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Chapter 1

Introduction

The understanding of quantum theories in terms of particles has been a fundamental
issue for more than four decades. While in the framework of non-relativistic quantum
mechanics this problem has been settled for a large class of physically relevant models,
the situation is less clear in relativistic quantum field theory (QFT). There emerge new
phenomena in this setting, like creation of charged particles in collisions or appearance of
clouds of massless excitations accompanying a charged particle ("the infraparticle prob-
lem’). Their description goes beyond the well understood setting of groups of unitaries
acting on a Hilbert space, where the notions of spectral measure and measure classes
provide the natural conceptual basis for the formulation and resolution of the problem of
asymptotic completeness. The language of groups of automorphisms acting on the algebra
of observables, adequate in the relativistic setting, lacks such detailed spectral concepts.

The present work introduces a decomposition of the algebra of observables into spec-
tral subspaces, whose elements differ in their behavior under translations in space. First,
an ergodic theorem for translation automorphisms is established in theories with physi-
cal vacuum structure. It allows for a natural definition of the pure-point and continuous
subspaces, what opens the door to more detailed spectral analysis: Apart from the coun-
terpart of the absolutely continuous subspace, familiar from quantum mechanics, there
appears a new feature - the point-continuous subspace - which carries information about
the infrared structure of a theory. It formally belongs to the continuous part, but it is
finite dimensional in a large class of models. In particular, it is shown that this subspace is
trivial in all theories complying with a condition proposed in this work. This new criterion,
which identifies a novel class of particle detectors in the algebra of observables, entails the
existence of particles if the theory admits a stress-energy tensor. These results allow for
a fresh look at the problem of asymptotic completeness in quantum field theory from the
model-independent perspective.

Formulation of natural assumptions for the ergodic theorem mentioned above is the
subject of the second part of this work. For this purpose two new phase space condi-
tions are proposed, inspired by the physical behavior of coincidence measurements and
by the concept of additivity of energy over isolated subregions, respectively. Among the
consequences of these criteria, we obtain the uniqueness of the energetically accessible
vacuum states and the convergence of physical states to these vacua under large timelike
translations (i.e. relaxation to the vacuum).
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1.1 Particle Content in Quantum Mechanics. Spectrum of
Hamiltonian

In order to emphasize the relevance of detailed spectral concepts to the problem of particle
interpretation, let us consider briefly the familiar case of two-body quantum mechanical
scattering: Here the central object is the (relative motion) Hamiltonian H = Hy+V which
consists of the free part Hy and the interaction potential V. The Hilbert space H can be
decomposed into the orthogonal subspaces

H = Hpp & Hae ® Hae, (1.1.1)

corresponding to the decomposition of the spectral measure of H into the pure-point,
absolutely continuous and singular-continuous parts. By comparing the free dynamics to
the interacting dynamics at asymptotic times, one obtains, under suitable assumptions on
V', the wave operators

W =slim et (1.1.2)

t—doo

One says that the theory has a complete particle interpretation, if Ran W+ = H,. and
Hse = {0}. Under these conditions every state in the Hilbert space can be uniquely
decomposed into the bound states and the scattering states of the Hamiltonian. The first
proof of asymptotic completeness in the above framework, for a certain class of short-range
potentials, is due to Enss [En7§]. The argument was later generalized by Sigal and Soffer
[SiSoR7), Graf [Gr90] and Dereziriski [De93] to many body systems interacting with short-
range or long-range forces and it forms today a part of standard textbook material [DG].

1.2 Wigner’s Particle Concept and its Limitations

To understand the limitations of the above approach to the problem of asymptotic com-
pleteness, let us now describe its implementation in QFT. The general framework, based
on the algebra of observables 2, is explained in detail in Section [CH For the purpose
of the present discussion we assume in addition that the action of the whole Poincaré
group PJTr is unitarily implemented by a strongly continuous representation U acting on
the Hilbert space H and that there exists a unique (up to phase) vacuum vector €2 € H,
invariant under the action of U. Since the joint spectrum of the generators of translations
(H, 15) is contained in the closed forward light-cone V., one can define the mass operator
M =+ H? - P2

Following the standard procedure of Wigner [Wi39], one unravels the particle content
of a theory as follows: First, one finds all the (non-simple) eigenvalues m of the mass
operator M. Next, one decomposes the corresponding eigenspaces into subspaces Flmos]
which carry irreducible sub-representations of U characterized by a mass m and a spin s.
Finally, one forms the direct sum of all such subspaces Hy, := @H[m’s] which is called
the single-particle subspace of the theory. Scattering theory for massive Wigner particles
is well understood by the work of Lehmann, Symanzik and Zimmermann [LSZ55] on the
one hand and by Haag, Ruelle, Hepp and Herbst [Hab&, [Ru62, [He65, [Her71] on the other.
The situation is less clear in theories with long range forces. There collision theory is
under complete control only for massless particles, by the work of Buchholz [Bu75, [Bu77).
The case of massive particles accompanied by massless excitations was treated by the
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present author in [Dy05] under a stability assumption introduced by Herbst [Her71]. The
argument is presented in Appendix [Al of this Thesis.

The approach of Haag and Ruelle resembles in many respects the quantum-mechanical
setting of the previous section: One compares the interacting dynamics governed by the
Hamiltonian H to the dynamics of free field theory of mass m, for any (non-simple)
eigenvalue of the mass operator. There follows the existence of wave operators W+ which
are isometries from the Fock space over the single-particle space I'(Hs,) to the physical
Hilbert space H

W :T(Hyp) — H. (1.2.1)

Thereby, for every configuration of incoming or outgoing particles we can find the cor-
responding vector in H. If the wave operators are invertible, i.e. every vector in the
physical Hilbert space can be interpreted in terms of configurations of incoming and out-
going particles, then we say that the theory is asymptotically complete in the Wigner
sense.

The only known class of interacting theories which satisfy this property are the two-
dimensional models with factorizing S-matrices recently constructed by Lechner [Le(8].
In particular, no asymptotically complete model exhibiting particle production is known
to date. In the thoroughly studied A(¢?)s theory only states of energy smaller than 3m —¢
[GIST3, SZ76] or from the interval [3m + €,4m — ¢] [CD82|, where ¢ — 0 with A — 0,
have been shown to have particle interpretation. More importantly, the above variant of
asymptotic completeness is bound to fail in many physically relevant situations: Suppose
that a pair of charged particles is produced in a collision of neutral particles. Since the
masses of the charged particles are not visible in the energy-momentum spectrum of the
vacuum sector, the vector ¥ € H, which corresponds to this process, cannot be interpreted
in terms of the Fock space I'(Hsp). In the case of massive particles and (string-)localized
charges one could try to avoid this difficulty by adjoining the charged sectors, determining
the masses of charged particles from the extended energy-momentum spectrum and study-
ing suitably redefined wave operators [BER2|. This strategy fails, however, for electrically
charged particles, whose masses are not eigenvalues of M, even in the charged sector, due
to the presence of Gauss’ Law [Bu86]. In this case the Wigner concept of a particle does
not apply and the approach of Haag and Ruelle is invalidated from the very beginning.
The presence of such infraparticles [Sch63] is the main motivation for the search for a
more general definition of a particle.

1.3 Beyond Wigner’s Particle Concept. Arveson Spectrum

The first attempt at an intrinsic characterization of theories describing particles was made
by Haag and Swieca [HS65]. These authors proposed a physically motivated phase space
condition which should hold in all theories with reasonable particle interpretation. In fact,
a large class of models are known to date to satisfy this criterion [BDL90] and a general
argument, which corroborates the heuristic reasoning of Haag and Swieca, was found by
Bros [Br(3] in the two-particle situation. Moreover, it was shown by Enss [En75] that the
Wigner definition of a (massive) particle is equivalent to its geometric characterization as a
state which is singly-localized at all times in theories satisfying this phase space condition.

However, as this phase space criterion holds also in some models which do not have
particle interpretation, it is too weak to meet the original goal of Haag and Swieca. A
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number of more stringent restrictions on the phase space structure of a theory, formulated
in terms of compactness and nuclearity conditions, can be found in the existing literature
[BP90]. They proved very useful in the structural analysis of quantum field theories
[BWiR6, BRI, Bud6, BosO5.1), Bos05.2] and in the construction of interacting models
[Le0]], but have not offered, as yet, many new insights into the particle aspects of the
theory. Recently a novel phase space condition, related to additivity of energy over isolated
subregions, was proposed by the present author [Dy08.1}, [Dy08.2]. Among other physical
consequences, it entails relaxation of any state w of bounded energy to the vacuum state
under large timelike translations, i.e.

tllrglow(at(C)) = (Q|CQ), C e, (1.3.1)

where ay z(-) = U(t, &) - U(t, Z)* are the translation automorphisms. The argument, which
is given in Chapter B of the present work, does not require the assumption of asymptotic
completeness in the Wigner sense which was used by Araki and Haag [AH67| in the first
proof of relaxation to the vacuum. While relation (L3) does not carry information
about the particle content of a theory, we recall that in [AH67| the authors derived an
asymptotic expansion of the function ¢t — w(a(C)) as t — oo and demonstrated that
the higher-order terms are directly related to the asymptotic particle density. A large
part of this analysis was extended beyond the framework of Wigner particles by Buchholz,
Porrmann and Stein [BPS91] leading to a generalized concept of a particle, encompassing
also the case of infraparticles. The remaining part of this section is devoted to a brief
sketch and discussion of these developments. (See [MS85 [Spl, [CEP07, [Herd07] for other
approaches to the infrared problem).

In order to compensate for the dispersive effects, encoded in equation ([L3]), one paves
the whole space with observables and sums up the results. This amounts to studying
the time evolution of the integrals [ d*zw(oy z(C)) which, however, make sense only for
suitably chosen C € 2. In order to introduce a class of admissible particle detectors,
we need the mathematical concept of the Arveson spectrum [Ar82, [Pe]. Postponing the
formal definition to Section [ we only recall here that the (local) Arveson spectrum of
an element B € 2 w.r.t. the group of translation automorphisms R**! 5 z — «, denoted
by Spp(ags+1), coincides with the energy-momentum transfer of the observable B. In
fact, let A — P(A) be the spectral measure of the energy-momentum operators (H, 15),
defined on Borel sets A C R*t!. Then there holds

BP(AYH C P(A + Spp(ags1))H. (1.3.2)

In view of this relation we say that an operator B € 2 is energy-decreasing if Spz(ags+1)N
V4 = 0. It is a crucial result due to Buchholz [Bu90)] that for any B € 2 which is energy-
decreasing and almost locaﬂ, and any compact set A C R**!, one can define the integrals

P(A) / &z ax(B*B) P(A) (1.3.3)

as bounded operators on H. Having compensated for the dispersive effects, one extracts
information about the particle content of the theory: For any state w of bounded energy
one studies the behavior of the following expressions as t — oo

c(B*B) = / d*zrw(a, z(B*B)). (1.3.4)

1See Section for the definition of this concept.
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It was shown by Porrmann [Po04.1] [Po04.2] that the resulting asymptotic functionals UU(JJF),

defined on a certain algebra of admissible observables, can be decomposed into pure func-
tionals 0§\+), the so called pure particle weights. More precisely, for any w there exists a

measure du on the space of labels A s.t.

o) = / dp(N)ol. (1.3.5)

To each label A there corresponds a sharp four-momentum py and a label «y which carries
information about the internal degrees of freedom, like spin and charge. Therefore, we
can interpret the weights JE\JF) as plane wave configurations of the particles appearing
in the theory. A general algorithm for computation of collision cross-sections of these
particles, which does not rely on the existence of charged fields, was developed in [BPS9T]
and tested in asymptotically complete theories of Wigner particles by Stein [St89]. Also
the fundamental problem of the existence of non-trivial asymptotic functionals, which
rephrases the question posed by Haag and Swieca [HS65], has been settled to date only in
this restrictive framework.

Two heuristic arguments of more general nature, addressing the question of existence
of particles, were proposed by Buchholz: The first one combines phase space properties
of a theory and the time-slice axiom [Bu87]. The second relies on the existence of the
stress-energy tensor [Bu94]. In Section of this Thesis we present a rigorous proof of
the existence of non-trivial asymptotic functionals which is based on this latter idea and
does not rely directly on the Wigner concept of a particle.

