)

=
∑

p+q= em1

s+t= em2

(−1)q+t

(
m̃1

p

)(
m̃2

s

)
(2a + 2b − m̃1 − 2m̃2 − 3)p(2c − m̃1 − 1)q[

2(a + b + c − m̃1 − m̃2 − 2)
]

em1

×

× (2b − m̃2 − 1)s(2a − m̃2 − 1)t[
2(a + b − m̃2 − 1)

]
em2

∂ph∂q(∂sf∂tg) (6.24)

It is not obvious from first sight how to operate with such complicated expressions. However,
the following two observations give us a clue how to treat this problem:

1. Let us organize (6.23) and (6.24) as:

(
Tabc

)m1m2

(f, g, h) =
∑

r1+r2+r3=m1+m2

(
Tabc

)m1m2

r1r2r3
∂r1f∂r2g∂r3h

(
Tcab

)
em1 em2

(h, f, g) =
∑

er1+er2+er3= em1+ em2

(
Tcab

)
em1 em2

er1er2er3
∂er1f∂er2g∂er3h (6.25)
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6.4 Transformation matrices

with
(
Tabc

)m1m2

r1r2r3
and

(
Tcab

)
em1 em2

er1er2er3
numerical coefficients. The entries of

(
Yabc

)m1m2

em1 em2

are

also pure numbers and contain no derivatives, then this matrix cannot mix terms with

different orders of derivatives and hence it must switch also between
(
Tabc

)m1m2

r1r2r3
and

(
Tcab

)
em1 em2

r1r2r3
for any fixed triple (r1, r2, r3):

(
Yabc

)m1m2

em1 em2

(
Tcab

)
em1 em2

r1r2r3
=
(
Tabc

)m1m2

r1r2r3
(6.26)

Clearly, this is possible only if r1 +r2+r3 = r̃1 + r̃2 + r̃3, which is equivalent to m1 +m2 =
m̃1 + m̃2. In fact, such an equality was expected, because it reflects the intuitive idea,

that it is not possible to decompose
(
Tabc

)m1m2

in the basis of
(
Tcab

)
em1 em2

if they map to

representations with different scaling dimensions. Then we can relax two of the indices

of
(
Yabc

)m1m2

em1 em2

:

(
Yabc

)m1m2

em1 em2

= δm1+m2,em1+ em2

(
Yabc(n)

)m2

em2

, n := m1 +m2 (6.27)

It means that
(
Yabc

)m1m2

em1 em2

consists of a set of two-index matrices labelled by n. Every

two-index matrix
(
Yabc(n)

)m2

em2

will relate two vectors
(
Tabc

)n−m2,m2

r1r2r3
and

(
Tcab

)n−em2,em2

r1r2r3
so that:

(
Yabc(n)

)m2

em2

(
Tcab

)n−em2,em2

r1r2r3
=
(
Tabc

)n−m2,m2

r1r2r3
(6.28)

We could as well relax the indices m2 and m̃2 instead of m1 and m̃1, it is just a matter
of choice.

2. (6.28) taken for n+1 triples (r1, r2, r3) andm2, m̃2 ∈ [0, n] gives a system of (n+1)×(n+1)
equations for (n + 1) × (n + 1) unknown quantities and if the equations are linearly

independent it is enough to fix all the entries of
(
Yabc(n)

)m2

em2

. For us the most convenient

choice appeared to be the triples (k, 0, n− k) with k ∈ [0, n]. The vectors
(
Tcab

)n−em2,em2

k,0,n−k
have the nice property that their components are zero if m̃2 > k, which allows us to

establish a recursion, such that the component
(
Yabc(n)

)m2

em2

is recovered recursively from

the components
(
Yabc(n)

)m2

bm2

with m̂2 < m̃2.

In the following we derive the recursion formula for
(
Yabc(n)

)m2

em2

. We start with the triple

(0, 0, n). Since the vector
(
Tcab

)n−em2, em2

0,0,n
has only one non-zero component, the one with m̃2 = 0,
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6 The local commutation relations

(6.28) allows us to compute the entries
(
Yabc(n)

)m2

0
for m2 ∈ [0, n] immediately:

(
Yabc(n)

)m2

0

(
Tcab

)n,0
0,0,n

=
(
Tabc

)n−m2,m2

0,0,n
=⇒

(
Yabc(n)

)m2

0
=

(
Tabc

)n−m2,m2

0,0,n(
Tcab

)n,0
0,0,n

(6.29)

Next,
(
Tcab

)n− em2,em2

1,0,n−1
has two non-zero entries, the ones with m2 = 0 and m2 = 1, so from (6.28)

we obtain an expression for
(
Yabc(n)

)m2

1
involving the already known entries

(
Yabc(n)

)m2

0
from

the same row:

(
Yabc(n)

)m2

0

(
Tcab

)n,0
1,0,n−1

+
(
Yabc(n)

)m2

1

(
Tcab

)n−1,1

1,0,n−1
=
(
Tabc

)n−m2,m2

1,0,n−1

=⇒
(
Yabc(n)

)m2

1
=

(
Tabc

)n−m2,m2

1,0,n−1
−
(
Yabc(n)

)m2

0

(
Tcab

)n,0
1,0,n−1(

Tcab

)n−1,1

1,0,n−1

(6.30)

In analogy, we proceed to
(
Tcab

)n−em2,em2

k,0,n−k
, which has k + 1 non-zero entries for m2 ∈ [0, k], and

we express
(
Yabc(n)

)m2

k
in terms of the preceding entries in the matrix row, which have been

previously determined. We arrive at the following result:

Proposition 6.5. The entries of
(
Yabc(n)

)m2

em2

satisfy the recursion formula:

(
Yabc(n)

)m2

em2

=

(
Tabc

)n−m2,m2

em2,0,n−em2

−∑em2−1
j=0

(
Yabc(n)

)m2

j

(
Tcab

)n−j,j
em2,0,n−em2(

Tcab

)n−em2,em2

em2,0,n−em2

(6.31)

{jl}ms are the possible sets {j1 = s, jk < jk+1, jl = m}, including {s, m}.
Our next task is to solve this recursion and to obtain an explicit formula for

(
Yabc(n)

)m2

em2

.
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6.4 Transformation matrices

For this purpose we “insert repeatedly the expression for
(
Yabc(n)

)m2

em2

into itself” and obtain:

(
Yabc(n)

)m2

em2

=
1

(
Tcab

)n− em2, em2

em2,0,n−em2

[(
Tabc

)n−m2,m2

em2,0,n−em2

−
em2−1∑

j=0

(
Tabc

)n−m2,m2

j,0,n−j

(
Tcab

)n−j,j

em2,0,n−em2(
Tcab

)n−j,j

j,0,n−j

+

+

em2−1∑

j=0

j−1∑

s=0

(
Yabc(n)

)m2

s

(
Tcab

)n−s,s

j,0,n−j

(
Tcab

)n−j,j

em2,0,n−em2(
Tcab

)n−j,j

j,0,n−j

]
=

=
1

(
Tcab

)n− em2, em2

em2,0,n−em2

[(
Tabc

)n−m2,m2

em2,0,n−em2

−
em2−1∑

j=0

(
Tabc

)n−m2,m2

j,0,n−j

(
Tcab

)n−j,j

em2,0,n−em2(
Tcab

)n−j,j

j,0,n−j

+

+

em2−1∑

j=0

j−1∑

s=0

(
Tabc

)n−m2,m2

s,0,n−s

(
Tcab

)n−s,s

j,0,n−j(
Tcab

)n−s,s

s,0,n−s

(
Tcab

)n−j,j

em2,0,n−em2(
Tcab

)n−j,j

j,0,n−j

+ ...

]
=

=

em2∑
s=0

(
Tabc

)n−m2,m2

s,0,n−s



∑

{jl}
fm2
s

(−1)l−1

(
Tcab

)n−j1,j1

j2,0,n−j2(
Tcab

)n−j1,j1

j1,0,n−j1

(
Tcab

)n−j2,j2

j3,0,n−j3(
Tcab

)n−j2,j2

j2,0,n−j2

...

(
Tcab

)n−jl−1,jl−1

jl,0,n−jl(
Tcab

)n−jl−1,jl−1

jl−1,0,n−jl−1




(
Tcab

)n− em2, em2

em2,0,n−em2

(6.32)

We can also define the operators
(
T ρabc

)m1m2

in terms of the Rankin-Cohen brackets ρ instead

of λ:
(
T

ρ
abc

)m1m2

(f, g, h) = ρe1

ae2
◦
(
1a × ρe2

bc

)
(f, g, h)

=
[2(a + b + c − m1 − m2 − 2)]m1

m1!

[2(b + c − m2 − 1)]m2

m2!

(
Tabc

)m1m2

(f, g, h)

(6.33)(
T

ρ
cab

)m1m2

(h, f, g) = ρe1

ce2
◦
(
1c × ρe2

ab

)
(h, f, g)

=
[2(a + b + c − m1 − m2 − 2)]m1

m1!

[2(a + b − m2 − 1)]m2

m2!

(
Tcab

)m1m2

(h, f, g)

(6.34)

The expression for the matrix
(
Y ρ
abc(n)

)m2

em2

switching between
(
T ρcab

)m1m2

and
(
T ρabc

)m1m2

will

be analogous to (6.32) with the substitution T → T ρ. The relation between the two matrices
will be:

(
Yabc(n)

)m2

em2

=
(
Uabc(n)

)m2

m̄2

(
Y

ρ
abc(n)

)m̄2

bm2

(
U−1

cab(n)
)bm2

em2

(6.35)

(
Uabc(n)

)m2

em2

= δm2 em2

(n − m2)!

[2(a + b + c − n − 2)]n−m2

m2!

[2(b + c − m2 − 1)]m2
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6 The local commutation relations

(
Uabc

)m2

em2
is the matrix which transforms

(
T ρabc

)n− em2,em2

into
(
Tabc

)n−m2,m2

.

It will be technically more convenient first to derive a formula for
(
Y ρ
abc(n)

)m2

em2

and then to

use (6.35) to compute
(
Yabc(n)

)m2

em2

.

To calculate expressions of the sort

(
T ρcab

)n−jt,jt
jk,0,n−jk(

T ρ
cab

)n−jt,jt
jt,0,n−jt

we use formulae (6.24) and (6.34) and get:

(
T

ρ
cab

)n−jr,jr

jr+1,0,n−jr+1(
T

ρ
cab

)n−jr ,jr

jr ,0,n−jr

= (−1)jr+1−jr

(
n − jr

jr+1 − jr

)
(γ − (n − jr) + 1)jr+1−jr

(α + β − (jr+1 + jr) + 1)jr+1−jr

(
T

ρ
cab

)n−s,s

j2,0,n−j2(
T

ρ
cab

)n−s,s

s,0,n−s

= (−1)j2−s

(
n − s

j2 − s

)
(γ − (n − s) + 1)j2−s

(α + β − (j2 + s) + 1)j2−s

(
T

ρ
cab

)n−jl−1,jl−1

jfm2
,0,n−jfm2(

T
ρ
cab

)n−jl−1,jl−1

jl−1,0,n−jl−1

= (−1)jfm2
−jl−1

(
n − jl−1

j em2
− jl−1

) (γ − (n − jl−1) + 1)jfm2
−jl−1

(α + β − (j em2
+ jl−1) + 1)jfm2

−jl−1

(6.36)

Here α := 2a− 2, β := 2b− 2, γ := 2c− 2.
Multiplication of two terms of this kind gives:

(
T

ρ
cab

)n−jr,jr

jr+1,0,n−jr+1(
T

ρ
cab

)n−jr ,jr

jr ,0,n−jr

(
T

ρ
cab

)n−jr+1,jr+1

jr+2,0,n−jr+2(
T

ρ
cab

)n−jr+1,jr+1

jr+1,0,n−jr+1

= (−1)jr+2−jr

(
n − jr

n − jr+1

)(
n − jr+1

n − jr+2

)
×

×
(γ − (n − jr) + 1)jr+2−jr

(α + β − 2jr+1 + 1)jr+1−jr

(α + β − (jr+2 + jr+1) + 1)jr+2+jr+1−2jr

(6.37)

Here we have used the property of the Pochhammer symbol that (a)m(a + m)n = (a)m+n.
When we multiply all the terms we get:

(
T

ρ
cab

)n−s,s

j2,0,n−j2(
T

ρ
cab

)n−s,s

s,0,n−s

...

(
T

ρ
cab

)n−jl−1,jl−1

em2,0,n− em2(
T

ρ
cab

)n−jl−1,jl−1

jl−1,0,n−jl−1

= (−1) em2−s (n − s)!

(n − m̃2)!

(γ − (n − s) + 1)
em2−s

(α + β − 2m̃2 + 1)2 em2−2s

×

×
∏

jr∈{jl}
fm2
s

(α + β − 2jr+1 + 1)jr+1−jr

(jr+1 − jr)!
(6.38)
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Then the expression for
(
Y ρ
abc(n)

)m2

em2

becomes:

(
Y

ρ
abc(n)

)m2

em2

=

em2∑

s=0

(
T

ρ
abc

)n−m2,m2

s,0,n−s(
T

ρ
cab

)n−em2, em2

em2,0,n−em2

[
(−1) em2−s (n − s)!

(n − m̃2)!