Another important issue is the convergence of the asymptotic functional approximants
aff ) as t — oo. Again, a proof is known only in the context of theories which are asymp-
totically complete in the Wigner sense [AHG67]. We do not present a solution in this work,
but a promising strategy is discussed in Chapter Bl The simpler problem of relaxation to
the vacuum, (cf. relation (L3J]) above), which is settled in this Thesis under physically
meaningful conditions, should provide a guidance towards a more general proof of the
convergence of af,t ).

Very little is known about asymptotic completeness in this general framework. A
possible formulation was proposed in [Bu94]: It should be possible to determine the energy
and momentum of any physical state w, knowing its particle content from relation ([C33).
More precisely, there should hold

w(P) = / du(\pa, (13.6)
where the four-momenta py label the pure particle weights JE\JF) and a similar relation
should hold for other conserved quantities which characterize particles, like spin, charges
etc. It is plausible that relation (L3 holds in models admitting a stress-energy tensor,
but we are far from an actual proof. Additional assumptions, which may be useful to
settle this issue, are discussed in Section

It is evident from the above discussion that the problem of particle interpretation
in quantum field theory is rather poorly understood in comparison to the quantum-
mechanical case considered in Section [LTl We see the origin of this disproportion in
the absence of adequate mathematical structures on the side of QFT: Here the natural
language for the description of particle aspects is that of the group of translation auto-
morphisms R*t! 5 2 — a, acting on the C*-algebra 2. The Hamiltonian, central for
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the quantum-mechanical scattering, is replaced by the generator of time translation au-
tomorphisms, whose spectrum coincides with the (global) Arveson spectrum of oy [Ex70],
defined by formula (CZZ) below. After the spectral theory of automorphisms was sys-
tematized by Arveson [Ar82], it became clear that several important notions, familiar
from the quantum-mechanical setting, do not have counterparts in this more general con-
text. These include the concept of spectral measure and measure classes consisting of
pure-point, Lebesgue absolutely continuous and singular continuous parts, and the corre-
sponding decomposition ([LTJ)) of the Hilbert space into spectral subspaces. As we have
seen in Section [[Jl these notions are crucial for the formulation and resolution of the
problem of asymptotic completeness in quantum mechanics. It is therefore quite certain
that the lack of counterparts on the side of automorphism groups impedes the study of
the particle aspects in QFT. Various steps towards the development of such more detailed
theory of the Arveson spectrum, which can be found in the literature, are discussed in the
next section.

1.4 Detailed Theory of Arveson Spectrum in Literature

For a group of unitaries RS > ¥ — U(Z), acting on a Hilbert space, there holds
U@V = [e P8P (p)¥, where ¥ € M and dP is the spectral measure. Hence the
natural counterpart of the spectral measure in the Arveson theory are the Fourier trans-
forms of the functions R* > 7 — az(A), where A € 2. As the support of the resulting
distribution p’— A(p) coincides with the Arveson spectrum of A, a more detailed spectral
theory should describe also its regularity properties.

Several results in this direction can be found in the existing literature. On the physics
side, the distributions p’ — w(A(p)), where A is a local operator and w a state of bounded
energy, were studied by Buchholz [Bu90]. It was shown that in any local, relativistic QF T
they coincide with square-integrable functions apart from a possible singularity at zero.
This result, stated precisely in Theorem [LE2 below, was instrumental for the development
of the Haag-Ruelle scattering theory in the presence of massless particles [Dy05], treated
in Appendix [Al of this work. It also provides a basis for the spectral decomposition of the
algebra of local observables, which we construct in Chapter

Such Fourier coefficients Z(ﬁ) appear also as a tool in the mathematical literature
related to the Rieffel project of extending the notions of proper action and orbit space
from the setting of group actions on locally compact spaces to the context of C*-dynamical
systems (2, R®, «) [Ri90, [Me01]. A number of properties of A(p), familiar from classical
harmonic analysis, like the Fourier inversion formula, have been proven by Exel in [Ex99.
Ex00]. Unfortunately, we cannot use these results here as they rely on the assumption of
unconditional integrability, which requires that the net

{/deiv i (A)} s (1.4.1)

indexed by compact subsets K C R?, converges in the norm topology of 2 as K ' R*. This
is not quite compatible with QFT, where we interpret A € 2 as a particle detector, since
for any compact region K one can prepare a physical state which gives large measurement
responses in the complement of K. In fact, the integral (L33]) was only shown to converge
in the strong operator topology of B(H) [Bu90).
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The above two approaches are distinguished by the fact that they exploit the algebraic
structure of 2. The more general framework of groups of isometries R 2 t — oy acting
on a Banach space 2l attracted more attention. This direction of research relies on the
equality of the (global) Arveson spectrum, given by

Spor = | J Space, (1.4.2)
Aed
and the operator theoretic spectrum of the generator D = %%at\t:() which was estab-

lished by Evans [Ev76] and independently by Longo [Lo77]. Related results, known
as the spectral mapping theorems, were obtained for the global Arveson spectrum
[Co73, IDLZRT, [Ar82), Ne92] and for the local one [Ne98, [LN], (see [Ar82, [LN] for re-
views). As for the more detailed spectral theory, the point spectrum of D is the best
understood one. A thorough analysis of the discrete spectrum, including the mini-max
principle, existence and uniqueness theorems for the ground state and the Rayleigh-Ritz
technique, was performed by Jorgensen [Jo82]. Inspired by the Stone formula [RS1], this
author proposes a suitable limit of resolvents of the generator D to be the counterpart
for the spectral measure. This technique has applications also beyond the point spec-
trum [J092]: Using classical results of Fourier analysis, Jorgensen derives integrability and
decay properties of the functions t — w(azA), where A € A, w € A*, from regularity
assumptions on these resolvents. However, such assumptions do not have a clear physical
meaning and are difficult to verify in the case of translation automorphisms in QFT, so
we do not pursue this approach here.

The subject of Cauchy problems in the theory of differential equations [AB97] includes
an interesting line of developments which bears some similarity to the present work: As-
sume that the spectrum of D is countable. Then, under some additional conditions, the
eigenvectors of D span a norm dense subspace in 2 [Ba78, [Hu99]. In this case the repre-
sentation « is called almost periodic, as all its orbits t — a;(A), A € 2, belong to the class
AP(R, ) of almost periodic functions with values in 2. More abstractly, u € AP(R, )
if and only if the set S(u) = {u(- +t)|t € R} of the translates of u is relatively norm
compact in the Banach space BUC(R,2) of bounded, uniformly continuous functions
[ABI7, [Ph93]. Replacing in the above definitions the real line R with the positive half-line
R4, we obtain the set S(u); and the class AAP(R,4,) of asymptotically almost peri-
odic functions which is of interest in the theory of Cy-semigroups Ry >t — oy acting on
Banach spaces. This class has the decomposition [RS90, [AB99) [BPh90, [ABSS]

AAP(R,,2) = AP(R, )|z, © Co(Ry,2), (1.4.3)

where Cp(R 4, 2) is the space of continuous, functions which tend to zero in norm as t — oo.
A larger class W (R4, ) of Eberlain weakly almost periodic functions is characterized by
the condition that the set S(u)4 is relatively weakly compact [RS90, [RS92]. The weak
counterpart of Cy(R,2) is the space Wy(R4, ) of such functions u from W (R, 2(), that
zero belongs to the weak closure of S(u)4. Again, we have a decomposition [RS90]

W(R,,2A) = AP(R, %) |g, & Wo(Ry, ). (1.4.4)

All the spaces introduced above consist of orbits of the semigroup of translations given
by (owu)(t') = u(t +t') acting on BUC(R,2l). Therefore, relations (CZ3), (CZ4) can
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be interpreted as spectral decompositions of the corresponding generator D. However, in
contrast to the Hilbert space case (cf. relation (LIT)), these decompositions do not involve
the whole underlying space BUC(R,2(), but only cover some small neighborhoods of the
pure-point part AP(R,%A)|r,. Moreover, they consist only of the pure-point subspace
and its complement which can be understood as a candidate for the continuous subspace.
There does not seem to appear any further decomposition of these continuous subspaces
in the literature. Finally, and most importantly, this approach is appropriate for the study
of semigroups of operators rather than groups of isometries we are interested in here. In
particular, the space Cy(R4,2d) does not contain orbits of any group of isometries.

1.5 Overview of this Work

In Chapter Ml we gave an overview of scattering theory in quantum mechanics and quantum
field theory placing emphasis on the role of spectral analysis. The remaining part of this
chapter treats the framework of algebraic quantum field theory as well as definitions and
results which are particularly useful in the later part of this Thesis.

In Chapter ] we motivate and develop a detailed spectral theory of space translation
automorphisms R® 5 ¥ — az acting on the algebra of local observables 2. We obtain the
decomposition

A=Ay & Ape ® e (1.5.1)

Apart from the pure-point and absolutely continuous parts, familiar from the Hilbert space
context, there appears a new subspace which we call point-continuous. It formally belongs
to the continuous part of the spectrum, but it is finite dimensional in a large family of
models, complying with Condition L stated in Section This subspace carries infor-
mation about the infrared behavior of the theory which can be assessed with the help of
a new quantity which we call the infrared order of an operator. We provide examples of
theories with non-trivial and trivial point-continuous subspaces and compute the infrared
orders of their elements. Triviality of the point-continuous subspace is expected to hold in
purely massive theories and we formulate a general condition L1, stated in Section E3
which entails this spectral property. A quantitative variant of this new criterion guaran-
tees the existence of non-trivial asymptotic functionals (describing particles) in theories
admitting a stress-energy tensor.

In Chapter Bl we study the uniqueness of the decomposition of 2 into the pure-point
and continuous parts. A variant of the ergodic theorem for translation automorphisms in
QFT, stated as Theorem below, reduces this issue to the problem of the uniqueness
of the energetically accessible vacuum state. In Section we introduce a phase space
condition C},, of algebraic nature, which entails this property and has a number of other
physically interesting consequences: The vacuum state is pure and appears, in particu-
lar, as a limit of physical states under large spacelike or timelike translations in Lorentz
covariant theories. Moreover, it is approximated by states of increasingly sharp energy-
momentum values, in accordance with the uncertainty principle. This new condition has
a clear physical interpretation in terms of coincidence arrangements of local observables,
but its consistency with the basic postulates has been verified only in the realm of mas-
sive theories. Therefore, in Section B4 we introduce another phase space condition Cy,
involving only the Banach space structure of 2, which can be verified both in massive
and massless models. We motivate this condition by the physical principle of additivity of
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energy over isolated regions and show that it has all the physical consequences mentioned
above (apart from the purity of the vacuum). We also demonstrate that it can be derived
from an auxiliary nuclearity condition Ny, introduced in Section B3 which is better suited
for the study of concrete examples.

In Chapter Hl we summarize our results and consider some open problems from a
new perspective. In particular, we discuss in detail the problem of convergence of the
asymptotic functional approximants.

The main part of this Thesis is accompanied by six appendices: Appendix [Al which
develops the Haag-Ruelle scattering theory in the presence of massless particles, com-
plements our discussion of collision theory in Section Appendix [B] summarizes the
known results on the phase space structure of scalar free field theory. It provides the
basis for the material presented in the remaining appendices. In Appendices [ and
we establish Conditions L(®) and L™, respectively, in models of non-interacting particles.
Appendices [E] and [F] are devoted to verification of Conditions Ny and Cj, in such models.
Notably, Conditions L®? and Ny hold both in the massive and the massless case.

The first and last section of Chapter Bl was published in [Dy08.1]. Appendix [A] essen-
tially coincides with [Dy05]. The argument from Appendix [El appeared (for the massless
case) in [Dy08.2].

1.6 Technical Background

We adopt here the standard Haag-Kastler framework of algebraic quantum field the-
ory [Hal, [Ax]. Let H be an infinitely dimensional Hilbert space and let 2 = {20(O) C
B(H)| O C R*!} be a net of local von Neumann algebras attached to open bounded
regions O of the Minkowski spacetime. We denote by 2 = Uocrs+1 A(O) the x-algebra of
local observables and its norm closure 2 (denoted by the same symbol as the net) is called
the global C*-algebra of observables. Finally, let a be a representation of the Poincaré
group PJTr = Rt LL in the group of automorphisms of 2 s.t. for any A € 2 the func-
tion PJTr 3 (z,A) — (g, (A) is continuous in the strong operator topology of B(H). The
triple (2, o, H) is called an (algebraic) quantum field theory if it satisfies the following
conditions:

1. Isotony: If O; C Oy then A(O;1) C A(O2).

2. Locality: If O and O, are spacelike separated, then 2A(0p) C 2(O2)’, where the
prime denotes the commutant in B(H).

3. Irreducibility: The global C*-algebra 2 acts irreducibly on the Hilbert space H.

4. Covariance: The representation a of PJTr acts geometrically on the net i.e.
a(LA)Ql(O) = QL(AO + LE) (1.6.1)

5. Spectrum condition: There exists a strongly continuous unitary representation
of translations R**! 5 # — U(z) acting on the Hilbert space H which implements
the translation automorphisms i.e. az(-) = U(z) - U(z)*. The joint spectrum
of the infinitesimal generators of translations (H, Py, ..., Ps), corresponding to this
unitary representation, is contained in the closed future light cone V = { (p°,p) €
R+ [0 > [5]}.
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We will occasionally consider sub-theories of a given theory: by a sub-theory of (U, o, H)
we mean a triple (9B, «, H) satisfying the above assumptions and s.t. B(0) C A(O) for
any open, bounded region O. At times we use the notation A(x) = a,(A), v, = ale for
translated observables A € 2 and functionals ¢ € A*. For any Banach space X, we denote
by X; the unit ball in X. Other definitions and results which are central in the later part
of this Thesis are listed below:

e Vectors of bounded energy. We denote by Pgr be the spectral projection of the
Hamiltonian H on vectors of energy bounded by E and define the dense subspace

Dp =|J Pg'H of vectors of bounded energy.
E>0

e Functionals of bounded energy. It follows from the irreducibility property above
that the space of normal states on 2 coincides with B(H), which can be identified
with the space 7 of trace-class operators on H. We introduce the subspace 7 =
PrT Pg of normal functionals of restricted energy. We denote the cone of positive
functionals from 7r by TE’ and the subset of states from ’TE by Sg. The states
from 2A* which belong to the weak* closure of 7g; for some £/ > 0 will be called the
energetically accessible states.

It is a well known fact that any normal, self-adjoint functional on a von Neumann
algebra can be expressed as a difference of two normal, positive functionals which
are mutually orthogonal [Sal. It follows that any ¢ € 71 can be decomposed as

Y = Pe — PRo + (Pl — Pim); (1.6.2)
where cpﬁe, gpfcm are elements of 7, bf 1

e Almost local observables. A typical region of spacetime to be used in the sequel
is the double cone O(r) = {(2°,%) € R**1|]|2% + |#] < r}, r > 0, whose base
is the s-dimensional ball O, = {Z € R*||Z| < r} of radius r centered at the
origin. We say that A € 2 is almost local, if there exists a net of local operators
{A, € A4(O(r))|r > 0} such that

lim A — Al =0 (1.6.3)

for any k € N.

e Arveson spectrum w.r.t. spacetime translations. Given an observable B € 2,
its (local) Arveson spectrum w.r.t. the group of translation automorphisms R¥t1 >
x — ay is denoted by Spp(ags+1) and defined as the support of the operator-valued

distribution .
B(p) = S| / A"tz =T a,(B). (1.6.4)
(2m)

We say that B is energy-decreasing if Sp(ags+1)NV 4 = (). There holds the following
important result:

Theorem 1.6.1. [Bu9l)] Let B € 2 be energy-decreasing and almost local. Let
X C Rt be some subspace spanned by spacelike vectors and dx be a translationally
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imwvariant measure on X. Then, for any compact subset K C X and any E > 0,
there holds the bound

||PE/ dx o, (B*B)Pg|| < cg, (1.6.5)
K

where the constant cg is independent of K.

The statement holds in particular for X = R or X = { Aé |\ € R}, where é is some
spacelike unit vector.

e Arveson spectrum w.r.t. space translations. Given an observable B € 2, its
Arveson spectrum w.r.t. the group of space translation automorphisms R®* 5 ¥ — az
is denoted by Sp 4 (ars) and defined as the support of the operator-valued distribution

1
(2m)?

The following result is central for our investigations in Chapter

A(p) = /dsx ePToz(A). (1.6.6)

Theorem 1.6.2. [Budl] For any E >0, A€ A and & > 0 there holds the bound

sup / &p 511 | (A7) 2 < oo, (16.7)

v€TE 1

e Vacuum states. We say that wy € A* is a vacuum state if it satisfies the following
conditions

(a) afwy = wp for any x € RS,

(b) wo is locally normal i.e. wolge) belongs to A(O). for any open, bounded
region O.

(c¢) In the GNS-representation of 2 induced by wg there holds the spectrum condi-
tion (given by property 5 above).

We note that the local normality property (b) and the fact that local observables
form a norm dense subspace in 2 ensure the continuity of the functions R**! 3
r — wo(AB(x)), for any A, B € 2. This entails the existence of the generators of
translations (H,,, ﬁwo) in the GNS-representation induced by wyq.
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Chapter 2

Spectral Decomposition and
Existence of Particles

The goal of this chapter is twofold: First, to formulate general conditions on the local
net of observables which imply that the particle content of a theory is non-trivial. More
precisely, to assure that the limit points as ¢ — oo of the integrals

/ &z w(ay5(C)) (2.0.1)

are finite and different from zero for some observables C' € 2 and physical states w.
Following the heuristic reasoning from [Bu94], our strategy is to link the almost local
observables C' to the (0,0)-component of the stress-energy tensor 7%, whose integral over
the whole space is a constant of motion. The fact that T% is a local quantity motivates
the second aim of this chapter, namely to understand the behavior of local observables
under translations in space.

As a first orientation we consider in Section BXIl the quantum mechanical case of space
translations ¥ — U(&) acting unitarily on a Hilbert space. With the help of the ergodic
theorem we formulate the decomposition of the Hilbert space into the respective pure-point
and continuous subspaces in a way which facilitates its generalization to the Banach space
setting. Proceeding to the more detailed spectral analysis, we show that the generic prop-
erty of the functions 7 — (®|U(Z)¥), where the wavefunction of VU is localized in space,
is not integrability, required in ([ZILT]), but the weaker property of square-integrability.

In Section we turn our attention to the case of space translation automorphisms
T — «agz acting on the algebra of local observables 2 in QFT. We show that in theories with
decent vacuum structure, as described by Condition V stated below, there holds a coun-
terpart of the ergodic theorem. It offers a natural decomposition of 2l into the pure-point
and continuous parts. The square-integrability of the functions ¥ — w(az(A)), where A
is a local operator, provides a meaningful definition of the absolutely continuous subspace
e for space translations in QFT. In the present case, however, square-integrability may
fail, due to singularities at zero momentum transfer, exhibited by some infrared-sensitive
observables. A new concept of the infrared order of an operator is introduced to quan-
tify this effect. Such operators typically span a finite-dimensional subspace which we call
the point-continuous subspace lec. It does not have a quantum mechanical counterpart
and carries information about the infrared structure of a theory. Thus we arrive at the

17
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decomposition A R R .
A = lep D Q[pc ® Qlac (202)

which is studied in examples in Subsection The more technical part of this discussion
is given in Appendix [AQ

With integrals (ZX0J]) in our main focus, it is certainly of interest to identify theories
with regular infrared behavior. Therefore, in Section B3l we formulate a condition which
assures that the point-continuous subspace is trivial. At the same time it identifies a class
of particle detectors which are sufficiently close to the stress-energy tensor, to conclude
that the particle content is non-trivial. These results demonstrate the interplay between
the spectral aspects and the particle structures in QFT. (The condition is verified in a
model of non-interacting massive particles in Appendix [).

2.1 Space Translations in Quantum Mechanics

In this section we revisit the well known spectral theory of strongly continuous unitary
representations of translations R®* 5 & — U(Z) acting on a Hilbert space H. Our goal is
to motivate its generalization to the context of translation automorphisms acting on the
algebra of observables, which we undertake in the next section.

The pure-point subspace is spanned by the joint eigenvectors of the generators of
translations i.e.

Hpp = Span{ ¥ € H |U(Z)¥ = e~ P2, for some p € R® and all & € R® }. (2.1.1)

The continuous subspace H, is simply the orthogonal complement of H, in H. However,
it is convenient for our purposes to have a characterization which does not rely directly on
the concept of orthogonality, specific to Hilbert spaces. Therefore, we recall that due to
the ergodic theorem [RS1], the spectral projection Py on a point p'in the joint spectrum
of the generators of translations is given by

1 -
P =s-1i — A’z U(X)e™* 2.1.2
= slim, T [ U@, (212
where the limit is taken w.r.t. to an increasing net of compact sets K C R® ordered by
inclusion. Now the continuous subspace is determined as follows

He= () ker P (2.1.3)
pERS

This subspace can be further decomposed into the absolutely continuous and singular
continuous parts H. = Hac @ Hse and we note the following simple criterion which implies
that a vector belongs to the absolutely continuous subspace.

Proposition 2.1.1. Suppose that the function R® 3 & — (V|U(Z)V) is square-integrable
for some W € H. Then ¥V € H,..

This statement follows from the Plancherel theorem and the fact that any square-integrable
function is locally integrable.

In the next section we propose a similar square-integrability condition as a charac-
terization of the ’absolutely continuous’ subspace of the algebra of observables. In order
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to motivate such a restrictive definition, we consider now briefly a concrete unitary rep-
resentation of translations R® > # — U(&) acting on the Hilbert space L?(R®,d*r) as

follows
(U@)V)(§) = V(j— &), ¥ LR dr). (2.1.4)

In this setting a natural analogue of a local observable is a vector ¥ € L?(R?, d*z) which has
(a representative with) a support in an open bounded region. In the next lemma we show
that these vectors satisfy the square-integrability condition stated in Proposition ZT.11

Lemma 2.1.2. Let ®, ¥ € L*(R*,d°z). Suppose that ¥ has (a representative with) a
support in an open, bounded region O C R®. Then there holds

/dsw!(<I>!U(~%’)‘I’)!2 < [olf®| [[w|?, (2.1.5)

where |O] is the volume of the region O.

Proof. Using the Plancherel theorem we obtain

/ds:ﬂ|(<I>|U(f)‘1’)|2 = (27T)S/dsp|5f>(ﬁ)l2 9 (p)|*. (2.1.6)

The support property of ¥ gives

2
0 (p)|? < (27r)_s</dsx|\1'(a?)|> < (2m)"%|0] |||, (2.1.7)

what concludes the proof. [

More importantly, the square-integrability of the functions R® 3 # — (®|U(Z)V), proven
in the above lemma, cannot be improved to integrability with any lower power. In fact:

Lemma 2.1.3. For any 0 < k < 2 there exist ®, ¥ € L*(R®,d°z) s.t. ¥ has (a represen-
tative with) a support in an open, bounded region O and

/dsx (@)U D) = oo, (2.1.8)

Proof. Let O be the ball of radius R > 0 centered at the origin. Let x € C§°(R?®) be a
positive function, s.t. x(Z) = x(—Z), supported in this ball. We set for some 0 < § < s

X (D)

o = O (2.1.9)
P12
(@) = ). (2.1.10)
Making use of the fact that the Fourier transform of p— | ﬁl_%é equals ¥ — ¢;|T \_S# > 0,
s+6
where ¢5 = 25 F(Sfa), we obtain
r(*3%)
- _s s Cs s N (o =
@U@y = o [e—" [eaenE-n e
|7+ 2| 2
2
Cs

> (%r%W(/d@X@) . (2.1.12)
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Consequently, for 0 < k < 2 and sufficiently small § > 0, integral I8 diverges. [J

Summing up, the square-integrability of the functions
R® > 7 — (®|U(Z)¥), (2.1.13)

uniformly in ® € L2(R*,d°z), ||®| < 1, is the best possible generic feature of vectors W,
compactly supported in configuration space. Turning our attention to quantum field the-
ory, we recall that such vectors are our analogues of local observables A € 2. Furthermore,
vectors ® correspond to normal functionals of bounded energy ¢ € 7g and the group of
unitaries R®* 5 & — U(Z) is the counterpart of the group of translation automorphisms
R% 5 & — az. Thereby the transition amplitudes [ZIT3]) between ® and the translates of
¥ provide a toy model for the expectation values of translates of local operators on states
of bounded energy:

R* 5 7% — p(az(A)). (2.1.14)

These functions are the main subject of the remaining part of this chapter.

2.2 Space Translations in Quantum Field Theory. Spectral
Decomposition

In this section we construct the spectral decomposition of the x-algebra of local operators
A = Uocrs+1 A(O) into subspaces which differ in their behavior under translations in
space. We first identify the pure-point and the continuous subspace in Subsection 22211
Next, in Subsection ZZ2, we decompose the continuous subspace into suitably defined
absolutely continuous and point-continuous parts. The latter subspace is a new feature
which does not have a counterpart in the Hilbert space setting considered in the previous
section. Since we abstracted our decomposition from the study of physically relevant
examples, discussed in Subsection 223, we do not expect any counterpart of the singular-
continuous subspace to appear. In fact, in the quantum-mechanical framework outlined
in Section [Tl the singular-continuous subspace is trivial in models with complete particle
interpretation.