(γ − (n − s) + 1)
em2−s

(α + β − 2m̃2 + 1)2 em2−2s

×

×
∑

{jl}
fm2
s

(−1)l−1
∏

jr∈{jl}
fm2
s

(α + β − 2jr+1 + 1)jr+1−jr

(jr+1 − jr)!

]

(6.39)

Claim 6.6. On the basis of calculations for several small l’s we claim that:

∑

{jl}
fm2
s

(−1)l−1
∏

jr∈{jl}
fm2
s

(α + β − 2jr+1 + 1)jr+1−jr

(jr+1 − jr)!
= (−1) em2−s (α + β − 2m̃2 + 1)(α + β − m̃2 − s + 2) em2−s−1

(m̃2 − s)!

(6.40)

In this case we reach the following formula:

Proposition 6.7. We obtain the following expression for the matrix
(
Y ρ
abc(n)

)m2

em2

:

(
Y

ρ
abc(n)

)m2

em2

= (−1)n−em2

(
n

m2

)
(

n
em2

) (−β)m2

(−β) em2

1

(2m̃2 − α − β)n− em2

×

×
em2∑

s=0

(
n−m2

s

)
(n + m2 − s − β − γ)s(s − α)n−m2−s

(
n−s
em2−s

)
(n − m̃2 − γ)

em2−s

(α + β − 2m̃2 + 2)
em2−s

(6.41)

Relying only on the recursion formula (6.31), without referring to Claim 6.6, we observed

the following interesting property of the matrix
(
Y ρ
abc(n)

)m2

em2

:

Proposition 6.8. The entries from an arbitrary column of the matrix
(
Y ρ
abc(n)

)m2

em2

sum to

(−1)n+ em2, where m̃2 is the number of the column.

Proof. We will prove this statement by induction in the number of the column.
Let us first consider the column m̃2 = 0. The entries from this column are expressed as:

(
Y

ρ
abc(n)

)m2

0
= (−1)n (−α)n−m2

(n − m2)!

(−β)m2

m2!

n!

[−(α + β)]n
(6.42)

Then, using the property (a+b)n
n!

=
∑n

i=1
(a)i
i!

(b)n−i
(n−i)! we compute

∑n
m2=0

(
Y ρ
abc(n)

)m2

0
= (−1)n,

i.e. the statement of the proposition holds for m̃2 = 0.
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Now let us assume that
∑n

m2=0

(
Y ρ
abc(n)

)m2

j
= (−1)n+j is true for every j ≤ k − 1. We will

prove that then
∑n

m2=0

(
Y ρ
abc(n)

)m2

k
= (−1)n+k. We use formula (6.31) and write:

n∑

m2=0

(
Y

ρ
abc(n)

)m2

k
=

n∑

m2=0

(
T

ρ
abc

)n−m2,m2

k,0,n−k
−

k−1∑
j=0

(
Y

ρ
abc(n)

)m2

j

(
T

ρ
cab

)n−j,j

k,0,n−k

(
T

ρ
cab

)n−k,k

k,0,n−k

=
1

(
T

ρ
cab

)n−k,k

k,0,n−k





n−k∑

m2=0

(
T

ρ
abc

)n−m2,m2

k,0,n−k
−

k−1∑

j=0

[ n∑

m2=0

(
Y

ρ
abc(n)

)m2

j

](
T

ρ
cab

)n−j,j

k,0,n−k





=
1

(
T

ρ
cab

)n−k,k

k,0,n−k





n−k∑

m2=0

(
T

ρ
abc

)n−m2,m2

k,0,n−k
−

k−1∑

j=0

(−1)n+j
(
T

ρ
cab

)n−j,j

k,0,n−k





(6.43)

Let us write the second sum as:

k−1∑

j=0

(−1)n+j
(
T ρcab

)n−j,j
k,0,n−k

=

k∑

j=0

(−1)n+j
(
T ρcab

)n−j,j
k,0,n−k

− (−1)n+k
(
T ρcab

)n−k,k
k,0,n−k

(6.44)

Then we obtain:

n∑

m2=0

(
Y

ρ
abc(n)

)m2

k
=

1
(
T

ρ
cab

)n−k,k

k,0,n−k





n−k∑

m2=0

(
T

ρ
abc

)n−m2,m2

k,0,n−k
−

k∑

j=0

(−1)n+j
(
T

ρ
cab

)n−j,j

k,0,n−k



+ (−1)n+k

(6.45)

Hence, we have to prove that the expression in the brackets vanishes. Let us write this
expression explicitly:

n−k∑

m=0

(
T

ρ
abc

)n−m,m

k,0,n−k
−

k∑

j=0

(−1)n+j
(
T

ρ
cab

)n−j,j

k,0,n−k
=

= (−1)n+k

{ n−k∑

m=0

(β + γ − (n + m) + 1)k

k!

(α − (n − m) + 1)n−m−k

(n − m − k)!

(β − m + 1)m

m!
−

−
k∑

m=0

(α + β − (n + m) + 1)n−k

(n − k)!

(γ − (n − m) + 1)k−m

(k − m)!

(β − m + 1)m

m!

}
(6.46)

Let us now derive one useful formula:

(a + b)n

n!
=

n∑

i=0

(a)i

i!

(b)n−i

(n − i)!

(a − n + 1)n = (−1)n(−a)n





−→ (A + B + 1)n

n!
=

n∑

j=0

(A + j + 1)n−j

(n − j)!

(B − j + 1)j

j!
(6.47)
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Using this formula we can develop the first sum in (6.46) as:

n−k∑

m=0

(β + γ − (n + m) + 1)k

k!

(α − (n − m) + 1)n−m−k

(n − m − k)!

(β − m + 1)m

m!
=

=
n−k∑

m=0

k∑

i=0

(γ − n + i + 1)k−i

(k − i)!

(β − m − i + 1)i

i!

(α − (n − m) + 1)n−m−k

(n − m − k)!

(β − m + 1)m

m!
(6.48)

The product of the two terms which contain the parameter β may be rewritten using the
property (a)m+n = (a)m(a+m)n = (a)n(a + n)m:

(β −m− i+ 1)i
i!

(β −m+ 1)m
m!

=
(β −m− i+ 1)m

m!

(β − i+ 1)i
i!

(6.49)

Then formula (6.48) becomes:

n−k∑

m=0

(β + γ − (n + m) + 1)k

k!

(α − (n − m) + 1)n−m−k

(n − m − k)!

(β − m + 1)m

m!
=

=

k∑

i=0

(γ − n + i + 1)k−i

(k − i)!

(β − i + 1)i

i!

n−k∑

m=0

(α − (n − m) + 1)n−m−k

(n − m − k)!

(β − m − i + 1)m

m!
=

=
k∑

i=0

(γ − n + i + 1)k−i

(k − i)!

(β − i + 1)i

i!

(α + β − (n + i) + 1)n−k

(n − k)!
(6.50)

This means that the first sum is equal to the second sum in (6.46), hence their difference is
zero and formula (6.45) gives:

n∑

m2=0

(
Y ρ
abc(n)

)m2

k
= (−1)n+k (6.51)

This proves the induction hypothesis and the proposition.

6.5 Reduction of the field algebra

The field algebra, which we will denote with V, decomposes as a linear space into a direct sum
of unitary representations via commutators of sl(2,R), which is a subalgebra of V:

V =
⊕

a∈N

Va (6.52)

Every subspace Va is a span of finitely many quasiprimary fields with the same integer scaling
dimension a > 0 and is isomorphic to Va ⊗ πa. As in Section 6.3, πa is a test functions space,
which is a representation space for sl(2,R). Va is a finite–dimensional multiplicity space with
basis Wa, which accounts for the number of fields with scaling dimension a. The isomorphism
above is realized by the map φa which acts as:

φa : A⊗ f → A(f), A ∈ Va, f ∈ πa (6.53)
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6 The local commutation relations

We leave out the identity operator I (of dimension a = 0) from the reduced space for several
reasons. First, (6.53) fails to be an isomorphism in this case because I(f) = (

∫
f(x)dx) · 1

depends only on the integral of f . Second, the unit operator is central in the field algebra, so
its commutator with other fields contains no information. Third, the contribution of the unit
operator to the commutator of two fields is completely determined by the 2-point function,
which we shall treat as an independent structure element in Section 6.7.

Definition 6.9 (The reduced space V ). The direct sum of all multiplicity spaces V = ⊕a∈NVa
will be called the reduced space V .

In the following we will show that the Lie algebra structure of V is enciphered into a multi–
component structure on the reduced space V .

Definition 6.10 (The reduced Lie bracket Γ∗(·, ·)m). On the reduced space V = ⊕aVa the
commutator [·, ·] in V is represented by the multi–component ∗-bracket [·, ·]∗m or
Γ∗(·, ·)m : Va × Vb → Va+b−1−m, m ≥ 0:

Γ∗(A,B)m :=
∑

C∈Wa+b−1−m

FC
ABC, m := a+ b− c− 1 (6.54)

Indeed, if we rewrite the Lie commutators (6.1) using (6.53) we find (suppressing the detailed
form of the contribution from the unit operator):

−i[φa(A⊗ f), φb(B ⊗ g)] =
∑

c<a+b

φc

(
∑

C∈Wc

FC
ABC ⊗ λcab(f, g)

)
+ (unit operator)

=
∑

c<a+b

φc

(
∑

c

Γ∗(A,B)m ⊗ λcab(f, g)

)
+ (unit operator)

(6.55)

Observation. The anti–symmetry property of the commutator is encoded in the graded sym-
metry property of the ∗-bracket:

Γ∗(X1, X2)m = (−1)m+1Γ∗(X1, X2)m (6.56)

(6.56) actually reproduces the graded symmetry of the structure constants FC
AB (6.7).

Remark. The reduction of the algebra may be interpreted as disentangling the sl(2,R) “kine-
matic” representation details from the structure constants FC

AB. The former are completely
dictated by the conformal symmetry, whereas the latter specify the model (together with the
dimension dim Va).

In order to perform a complete reduction of the field algebra V we must also “reduce” the
Jacobi identity and this will be done in the next section.
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6.6 The reduced Jacobi identity and further constraints on

the structure constants FC
AB

In this section we will examine what becomes of the Jacobi identity of the commutators under
the “space reduction”. In this way we will complete the reduction of the field algebra and we
will find further restrictions on the coefficients FC

AB.
The Jacobi identity in its full form among three quasiprimary fields A(f) ∈ Va, B(g) ∈ Vb

and C(h) ∈ Vc is:

[
A(f),

[
B(g), C(h)

]]
+
[
B(g),

[
C(h), A(f)

]]
+
[
C(h),

[
A(f), B(g)

]]
= 0 (6.57)

Now let us concentrate on the first term. As in (6.54), we want to detach the test function con-
tribution from the operator part. Using the construction of intertwiners for multiple products
of representations (6.10) and the relation (6.53) we write:

[
A(f),

[
B(g), C(h)

]] ∼=
∑

m1m2

Γ∗
(
A, Γ∗(B, C)

)
m1m2

⊗
(
Tabc

)m1m2

(f, g, h) (6.58)

Γ∗
(
A, Γ∗(B, C)

)
m1m2

=
∑

E1∈We1
=Wa+b+c−m1−m2−2

E2∈We2
=Wb+c−m2−1

FE1

AE2
FE2

BCE1 (6.59)

Here and everywhere in the rest of this section the relation between the e’s and the m’s are as
in Section 6.3.

The same considerations + (6.17) and bilinearity of the tensor product give for the second
term:

[
B(g),

[
C(h), A(f)

]] ∼=
∑

em1, em2

Γ∗
(
B, Γ∗(C, A)

)
em1 em2

⊗
(
Tbca

)em1 em2

(g, h, f)

=
∑

em1, em2

Γ∗
(
B, Γ∗(C, A)

)
em1 em2

⊗
∑

m1,m2

(
Ybca

) em1 em2

m1m2

(
Tabc

)m1m2

(f, g, h)

=
∑

em1, em2,m1,m2

Γ∗
(
B, Γ∗(C, A)

)
em1 em2

(
Ybca

)em1 em2

m1m2

⊗
(
Tabc

)m1m2

(f, g, h)

(6.60)

Γ∗
(
B, Γ∗(C, A))

)
em1 em2

=
∑

E1∈Wẽ1
=Wa+b+c−fm1−fm2−2

E2∈Wẽ2
=Wc+a−fm2−1

FE1

BE2
FE2

CAE1 (6.61)

In analogy, we obtain for the third term:

[
C(h),

[
A(f), B(g)

]] ∼=
∑

bm1, bm2, em1, em2,m1,m2

Γ∗
(
C, Γ∗(A, B)

)
bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

⊗
(
Tabc

)m1m2

(f, g, h)

(6.62)

Γ∗
(
C, Γ∗(A, B)

)
bm1 bm2

=
∑

E1∈Wê1
=Wa+b+c−cm1−cm2−2

E2∈Wê2
=Wa+b−cm2−1

FE1

CE2
FE2

ABE1 (6.63)
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Now we sum all these terms and we get:

∑

m1m2

{
Γ∗
(
A, Γ∗(B, C)

)
m1m2

+ Γ∗
(
B, Γ∗(C, A)

)
em1 em2

(
Ybca

)em1 em2

m1m2

+

+ Γ∗
(
C, Γ∗(A, B)

)
bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

}
⊗
(
Tabc

)m1m2

(f, g, h) = 0 (6.64)

Having in mind that the basis components
(
Tabc

)m1m2

(f, g, h) for different values of m1 and m2

are linearly independent functionals of the test functions, and the test functions are arbitrary,
we conclude for any fixed pair (m1, m2):

Γ∗
(
A, Γ∗(B, C)

)
m1m2

+ Γ∗
(
B, Γ∗(C, A)

)
em1 em2

(
Ybca

)em1 em2

m1m2

+ Γ∗
(
C, Γ∗(A, B)

)
bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

= 0

(6.65)

Let us denote the left-hand side of the reduced Jacobi identity (6.65) with RJI(A,B,C)m1m2
.

Clearly, because Yabc · Ycab · Ybca = 1, one has the following symmetry rule:

RJI(A,B,C)m1m2
= RJI(B,C,A)

em1 em2

(
Ybca

)
em1 em2

m1m2

(6.66)

i. e. the vanishing of RJI(A,B,C)m1m2
is invariant under cyclic permutations, as it is expected.

If we use the explicit expressions for the nested (Γ∗)’s from above, the reduced Jacobi identity
becomes for every quadruple of quasiprimary fields A,B,C and E and for every pair m1, m2

such that m1 +m2 = a + b+ c− e− 2:

 ∑

E2∈We2

FE
AE2

FE2

BC



m1m2

+


 ∑

E2∈Wẽ2

FE
BE2

FE2

CA




em1 em2

(
Ybca

)
em1 em2

m1m2

+

+


 ∑

E2∈Wê2

FE
CE2

FE2

AB




bm1 bm2

(
Ycab

)
bm1 bm2

em1 em2

(
Ybca

)
em1 em2

m1m2

= 0 (6.67)

Observation. The reduced form of the Jacobi identity gives further restrictions on the struc-
ture constants FC

AB. Every solution of this infinite set of constraints provides a candidate for
the commutator algebra of a local chiral conformal field theory.

As noted in Section 6.4.1, the matrix elements of Yabc can have vanishing denominators, that
have to be regularized (e.g by giving small imaginary parts to the dimensions). As it turns out,
in (6.67) these singularities will not be suppressed in general by the vanishing of the structure
constants involving negative scaling dimensions. To make sense of the singular Jacobi identities,
one has to multiply by the singular denominators and then remove the regulators. The effect
will be that only one or two of the three terms of the Jacobi identity may survive, so that the
general appearance of the Jacobi identity may be quite different from the usual “three-term”
form. Notice that anyway, due to the multi–component structure of the bracket, each of the
three terms is in general a sum over different “intermediate” representations.
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6.7 Relation between FC
AB and 2- and 3-point amplitudes

As we know from previous sections, the 2-point function of the fields A(x) and B(x) has the
form:

〈A(x1)B(x2)〉 = 〈〈AB〉〉
( −i
x12 − iε

)2a

≡ 〈〈AB〉〉
(ix12)2a

ε

(6.68)

The map A,B → 〈〈AB〉〉 is a real bilinear map on the reduced space which is:

• symmetric: 〈〈AB〉〉 = 〈〈BA〉〉

• respects the grading: 〈〈AB〉〉 = 0 if the scaling dimensions a 6= b

• positive definite: 〈〈AB〉〉 > 0 unless A = 0

The first property reflects locality of the QFT, the second is a consequence of Möbius invariance,
and the last one is Wightman positivity, i.e., the positive-definiteness of the Hilbert space inner
product.

Similarly, 3-point function has the following form:

〈A(x)B(y)C(z)〉 = 〈〈ABC〉〉 (−i)a+b+c
(x− y − iε)a+b−c(y − z − iε)b+c−a(x− z − iε)a+c−b

(6.69)

and by locality its amplitude must satisfy:

〈〈BAC〉〉 = (−1)a+b−c〈〈ABC〉〉 (6.70)

We will show that the amplitudes of the 2- and the 3-point functions are not independent
on each other. For this purpose, let us consider the 3-point function 〈[A,B]C〉. We can find it
as 〈[A,B]C〉 = 〈ABC〉 − 〈BAC〉:

〈[A,B]C〉 =
(−i)a+b+c〈〈ABC〉〉

(x− z − iε)a+c−b(y − z − iε)b+c−a

[
1

(x− y − iε)a+b−c
− 1

(x− y + iε)a+b−c

]

(6.71)

Then we remember:
(

1

x− iε
− 1

x+ iε

)
= 2πiδ(x)

(−1)nn!

(
1

(x− iε)n+1
− 1

(x+ iε)n+1

)
= 2πiδ(n)(x) (6.72)

and obtain:

〈[A(x), B(y)]C(z)〉 =
(−i)a+b+c〈〈ABC〉〉

(x − z − iε)a+c−b(y − z − iε)b+c−a

2πi

(−1)a+b−c−1(a + b − c − 1)!
δ(a+b−c−1)(x − y) +

+lower derivatives of δ (6.73)
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Using the following expansion:

δ(m)(x− y)f(x, y) = δ(m)(x− y)f(x, x) + lower derivatives of δ (6.74)

we end up with:

〈[A,B]C〉 =
(−i)a+b+c〈〈ABC〉〉

(x− z − iε)2c

2πi

(−1)a+b−c−1(a+ b− c− 1)!
δ(a+b−c−1)(x− y) (6.75)

On the other hand, we remember that −i[A,B] =
∑
FC
ABC. We use the following translation

formula:

C(∂p · ∂qg) → (−1)p+q∂qy(∂
p
xδ(x− y) · C(y)) (6.76)

and get:

−i[A(x), B(y)] =
∑

c<a+b

∑

C∈Wc

FC
AB

∑

p,q≥0
p+q=a+b−c−1

λcab(p, q)(−1)p+q∂qy(∂
p
xδ(x− y) · C(y))

=
∑

c<a+b

∑

C∈Wc

FC
AB

∑

p,q≥0
p+q=a+b−c−1

λcab(p, q)(−1)p∂p+qx δ(x− y)C(y) +

+ lower derivatives of δ (6.77)

We can calculate:

∑

p+q=a+b−c−1
p,q≥0

(−1)p+qλcab(p, q) = (−1)a+b−c−1 (a + b− c− 1)!

(2c)a+b−c−1

∑

p,q≥0
p+q=a+b−c−1

(c+ b− a)p
p!

(c+ a− b)q
q!

= (−1)a+b−c−1 (a + b− c− 1)!

(2c)a+b−c−1

(2c)a+b−c−1

(a + b− c− 1)!

= (−1)a+b−c−1 (6.78)

Then we have:

−i[A(x), B(y)] =
∑

c<a+b

∑

C∈Wc

FC
AB(−1)a+b−c−1δ(a+b−c−1)(x− y)C(y) (6.79)

and can write 〈[A,B]C〉 as:

〈[A(x), B(y)]C(z)〉 =
∑

C′∈Wc

FC′

AB(−1)a+b−c−1δ(a+b−c−1)(x− y)〈〈C ′C〉〉
( −i
x− z − iε

)2c

+

+lower derivatives of δ (6.80)
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Comparing (6.73) and (6.80) we obtain:

(−i)a+b+c
(a+ b− c− 1)!

2πi〈〈ABC〉〉 =
∑

C′∈Wc

FC′

AB〈〈C ′C〉〉(−i)2c (6.81)

With the same considerations for 〈A[B,C]〉 we obtain:

(−i)a+b+c
(b+ c− a− 1)!

2πi〈〈ABC〉〉 =
∑

A′∈Wa

FA′

BC〈〈A′A〉〉(−i)2a (6.82)

The last two formulae allow us to find a new condition on the structure constants FC
AB involving

only 2-point amplitudes:

(a+ b− c− 1)!(−1)c
∑

C′∈Wc

FC′

AB〈〈C ′C〉〉 = (b+ c− a− 1)!(−1)a
∑

A′∈Wa

FA′

BC〈〈A′A〉〉 (6.83)

or

(a+b−c−1)!(−1)c〈〈Γ∗(A,B)a+b−c−1, C〉〉 = (b+c−a−1)!(−1)a〈〈A,Γ∗(B,C)b+c−a−1〉〉 (6.84)

There are two ways how to look at this condition: either one assumes a given quadratic
form 〈〈·, ·〉〉, which amounts to fixing bases of the finite-dimensional reduced field spaces Va:
then (6.83) is indeed an additional constraint on the structure constants FC

AB. Or one regards
the reduced bracket (6.10) subject to the structure relations (6.7) and (6.67) as the primary
structure: then (6.84) is an invariance condition on the quadratic form, in the same way as
the invariance condition g([X, Y ], Z) = g(X, [Y, Z]) on a quadratic form on a Lie algebra. This
invariant quadratic form on the reduced Lie algebra corresponds to the vacuum expectation
functional on the original commutator algebra.

6.8 Axiomatization of chiral conformal QFT

The upshot of the previous analysis is a new axiomatization of chiral conformal quantum field
theory. It consists of the three data:

• a graded reduced space of fields V =
⊕

a∈N
Va,

• a generalized Lie bracket Γ∗ =
∑

m≥0 Γ∗
m : V × V → V

• and a quadratic form 〈〈· ·〉〉 : V × V → R

These data should enjoy the features outlined before: Va are real linear spaces; the bracket
is filtered: Γ∗(Va × Vb) ⊂ ⊕

m≥0 Va+b−1−m, and satisfies the graded symmetry (6.56) and
generalized Jacobi identity (6.65); the quadratic form is symmetric, positive definite, respects
the grading, and is invariant (6.84) with respect to the bracket.
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6 The local commutation relations

Notice that the unitarity bound (absence of negative scaling dimensions) has been imposed
through the specification of the reduced space V . Although the local intertwiner bases, and
therefore also the coefficient matrices Y in the Jacobi identity do involve “intermediate” rep-
resentations of negative dimensions (a + b − 1 −m may be < 0), these do not contribute to
the present axiomatization because they multiply non-existent structure constants. Recall also
that the possibly singular instances of the Jacobi identity have to be understood as explained
in the end of Sect. 6.6.

One may impose further physically motivated constraints, e.g., the existence of a stress-
energy tensor as a distinguished field T ∈ V2 whose structure constants FA

TA take canonical
values; or the generation of the entire reduced space by iterated brackets of a finite set of fields,
formulated as a surjectivity property of the bracket.

As a simple example, one may consider the constraints on the structure constants for the
commutator of two fields A,B of dimension one. The only possibility in this case is dimC = 1.
The generalized Jacobi identity just reduces to the classical Jacobi identity for the structure
constants of some Lie algebra g. Likewise, the invariance property of the quadratic form
becomes the classical g-invariance of the quadratic form h(A,B) = 〈〈AB〉〉 on g. The positivity
condition on the quadratic form implies that g must be compact, and that h is a multiple of
the Cartan-Killing metric. In other words: one obtains precisely the Kac-Moody algebras as
solutions to this part of the constraints. The quantization of the level is expected to arise by
the interplay between the positivity condition with the higher generalized Jacobi identities.

Other approaches [Zamolodchikov, 1986; Bouwknegt, 1988; Blumenhagen et al., 1991] to
the classification of “W -algebras” have, of course, exploited essentially the same consistency
relations for a set of generating fields. Our focus here is, however, on the entire structure
including all “composite” fields, and the possibility to formulate a deformation theory, to
which we turn in the next chapter.
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7 Cohomology and deformations of the
reduced Lie algebra

In this chapter we will study the deformation theory of the reduced Lie bracket. The motivat-
ing example for us was [Hollands, 2008], where deformations in the setting of OPE(operator
product expansion) approach to quantum field theory on curved space–time were studied. We
consider formal deformations, defined as a perturbative series, such that the reduced Jacobi
identity is respected. Following the standard strategy from other deformation theories of alge-
braic structures, we first construct a cohomology complex related to our deformation problem.
To construct this complex, which we call reduced Lie algebra cohomology complex, we will
adapt the scheme used to define a Lie algebra cohomology to our case. The functions, which
build the cochain spaces of our cochain complex, will possess a complicated symmetry property,
a generalization of (anti-)symmetry, which we will define in the first section of this chapter
and we will call it Zε

B-symmetry.

We still have not calculated the cohomology groups of this complex, but we have shown
that the non-trivial first order perturbations in the deformation theory belong to the second
cohomology group and we have computed the obstruction operators to their integration. As
our cohomology complex is obtained merely by stripping off the test functions from the field
Lie algebra cohomology complex, we expect that it inherits all the nice properties of the Lie
case, in particular that the obstructions to lift a perturbation to higher order lie in the third
cohomology group. In such case we would be immediately able to relate the rigidity of the
reduced Lie bracket to the content of the second cohomology group and the integrability of
the elements of this group to the content of the third cohomology group.

7.1 Zε
B-symmetry

The reduced bracket (6.54) obeys the symmetry rule (6.7). The reduced Jacobi identity (6.65)
obeys the symmetry rule (6.66). A symmetry rule, generalizing the last two rules for structures
with more arguments, will be the following:

Definition 7.1 (Zε
B-symmetry). Let V be the reduced space as in Section 6.5 and let us con-

sider the maps ω∗n
B (·, ..., ·)m1...mn−1

: V × ...× V︸ ︷︷ ︸
n

→ V . Let an be the n-tuple of scaling dimen-

sions ai, let Xi ∈ Vai and let mn−1 will be the n-tuple (m1, ..., mn−1). Let ω∗n
B (X1, ..., Xn)mn−1

be non-zero only for mi ≤
∑n

s=i as −
∑n−1

t=i+1mt − n + i. We will say that ω∗n
B (X1, ..., Xn)mn−1
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7 Cohomology and deformations of the reduced Lie algebra

are Zε
B-symmetric if:

ω∗n
B (X1, ..., Xn)mn−1

=
1

n!