2.2.1 Pure-Point and Continuous Subspace

In order to determine the pure-point spectrum, suppose that A € 2 is an eigenvector of
the translation automorphisms R® > & — az i.e.

az(A) =e 4, FeR® (2.2.1)
for some ¢ € R*. Then A belongs to the center of 2, since locality gives

I[A, B]|| = lim ||[ez(A), B]|| =0, B e (2.2.2)

|Z| =00

The irreducibility assumption from Section [[f ensures that the center of 2 consists only
of multiples of the unity. Hence the pure-point subspace is given by

Ap = { M [N eC}. (2.2.3)
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Since we do not have the concept of orthogonality, it is a priori not clear how to choose
the complementing continuous subspace. In order to restrict the family of admissible
projections P(gy on lep, we proceed along the lines set in the previous section: we introduce
the following family of approximants

~

1
Proyr(4) = R /K d’razg(4), A€, (2.2.4)

which are defined as weak integrals for any compact subset K C R®. (They belong to 2A
by the von Neumann bicommutant theorem). In the present setting we do not have the
ergodic theorem at our disposal, hence it is not clear if the the above net converges as
K ' R?®. However, there holds the following simple proposition. For reader’s convenience
we include the standard argument.

Proposition 2.2.1. There exists a net { Kg C R*|3 € 1} of compact subsets of R® s.t.
Kg /' R® and for any A € 2 there exists the limit in the weak* topology of B(H)

1
P (A) = w'-lim — d’x az(A). 2.2.5
{0}( ) 3 ’K,B‘ s ( ) ( )

Moreover, Py (A) = wo(A)I for some state wo € A*, which is invariant under spacetime
translations and belongs to the closure of Tg 1, for any E > 0, in the weak™ topology of A*.

Proof. For any normal functional ¢ € 7 the function R® > & — aZ¢ is continuous w.r.t.
the norm topology in 7. Given any compact subset K C R® we define the functional
wxr € T as the Bochner integral

1 .
YK = W/dex azp. (2.2.6)

Now we fix a state w € 7 and obtain, from the Banach-Alaoglu theorem, a net { Kg C
R%| 3 €1} and a state wy € A* s.t.

lién Wi, (A) = wo(A), Aed (2.2.7)

By locality, { Pjoy x(A)}kcrs is a central net, i.e. for any B € 2 there holds

Jm 1Pk (4). Bl =0. (2.28)

Therefore, all its limit points w.r.t. the weak® topology of B(H) are multiples of the
identity, by the assumed irreducibility of 2(. It follows that for any ¢ € 7, A € 2

i (o (4) = o)D) =0 (2.2.9)
Consequently
1
w*-lim —— d*rag(A) = wo(A)I. (2.2.10)
8 |Kgl Jk,

Moreover, by choosing ¢ = ajw for some y € Rt we obtain from (ZZ) that wg is
translationally invariant. Similarly, noting that if ¢ € 7g then px € 7g 1, we obtain
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that wp belongs to the weak® closure of 7 ; in * for any £ > 0. O

In contrast to the ergodic theorem from the Hilbert space setting, this proposition does
not provide us with a unique projection on the pure-point subspace. However, it restricts
the admissible projections to expressions of the form Py () = wo(-)I where wy is a trans-
lationally invariant, energetically accessibld] state. A thorough discussion of such states
is the subject of Chapter Bl where the general postulates from Section are supple-
mented with physically motivated phase space criteria. It is shown that under the existing
Condition Cy [BP90] every state wy satisfying the conditions from Proposition 22Tl is a
vacuum state, as defined in Section More importantly, we introduce new phase space
conditions C}, and Cj, the former inspired by the behavior of coincidence measurements,
the latter motivated by the physical principle of additivity of energy, and show that each
of them entails the uniqueness of the energetically accessible vacuum state. These results
provide evidence to the effect that in a large class of physically relevant models there holds
the following condition, which we adopt as a standing assumption in this chapter.

Condition V : A state wy € A*, which is invariant under spacetime translations and
can be approximated by elements from 7g ; for some F > 0 in the weak™ topology
of 2A*, is unique and is a vacuum state.

Under this condition the projection on the pure-point subspace Py () = wo(-)I is fixed
by the unique, energetically accessible vacuum state wg. Thus we obtain from Proposi-
tion ZZT] the following ergodic theorem for translation automorphisms in QFT:

Theorem 2.2.2. Suppose that Condition V holds. Then for any A € A there exists the
limit in the weak® topology of B(H)

1
Pn(A) =w*- lim — [ d°zaz(A). 2.2.11
{0}( ) K R ‘K’ - ( ) ( )
Moreover, Py (A) = wo(A)I, where wo € A is the unique energetically accessible vacuum
state.

Guided by relation (ZT3]), we define the continuous subspace as A, = ker Pyoy or equiva-
lently

A = {AeUAlwy(Ad) =0}, (2.2.12)

where wy is the unique energetically accessible vacuum state appearing in Theorem
For future convenience we also define 2.(0) = { A € A(O) |wo(A) =0}.

2.2.2 Absolutely Continuous and Point-Continuous Subspace

Proceeding to more detailed analysis of the continuous subspace, we note that if Con-
dition V holds, then for any A € Sﬁlc, spacelike unit vector é € Rt and E > 0, we
get

lim ¢(ax(A)) =0, o € Tg. (2.2.13)

A—00

1We call a state w € A* energetically accessible if it belongs to the closure of 7z, for some E > 0 in
the weak*-topology of 2*.
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This is justified making use of the fact that {aye(A)}r>0 is a central net and proceeding
as in the proof of Proposition ZZZIl (See also Proposition B4l below). In view of this
property, we can base further decomposition of 2, on decay properties of the functions
R* 5 ¥ — ¢(azA). Guided by our discussion in Section I, we expect that the best
possible generic property of such functions should be square-integrability. Let us now
demonstrate that in any quantum field theory there is a non-trivial subspace of local
operators which are square-integrable in the sense made precise in Proposition below.
For this purpose we consider the operator-valued distribution

A@p) = / &pePaz(A),  Aeq (2.2.14)

1
(2m)2
If A¢ Sﬁlpp, then the support of this distribution (i.e. the Arveson spectrum of A w.r.t.
space translations) coincides with R® [Bu90]. A more detailed spectral theory should
determine not only the support, but also regularity properties of the distribution ([(ZZT4).
As we mentioned in Section [[8], the first step in this direction was taken by Buchholz who
has shown that in any local, relativistic QFT there holds the following bound

~

swp [ @plpt I APE <o, A (2.2.15)

v€TE1

for any F >0, ¢ > 0 [Bu90]. Making use of the fact that for any f € S(R®) there holds

ACHB) = (2m)3 DA, (2.2.16)

where A(f) = [d*zaz(A)f(Z), it is not difficult to find non-trivial operators A € A,
which satisfy a stronger estimate.

Proposition 2.2.3. In any quantum field theory admitting a vacuum state wy € A*, there
exist 0 £ A €A s.t. wy(A) =0 and

IAllsa = suw ( [aviota W) <. (2.2.17)

w€TE 1

Proof. We pick A ¢ lep Since the support of the distribution R* 5 p' — ;1(]3) coincides
with R® and the space C§°(R®) of smooth, compactly supported functions is dense in
S(R®) we can find a function f € Cj°(R®) s.t. A(f) = A(f) # 0. Next, for any n € N we
introduce functions f,, € C§°(R?) given by

Fa(@) = FD) |1 (2.2.18)

Then the operators A(f,) € 2 are also different from zero. (Otherwise the support of
7 — A(p) would have to be contained in {0}). Setting 4n > s + 1 we obtain from
identity (ZZI0) and estimate (ZZTIHl) that ||A(fn)||E2 < oo for any E > 0. In order to
verify that wo(A(fn)) = 0, we use local normality of the state wy to exchange its action
with integration and the fact that f,(0) = 0. O

We call operators A € ﬁlc, which satisfy the bound (ZZI7) for any E > 0, square-
integrable. We know from Section [ZJ] that the quantum-mechanical analogue of this
property implies the absolute continuity of the spectral measure and cannot be improved
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to integrability with any smaller power. Thus we define the absolutely continuous subspace
of 2. as consisting of all the square-integrable observables

oo = { A € U ||| Allp2 < o0 for any E >0}. (2.2.19)

This subspace is non-trivial in any local, relativistic QFT by Proposition and we
expect from Lemma that it is large in a certain sense. Also our discussion of quan-
tum mechanical scattering in Section [Tl suggests that the absolutely continuous subspace
should exhaust the continuous subspace in physically relevant models. In quantum field
theory such situation prevails in massive models, admitting sufficiently many particle
detectors, as we show in Theorem Z3T] below. However, in Subsection we demon-
strate that in a large family of massless theories the subspace 2, has non-zero, but finite
co-dimension in .. This case study reveals a class of models in which the absolutely
continuous subspace has the following characterization:

Condition L(®: There exists a finite family of (possibly unbounded) linear func-
tionals 71,...,7, on 2, invariant under translations in space, s.t.

Aoe = kerwg Nkerm N ... Nker7,. (2.2.20)

We find it noteworthy that the square-integrability requirement from definition EZT9)
can, in many cases, be replaced with the linear-algebraic condition (222220]). The problem of
constructing the distinguished family of functionals {7;}} in particular examples is treated
in Appendix [0 Here we remark that in theories complying with Condition L3 the direct
sum complement of Ay in 2, exists and is finite dimensional. This latter property makes
it similar to the pure-point subspace, although it certainly belongs to Sﬁlc. Therefore, we
propose the term point-continuous subspace lec for this direct sum complement. Thus
we arrive at the decomposition

A = App B Ape ® e (2.2.21)

Of course, the point-continuous subspace is non-unique and we do not introduce any natu-
ral choice here. However, its dimension and the behavior of its elements under translations,
which we study below, do not depend on the selection which is made at this point.

If the point-continuous subspace is non-trivial, the continuous subspace contains ob-
servables which are not square-integrable. It is our next goal to quantify their deviation
from the square-integrability. For this purpose we introduce the concept of the infrared
order of an observable A € ﬁlcz

ord(A) :=inf{3 > 0| sup /dsp 51| (A(p)) > < oo for all E>0}. (2.2.22)

w€TE 1

Moreover, we define the set Ord(2.) = {ord(A)|A € 2A.}. Tt follows from esti-
mate [ZZZTH), due to Buchholz, that ord(A) < s+1 for any A € 2. in any local, relativistic
QFT. However, the models studied in Subsection below are far from saturating this
bound. These examples demonstrate that the detailed regularity properties of the distri-
butions (ZZIdl), which are captured by the dimension of the point-continuous subspace
and the infrared orders of its elements, can provide a distinction between different theories.
In contrast, as we mentioned above, the Arveson spectrum of any A € 2, w.r.t. the space
translations R®* > ¥ — az coincides with R®.
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2.2.3 Instructive Examples

In this subsection we study briefly the spectral decomposition in scalar free field theory
and related models, introduced in Section[B.:2l This discussion substantiates the point that
the detailed spectral concepts, introduced in the previous subsection, provide a distinction
between different models.

The first pair of examples are massive scalar free field theory and its even part, defined
in Section As we expect perfectly regular infrared structure here, these models serve
as a reference point for our later discussion. In fact there holds:

Theorem 2.2.4. Massive scalar free field theory and its even part satisfy Condition L)
and have trivial point-continuous subspace for any dimension of space s > 1.

This result can be extracted from our discussion in Section below: There we formulate
Condition L™ (a) which, roughly speaking, assures that the theory admits sufficiently
many particle detectors. We verify in Appendix [0 that massive scalar free field theory
and its even part satisfy this criterion. Then Theorem Z3T] entails the above result.

Let us now turn to the more interesting massless case. To exclude from consideration
the unduly complicated infrared structure of low dimensional massless models, we set
s > 3. Let (A, a, H) be the local net generated by the massless scalar free field acting
on the Fock space H. Let (2(0), a, H(C)) be the even part of this theory, that is the local
net generated by even polynomials of the field acting on the even part H(® of the Fock
space. Finally, we denote by (Ql(d) , &, ’H) the sub-theory of massless scalar free field theory
generated by the derivatives of the massless scalar field. For precise definitions of these
models see Section Condition V', which is the starting point of our spectral analysis,
is verified in these examples in Theorem and Appendix[El For the proofs of the three
theorems stated below consult Appendix

The following theorem describes the dimensions of the point-continuous subspace and
the infrared orders of its elements in the full massless scalar free field theory.