∑

in

ω∗n
B (Xi1 , ..., Xin) emn−1

(
Zε
BB,an,σin

)
emn−1

mn−1

(7.1)

or equivalently:

ω∗n
B (X1, ..., Xn)mn−1

= ω∗n
B (Xi1, ..., Xin) emn−1

(
Zε
BB,an,σin

)
emn−1

mn−1

(7.2)

where
(
Zε
BB,an,σin

)
emn−1

mn−1

:= εi1...in

(
ZBB,an,σin

)
emn−1

mn−1

, with
(
ZBB,an,σin

)
emn−1

mn−1

as in Definition 6.4

and σin is the permutation {i1, ..., in} of the indices {1, ..., n}.
From now on we will use the notation

∑
in

:=
∑

i1 6=... 6=in
i1...in∈[1,...n]

Notation. We will be interested in those Zε
B-symmetric maps for which B is the default

bracket scheme as in Section 6.3. We will call such maps Zε-symmetric. From now on,
whenever the label B stands for the default bracket scheme, we will just omit it.

Observation. It follows from the definition that:

ω∗n
B (X1, ..., Xn) bmn−1

(
Zε
B,an,1

)
bmn−1

mn−1

= ω∗n
B (Xi1 , ..., Xin) emn−1

(
Zε
B,an,σin

)
emn−1

mn−1

(7.3)

To show this, one uses:
(
Zε
B,an,σin

)
emn−1

mn−1

=
(
Zε
BB,an,σin

)
emn−1

bmn−1

(
Zε
B,an,1

)
bmn−1

mn−1

(7.4)

Proposition 7.2. The Zε
B-symmetry of ω∗n

B (X1, ..., Xn)mn−1
ensures that the function

ωn(X1(f1), ..., Xn(fn)) :=
∑

P

mi<
P

ak−n+1

ω∗n
B (X1, ..., Xn)mn−1

⊗
(
TB,an

)mn−1

(f1, ..., fn) (7.5)

is completely anti–symmetric in the arguments Xi(fi).

Proof. It follows directly from the definitions that:

ωn(X1(f1), ..., Xn(fn)) =
∑

ω∗n
B (X1, ..., Xn) bmn−1

⊗
(
TB,an

)
bmn−1

(f1, ..., fn)

=
∑

ω∗n
B (X1, ..., Xn) bmn−1

⊗
(
Zε
B,an,1

)
bmn−1

mn−1

(
Tan

)mn−1

(f1, ..., fn)

=
∑

ω∗n
B (Xi1, ..., Xin) emn−1

⊗
(
Zε
B,an,σin

)
emn−1

mn−1

(
Tan

)mn−1

(f1, ..., fn)

=
∑

ω∗n
B (Xi1, ..., Xin) emn−1

εi1...in ⊗
(
TB,σin (an)

)
emn−1

(fi1, ..., fin)

= εi1...inω
∗n(Xi1(fi1), ..., Xin(fin)) (7.6)

which proves the proposition.
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Example. The two natural examples for Zε-symmetric functions are the ∗-bracket and the
reduced Jacobi identity.

Proposition 7.3. Every Zε
B-symmetric map gives rise to a Zε-symmetric map. The function

ω∗n(X1, ..., Xn)mn−1
= ω∗n

B (X1, ..., Xn) emn−1

(
Zε
B,an,1

)
emn−1

mn−1

(7.7)

is Zε-symmetric.

Proof. One observes that:

(
Zε
B,an,σin

)
emn−1

mn−1

=
(
Zε
B,σin (an),1

)
emn−1

bmn−1

(
Zε
an,σin

)
bmn−1

mn−1

(7.8)

Then one writes:

ω∗n(X1, ..., Xn)mn−1
= ω∗n

B (X1, ..., Xn) bmn−1

(
Zε
B,an,1

)
bmn−1

mn−1

= ω∗n
B (Xi1 , ..., Xin) emn−1

(
Zε
B,an,σin

)
emn−1

mn−1

= ω∗n
B (Xi1 , ..., Xin) emn−1

(
Zε
B,σin(an),1

)
emn−1

bmn−1

(
Zε
an,σin

)
bmn−1

mn−1

= ω∗n(Xi1 , ..., Xin) bmn−1

(
Zε
an,σin

)
bmn−1

mn−1

(7.9)

and this proves the proposition.

Corollary. One can construct a Zε-symmetric map out of any set of Zε
B-symmetric maps

ω∗n
Bi

(X1, ..., Xn)mn−1
the following way:

ω∗n(X1, ..., Xn)mn−1
=
∑

i

ω∗n
Bi

(X1, ..., Xn) emn−1

(
Zε
Bi,an,1

)
emn−1

mn−1

(7.10)

Remark. In an analogous way one shows that a Zε
B1

-symmetric map gives rise to a Zε
B2

-
symmetric map for every choice of bracket schemes B1 and B2.

All this shows, that if we consider the set of Zε symmetric maps, we automatically take into
account also the Zε

B-symmetric maps for any bracket scheme B.

7.2 Reduced Lie algebra cohomology

In this section we will introduce the reduced Lie algebra cohomology complex:

Definition 7.4 (reduced Lie algebra cohomology). We define the reduced Lie algebra co-
homology as:
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7 Cohomology and deformations of the reduced Lie algebra

• Cochain complex:

1. Cochain spaces Cn(V ) of dimension n:

The n-cochains in the cochain complex will be the tensor–valued Zε-symmetric maps
ω∗n(·, ..., ·)mn−1

. The spaces Cn(V ) of all Zε-symmetric ω∗n’s for a fixed n will compose
the cochain sequence C := (Cn(V ))n∈N.

2. Coboundary operators bn:

We define the coboundary operator bn : Cn(V ) → Cn+1(V ) through the following component–
wise action, provided that mi ≤

∑n
s=i as −

∑n−1
t=i+1mt − n + i:

[bnω∗n](Xn+1)mn
:=

(−1)n

n!

∑

in+1

[
Γ∗
(
Xi1 , ω

∗n(Xi2 , ..., Xin+1
)
)]

emn

(
Zε

an+1
,σin+1

) emn

mn

+

+
1

2(n− 1)!

∑

j
n+1

[
ω∗n

(
Xj1 , ..., Xjn−1

, Γ∗(Xjn , Xjn+1
)
)]

emn

(
Zε

an+1
,σj

n+1

)emn

mn

(7.11)

or equivalently:

[bnω∗n](Xn+1)mn
:= (−1)n

n+1∑

i=1

[
Γ∗
(
Xi, ω

∗n(X1, ..., X̂i, ..., Xn+1)
)]

emn

(
Zε

an+1,σbi

)emn

mn

+

+

n∑

k>j=1

[
ω∗n

(
X1, ..., X̂j , ..., X̂k, ..., Xn+1, Γ

∗(Xj , Xk)
)]

emn

(
Zε

an+1,σbjbk

)emn

mn

(7.12)

where σ
bi is the permutation {i, 1, ..., î, ..., n+1} and σ

bjbk is the permutation {1, ..., ĵ, ..., k̂, ...,
n+ 1, j, k}.
Again

∑
in+1

:=
∑

i1 6=... 6=in+1

ik∈[1,...n+1]

.

For those n-tuples (m1, ..., mn), for which the condition mi ≤
∑n

s=i as−
∑n−1

t=i+1mt−n+ i
does not hold, [bnω∗n](X1, ..., Xn+1)mn

will be set to 0.

We will show later that bn+1 ◦ bn = 0.

• Cohomology group:

We define:

Zn(V ) := Ker(bn) =
{
ω∗n ∈ Cn(V ) | [bnω∗n](X1, ..., Xn+1)mn = 0, ∀mn ∈ N⊗n

0

}

Bn(V ) := Im(bn) =
{
ω∗n ∈ Cn(V ) | ω∗n = bn−1ω∗n−1, ω∗n−1 ∈ Cn−1(V )

}
(7.13)
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Clearly, bn+1 ◦ bn = 0 implies Bn(V ) j Zn(V ). Then we define the nth reduced Lie
algebra cohomology group as the quotient:

RLHn(V ) = Zn(V )/Bn(V ) (7.14)

In order to guarantee that the structure above really gives rise to a cohomology theory, one
has to verify that the operators b are really differentials and this will be our occupation until
the end of this section.

Proposition 7.5. bn+1 ◦ bn = 0 applied to any map ω∗n from the cochain complex.

Proof. Before we proved this proposition, we proved as an exercise a similar statement for Lie
algebras (see Appendix B) and throughout the current proof we use the guiding example of
the Lie algebra case. This proof will be at places sketchy, because a complete proof would be
too much overloaded with subtle technical details and the main ideas would become hardly
observable. Before the concrete calculations, let us make the following observations:

Observation (1). Suppose that we know the map ω∗n in the form:

ω∗n(X1, ..., Xn)mn−1
=

1

n!

∑

in

Ω∗n(Xi1 , ..., Xin) emn−1

(
Zε

an,σin

) emn−1

mn−1

(7.15)

and Ω∗n is a composite function in terms of other Zε-symmetric maps (for example, the two
terms of (7.11)). Then we want to write (7.11) and (7.12) in a form, which applied to such maps
to produce immediately a more concrete result, that may be more conveniently simplified.

Let us focus on the second term of (7.11). Assumed that we know ω∗n in the form (7.15),

the map

[
ω∗n

(
X1, ..., Xn−1, Γ

∗(Xn, Xn+1)
)]

em

can be decomposed into a sum of blocks:

[
ω∗n

(
X1, ..., Xn−1, Γ

∗(Xn, Xn+1)
)]

Bκ,mn

=

=
1

n!

∑

in−1

(−1)n−kΩ∗n
(
Xi1 , ..., Γ

∗(Xn, Xn+1)mn , Xiκ ..., Xin−1

)
emn−1

(
Zε

BκBκ,an+1
,σiκ

n−1

) emn

mn

(7.16)

where σiκn−1
denotes the permutation {i1, ..., iκ−1, n, n + 1, iκ, ..., in−1} and TBκ will be a basis

of the type:
(
Tσ

i
ea;κ
n−1

(an−1)

)mn−1 ◦ (1ai1 × 1ai2 × ...× λea
an,an+1

× ...× 1ain−1
)mn (7.17)

where σ
iea;κn−1

(an−1) denotes the permutation {ai1 , .., aiκ−1
, ã, aiκ, ..., ain−1

}. We obtain the follow-

ing Zε-symmetrized version of

[
ω∗n

(
X1, ..., Xn−1, Γ

∗(Xn, Xn+1)
)]

Bκ, em

:

1

(n + 1)!

∑

j
n+1

[
ω∗n

(
Xj1 , ..., Xjn−1

, Γ∗(Xjn , Xjn+1
)
)]

Bκ, emn

(
Zε

Bκ,an+1
,σj

n+1

) emn

mn

(7.18)
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Note that a decomposition of ω∗n in the form (7.15) always exists, and we know for every ω∗n

at least one such decomposition (see (7.1)). Of course, such decomposition is not unique and
there could be more than one Ω∗n producing the same ω∗n. Suppose that we know two such
maps, for example Ω∗n

1 and Ω∗n
2 . Then, using the expression (7.15), we obtain immediately:

∑

in

(Ω∗n
1 − Ω∗n

2 )(Xi1, ..., Xin) emn−1

(
Zε
an,σin

)
emn−1

mn−1

= 0 (7.19)

Then the map Ω∗n
1 − Ω∗n

2 is “Zε-nilpotent”. This means that although the blocks
[ ]

B,mn
are different for different maps Ω∗n, their Zε-symmetrization produces the same result. As we
use only symmetrized versions of these blocks, we will avoid additional labelling indicating the
concrete choice of Ω∗n.

Then we rewrite (7.11) and (7.12) in the form:

[bnω∗n](Xn+1)mn
:=

(−1)n

n!

∑

in+1

[
Γ∗
(
Xi1 , ω

∗n(Xi2 , ..., Xin+1
)
)]

emn

(
Zε

an+1
,σin+1

)emn

mn

+

+
1

2(n − 1)!

n∑

κ=1

∑

j
n+1

[
ω∗n

(
Xj1 , ..., Xjn−1

, Γ∗(Xjn , Xjn+1
)
)]

Bκ, emn

(
Zε

Bκ,an+1
,σj

n+1

)emn

mn

(7.20)

or equivalently:

[bnω∗n](Xn+1)mn
:= (−1)n

n+1∑

i=1

[
Γ∗
(
Xi, ω

∗n(X1, ..., X̂i, ..., Xn+1)
)]

emn

(
Zε

an+1,σbi

) emn

mn

+

+

n∑

κ=1

n∑

k>j=1

[
ω∗n

(
X1, ..., X̂j , ..., X̂k, ..., Xn+1, Γ

∗(Xj , Xk)
)]

Bκ, emn

(
Zε

Bκ,an+1
,σbjbk

)emn

mn

(7.21)

where σ
bi is the permutation {i, 1, ..., î, ..., n+ 1} and σ

bjbk is the permutation {1, ..., ĵ, ..., k̂, ...,
n+ 1, j, k}.
Observation (2). The map, appearing in the first term of (7.20):

W ∗n+1(X1, ..., Xn+1)mn
=

(−1)n

n!