Theorem 2.2.5. Massless scalar free field theory satisfies Condition L2 for s > 3.
Moreover, there hold the following statements:

(a) If s = 3, then dim2,. = 2 or 3 and Ord(2l.) = {0,1,2}.
(b) If s =4, then dimApe = 1 or 2 and Ord(2A,) = {0,2}.
(¢) If s > 5, then dimAp. = 1 and Ord(2.) = {0,2}.

Clearly, the situation differs substantially from the massive case mentioned above. As
expected, the infrared structure improves with increasing dimension, in the sense that the
dimension of the point-continuous subspace decreases. However, this subspace remains
non-trivial for any s > 3. In parts (a) and (b) of the above theorem further investigation
is needed to determine the dimension of Sﬁlpc exactly.

The next example which we present is the even part of massless free field theory. The
following result demonstrates that the infrared structure is significantly modified if one
restricts attention to even observables.

Theorem 2.2.6. The even part (ﬂ(e),g, H(e)) of massless scalar free field theory satisfies
Condition L for s > 3 and there hold the following statements:
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(e)

(a) If s =3, then dlle =1 and Ord(2, )— {0,1}.

(e)

(b) If s =4, then dlle =0 orl and Ord(gge)) = {0}.

(c) If s > 5, then dlle()
Here the point-continuous subspace is again non-trivial in physical spacetime, but disap-
pears in higher dimensions. We note that the maximal infrared order of local observables
in this model is strictly smaller than the corresponding quantity in the full theory for any
dimension of space s > 3. Again, the precise dimension of the point-continuous subspace
in part (b) remains to be determined.

Our last example is the sub-theory of massless free field theory generated by the deriva-
tives of the field.

Theorem 2.2.7. The sub-theory (Ql(d), a,H) of massless scalar free field theory satisfies
Condition L'® and has trivial point-continuous subspace for any dimension of space s > 3.

This theorem demonstrates that triviality of the point-continuous subspace is not a charac-
teristic feature of massive models. Such mild infrared structure may occur also in massless
theories.

The case study, presented in this subsection, demonstrates that the detailed spectral
concepts of the point-continuous subspace and the infrared order provide quantitative
means to compare the infrared behavior of different quantum field theory models. For
example, for s = 3 there holds

dlle > dim Ql( °) > dim A

pc

(2.2.23)

thus we can meaningfully order the three massless models under study w.r.t. their infrared
properties. Presumably, more detailed spectral analysis is needed to distinguish between
massive scalar free field theory and (Ql(d), a,’H). We expect that allowing for negative val-
ues of the infrared order (see formula ([ZZ22)) could serve this purpose, but computations
remain to be done.

2.3 Triviality of Point-Continuous Subspace and Existence
of Particles

In the previous section we constructed a general decomposition of the algebra of observ-
ables 2 into subspaces which differ in their behavior under translations in space. Moreover,
we identified the point-continuous subspace lec which carries information about the in-
frared structure. In this section we formulate a condition which characterizes a class of
theories with lec = {0}. We show that models complying with this assumption and
admitting in addition a stress-energy tensor, have non-trivial particle content.

We argued in Section EJ] that the square-integrability under translations in space
should be the best possible generic feature of local operators. However, almost local
operators may have much better integrability properties. In fact, Theorem [LET] due to
Buchholz gives us a large class of observables C € 2l which satisfy

IClE1 = sup /dS:E|<,0 7))| < 0. (2.3.1)

weTE 1
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The observables C' € 20 which satisfy the above bound for any £ > 0 will be called
integrable. A natural framework for our investigations is based on the subspace of 2
spanned by all such integrable operators:

AV = {C e A|||C|| g1 < oo for any E >0}. (2.3.2)

Equipped with the family of seminorms { || - |z,1 | E > 0}, the space 2" is a locally con-
vex Hausdorff space and we call the corresponding topology T'™). (This is established as
in Section 2.2 of [Po04.1]). The new Condition L(), stated below, specifies another class
of integrable, almost local observables which, as we shall see below, can be used to approx-
imate the stress-energy tensor. These observables are of the form A(g) = [ dt ay(A)g(t),
where A € U and g € S(R) is a suitable time-smearing function.

Condition L(M: There exists such > 0 that for any g € S(R) s.t. suppg C] — p, ]
there hold the assertions:

(a) A(g) € AW for any A € .,
(b) [JA(g)|lE1 < cl||RlARl|| for any A € A.(0), 1 >0,

where R = (14 H)™! and the constant ¢; depends also on O, E > 0 and g.

This condition seems to be a generic property of purely massive theories. We verify it in
massive scalar free field theory in Appendix[Dl Part (a) is verified also in the even part of
this theory (defined in Section [B2) making use of the fact that the norm of an (even) local
operator A does not change upon its restriction to the even subspace of the Fock space (cf.
formula (B2.17)). This property reflects the fact that a state consisting of an odd number
of particles can be approximated in any bounded region of spacetime by a state consisting
of an even number of particles by shifting one particle to spacelike infinity. We expect
that a similar reasoning can be applied to the dislocalized operators R'AR!, appearing in
part (b) of the condition, but the computation remains to be done. We also conjecture
that the above criterion can be established in theories of charged, non-interacting massive
particles.

Now we are ready to prove the main spectral result of this section, namely that theories
satisfying Condition L) (a) have trivial point-continuous subspace. In other words, we
show that Condition L(Y) (a) implies Condition L(?) with the functionals {r;} equal to
ZETo.

Theorem 2.3.1. Assume that Condition L) (a) holds. Then Ape = {0}.

Proof. It suffices to show that for any A € A, and any E > u, where p appeared in
Condition L() (a), there holds ||A||g2 < oo. To this end, we choose a function f € S(R)
sit. f=(27)"% on [~E, E] and supp f C [-2F,2E]. With the help of a smooth partition
of unity we can decompose f as follows: f = f_ + f + fo, where supp foc [—2F, —pu/2],
supp f4 C [1/2,2F], and supp o C| — p, p[. Then there holds

PpAPg = PEA(f)PE = PEA(f_)PE + PEA(f+)PE + PEA(fO)PE (233)

We note that A(fo) is square-integrable (and even integrable) by Condition L(Y) (a). To
the remaining terms we can apply Theorem [CGT] since both A(f_) and A(f;)* are almost
local and energy-decreasing. This latter statement follows from the equality

o

~——

A(f-)(p) = (2m)7 F-(0°) A(°, 7) (2.3.4)
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which implies that the support of A(f_) does not intersect with the closed future light-
cone. (An analogous argument applies to A(f4)*). Thus we obtain from Theorem [CGI]
for any compact subset K C R?,

sup / & [w(A(f) @) < sup / Frw((A(f VAP <en. (235)
K K

wESE wESE

Here cg is independent of K hence we can take the limit K " R® and the claim follows
from decomposition (CEZ) and definition [ZZTT) of the seminorms || - ||g,2. The case of
A(f4) is treated analogously. OJ

Proceeding to the particle aspects of the theory, we define, for any ¢ € 7g, the net
{af,f ) }er, of functionals on A1) given by

s0(C) = / &z (g #(C)). (2.3.6)

This net satisfies the uniform bound |O’§0t)(0)| < |l¢ll IC|lg,1. Therefore, by the Alaoglu-
Bourbaki theorem (see [la], Section 8.5), it has limit points aﬁf’ in the topological dual

of (AW, TM) which are called the asymptotic functionals. The set of such functionals
B = {afj) | € T for some E >0} (2.3.7)

is called the particle content of a theory. This terminology is justified by the fact that
in asymptotically complete theories of Wigner particles, discussed in Section [LZ, these
functionals are related to the asymptotic particle density. In fact, for one species of
Wigner particles, and C = B*B, where B is almost local and energy-decreasing, there
holds [AH67, [En75]

otM(C) = (2m)° / d*pp(a” ™ (9)a™ () (PICIP), (2.3.8)

where a*°"(p), a®*(p) are the creation and annihilation operators of the mode p from the
Fock space of outgoing states and the kernels 7 — (p|C|p) are smooth, positive functions
which are different from zero for suitably chosen B. This guarantees the existence of
non-trivial asymptotic functionals ag) in this restrictive context. It is now our goal to
show that P # {0} not relying directly on the Wigner concept of a particle. Since our
argument is based on the existence of the stress-energy tensor, which is postulated in
Condition T below, we recall the definition and properties of pointlike-localized fields:
We set R = (1 + H)™! and introduce the space of normal functionals with polynomially
damped energy

T. = |R'TR, (2.3.9)

>0

where 7 = B(H).. We equip this space with the locally convex topology given by the
norms || - |; = |R~" - R7Y| for I > 0. The field content of a theory is defined as follows
[FHST]

Ppy = {6 € T2 | R'6R' € ﬂ RRA(O(r)) R for some | > 0}. (2.3.10)
r>0
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There holds the following useful approximation property for pointlike-localized fields which
is due to Bostelmann [Bos05.0]: For any ¢ € ®py there exists [ > 0 and a net A4, €
A(O(r)), r > 0, s.t.

lim |RY (A, — ¢)R'| = 0. (2.3.11)

It follows from Proposition EZZT] that for any E > 0 one can choose a net {¢g}ger of
functionals from 7f;, approximating wp in the weak® topology of A*. Therefore, we
obtain

lwo(A)| < |PeAPg|, A€, (2.3.12)

and the approximation property (Z3I1) implies that wp can be uniquely extended to
elements from ®py. We can therefore introduce the continuous part of this space

Prie = {¢ € Pru|wo(¢) =0} (2.3.13)

The approximation property ([Z3I1) can now be restated as follows: For any ¢ € ®pp
there exists [ > 0 and A4, € A.(O(r)) s.t.

lim |R(A, — ¢)R'| = 0. (2.3.14)

Making use of Condition L() (b) we also obtain, for any time-smearing function g € S(R)

s.t. suppg C] — p, pl,
lim [[A4,(9) = &(9)llz,1 = 0. (2.3.15)

This implies, in particular, that ||¢(g)||p1 < oo for any ¢ € Ppp., what prepares the
ground for our next assumption:

Condition T: There exists a field 7% € ®pp . which satisfies

/fm¢TWm@»=¢H» o€ Tr, (2.3.16)

for any E > 0 and time-smearing function g € S(R) s.t. suppg C|] — p, u[, g(0) =
(27)"2.
This condition holds, in particular, in massive scalar free field theory and its even part as
we show in Theorem [B2ZJl With the stress-energy tensor at hand, it is easy to prove that
the particle content of the theory is non-trivial:

Theorem 2.3.2. Suppose that a theory satisfies Conditions LY and T. Then, for any
p € Tg s.t. o(H) # 0, the corresponding asymptotic functionals satisfy JS') # 0.

Proof. We choose g € S(R) as in Condition T and 0 < ¢ < |¢(H)|. Making use of
Condition L) (b) and relation ([Z3IH), we can find C' € AWM s.t. |TP(g) — C|lg1 < e.
Then, exploiting Condition 7" and the invariance of H under time translations, we obtain

|¢Hﬂ=y/fxﬂTm@xan36+y/fx¢owfm. (2.3.17)

Thus we obtain a strictly positive lower bound on the asymptotic functional approximants,
defined by formula ([Z3), which is uniform in time. [
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We emphasize that we have proven here more than non-triviality of the particle content
- we have verified that every physical state, which has non-zero average energy, gives rise
to a non-trivial asymptotic functional.

The framework, which we considered above, is more general than the one considered
in the theory of particle weights developed by Buchholz, Porrmann and Stein [BPS91].
These authors introduced the left ideal

L£={AB|A,B €2, B is almost local and energy-decreasing } (2.3.18)

and proposed the x-algebra of particle detectors € = £*£ as the domain of asymptotic
functionals. It follows from Theorem [LE&.T], polarization identity and the bound B*AB <
|A|| B*B, valid for any self-adjoint operator A, that ¢ ¢ A1), Similarly, ¢(g) c AW,
where €(g) = {C(g)|C € €} for some time-smearing function g € S(R). As € may be a
proper subspace in AW, it is not clear if the asymptotic functionals, which are non-trivial
on 2AM) by Theorem P32, remain non-trivial after restriction to €. This gap can be closed
with the help of the following strengthened form of Condition L(!).