∑

in+1

[
Γ∗
(
Xi1 , ω

∗n(Xi2 , ..., Xin+1
)
)]

emn

(
Zε

an+1
,σin+1

)emn

mn

(7.22)

is Zε-symmetric. Supposed that we know the decomposition (7.15) of ω∗n, we can write:

W ∗n+1(X1, ..., Xn+1)mn
=

1

(n + 1)!

∑

in+1

Ω∗n+1(Xi1 , ..., Xin+1
)m̂n

(
Zε

an+1,σin+1

)m̂n

mn

Ω∗n+1(Xi1 , ..., Xin+1
)mn

:= (−1)n(n + 1)

[
Γ∗
(
Xi1 , ω

∗n(Xi2 , ..., Xin+1
)
)]

mn

= (−1)n(n + 1)

[
Γ∗
(
Xi1 , Ω

∗n(Xi2 , ..., Xin+1
)
)]

mn

(7.23)
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The map, appearing in the second term of (7.20):

W ∗n+1
κ (X1, ..., Xn+1)mn

=
1

2(n − 1)!

n∑

κ=1

∑

j
n+1

[
ω∗n

(
Xj1 , ..., Xjn−1

, Γ∗(Xjn , Xjn+1
)
)]

Bκ, emn

(
Zε

Bκ,an+1,σj
n+1

)emn

mn

(7.24)

is Zε-symmetric. We observe that:
(
Zε

Bκ,an+1,σj
n+1

)emn

mn

=
(
Zε

Bκ,σj
n+1

(an+1
),1

) emn

m̂n

(
Zε

an+1,σj
n+1

)m̂n

mn

(7.25)

Thus W ∗n+1
κ (X1, ..., Xn+1) can be written as:

W ∗n+1
κ (X1, ..., Xn+1)mn

=
1

(n + 1)!

∑

in+1

Ω∗n+1
κ (Xi1 , ..., Xin+1

)m̂n

(
Zε

an+1
,σin+1

)m̂n

mn

Ω∗n+1
κ (Xi1 , ..., Xin+1

)mn
:=

n(n + 1)

2

[
ω∗n

(
Xj1 , ..., Xjn−1

, Γ∗(Xjn , Xjn+1
)
)]

Bκ, emn

(
Zε

Bκ,σj
n+1

(an+1
),1

)emn

mn

(7.26)

Then we find:
[
W ∗n+1

κ1

(
X1, ..., Xn, Γ∗(Xn+1, Xn+2)

)]

Bκ2
, emn+1

=

=
1

(n + 1)!

∑

in

(−1)n+1−κ2Ω∗n+1
κ1

(
Xi1 , ..., Γ

∗(Xn+1, Xn+2)mn+1
, Xiκ2

..., Xin

)
emn

(
Zε

Bκ2
Bκ2

,an+2,σ
i
κ2
n

)emn+1

mn+1

(7.27)

Taking into account (7.15) and (7.16) after some quite cumbersome computations we arrive
at:

n+1∑

κ1=1

n+1∑

κ2=1

n+1∑

k>j=1

[
W ∗n+1

κ1

(
X1, ..., X̂j , ..., X̂k, ..., Xn+2, Γ

∗(Xj , Xk)
)]

Bκ2,fmn+1

(
Zε

Bκ2
,an+2,σbjbk

)emn+1

mn+1

=

=
n(n − 1)

4(n!)

n∑

κ1 6=κ2=1

∑

in+2

[
ω∗n

(
Xi1 , ..., Γ

∗(Xin−1
, Xin), Γ∗(Xin+1

, Xin+2
)

)]

Bκ1κ2
, emn+1

(
Zε

Bκ1κ2
,an+2,σin+2

)emn+1

mn+1

+

+
n

2(n!)

n∑

κ=1

∑

in+2

[
ω∗n

(
Xi1 , ..., Xin−1

, Γ∗
(
Xin , Γ∗(Xin+1

, Xin+2
)
))]

eBκ, emn+1

(
Zε

eBκ,an+2
,σin+2

)emn+1

mn+1

(7.28)

In the following we will explain the two terms in the right hand side of this equality. Let us
denote:

σi
κ1κ2
n−2

: {1, ..., n} → {i1, ..., iκ1−1, n − 1, n, iκ1
, ..., iκ2−2, n + 1, n + 2, iκ2−1, ..., in−2}

σ
i

ea1ea2;κ1κ2
n−2

(an−2) ≡ {ai1 , ..., aiκ1−1
, ã1, aiκ1

, ..., aiκ2−2
, ã2, aiκ2−1

, ..., ain−2
} (7.29)

and let TBκ1κ2 is a basis of the type:

(
Tσ

i
ea1ea2;κ1κ2
n−2

(an−2
)

)mn−1◦(1ai1
×...×1aiκ1−1

×λea1

an−1,an
×1aiκ1

×...×1aiκ2−2
×λea2

an+1,an+2
×1aiκ2−1

×...×1ain−2
)mnmn+1
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(7.30)

Then, supposed that we know a decomposition of ω∗n in the form (7.15), we construct the
blocks:

[
ω∗n

(
X1, ..., Xn−2, Γ

∗(Xn−1, Xn), Γ∗(Xn+1, Xn+2)

)]

Bκ1κ2
,mn+1

:=

1

n!

∑

in−2

(−1)κ1+κ2−1Ωn(Xi1 , ..., Γ
∗(Xn−1, Xn)mn︸ ︷︷ ︸

κ1−position

, ..., Γ∗(Xn+1, Xn+2)mn+1︸ ︷︷ ︸
κ2−position

, ..., Xin−2
) emn−1

·

·
(
Zε

Bκ1κ2
Bκ1κ2

,an+2
,σ

i
κ1κ2
n−2

) emn+1

mn+1

(7.31)

which are Zε-symmetrizable as:

1

(n + 2)!

∑

in+2

[
ω∗n

(
Xi1 , ..., Xin−2

, Γ∗(Xin−1
, Xin), Γ∗(Xin+1

, Xin+2
)

)]

Bκ1κ2
, emn+1

(
Zε

Bκ1κ2
,an+2,σin+2

)emn+1

mn+1

(7.32)

Let us now denote:

σ̃iκ
n−1

: {1, ..., n} → {i1, ..., iκ−1, n, n + 1, n + 2, iκ, ...in−1}
σ̃

i
ea;κ
n−1

(an−1) ≡ {ai1 , ..., aiκ−1
, ã, aiκ , ..., ain−1

} (7.33)

and let T
eBκ1κ2

is a basis of the type:

(
Teσ

i
ea;κ
n−1

(an−1)

)mn−1 ◦
[
1ai1

× ... × 1aiκ−1
×
(
Tanan+1an+2

)ea

× 1aiκ
× ... × 1ain−1

]mnmn+1

(7.34)

Again, supposed that we know a decomposition of ω∗n in the form (7.15), we construct the
blocks:

[
ω∗n

(
X1, ..., Xn−1, Γ

∗(Xn, Γ∗(Xn+1, Xn+2))

)]

eBκ,mn+1

:=

1

n!

∑

in−2

Ωn(Xi1 , ..., Γ
∗(Xn, Γ∗(Xn+1, Xn+2))mnmn+1︸ ︷︷ ︸

κ−position

, ..., Xin−1
) emn−1

(
Zε

eBκ
eBκ,an+2,eσiκ

n−1

)emn+1

mn+1

(7.35)

and they are Zε-symmetrizable as:

1

(n + 2)!

∑

in+2

[
ω∗n

(
Xi1 , ..., Xin−1

, Γ∗(Xn, Γ∗(Xn+1, Xn+2))

)]

eBκ, emn+1

(
Zε

eBκ,an+2
,σin+2

)emn+1

mn+1

(7.36)
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Now we are ready for concrete manipulations. When we apply bn+1 on the r.h.s. of (7.21)
we obtain:

(bn+1 ◦ bnω∗n)(X1, ..., Xn+2)mn+1
=

(I) − (n + 1)

(n + 1)!

∑

in+2

[
Γ∗

(
Xi1 , Γ

∗
(
Xi2 , ω

∗n(Xi3 , ..., Xin+2
)
))]

emn+1

(
Zε

an+2
,σin+2

)emn+1

mn+1

+

(II) +(−1)n+1 (n + 1)n

2(n + 1)!

n∑

κ=1

∑

in+2

Γ∗

(
Xi1 ,

[
ω∗n

(
Xi2 , ..., Xin , Γ∗(Xin+1

, Xin+2
)
)]

Bκ

)

emn+1

(
Zε

Bκ+1,an+2,σin+2

) emn+1

mn+1

+

(III) +(−1)n n

2(n!)

n∑

κ=1

∑

in+2

Γ∗

(
Xi1 ,

[
ω∗n

(
Xi2 , ..., Xin , Γ∗(Xin+1

, Xin+2
)
)]

Bκ

)

emn+1

(
Zε

Bκ+1,an+2,σin+2

) emn+1

mn+1

+

(IV) +
1

2(n!)

∑

in+2

Γ∗

(
Γ∗(Xi1 , Xi2), ω

∗n(Xi3 , ..., Xin+2
)

)

B1, emn+1

(
Zε

B1,an+2,σin+2

)emn+1

mn+1

+

(V) +
n(n− 1)

4(n!)

n∑

κ1 6=κ2=1

∑

in+2

[
ω∗n

(
Xi1 , ..., Γ

∗(Xin−1
, Xin), Γ∗(Xin+1

, Xin+2
)

)]

Bκ1κ2
, emn+1

(
Zε

Bκ1κ2
,an+2,σin+2

)emn+1

mn+1

+

(VI) +
n

2(n!)

n∑

κ=1

∑

in+2

[
ω∗n

(
Xi1 , ..., Xin−1

, Γ∗
(
Xin , Γ∗(Xin+1

, Xin+2
)
))]

eBκ, emn+1

(
Zε

eBκ,an+2
,σin+2

)emn+1

mn+1

(7.37)

B1 is a bracket scheme Bκ with κ = 1.

We will show that these terms cancel each other in pairs or alone. For this purpose we need
the following lemmas:

Lemma 7.6. The following structural relation can be proven:

ω∗2
(
ω∗s(Xi1 , ..., Xis), ω

∗t(Xis+1
, ..., Xiñ)

)
mñ−1

(
Zε

Ba,añ,σiñ

)mñ−1

emñ−1

=

= (−1)st−1ω∗2
(
ω∗t(Xis+1

, ..., Xiñ), ω∗s(Xi1 , ..., Xis)
)

bmñ−1

(
Zε

Bb,añ,σ
♯

is
ñ

)bmñ−1

emñ−1

(7.38)

where ñ = s + t, with σ♯isñ we denote the permutation {is+1, ..., iñ, i1, ..., is} and the bases TBa
and TBb are:

(
TBa,as+t

)ms+t−1

= λeǫ1ǫ2 ◦
[(
Ta1...as

)m2,...,ms ⊗
(
Tas+1...as+t

)ms+1,...,ms+t−1

]

(
TBb,as+t

)ms+t−1

= λeǫ′1ǫ′2 ◦
[(
Ta1...at

)m2,...,mt ⊗
(
Tat+1...as+t

)mt+1,...,ms+t−1

]
(7.39)

Proof. Let for some fixed mñ−1 and σiñ(añ)
(
Tai1 ...ais

)m2,...,ms maps to a representation with

scaling dimension u,
(
Tais+1

...ais+t

)ms+1,...,ms+t−1
maps to a representation with scaling dimension

v and let ω∗2
(
ω∗s(Xi1, ..., Xis), ω

∗t(Xis+1
, ..., Xiñ)

)
mñ−1

, ω∗s(Xi1 , ..., Xis)m2...ms and
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ω∗t(Xis+1
, ..., Xiñ)ms+1...ms+t−1

have scaling dimensions e, u and v. Let us also denote
m̌ñ−1 := m1, ms+1...ms+t−1, m2...ms The graded symmetry of the reduced space yields:

ω∗2
(
ω∗s(Xi1 , ..., Xis), ω

∗t(Xis+1
, ..., Xiñ)

)
mñ−1

= (−1)u+v−eω∗2
(
ω∗t(Xis+1

, ..., Xiñ), ω∗s(Xi1 , ..., Xis)
)

m̌ñ−1

(7.40)

Because of the graded symmetry of λeuv the elements of intertwiner bases for Ba and Bb (from
the l.h.s. of (7.38)) are related as:

(
TBa,σiñ(añ)

)mñ−1

= (−1)u+v−e−1
(
TBb,σ♯is

ñ
(añ)

)m̌ñ−1

(7.41)

Then for the two Z-matrices defined as in (7.6) holds:

(
ZBa,añ,σiñ

)mñ−1

emñ−1

= (−1)u+v−e−1
(
Z

Bb,añ,σ
♯

is
ñ

)m̌ñ−1

emñ−1

(7.42)

Taking into consideration that εi1,...,iñ = (−1)stεis+1,...,iñ,i1,...,is we obtain:

(
Zε

Ba,añ,σiñ

)mñ−1

emñ−1

= (−1)u+v−e−1(−1)st
(
Zε

Bb,añ,σ
♯

is
ñ

)m̌ñ−1

emñ−1

(7.43)

Then follows immediately:
[
ω∗2
(
ω∗s(Xi1 , ..., Xis), ω

∗t(Xis+1
, ..., Xiñ)

)]

Ba,mñ−1

(
Zε

Ba,añ,σiñ

)mñ−1

emñ−1

=

= (−1)st−1

[
ω∗2
(
ω∗t(Xis+1

, ..., Xiñ), ω∗s(Xi1 , ..., Xis)
)]

Bb,m̌ñ−1

(
Zε

Bb,añ,σ
♯

is
ñ

)m̌ñ−1

emñ−1

(7.44)

and the sum over mñ−1 on both sides of the equality above produces exactly (7.38), which
proves the lemma.

Lemma 7.7. The following relation holds:
[
ω∗n

(
Xi1 , ..., Xin−2

, ω∗t(Xin−1
, ..., Xit+n−2

), ω∗t(Xit+n−1
, ..., Xiñ)

)]

Bκ1κ2
, bmñ−1

(
Zε

Bκ1κ2
,añ,σiñ

)bmñ−1

mñ−1

=

= −
[
ω∗n

(
Xi1 , ..., Xin−2

, ω∗t(Xit+n−1
, ..., Xiñ), ω∗t(Xin−1

, ..., Xin+t−2
)

)]

Bκ1κ2
, emñ−1

(
Zε

Bκ1κ2
,añ,σ♭

it
ñ

) emñ−1

mñ−1

(7.45)

where t is an even number and σ♭itñ
denotes the permutation {i1, ..., in−2, it+n−1, ..., iñ, in−1, ..., in+t−2}.

Proof. The proof of this statement follows the same philosophy as the proof of Lemma 7.6.
We will not display it here because it is too technical.

With these lemmas we are ready to rewrite the terms of (7.37) in such form so we are able
to cancel them:
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• obviously (II) + (III) = 0

• with Lemma 7.6 we show that (I) + (IV) gives rise to a reduced Jacobi identity be-
tween ω∗n(Xi3 , ..., Xin+2

)mn−1
, Xi1 and Xi2 for fixed i1, ..., in+2, we omit the indices of the

matrices Y for simplicity:

(I) + (IV) ∼
∑

in+2

{[
Γ∗

(
Xi1 , Γ

∗
(
Xi2 , ω

∗n(Xi3 , ..., Xin+2
)
))]

emn+1

(
Zε

an+2,σin+2

)emn+1

mn+1

+

+(−1)n+1

(
Γ∗

(
Xi2 , Γ

∗
(
ω∗n(Xi3 , ..., Xin+2

), Xi1

)))

BI , emn+1

(
Zε

BI ,an+2,σ′

in+2

)emn+1

mn+1

+

+

(
Γ∗

(
ω∗n(Xi3 , ..., Xin+2

), Γ∗(Xi1 , Xi2)

))

BII , emn+1

(
Zε

BIIan+2,σ′′

in+2

) emn+1

mn+1

}

∼
∑

in+2

{[
Γ∗

(
Xi1 , Γ

∗
(
Xi2 , ω

∗n(Xi3 , ..., Xin+2
)
))]

emn+1

+

+Γ∗

(
Xi2 , Γ

∗
(
ω∗n(Xi3 , ..., Xin+2

), Xi1

))

bmn+1

Y +

+Γ∗

(
ω∗n(Xi3 , ..., Xin+2

), Γ∗(Xi1 , Xi2)

)

m̄n+1

Y Y

}
·
(
Zε

an+2,σin+2

)emn+1

mn+1

= 0

(7.46)

BI and BII are the relevant bases and σ′
in+2

and σ′′
in+2

are the relevant permutations.

• the terms in (V) for a fixed Bκ1κ2
= B can be rewritten with the help of Lemma 7.7 as

a sum of pairs of terms which cancel each other:

(V) ∼
∑

in−2

{[
ω∗n

(
Xi1 , ..., Xin−2

, Γ∗(Xir , Xiq), Γ
∗(Xis , Xit)

)]

B, emn+1

(
Zε

B,an+2,σin+2

)emn+1

mn+1

+

+

[
ω∗n

(
Xi1 , ..., Xin−2

, Γ∗(Xis , Xit), Γ
∗(Xir , Xiq )

)]

B, emn+1

(
Zε

B,an+2,σ♭

i2
n+2

)emn+1

mn+1

}

∼
∑

in−2

{[
ω∗n

(
Xi1 , ..., Xin−2

, Γ∗(Xir , Xiq), Γ
∗(Xis , Xit)

)]

B, emn+1

(
Zε

B,an+2,σin+2

)emn+1

mn+1

−

−
[
ω∗n

(
Xi1 , ..., Xin−2

, Γ∗(Xir , Xiq ), Γ
∗(Xis , Xit)

)]

B, emn+1

(
Zε

B,an+2,σin+2

)emn+1

mn+1

}
= 0

(7.47)

• for a fixed B̃ = B, (VI) can be grouped in triples that contain a reduced Jacobi identity
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which cancels them:

(VI) ∼
∑

in−1

{[
ω∗n

(
Xr1

, ..., Xrn−1
, Γ∗
(
Xrn , Γ∗(Xrn+1

, Xrn+2
)
))]

B, emn+1

(
Zε

B,an+2
,σin+2

)emn+1

mn+1

+

+

[
ω∗n

(
Xr1

, ..., Xrn−1
, Γ∗
(
Xrn+1

, Γ∗(Xrn+2
, Xrn)

))]

B, emn+1

(
Zε

B,an+2,σ′

in+2

)emn+1

mn+1

+

+

[
ω∗n

(
Xr1

, ..., Xrn−1
, Γ∗
(
Xrn+2

, Γ∗(Xrn , Xrn+1
)
))]

B, emn+1

(
Zε

B,an+2,σ′′

in+2

)emn+1

mn+1

}

∼
∑

in−1

[
ω∗n

(
Xr1

, ..., Xrn−1
,

{
Γ∗
(
Xrn , Γ∗(Xrn+1

, Xrn+2
)
)

+ Γ∗
(
Xrn+1

, Γ∗(Xrn+2
, Xrn)

)
Y +

+Γ∗
(
Xrn , Γ∗(Xrn+1

, Xrn+2
)
)
Y Y

})]

B, emn+1

(
Zε

B,an+2,σin+2

)emn+1

mn+1

= 0

(7.48)

σ′
in+2

and σ′′
in+2

are the relevant permutations.

Then the sum of all terms in (7.37) is 0 and this completes the proof of Proposition 7.5.

7.3 Deformations of the reduced Lie algebra

In the previous section we constructed a cohomology complex designed in a special way to serve
in the description of formal deformations of the reduced Lie bracket, which we introduced in
Definition 6.10. We will describe those formal deformations in quite a similar way to the
description of deformations of an associative algebra.

Definition 7.8 (Formal deformations of the reduced bracket). A formal deformation
of the bracket Γ∗ : V ⊗V → V will be defined as a one-parameter family of brackets Γ∗(X, Y, λ)m
with λ ∈ R and Γ∗(X, Y, 0)m ∼= Γ∗(X, Y )m. The deformed bracket will be defined as a formal
power series:

Γ∗(X, Y, λ)m :=
∞∑

i=0

Γ∗
i (X, Y )m λ

i (7.49)

and the ith order perturbations of the bracket will be:

Γ∗
i (X, Y )m :=

1

i!

di

dλi
Γ∗(X, Y, λ)m (7.50)

Here Γ∗
0(X, Y )m ≡ Γ∗(X, Y )m.
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We will be interested only in those deformations which are consistent with the generalized
Jacobi identity (6.65). This will lead to a number of constraints which will single out the
admissible perturbations. The first order perturbations Γ∗

1(X, Y )m must obey:

Γ∗
0

(
A, Γ∗

1(B, C)
)

m1m2

+ Γ∗
0

(
B, Γ∗

1(C, A)
)

em1 em2

(
Ybca

)em1 em2

m1m2

+ Γ∗
0

(
C, Γ∗

1(A, B)
)

bm1 bm2

(
Ycab

) bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

+

+Γ∗
1

(
A, Γ∗

0(B, C)
)

m1m2

+ Γ∗
1

(
B, Γ∗

0(C, A)
)

em1 em2

(
Ybca

) em1 em2

m1m2

+ Γ∗
1

(
C, Γ∗

0(A, B)
)

bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

= 0

(7.51)

The higher order perturbations must satisfy the following condition:

Γ∗
0

(
A, Γ∗

j (B, C)
)

m1m2

+ Γ∗
0

(
B, Γ∗

j (C, A)
)

em1 em2

(
Ybca

)em1 em2

m1m2

+ Γ∗
0

(
C, Γ∗

j (A, B)
)

bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

+

+Γ∗
j

(
A, Γ∗

0(B, C)
)

m1m2

+ Γ∗
j

(
B, Γ∗

0(C, A)
)

em1 em2

(
Ybca

) em1 em2

m1m2

+ Γ∗
j

(
C, Γ∗

0(A, B)
)

bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

=

= −
j−1∑

k=1

{
Γ∗

k

(
A, Γ∗

j−k(B, C)
)

m1m2

+ Γ∗
k

(
B, Γ∗

j−k(C, A)
)

em1 em2

(
Ybca

) em1 em2

m1m2

+

+ Γ∗
k

(
C, Γ∗

j−k(A, B)
)

bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

) em1 em2

m1m2

}

(7.52)

We want to exclude from our considerations the “trivial” deformations, i.e. the simple
λ-dependent changes of the basis Q∗ : V → V , such that:

Γ∗(X, Y, λ)m = Q∗−1(Γ∗(Q∗X, Q∗Y )m), Q∗ = 1 + λq∗1 + λ2q∗2 + ... (7.53)

Written in a series over λ up to first order, the deformed bracket becomes:

Q∗−1(Γ∗(Q∗X, Q∗Y )m) = (1 − λq∗1)Γ∗
0

(
(1 + λq∗1)X, (1 + λq∗1)Y

)
m

+ 0(λ2)

= Γ∗
0(X, Y )m + λΓ∗

1(X, Y )m + 0(λ2) (7.54)

Γ∗
1(X, Y )m = Γ∗

0(X, q∗1Y )m + Γ∗
0(q

∗
1X, Y )m − q∗1Γ∗

0(X, Y )m (7.55)

So, we have to “factorize” the set of admissible deformations over the set of trivial deforma-
tions. In the case of associative algebra such a factorization gave the opportunity to relate the

deformations and the conditions for the ith-order perturbation to a Hochschild cohomology
complex. We will show that also in our case the deformations are described in terms of a
cohomology complex, namely the reduced Lie algebra complex from the previous section.

In the following we formulate in cohomological language some of the formulas above:

Observation (1). The Jacobi identity can be rewritten in the compact form:

(b2Γ∗
0)(A,B,C)m1m2

= 0 (7.56)

Observation (2). Jacobi identity gives the following restriction for the first order perturba-
tion:

(b2Γ∗
1)(A,B,C)m1m2

= 0 (7.57)
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i.e. Γ∗
1 ∈ Z2(V ). The first trivial perturbation is:

Γ∗
1(X, Y )m = (b1q∗1)(X, Y )m (7.58)

which means Γ∗
1 ∈ B2(V ). Then it follows, that the non-trivial first order perturbations

correspond to non-trivial classes [Γ∗
1] ∈ RLH2(V ).

Observation (3). Jacobi identity yields for higher order perturbations:

b2Γ∗
j (A, B, C)m1m2

= −
j−1∑

k=1

{
Γ∗

k

(
A, Γ∗

j−k(B, C)
)

m1m2

+ Γ∗
k

(
B, Γ∗

j−k(C, A)
)

em1 em2

(
Ybca

)em1 em2

m1m2

+

+ Γ∗
k

(
C, Γ∗

j−k(A, B)
)

bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

}
(7.59)

An interesting question is whether every element Γ̃∗
1 ∈ RLH2(V ) is integrable, i.e. whether

every Γ̃∗
1 ∈ Z2(V ) serves as the first perturbation for some one-parameter family of deforma-

tions of V . In analogy to deformation theory of associative algebras we introduce the first
obstruction operator G2:

G2[Γ̃∗
1](A, B, C)m1m2

:= −
{

Γ̃∗
1

(
A, Γ̃∗

1(B, C)
)

m1m2

+ Γ̃∗
1

(
B, Γ̃∗

1(C, A)
)

em1 em2

(
Ybca

) em1 em2

m1m2

+

+ Γ̃∗
1

(
C, Γ̃∗

1(A, B)
)

bm1 bm2

(
Ycab

) bm1 bm2

em1 em2

(
Ycbca

)em1 em2

m1m2

}
(7.60)

Continuing the analogy, a next task would be to show that b3G2[Γ̃∗
1] = 0, ∀Γ̃∗

1 ∈ Z2(V ) →
G2(A,B,C) ∈ Z3(V ), which is at the moment still an open question. If it is possible to lift the

perturbation Γ̃∗
1 to second order it must hold also that G2(A,B,C) = b2Γ∗

2(A,B,C) ∈ B3(V )

because of (7.59). Then, the cohomology class of G2[Γ̃∗
1] in RLH3(V ) must vanish for integrable

Γ̃∗
1 and this class is viewed as the first obstruction to the integration of Γ̃∗

1.
Let us assume now that we have lifted the perturbation up to order n− 1 so that we have

the set of perturbations Γ̃∗
1, ..., Γ̃

∗
n−1 ∈ C2(V ), which obey the Jacobi identity conditions (7.59).