Condition Lgl): There exists such p > 0 that for any g € S(R) s.t. suppg C]— pu, p[
there hold the assertions:

7@ N
(a) Ag) € €(g).  for any A € 9,
(b) [|A(g)llz1 < allRPAR'| for any A € A(0), 1 >0,

where the constant ¢; depends also on O, F > 0 and g.

Making use of the fact that Ry 3 E — ||C||g,1 is an increasing function for any fixed
C e AWM, part (a) of the above criterion can be restated as the requirement that for any
F >0 and € > 0 there exists C € € s.t.

1A(g) = C(9llesr <e. (2.3.19)

We verify in Appendix[Dl that this condition holds in massive scalar free field theory, hence
it is consistent with the basic postulates. However, it seems to be too specific to hold in the
even part of this theory (defined in Section [B.2)) or in models containing charged particles.
As we mentioned above, in the restrictive framework of theories satisfying this condition,
we can solve the problem of existence of non-trivial asymptotic functionals on €.

Theorem 2.3.3. Suppose that a theory satisfies Conditions Lgl) and T. Then, for any
v € Tg s.t. (H) # 0, the corresponding asymptotic functional satisfies O'S(D—i_)‘@ # 0.

Proof. We choose g € S(R) as in Condition 7. With the help of Condition Lgl) and

formula (235 we can find, for any € > 0, a detector C' € € s.t. [|[T%(g) — C(g)|lg1 < e.
There holds

o(H)] = | / Erw(TO(G) @) < +| / & o(Clg)(t, 7))
= E—i—\/dTg(T)/dsa:w(C(t—FT,a_:'))\, (2.3.20)

where in the last step we made use of the fact that |C||g1 < oo and of the Fubini theo-
rem to change the order of integration. Assuming that lim;_, [ d*z p(C(¢,Z)) = 0 and
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making use of the Lebesgue dominated convergence theorem, we arrive at a contradiction
ife <|p(H)|. O

We recall, that in the framework of Buchholz, Porrmann and Stein any asymptotic func-
(+)

tional O'£,+)|¢, where w € Sg, can be decomposed into pure functionals o,"” on €, the so
called pure particle weight

ole = [ dunaf?. (2.3.21)

which are labeled by sharp four-momentum py and a label ) which carries information
about the internal degrees of freedom. This decomposition generalizes relation ([Z3H),
valid in the framework of asymptotically complete Wigner particles. A possible formula-
tion of the problem of asymptotic completeness in the general context was proposed by
Buchholz in [Bu94]. In particular, it should be possible to determine the energy and mo-
mentum of any physical state w € Sg, knowing its particle content from formula E321]).
That is, there should hold

w(P) = /du()\)p,\, (2.3.22)

where P = (H, 15) and the measure du is suitably normalized. It was conjectured in
[Bu94] that this relation holds in models admitting a stress-energy tensor. We note that
Condition Lgl) provides a link between pointlike-localized fields and the algebra of par-
ticle detectors € on which the decomposition ([Z32]) has been established (up to the
technical details mentioned in the footnote). Therefore, our criterion should be useful for
establishing this form of asymptotic completeness.

2 As a matter of fact, the decomposition has been established only on some subalgebra of regular particle
detectors in €. We refer to [Po4.1] for details.
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Chapter 3

Uniqueness of Spectral
Decomposition and Vacuum
Structure

The decomposition of the algebra of local observables 2 into spectral subspaces, performed
in the previous chapter, was based on Condition V', stated in Section This criterion
guarantees that a state which is translationally invariant and energetically accessible is
unique and is a vacuum state. Among its consequences is the ergodic theorem which
gives the unique projection P(g) on the continuous subspace of the algebra of observables.
It is the goal of the present section to derive Condition V' and other properties of vacuum
states from physically motivated phase space conditions.

Physical properties of vacuum states were a subject of study since the early days of
algebraic quantum field theory [BHS63| [Bor65]. In particular, the problem of convergence
of physical states to the vacuum state under large translations attracted much attention.
It was considered under the assumptions of complete particle interpretation in the sense
of Wigner [AHGT], isolated mass hyperboloid [BER2] and asymptotic abelianess in time
[BWa92]. As none of these assumptions is expected to hold in all physically relevant
models, further investigation of the vacuum structure is warranted.

This subject is revisited here from the point of view of phase space analysis: We show
in Section Bl that the well known compactness condition Cy implies that any physical
state which is invariant under translations in some spacelike ray is a vacuum state. This
applies, in particular, to the state wg which appears as a limit point of space averages
in Proposition EZZTl In order to prove the uniqueness of the energetically accessible
vacuum states, which entails the convergence of the space averages, we first reformulate
Condition Cy in Section so that it describes the behavior of coincidence arrangements
of local operators. Next, in Section B3], we accompany it with a quantitative refinement,
motivated by the fact that physical states are localized in space. We show that the resulting
Condition C}, entails the purity and the uniqueness of vacuum states which can be prepared
with a finite amount of energy. There follows Condition V and, as a consequence, the
ergodic theorem In addition, we demonstrate that in Lorentz covariant theories
there holds the convergence of physical states to the vacuum state under large timelike
translations i.e. relaxation to the vacuum given by formula ([C37).

Since Condition C), has clear physical interpretation and holds in massive scalar free

33
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field theory, as shown in Appendix [, we expect that it is a generic feature of massive
theories. However, its status in the realm of massless theories is not clear. Therefore,
in Section B4 we formulate an alternative phase space condition Cj, inspired by the
physical principle of additivity of energy over isolated subregions, and show that it has
all the physical consequences mentioned above (apart from the purity of the vacuum). It
is verified in Appendix [E] that this criterion holds both in massive and massless theory
of scalar non-interacting particles. In order to facilitate this argument, we introduce in
Section an auxiliary nuclearity condition /Vy, interesting in its own right, which entails
Condition Cy.

Some results from Sections Bl and B3l have been published by the author in [Dy08.1].

3.1 Condition Cy and Existence of Vacuum States

It is well known from quantum mechanics that a system of bounded energy, restricted to
a finite volume, should have a finite number of degrees of freedom. Following the seminal
work of Haag and Swieca [HS65], this fact has been formulated in quantum field theory
as compactness and nuclearity requirements on certain linear maps [BWi86l [BP90)].

For any E > 0, 8 > 0 and double cone O we consider the maps Ilg : 7 — A(O)*,
Op : A(O) — B(H) and Z3 : A(O) — B(H), given by

Oe(e) = ¢luo), ¢ € Tg, (3.1.1)
@E(A = PEAPE, Ae QL(O), (3.1.2)
Z5(A) = e PHAePH A cAO0). (3.1.3)

It is convenient to adopt here the restrictive definition of compactness from [BP90]: Let
V and W be Banach spaces and let L(V, W) denote the space of linear maps from V'
to W equipped with the standard norm. Let F(V,W) be the subspace of finite rank
mappings. More precisely, any ' € F(V, W) is of the form F = >"" | 7; S;, where 7, € W
and S; € V*. We say that a map II € L(V, W) is compact if it belongs to the closure of
F(V,W) in the norm topology of L(V,W).

It was argued by Fredenhagen and Hertel in some unpublished work, quoted in [BP90],
that in physically meaningful theories there should hold the following condition:

Condition Cy: The maps Il are compact for any £ > 0 and any double cone O.

We readily obtain equivalent formulations of this criterion which are also useful. (A similar
argument appears in [BP90]).

Lemma 3.1.1. We fiz a double cone O. Then the following conditions are equivalent:
(a) The maps I1g are compact for any E > 0.
(b) The maps O are compact for any E > 0.
(c) The maps g are compact for any > 0.

Proof. The implication (a) = (b) can be shown as follows: Let ¢ > 0 and F €
F(Tg,A(0)*) be a finite rank map s.t. |[IIg — F|| < e. It has the form

F:ZTiSi (3.1.4)
i=1
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for some 7; € A(O)* and S; € 7. Every element S; can be extended, by the Hahn-Banach
theorem, to an element §Z € B(H). Then the formula F = Z?Zl(PEgiPE) 7; defines a
map in F(A(O), B(H)) which satisfies |©g — F|| < e. This is easily verified making use
of the fact that for any ¢ € 7 and A € A(O) there holds IIg(¢)(A) = ¢(Og(A)). The
implication (b) = (a) can be shown by an analogous reasoning.

To verify (b) = (c), we note that the spectral theorem gives

1Z5(A) — e PHOp(A)e | < 2||Alle™". (3.1.5)

Thus, choosing sufficiently large F, we can approximate the map Zg by finite rank

mappings up to arbitrary accuracy. The opposite implication follows from the identity
Op(A) = PpePi=4(A)e’ Pp. O

Turning to the vacuum structure, we note the following elementary lemma which ensures
the local normality of the energetically accessible states in theories complying with Con-
dition Cy. (A similar argument appears in [G.I70] p. 49).

Lemma 3.1.2. Suppose that Condition Cy holds. Let w € A* be an element of the weak”
closure of Tp1 for some E > 0. Then w is locally normal and can be approximated by a
sequence of elements from Tg 1 in the weak® topology.

Proof. First, we show that w is locally normal. Let {3} ge1 be a net of elements of 7x 1
approximating w in the weak™ topology of 2*. By Condition Cy, for any open bounded
region O the set { pgloo) | B € 1} is compact in the norm topology of A(0)*. We can
therefore choose a Subsequence {#c @) tnen, where G : N — I, approximating w in this
topology. Since a norm limit of a sequence of normal functionals is normal, we conclude
that w is a normal state upon restriction to any local algebra. Let O(m) denote the double
cone of radius m. We note that by choosing subsequences {(me(n }nen, converging in norm
to w on ™A(O(m)), for any m € N, in such a way that {¢g,, ., (n)nen is a subsequence
of {chm(n)}neN, we obtain a diagonal sequence ¢, = g, (n) Wthh converges to w in the
weak™ topology of 2*, replacing the original net. [1

We recall from Section that a vacuum state is a state on 2 which is translationally
invariant, locally normal and s.t. the spectrum condition holds in its GNS-representation.
In a theory satisfying Condition Cy there holds the following simple characterization of
energetically accessible vacuum states.

Theorem 3.1.3. Suppose that Condition Cy holds. Let a state w € A" be an element of
the weak™ closure of Tg 1 for some E > 0 which is invariant under translations along some
spacelike ray. Then w is a vacuum state.

Proof. We pick any A € A(0), a test function f 6 S(RSH) s.t. supp f NV, = 0 and
define the energy-decreasing operator A(f) = [ A(x r)d*T 1z, Next, we parametrize the
ray from the statement of the theorem as { Xe| A€ ]R } where é € Rs“ is some spacelike
unit vector, choose a compact subset K C R and estimate

WAV A)IE| = / aX w((A(F)*A)(00))

=t [ @ acon)

< |\Pg /K dx (A(f)"A(F)(Ae) Pa. (3.1.6)
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In the first step we exploited the invariance of the state w under translations along the
spacelike ray. In the second step we made use of the local normality of this state, (or
of the dominated convergence theorem), in order to exchange its action with integration.
Approximating w by a sequence of functionals ¢, € 7g 1, we arrived at the last expression.
(The local normality of w and the existence of an approximating sequence follow from
Lemma BT2). Now we can apply Theorem [[E1] to conclude that the last expression on
the r.h.s. of (B0 is bounded uniformly in K. As |K| can be made arbitrarily large, it
follows that

WA A() = 0 (3.1.7)
for any A € A(O) and f as defined above. Since equality ([BI1) extends to any A € A, we
can proceed with the proof that w is a vacuum state similarly as in the proof of Theorem 4.5
of [A1]: First, one has to show that the functions

R 5 2 — w(A*B(x)) (3.1.8)

are continuous for any A, B € 2. For local operators A, B this follows from the local
normality of the state w, ensured by Lemma [ET2 and the fact that the functions R*T! 3
x — B(x) are continuous in the strong operator topology of B(H). Since local operators
are norm dense in 2, we obtain continuity for all A, B € 2. In particular, h(z) = w(B(x)),
B € 2, is continuous and bounded. Let us now choose any function f € S(R*t!) such
that f is compactly supported and 0 ¢ suppf . Then it can be decomposed into a sum
f=fi+ f2s.t. supp fi N V. =0 and supp fo N V4 = 0. Consequently, by the Cauchy-
Schwarz inequality and relation (BI1)

/h(x)f(:z:)dSH:E — w(B(f) + (B (]2)) =0, (3.1.9)

showing that supp 2 C {0}. This implies that h(z) = const, what entails the translational
invariance of the state w. It follows that translations are unitarily implemented in the GNS-
representation (H,, 7., {,) induced by w. The resulting unitary representation R*T! 3
x — U,(x), acting on H,,, is strongly continuous by the continuity of the functions (BIH).
To verify the spectral condition, we choose f € S(R*t1), s.t. suppf NV =0, A,B e
and calculate

| [ )9 U @)ma (B f(@)d o = o AB()P
< w(A*A)w(B(f)*B(f)) =0, (3.1.10)
where we made use again of identity (BI1). O

Making use of the above theorem, we can construct vacuum states with the help of the
method of "large translations’ envisaged first in [BHS63]. The case of spacelike translations
is well known [BP90)], although our proof, based on Theorem B3l appears to be new.