We want to check whether it is possible to lift the perturbation to order n and for this purpose
we write the corresponding obstruction operator:

Gn[Γ̃∗
1, ..., Γ̃

∗
n−1](A, B, C)m1m2

= −
n−1∑

k=1

{
Γ̃∗

k

(
A, Γ̃∗

n−k(B, C)
)

m1m2

+ Γ̃∗
k

(
B, Γ̃∗

n−k(C, A)
)

em1 em2

(
Ybca

) em1 em2

m1m2

+

+ Γ̃∗
k

(
C, Γ̃∗

n−k(A, B)
)

bm1 bm2

(
Ycab

)bm1 bm2

em1 em2

(
Ybca

)em1 em2

m1m2

}

(7.61)

Again, we hope that it is possible to prove:

b3Gn[Γ̃∗
1, ..., Γ̃

∗
n−1] = 0, Γ̃∗

1, ..., Γ̃
∗
n−1 as above → Gn(A,B,C) ∈ Z3(V ) (7.62)
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7.3 Deformations of the reduced Lie algebra

Again, for integrable Γ̃∗
1, ..., Γ̃

∗
n−1 ∈ C2(V ) it must hold that Gn(A,B,C) ∈ B3(V ) because of

(7.59) and the cohomology class of Gn[Γ̃∗
1, ..., Γ̃

∗
n−1] in RLH3(V ) must vanish. This class is

viewed as the (n− 1)st obstruction to the integration of Γ̃∗
1 ∈ Z2(V ).

From all this follows that, very probably, the possibility of formal continuous deformations
of a given reduced Lie algebra is decided by second and the third cohomology groups of the
associated reduced Lie algebra cohomology complex. A “non-rigid” deformation theory would
require a non-zero second cohomology group. A zero third cohomology group would indicate
that every class from the second cohomology group may be integrated to an equivalence class
of non-trivial deformations. The calculation of these groups is outside the scope of this thesis.
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8 Conclusions and outlook

In the present work we addressed several important tasks regarding local extensions of chiral
conformal quantum field theories.

First, we showed that algebraic techniques determine completely the superselection structure
of all local extensions of Virasoro nets for c < 1 (classified in Theorem 3.10). The analysis was
done in terms of “DHR-endomorphisms” and the clues to the solution were the following. 1D
(and 2D) conformal nets with c < 1 are rational, i.e. they have a finite number of inequivalent
sectors with finite statistical dimensions. They form a tensor category with similar features
to the representation category of a compact group, but instead with braid group statistics.
The statistic operators give rise to the methods of α+- and α−- induction which together with
the method of σ-restriction allow to obtain all sectors of the extension from the well-know
sectors λpq of the Virasoro subnet. It is known that the sectors of the extension are precisely
the simultaneous subsectors of α+

λpq
and α−

λpq
where λpq are the Virasoro sectors. Then, the

common content and equivalence among α+
ρ - and α−

ρ -sectors can be checked using the α–
σ-reciprocity and the relation between the dimensions of their intertwining spaces and the
Cappelli–Itzykson–Zuber modular invariant partition functions.

The classification of all irreducible DHR sectors of the index 2 extensions for m = 4n+1 and
m = 4n + 2 is presented in Section 5.1.2. The classifications for the higher index extensions
are presented on figures 5.3–5.6. As expected, the number of the sectors of the extensions is
always less than that of the sectors of their Virasoro subnets. In the case of (A28, E8) extension
for m = 29 also the fusion rules and the statistical dimensions are computed (formulae (5.26)
and (5.27)) using just the homomorphism properties and linearity of the maps α± + fusion
rules of the Virasoro sectors. In this way we can also easily find fusion rules and statistical
dimensions in almost all other cases. Exception would occur in the cases of index 2 extensions.
Every red point in the figures 5.1 and 5.2 gives rise to α±-induced sectors which are equivalent
and are a direct sum of two inequivalent DHR sectors. The method described above does not
allow us to find the statistical dimensions and the fusion rules involving these DHR sectors.

Second, we explored local Möbius invariant commutators in chiral theories following closely
the example of the Lüscher–Mack theorem. We showed that these commutators are fixed
intrinsically up to structure constants, carrying the model-dependent information and related
to the 2-point amplitudes (Proposition 6.1 and formula (6.83)). Furthermore, these structure
constants are subject to an infinite number of constraints, originating from the anti–symmetry
of commutators (formula (6.7)) and Jacobi identity (formula (6.67)), as well as from Hilbert
space positivity (formula (6.83)). What still remains is to analyze these constraints more
carefully. In the easiest case, the solution of the constraints for fields of dimension 1 reproduce
the well-known Kac–Moody algebras, including the necessary compactness of the underlying
Lie algebra.
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8 Conclusions and outlook

To be able to derive these constraints, we had to rather consider a reduced version of the
field algebra (Section 6.5), in the sense that the test functions are stripped off. In this reduced
version the new bracket is multi-component and obeys a new generalized symmetry rule and
the three terms in the Jacobi identity appear multiplied with universal (model independent)
coefficient matrices. The data, defining a new axiomatization of a chiral conformal field theory,
is the reduced space of fields, a reduced bracket, a quadratic form (Section 6.7), solving the
constraints discussed above and subject to some other reasonable restrictions, discussed in the
previous chapters.

Finally, we proceeded to explore the rigidity of the reduced commutator, in other words to
check whether there exist models in the neighborhood of a certain model. For this purpose we
have to solve the problem whether formal deformations of the reduced bracket exist. Following
the general strategy, we constructed a cohomology complex related to the deformation problem
(Definition 7.4). We have not, however, been able to actually compute the cohomology groups
associated to this complex and this has to be done before developing a more complete deforma-
tion theory. Nevertheless, since our cohomology complex has been derived from a Lie algebra
cohomology complex (considering the adjoint representation), we expect that the deformation
theory also inherits the features of the Lie algebra deformation theories. In particular, we
expect that the cohomology groups RLH2(V ) and RLH3(V ) determine the existence and in-
tegrability of non-trivial deformations. To prove this completely it has remained to show that
our obstruction operators (7.61) are cocyles.

Another way would be to try to construct a differential graded Lie algebra out of the coho-
mology complex, whose deformation theory would be tightly related to the deformation theory
of the reduced bracket. For this purpose, one has to construct a bracket in this complex, such
that it is skew symmetric with respect to the “grading” by dimension of the cochain spaces
and satisfies a graded Jacobi identity.
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A Kac-Moody algebras and coset models

The theory of Kac–Moody algebras provide powerful mathematical tools for studying symme-
tries in theoretical physics. An amazing feature of these algebras is that they are compatible
with locality, thus they provide a natural framework for unified consideration of symmetry
and locality. This section is based mainly on [Goddard & Olive, 1985; Goddard et al., 1985;
Goddard & Olive, 1986; Goddard et al., 1986].

Let us consider the affine untwisted Kac–Moody algebra ĝ with generators T im, m,n ∈ N

and commutation relations:

[T im, T
j
n] = if ijlT lm+n + kδijδm+n,0 (A.1)

where the central term k commutes with all T im. f ijl are the totally antisymmetric structure
constants of the compact Lie algebra g with generators T i0, i = 1, ..., dim(g).

Associated with ĝ is a Virasoro algebra with generators Lm which satisfy:
[
Lm, T

j
n

]
= −nT jm+n

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (A.2)

with c — another central term.
An interesting question is which values for c and k are allowed and what their interrelation

is. A theorem states that a necessary unitarity condition is that k is quantized in terms of the
structure constant ψ2

2
, where ψ is the highest (lowest) root of g in its adjoint representation,

i.e. κ := 2k
ψ2 = 0, 1, 2, ... and is called the level of the Kac–Moody algebra. T jm vanish for κ = 0.

The apriori possible values of c were discussed in Section 2.4.
Equations (A.1) and (A.2) constitute the semi-direct product of the Kac–Moody algebra ĝ

with a Virasoro algebra and are written for the general case, in which their generators may be
totally independent. One can also construct the Virasoro generators in terms of bilinears in the
Kac–Moody generators. The idea was born in the theory of current algebras, where the aim
was to formulate the full dynamics of the theory in terms of currents, the energy–momentum
tensor inclusive. The original construction was proposed in [Sugawara, 1968] and for simple
groups g the stress–energy tensor L(z) and its Fourier modes Ln are expressed as:

L(z) =
∑

n∈Z

z−nLn =
1

2k +Qψ

:

dim(g)∑

i=1

T i(z)T i(z) :

Ln =
1

2k +Qψ

∑

m∈Z

:

dim(g)∑

i=1

T im+nT
i
−m : (A.3)
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A Kac-Moody algebras and coset models

Here we have the Kac–Moody field which is constructed as T j(z) =
∑

m∈Z
z−mT jm, where z is

a complex variable lying on the unit circle ≈ R∪∞. It is worth mentioning at this point that
in theories with chiral inner symmetries the symmetry generators are chiral currents, whose
Fourier modes satisfy an affine untwisted Kac–Moody algebra and form a semi-direct product
with the Virasoro algebra, exactly like T j(z). The normal ordering for the Kac-Moody current
is defined as:

T i(z)T i(ζ) =: T i(z)T i(ζ) : +
kzζ

(z − ζ)2
(A.4)

The normal ordering in the second formula from (A.3) means that T im with positive suffices
are moved to the right of those with negative suffices.
Qψ is the quadratic Casimir in the adjoint representation of g, ψ denotes its lowest weight.

It can be found as:

dim(g)∑

k,l=1

f iklf jkl = δijQψ (A.5)

Defined in such way, L(z) and Ln satisfy the commutation relations of Virasoro algebra with
central charge:

cg =
2kdim(g)

2k +Qψ
=
κdim(g)

κ+ h̃(g)
(A.6)

where h̃(g) =
Qψ
ψ2 is called the dual Coxeter number. One can prove that h̃(g) is an integer.

The stress–energy tensor obtained by Sugawara construction is automatically unitary in a
certain representation if the Kac–Moody generators are. In this case also L0 is positive.

If the Lie algebra g is not simple but semi–simple with g = ⊕gi, then the Sugawara con-
struction is achieved as:

Lg = Lg1 + Lg2 + ... (A.7)

where Lgi is the Sugawara construction for gi. Also:

cg = cg1 + cg2 + ... (A.8)

These results hold even for not semi–simple groups g.
For abelian g we have simply Qψ = 0 and:

cg = dim(g) = rank(g) (A.9)

In the general case for simple g, cg is a rational number lying between dim(g) and rank(g).
The lowest bound rank(g) can be achieved only if g is simply laced and a level 1 representation
of ĝ is considered. This is also true for a semi–simple Lie algebra with each gi simply laced.
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Hence, by Sugawara construction we cannot achieve a central charge less than unity, as it must
exceed rank(g).

Let us now discuss the case when g has a subalgebra h ⊂ g and both of them are simple.
Then the algebras ĝ and ĥ have the same central term k, but not necessarily the same level,
because the lowest roots of the two algebras may have different lengths. In general, the ĥ level
must be greater or equal to the ĝ level. The Sugawara construction can be applied to both ĝ
and ĥ to obtain Virasoro generators Lgn and Lhn, which in general have different central charges
cg and ch. Since:

[
Lgm, T

j
n

]
= −nT jm+n, j = 1, ..., dim(g)

[
Lhm, T

j
n

]
= −nT jm+n, j = 1, ..., dim(h) (A.10)

one can construct Km := Lgm − Lhm which commutes with the Kac–Moody algebra ĥ:

[Lgm − Lhm, T
j
n] = 0, j = 1, ..., dim(g) (A.11)

and thus:

[Lgm − Lhm, L
h
n] = 0 (A.12)

which means that Lgm splits into two mutually commuting components:

Lgm = Lhm +Km (A.13)

We can think of Km as related to the coset G/H (such that g and h are the Lie algebras of G
and H) Moreover:

[Lgm, L
g
n] = [Lhm, L

h
n] + [Km, Kn] (A.14)

so Km also satisfies the Virasoro algebra commutation relations, whose central charge is:

cK = cg − ch =
2kdim(g)

2k +Qψ
− 2kdim(h)

2k +Qφ
(A.15)

φ denotes the highest (lowest) weight of ĥ and Qφ is the adjoint representation Casimir operator

of ĥ.
cK must be non-negative and it is possible to obtain cK smaller than 1. It was shown that all

central charges from the discrete series can be obtained this way. Moreover, the corresponding
Virasoro algebras inherit unitarity of their representations from the two algebras in the coset.
Further, as the eigenvalues of Lg0 are bounded from below, so are those of K0.

In order to find a suitable coset construction, such that all central charges from the discrete
series are recovered, let us first consider the algebra su(2) with generators T i such that:

[T i, T l] = εilkT
k (A.16)
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A Kac-Moody algebras and coset models

The associated Kac–Moody algebra will have commutation relations:

[T im, T
l
n] = εilkT

k
m+n +

K

2
mδilδm,−n (A.17)

Let us now consider ĝ = ̂su(2) ⊕ su(2) such that the two factors have commutation relations

(A.17) with K = N and K = 1 respectively. We also choose ĥ = diag( ̂(su(1))⊕ ŝu(1)) = ŝu(2)
with commutation relations (A.17) with K = N + 1. We denote the corresponding coset with:

SU(2)N × SU(2)1/SU(2)N+1 (A.18)

With this choice of ĝ and ĥ we can obtain all the central charges from the discrete series
c(m) = 1 − 6

m(m+1)
, m = 2, 3, 4... for the stress–energy tensor related to the coset. We use

character arguments to show that also all spins from the list hp,q(c) = [(m+1)p−mq]2−1
4m(m+1)

, p ∈
[1, m− 1], q ∈ [1, m] can be won from the representations of ĝ and ĥ.
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B Lie algebra cochain complex

Cochain spaces:

Ωn ∋ ωn : V ⊗ ...⊗ V → V with ωn(X1, ..., Xn) completely anti–symmetric functions.