Proposition 3.1.4. Suppose that Condition Cy holds and let € € Rt be a spacelike unit
vector. Then there exists a net { \g € R| B €1} s.t. A\g — 0o and a vacuum state wy € A*
s.t. for any A € U there holds

W*-lién A(Agé) = wo(A), (3.1.11)

where the limit is taken in the weak™ topology of B(H).
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Proof. Noting that { A(Agé)}aer is a central net in 2, and proceeding identically as in the
proof of Proposition ZZZ]], one obtains that relation ([BITT]) holds for some translation-
ally invariant state wp which belongs to the closure of 7f 1, for any £ > 0, in the weak”
topology of 2*. Now making use of Theorem we conclude that wg is a vacuum state.
O

Now we turn to the more interesting problem of convergence of physical states to the vac-
uum state under large timelike translations. Here we cannot exploit locality directly, but
instead we rely on Lorentz transformations. We need the following regularity assumption
on their action LL 3 A — ap on the global algebra 2.

Condition R: Let w € 7. Then, for any open bounded region O and any timelike
unit vector é there holds

sup sup  |ajw(A) —w(A)] — 0. (3.1.12)
AERy AcA(O+2é) A=l

This condition is satisfied, in particular, if the Lorentz transformations are unitarily im-
plemented. The following result is based on the observation due to Buchholz that the
timelike limit points of physical states are invariant under translations in some spacelike
hyperplane.

Proposition 3.1.5. Suppose that Conditions Cy and R hold. Let wy be a weak™ limit
point as A — oo of the net {3 w}lrer, of states on A, where é € RTL is a timelike unit
vector and w is a state from Tg for some E > 0. Then wy is a vacuum state.

Proof. In view of Theorem it suffices to show that wy is invariant under translations
in the spacelike hyperplane {ét} = {z € R*T! | ¢ .2 = 0}, where the dot denotes the
Minkowski scalar product.

Choose z € {é*}, x # 0. Then there exists a Lorentz transformation A and
y0,yt € R\{0} s.t. Aé = y%, Az = y'éy, where é,, u € {0,1,...,s} form the canon-
ical basis in R*TL. We set v = Z—é and introduce the family of Lorentz transformations

Ay = A1A A, where A; denotes the boost in the direction of é; with rapidity arsinh(7).
By the composition law of the Poincaré group, the above transformations composed with
translations in timelike direction give also rise to spacelike translations

(0,A0) (A&, 1)(0, A1) = (AAxe, T),  AAzé = A/ 1+ (v/\) e+ . (3.1.13)
We make use of this fact in the following estimate
[a3ew(A) — aqew(A(2))] < wlared) — wlan,areay 1 A)]
+ adn,ew(A) — ajew(A(x))], (3.1.14)
where A € 2(0O). The first term on the r.h.s. of BII4) satisfies the bound
lw(aneA) — W(OéAkOé)\éaAglA)’

< |ajyw(A — aA;1A)] + |(w — aRAw)(aAéaA;1A)]

<|[|Pp(A—ay-1A)Pp|l+ sup  sup  |w(B) —ap, w(B)|[|A], (3.1.15)
A s€ER+ Bea(O+sé);
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where O is a slightly larger region than . Making use of Condition R and of the fact that
Ay — I for A — 00, we obtain that the last term above tends to zero in this limit. In view
of our general continuity assumption on the group of automorphisms « from Section [LG,
the expression (A — « A;1A) tends to zero with A — oo in the strong operator topology.

By the compactness of the maps ©p, the first term on the r.h.s. of (BT tends to zero
as well. The second term on the r.h.s. of (BIT4]) converges to zero by the compactness of
the maps O and the following bound

laia, ew(A) — axew(A(z))] = lw(A(M/1+ (v/A) e+ z) — A(Xé + x))]
<|Pe(A {\/ v/A)? + 11 (02 /N)é) — A) Pg|. (3.1.16)

Thus we have demonstrated that wy(A) = wo( (z)) for any local operator A. This result
extends by continuity to any A € . [J

Summing up, we have shown that there exist vacuum states in any theory satisfying
Condition Cy. These vacuum states can be constructed by means of large spacelike or
timelike translations of physical states. (It is an interesting open question if this result
holds also for lightlike directions). However, the uniqueness of the energetically accessible
vacuum state does not seem to follow from this criterion, since the concept of compactness
is compatible with many limit points. Our next task is to find a quantitative variant of
Condition Cy which entails also this property. To this end, in the next section we cast this
criterion in a form appropriate for a description of coincidence measurements. Then, in
Section B3l we propose a strengthened, quantitative form of Condition Cy. It accounts for
the fact that if the number of separated observables, with vanishing vacuum expectation
values, is larger than the number of localization centers forming the state under study,
then the result of the coincidence measurement should be zero.

3.2 Condition Cy: Coincidence Measurement Formulation

To formulate a notion of compactness which is adequate for a description of coincidence
arrangements of detectors, we need to extend our framework: Let I" be a set and let
L(V xT', W) be the space of maps II from V x T" to W, linear in the first argument, which
are bounded in the norm

|| = sup [[IL(v, z)]]. (32.1)
veV]
zel

The subspace of finite rank maps F(V x I'; W) contains all the maps of the form F =
S 7 Si, where ; € W, S; € L(V xT',C). We say that a map Il € £L(V x I',W) is
compact, if it belongs to the closure of F(V x I', W) in the norm topology of L(V x T', ).

As we are going to consider coincidence measurements, we choose as the target space
W the Banach space (4(0)*")* of N-linear forms on A(O) equipped with the norm

¥l = sup [Y(A; x--- x Ay)|. (3.2.2)

A;€A(0),
ie{lv"'vN}

In order to control the minimal distance between the regions in which the measurements
are performed, we define the set of admissible translates of the region O

Tns={Z=(&1,...,Ty) € RV® |Vie)—s,i5 O+ Ti ~ O+ T + téo }, (3.2.3)
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where the symbol ~ indicates spacelike separation and € is the unit vector in the time
direction. For any Z € I'y s and ¢ € Tx we introduce the following elements of (21(Q)*V)*

Spi(Al X oo X AN) = (p(Al(fl)...AN(fN)), (3.2.4)
and consider the maps Ilg v 5 € L(Tg x Ty 5, (A(O)*N)*) given by
e Ns(p, Z) = oz (3.2.5)

The following theorem provides a reformulation of Condition Cy in terms of these maps.

Theorem 3.2.1. A theory satisfies Condition Cy if and only if the maps llg s are
compact for any E >0, N € N, § > 0 and any double cone O.

The ’if’ part of the statement holds due to the identity Ilg;s; = IIg. The opposite
implication is more interesting. It says that the restriction imposed by Condition Cy on
the number of states which can be distinguished by measurements with singly-localized
detectors limits also the number of states which can be discriminated by coincidence
arrangements of such detectors. We start our analysis from the observation that the
spatial distance between the detectors suppresses the energy transfer between them. The
proof of the following lemma relies on methods from [BYS&T].

Lemma 3.2.2. Let § >0, > 0. Define the function g : | — 7, 7] — C as follows

p 0+~ 0—~
0)=—1 t —— cot —— 3.2.6
9(0) = “nf ot “ Lot =7, (3:26)
uge)
where v = 2arctane 28. Then, for any pair of bounded operators A, B, satisfying

[A(t), B] =0 for |t| < &, and any functional ¢ € e PHTe P there holds the identity
P(AB) = o([A, Bgls) + p(Ae M BaeM) + (P Bge™1 4), (3.2.7)

where [-, -]y denotes the anti-commutator and we made use of the fact that p(ePH ),
o( - M) are elements of T. Here Bg and B are elements of B(H) given by the (weak)
integrals

By — % Oyde B(g(@))—k%/ﬂ do B(g(9)), (3.2.8)
T—y
By = o :_Wde B(g(6)), (3.2.9)

where B(g(0)) = 9O H Be=i9(0)H

Proof. It suffices to prove the statement for functionals of the form ¢(-) = (V] - Uy),
where Uy and Uy are vectors from the domain of €. For § > 0 and 3 > 0 we define the
set

Gps ={2z€C||Imz| < f}\{z|Imz =0,|Rez| >0} (3.2.10)
and introduce the following function, analytic on Gz s and continuous at its boundary
(U |Ae?*H Be= 200, for 0 < Imz < 3
h(z) = (U1]e*H Be#H AW,) for —f <Imz <0 (3.2.11)

(U1|AB(2)¥9) = (V1|B(2)A¥y) for Imz = 0 and |Rez| < 4.
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We make use of the following conformal mapping from the unit disc {w | |w| <1} to Gas
IBYS7]

1+ we™ 1 — we ™
== —In——+—1}. 2.12
{ T_wenr 1+ wew } 3 )
Setting w = re", 0 < r < 1, we obtain from the Cauchy formula
1 27 )
h(0) = —/ df h(z(re'?)). (3.2.13)
2 0
Since h(z) satisfies the following bound on the closure of Gg s
[A()] < A IBI e @y | (|7 @], (3.2.14)

we can, by the dominated convergence theorem, extend the path of integration in (BZZT3])
to the circle r = 1. In this limit we have [BYS7]

Rez(e?) = g¢(0), (3.2.15)
‘ 0 iflfj<yorm—O0<yorm+6<~
Imz(e?) = 16 ify<f<m—rn (3.2.16)

[ ify<-0<m—1.
Consequently, we obtain from (B2ZI3)
(V1|ABY2)

= 5 [ BN ¢ o [ A B

1 / " ((%IAe‘ﬁHB(Q(@))EﬁH%) + (eﬁH%IB@(@))G_ﬁHA%)) (32170
2m N

what concludes the proof. [

From the compactness of the maps Zg, given by ([EI3), there also follows that the map-
pings 2, 3, : A(O) — B(H), defined as

B e (A) = e Ag e (3.2.18)

are compact for any (3,52 > 0 and any double cone O. Here Ag, is defined as in (BZZJ).
After this preparation we are ready to complete the proof of Theorem BZT1

Proof of Theorem B.ZIt For any 5 > 0 we introduce the auxiliary maps ﬁ@ NG €
L(T x Ty g, (MO)N)*) given by

g n (0, Z) (A1 -+ x Ay) = p(e” NT2DPH Ay (7)) .. Ay (En)e” V280 (3.2.19)

They are related to the maps Ilg y s € L(Tg X'y, (A(O)*N)*) by the following identity,
valid for any ¢ € Tg,

g Ns(e, Z) :ﬁﬁ,N,é( (N+3)0H (N+ IBH 7). (3.2.20)

In order to prove the compactness of the maps Ilg s, it suffices to verify that the family
of mappings {Hﬁ N6 }B>0 18 asymptotzcally compact in the following sense: There exists a
family of finite rank maps F@N,g € F(T x Tng, (A(O)*N)*) s.t.