Coboundary map:

[bωn](X1, ..., Xn+1) := (n + 1)

{[
ωn(X1, ..., Xn), Xn+1

]}

A

− n(n + 1)

2

{
ωn
(
X1, ..., Xn−1, [Xn, Xn+1]

)}

A

= (n + 1)
1

(n + 1)!

[ n+1∑

i=1

(−1)i+n+1n! ωn(X1, ..., X̂i, ..., Xn+1), Xi

]
−

−n(n + 1)

2

1

(n + 1)!

n+1∑

k,i=1
k>i

(−1)i+k+12(n − 1)! ωn
(
X1, ..., X̂i, ..., X̂k, ..., Xn+1, [Xi, Xk]

)

=
n+1∑

i=1

(−1)i+n+1
[
ωn(X1, ..., X̂i, ..., Xn+1), Xi

]
−

−
n+1∑

k,i=1
k>i

(−1)i+k+1 ωn
(
X1, ..., X̂i, ..., X̂k, ..., Xn+1, [Xi, Xk]

)
(B.1)

Proposition: [b ◦ b ωn](X1, ..., Xn+2) = 0

Proof:

[b ◦ b ωn](X1, ..., Xn+2) = (n + 2)

{[∑n+1
i=1 (−1)i+n+1

[
ωn(X1, ..., X̂i, ..., Xn+1), Xi

]
, Xn+2

]}

A

− (I)

−(n + 2)

{[∑n+1
k>i=1(−1)i+k+1ωn

(
X1, ..., X̂i, ..., X̂k, ..., Xn+1, [Xi, Xk]

)
, Xn+2

]}

A

− (II)

− (n+1)(n+2)
2

{
∑n

i=1(−1)i+n+1

[
ωn
(
X1, ..., X̂i, ..., Xn, [Xn+1, Xn+2]

)
, Xi

]}

A

− (III)

− (n+1)(n+2)
2

{[
ωn(X1, ..., Xn), [Xn+1, Xn+2]

]}

A

+ (IV)

+ (n+1)(n+2)
2

{
∑n

k>i=1(−1)i+k+1ωn
(
X1, ..., X̂i, ..., X̂k, ..., [Xn+1, Xn+2], [Xi, Xk]

)}

A

+ (V)

+ (n+1)(n+2)
2

{
∑n

i=1(−1)i+nωn
(
X1, ..., X̂i, ..., Xn,

[
Xi, [Xn+1, Xn+2]

])
}

A

(VI)

(B.2)
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B Lie algebra cochain complex

(I) + (IV) = (n + 2)(n + 1)
1

(n + 2)!

n+2∑

k,i=1
k>i

(−1)i+k+1n!

[[
ωn(X1, ..., X̂i, ..., X̂k, ..., Xn+2), Xi

]
, Xk

]
−

−(n + 2)(n + 1)
1

(n + 2)!

n+2∑

k,i=1
k>i

(−1)i+k+1n!

[[
ωn(X1, ..., X̂i, ..., X̂k, ..., Xn+2), Xk

]
, Xi

]
+

+
(n + 2)(n + 1)

2

1

(n + 2)!

n+2∑

k,i=1
k>i

(−1)i+k+12n!

[
[Xi, Xk], ωn(X1, ..., X̂i, ..., X̂k, ..., Xn+2)

]

=

n+2∑

k,i=1
k>i

{[[
ωn(X1, ..., X̂i, ..., X̂k, ..., Xn+2), Xi

]
, Xk

]
+

+

[[
Xk, ωn(X1, ..., X̂i, ..., X̂k, ..., Xn+2)

]
, Xi

]
+

[
[Xi, Xk], ωn(X1, ..., X̂i, ..., X̂k, ..., Xn+2)

]}
= 0

(B.3)

(II) + (III) = −(n + 2)
n(n + 1)

2

{[
ωn
(
X1, ..., Xn−1, [Xn, Xn+1]

)
, Xn+2

]}

A

+

+
(n + 1)(n + 2)

2
n

{[
ωn
(
X1, ..., Xn−1, [Xn, Xn+1]

)
, Xn+2

]}

A

= 0 (B.4)

(V) ∼∑
{

ωn
(
Xi1 , ..., Xin−2

, [Xir , Xiq ], [Xis , Xit ]
)

+ ωn
(
Xi1 , ..., Xin−2

, [Xis , Xit ], [Xir , Xiq ]
)}

=

(because of anti-symmetrization)

=

{
ωn
(
Xi1 , ..., Xin−2

, [Xir , Xiq ], [Xis , Xit ]
)
− ωn

(
Xi1 , ..., Xin−2

, [Xir , Xiq ], [Xis , Xit ]
)}

= 0

(because of anti–symmetry of ωn) (B.5)

(VI) ∼∑
{

ωn
(
...,
[
Xi1 , [Xi2 , Xi3 ]

])
+ ωn

(
...,
[
Xi3 , [Xi1 , Xi2 ]

])
+ ωn

(
...,
[
Xi2 , [Xi3 , Xi1 ]

])
}

=

(because of anti-symmetrization)

=
∑
{

ωn
(
...,
[
Xi1 , [Xi2 , Xi3 ]

]
+
[
Xi3 , [Xi1 , Xi2 ]

]
+
[
Xi2 , [Xi3 , Xi1 ]

])
}

= 0 (B.6)

(because of linearity of ωn and Jacobi identity) (B.7)
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C Pochhammer symbol (x)n and useful
properties

The concept Pochhammer symbol denotes the rising factorial:

(x)n := x(x+ 1)(x+ 2)(x+ 3)...(x+ n− 1) =

=
Γ(x+ n)

Γ(x)
, n ∈ N0

=
(x+ n− 1)!

(x− 1)!
for x, n ∈ N0 (C.1)

We will display here some of the properties of the Pochhammer symbol, especially those
which we used to calculate the matrix Y in Section 6.4.1:

1.
∑

p+q=n

(x)p
p!

(y)q
q!

=
(x+ y)n

n!
(C.2)

(a generalization for the expansion of binomial coefficients)

2.

(x− p)p = (x− p)(x− p+ 1)(x− p + 2)...(x− p+ p− 1) =

= (x− 1)(x− 2)...(x− p) =

= (−1)p(1 − x)(1 − x+ 1)(1 − x+ 2)...(1 − x+ p− 1) =

= (−1)p(1 − x)p (C.3)

alternatively:

(x)n =
Γ(x+ n)

Γ(x)
= (−1)n

Γ(−x+ 1)

Γ(−x− n + 1)
=

= (−1)n(1 − x− n)n (C.4)

3.

(x)n
(x)m

= (x+m)n−m if n > m

(x+ p)q(x)p = (x)p+q (C.5)
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4.

(s− x)q−s
(s− x)p−s

=
Γ(q − x)

Γ(s− x)

Γ(s− x)

Γ(p− x)
=

=
Γ(q − x)

Γ(t− x)

Γ(t− x)

Γ(p− x)
=

(t− x)q−t
(t− x)p−t

s, t ∈ N0, s, t < p, q (C.6)

5.

(a)n
(a−m)n

=
Γ(a+ n)

Γ(a)

Γ(a−m)

Γ(a−m+ n)
=

=
Γ(a+ n)

Γ(a−m+ n)

Γ(a−m)

Γ(a)
=

(a + n−m)m
(a−m)m

n > m (C.7)

6.

(x)a−i =
Γ(x+ a− i)

Γ(x)
=

Γ(x+ a− i)

Γ(x+ a− b)

Γ(x+ a− b)

Γ((x)
=

=
Γ(x+ a− i)

Γ(x+ a− b)

Γ(x+ a− b)

Γ(x+ a)

Γ(x+ a)

Γ((x)
=

=
(x)a

(x+ a− b)b
(x+ a− b)b−i (C.8)

7.

(x)n =
Γ(x+ n)

Γ(x)
= (−1)n

Γ(−x+ 1)

Γ(−x− n + 1)
=

= (−1)n
Γ(−x+ 1)

Γ(−x− k − 1)

Γ(−x− k + 1)

Γ(−x− k + 1 + k − n)
=

= (−1)n−k
(x)k

(1 − k − x)k−n
(C.9)

8.

(x)n
n!

=

(
x+ n− 1

n

)
for x, n ∈ N0

(−1)n
(−x)n
n!

=

(
x

n

)
(C.10)

112



Definitions, Propositions, Theorems, etc...

Definitions

2.1 Conformal covariance of fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Mathematical Physics (ed. V. Sidoravičius). Springer Science + Business Media B.V.

Kawahigashi, Y. & Longo, R. 2004 Classification of local conformal nets: Case c < 1.
Ann. Math. 160, 493–522.

Knudson, D. 1969 On the deformation of commutative algebras. Trans. Amer. Math. Soc.
140, 55–70.

Kodaira, K., Nirenberg, L. & Spencer, D. 1958 On the existence of deformations of
complex analytic structures. Ann. Math. 68, 450–459.

Kukhtina, A. & Rehren, K.-H. 2011 Local commutators and deformations in conformal
chiral quantum field theories. arXiv:1105.2963 [math-ph].

Kuranishi, M. 1962 On the locally complete families of complex analytic structures. Ann.
Math. 75, 536–577.

119



Bibliography

Lazarev, A. 2003 Hochschild cohomology and moduli spaces of strongly homotopy associative
algebras. Homology Homotopy Appl. 5, 73–100.

Lecomte, P.B.A. 1987 Application of the cohomology of graded Lie algebras to formal
deformations of Lie algebras. Lett. Math. Phys. 13, 157–166.

Longo, R. & Rehren, K.-H. 1995 Nets of subfactors. Rev. Math. Phys. 7, 567–597.

Mack, G. 1988 Introduction to conformal invariant quantum field theory in two and more
dimensions. In Nonperturbative QFT (ed. G. ’tHooft). Plenum Press.

Makhlouf, A. & Silvestrov, S. 2010 Notes on 1-parameter formal deformations of Hom-
associative and Hom-Lie algebras. Forum Mathematicum 22, 715–739.

Manetti, M. 1999 Deformation theory via differential graded Lie algebras. In Seminari di
Geometria Algebrica 1998–1999 . Scuola Normale Superiore.

Nijenhuis, A. & Richardson, R.W. 1964 Cohomology and deformations of algebraic struc-
tures. Bull. Amer. Math. Soc. 70, 406–411.

Nijenhuis, A. & Richardson, R.W. 1966 Cohomology and deformations in graded Lie
algebras. Bull. Amer. Math. Soc. 72, 1–29.

Nijenhuis, A. & Richardson, R.W. 1967 Deformation of Lie algebra structures. J. Math.
Mech. 17, 89–105.

Rankin, R.A. 1956 The construction of automorphic forms from the derivatives of a given
form. J. Indian Math. Soc. 20, 103–116.

Rehren, K.-H. Vorlesung Göttingen, WiSe 1997/98 Konforme Quantenfeldtheorie.
http://www.theorie.physik.uni-goettingen.de/ rehren/.

Stasheff, J. 1993 The intrinsic bracket on the deformation complex of an associative algebra.
J. Pure Appl. Algebra 89, 231–235.

Streater, R.F. & Wightman, A.S. 1964 PCT, spin and statistics, and all that . W. Ben-
jamin, New York.

Sugawara, H. 1968 A field theory of currents. Phys. Rev. 170, 1659–1662.

Xu, F. 2007 Mirror extensions of local nets. Commun. Math. Phys. 270, 835–847.

Yau, D. 2006 Deformation of algebras over the Landweber–Novikov algebra. J. Algebra 298,
507–523.

Zamolodchikov, A.B. 1986 Infinite additional symmetries in two-dimensional conformal
quantum field theory. Theor. Math. Phys. 65, 1205–1213.

120



Acknowledgments

I would like to thank to Prof. K.-H.Rehren for giving me the opportunity to work in the quite
fascinating subject of Axiomatic Quantum Field Theory in one of the strongest groups in this
topic. I am grateful that he supported me throughout the thesis period with useful ideas and
advices, without which this work would not have been possible. The discussions with him
helped a lot.

I would like also to thank Prof. Hollands and Prof. Covi, who immediately agreed to write
the additional reports about my Ph.D thesis.

I also had enlightening discussions with various colleagues who have been in our group at
different times — many special thanks to all of them. Also many thanks to all the other warm
and friendly colleagues around, with whom I could have a chat every now and then.

I especially enjoyed to be in one office with Daniela Cadamuro and I would like to thank her
very much for the nice time together, for the support and understanding.

During my Ph.D period I met a lot of new friends, whose presence around also supported
my work in its way. Special thanks to my Bulgarian friends, who made me feel at home, to
my music friends and to my physics friends. Also special thanks to Rado, who helped me to
come out after I got stuck into a big mess.

And finally, I would like to thank to my family for the unconditional love and support and
especially to Anton, who was always there and it was always saving me.

121