Jim, 15,35 — Epwsll = 0. (3.2.21)
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If this property holds, then, by identity (B2220), the maps IIg x5 can be approximated in
norm as (3 — 0 by the finite rank maps Fj v 5 € F(Tg x Ty, (A(O0)*N)*) defined as

Fns(p,T) = ﬁﬁ,Nﬁ(E(N%)BHGDG(NJF%WH,@- (3.2.22)

We establish property (BZZIl) by induction in N: For N = 1 the statement follows
from the compactness of the map =3 5 given by (BIZ). Next, we assume that the fam-
2

ily {ﬁg,N_175}5>0 is asymptotically compact and prove that {ﬁﬁ,N,6}5>0 also has this
property. For this purpose we pick ¢ € 7q, A;,..., Ay € 2(0); and £ € I'ys5. Then
Aq(#1) ... AN—1(Zn—1) and An(Zy) satisfy the assumptions of Lemma and we ob-
tain

T n5(0, D) (A1 X - x Ay)
= cp(e_(NJr%)ﬁH[Al(aE’l) e AN—l(fN—l)7AN,Nﬁ(fN)]Jre_(N‘F%)ﬁH)
+ﬁ67N_176({E%,@,N,@(AN)(fN) 906_%61{}751, . afN—l)(Al X oo X AN—I)

~ 1 — - 5 -
+H5,N—1,6({€_§6H90:%5,1\75(141\/)(1171\/)},1131,---,SEN—l)(Al X oo x An—1){3.2.23)
where [+, -]+ denotes the anti-commutator. The first term on the r.h.s. of (BZZ3)) satisfies

_ 1 . . . . _ 1 2
(e NFDPH A, (7)) ... An_1(Fn—1), Annp(@n)]se VHD)| < @ (3.2.24)

where we made use of definition ([BZZH). We recall from the statement of Lemma
that v(8) — 0 with 3 — 0. To treat the remaining terms, we make use of the in-
duction hypothesis. It assures that there exist finite rank mappings Fgy_15 € F(7T X

Cn_16, (A(O)N=1)*) s.t.

Jim, ITis,n-1.6 — Fgn-1] = 0. (3.2.25)

Next, making use of the compactness of the maps Eipnp € L(A(0), B(H)), given by
(BZIX), we can find a family of finite rank mappings Fz € F(A(O), B(H)) s.t.

g

— (3.2.26)
L+ || Fpn-15]

= — <
| 1B,NB F, 6” =
for any 8 > 0. Now the second term on the r.h.s. of (BZ23]) can be rewritten as follows

w162 35 v AN) (@) o HY, 1, o)
= (Tgn-15— ﬁﬁ,N—l,é)({E%Q,NQ(AN)(SE’N) pe 20MY 3, Eyo)
+ ﬁﬁ,N—lﬁ({(E%@Nﬁ(AN) — F3(AN))(@n) pe” MY, B, Ene)
+ By no16({Fs(AN) (@N) pe™ 2P} @, . Enoa). (3.2.27)

We obtain from relations ([BZZZ0)) and ([BZ2Z0) that the first two terms on the r.h.s. of
BZZ7) tend to zero with 8 — 0 in the norm topology of (A(0)*N~1)* uniformly in
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peTi, Ay € A(O); and & € 'y 5. The last term on the r.h.s. of B2Z21) coincides with
the finite rank map F\[glj)v(; € F(T x T, (A(0)*N)*), given by
FY (0, 7) (A1 x -+ x Ay)
8,N,5\¥> 1 N
= ﬁ@]\[_l’(;({Fﬁ(AN)(fN) (pe_%ﬁH},fl, . ;fN—l)(Al X oo X AN_l).(3.2.28)
The last term on the r.h.s. of BZZ3) can be analogously approximated by the maps
Fﬁ(?l)\f,é € F(T x T, (A(O0)*N)*) defined as
F@ (0, 7) (A1 x -+ x Ay)
8,N,5\¥> 1 N
~ 1 N N N
= Fgn-15({e7 2 o F3(An)(@N)} 21, ... En—1) (A1 x - x Ay_1).(3.2.29)

Summing up, we obtain from [BZZ3]) and BZ24) that

: 7 o (2
T [Tl x5 — Fils = Fiagll =0, (3.2.30)

what concludes the inductive argument and the proof of Theorem B2l [J

3.3 Condition C, and Uniqueness of Vacuum

Theorem B2 opens the possibility to encode the physically expected behavior of coinci-
dence arrangement of detectors into the phase space structure of a theory. For this purpose
we first calibrate the observables appropriately: Adopting Condition Cy, from Proposi-
tion 22T and Theorem we obtain a projection Pygy(-) = wo(-)I on the pure-point
subspace lep, where wy is some energetically accessible vacuum state. As in Section 2]
we define the continuous subspace Sﬁlc as the kernel of P[5y and introduce, for any open,
bounded region O, the local continuous subspace

A(O) = { A € A(O) |wp(A) =0}, (3.3.1)

whose elements will be called the local detectors. We introduce the Banach space
(A (O0)*N)* of N-linear forms on A.(O) equipped with the norm

Y| = sup [(A1 x -+ x Ayn)|. (3.3.2)
AiEQ[c(O)l
ie{1,...,.N}

We also define the maps I1f, s € L(7g X g, (A (O)*N)*) given by

g N5, ) = Tp,ns(@, D)o, 0)x~- (3.3.3)
With the help of Theorem B.ZT] we can reformulate Condition Cy in terms of these maps.

Theorem 3.3.1. A theory satisfies Condition Cy if and only if there exists an energetically
accessible vacuum state wy and the corresponding maps HfE, N5 are compact forany E > 0,
N €N, § >0 and any double cone O.
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Proof. The ’only if’ part follows immediately from Theorem B2l The opposite impli-
cation can be shown as follows: From the compactness of the map IIf, ; 5 we obtain, for
any € > 0, a finite rank map F' € F(7g x R%, 2. (O0)*) s.t.

sup |l 5(p, T)(A) — Fp, Z)(A)| <e. (3.3.4)
(Sovf)ETE,l xR*®
AeAc(0)1

Noting that II% | 5(¢, Z) = Ilg(pz)|a, (0) and making use of the fact that T(A—wo(A)I) €
A (0); for any A € 2A(0), we obtain

sup Me(p)(A) — e(Iwo(A) = F(p, 0)(A — wo(A)I)] < 2e. (3.3.5)
Aea®),

Thus we can approximate the maps IIg in norm with finite rank mappings i.e. these maps
are compact. [

In order to strengthen Condition Cy, we note that any functional from 7x should consist
of a finite number of distinct localization centers. Indeed, in a theory describing particles
of mass m > 0 the maximal number of such centers Ny(F) is given, essentially, by % If
the number of detectors N is larger than Ny(E), then at least one of them should give
no response (since its vacuum expectation value vanishes) and the result of the entire
coincidence measurement should be zero.

In order to formulate this observation mathematically, we adapt the concept of the e-
content to the present framework: Let V', W be Banach spaces and let I' be some set. Then
the e-content of a map II € £L(V x I', W) is the maximal natural number N (¢) for which
there exist elements (v1,21),. .., (Un(e), Tare)) € Vi X I st |[TL(vg, 2) — (v, 25)|| > € for
i # j. Clearly, this quantity is finite if the map II is compact.

The e-content N (s)CE n, Of the map Iy y 5 gives the number of distinct measurement
results, up to experimental accuracy e, which can be obtained in the coincidence measure-
ment described above. Therefore, we expect that N(e)% x5 = 1 if N is sufficiently large
and the local detectors are far apart, arriving at the following strengthened, quantitative
variant of Condition Cy:

Condition C,

(a) There exists an energetically accessible vacuum state wy and the corresponding maps
Hf s are compact forany £ >0, N € N, § > 0 and any double cone O.

(b) For any E > 0 there exists No(E) € N s.t. for any N > Ny(FE) the e-contents
N(e)% s of the maps 115 y 5 satisfy

6lim N(E)gns=1 forany e>0. (3.3.6)
—00

We verify in Appendix [l that this condition holds in massive scalar free field theory and
its even part.

In the remaining part of this section we show that the vacuum state wg, which en-
tered into the formulation of Condition C),, is pure and that it is the only energetically
accessible vacuum state. Then, from Propositions B.T.4 and there follows the conver-
gence of physical states to wg under large spacelike and timelike translations. Moreover,
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we demonstrate that this vacuum state appears as a limit of states of increasingly sharp
energy-momentum values. To achieve these goals it is convenient to reformulate Condi-
tion C}, (b) in terms of norms of the maps Il n 5. This is accomplished in the following
lemma.

Lemma 3.3.2. Let W be a Banach space. Let {Vs}s~0 and {Ts}s=o be a family of Banach
spaces and sets, respectively, ordered by inclusion i.e. V5, C Vs, and I's, C I's, for d1 > 5.
We consider a family {I1s}s~0 of compact maps in L(Vs x T's,W) and their respective
e-contents N(e)s. Then there holds lims oo N(g)s = 1 for any ¢ > 0 if and only if
lims_, ||Is]| = 0.

Proof. First, suppose that lims_ .., N(g)s = 1 for any € > 0. Since the e-content takes
only integer values, for any € > 0 we can choose d. s.t. N(g)s =1 for 6 > 6.. Then, by
definition of the e-content, there holds for any d > 4.

[Ts]| < e, (3.3.7)

what entails lims_. ||IIs]| = 0.

To prove the opposite implication, we proceed by contradiction: We recall that the
e-content of a compact map is finite for any € > 0. Next, we note that for any fixed ¢ > 0
the function § — N (e)s is decreasing and bounded from below by one, so there exists
limg_, oo NV (€)5. Suppose that this limit is strictly larger than one. Then, by definition of

the e-content, there exist nets (@55),:1755)) and (9055),3_:'55)) in Vi1 xT's s.t.

6) (6 6) (o
15", &) - s, 857 > e (3.3.8)
for any 6 > 0. This inequality, however, contradicts the assumption that the norms of the
maps Il tend to zero with 6 — oco. [
With the help of the above fact we restate Condition C}, (b) as follows: For any E > 0
there exists such natural number Ny(E) that for any N > Ny(E) there holds

lim [|TIS 5]l = 0. (3.3.9)
d—00 e

We rewrite the above relation more explicitly

lim sup [[Pgdi(Z1)...An(ZN)PE| =0 (3.3.10)
000 A;€9(0);

ie{l,...,N}

zeln s

and use it to prove the following lemma which is the main technical result of this section.

Lemma 3.3.3. Suppose that Condition Cy, holds. Then, for any E > 0, double cone O,

and a sequence {6(n)}3° s.t. d(n),—=z oo, the following assertions hold true:

(a) For any family of points {fgn)}? € Iy, 5(n) there holds
lim sup

T weTR
AeA(0O)1

%Zw(A(fE")))‘ =0. (3.3.11)
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(b) For any unit vector é € R®, sequence {)\(”)}‘1’0 € R and a family of points {fg") T,
st (&Y U™ 4 AMeYT € Ty, sny, there holds

lim  sup ‘l Z @(A(fgn))B(fZ(n) +2Menl=o. (3.3.12)
o0 weTra n-=
A,BeA:(0)1

Proof. In view of decomposition ([LEZ) we can, without loss of generality, substitute
T, for T in relations (B3TT) and B3TF). Similarly, we can replace 2(O); with the
subset of its self-adjoint elements.

We choose some positive functional ¢ € 7, bf 1, pick m € N st. N = 2™ is suf-
ficiently large to ensure that (B3I0) holds. To prove (a), we define the operators

Q. =130, A(fl(-n)), n € N, where A € 2.(0O) is self-adjoint, assume that n > N
and compute

@Y < w@) =5 3 elA@?). . AGL)

11pesin

_ nLN S w(A@). . AE))

ilv"'viN
Vi1l
1 (n (n
ooy Y eAE).AEY)
i1 i
Ek#l&tik:il
1 (n (n 1
< oy 2 IPeAGY) A Pel+ o YD AN (33.13)
81 in i1 i
Vi£1ik 7 Tp18.tig=14

In the first step above we applied the Cauchy-Schwarz inequality and in the third step
we extracted from the resulting sum the terms in which all the operators are mutually
spacelike separated. Clearly, there are (;\‘,)N ! < n® such terms. Therefore, the remainder
(the last sum above) consists of

nN — (;) N! < eynV-1 (3.3.14)

terms, where ¢y is some constant independent of n. There follows the estimate

— = C
P@)N < sup |[PeA@)... A@EN)Pe| + A, (8:3.15)
Ae.(0)1 "
(fl,---7fN)EFN,6(n)

whose r.h.s. tends to zero with n — oo by B3IM), uniformly in ¢ € 7, what concludes

the proof of (B3I).
In order to prove (b), we proceed similarly: Let Q, = D A(fgn))B(f(n) + Amg),

7
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where A, B € 2.(O) are self-adjoint. Then, for n > N, we obtain

|90(Qn)|N < so(QnN)
= % Y eA@B@Y +AMe) . A@)B@E +AMe))
117 SIN
— —' —’(”) )\(n) A —(n) B ~(n) )\(n)A
nN Z B(z;,” + ) ... Az )B(7; + é))
Vicl;;ﬂ:gll
1 —(n —(n n) ~ —(n —(n n) ~
=Y p(A@EMB@E™ + 2xMe) .. AEY)B@EY + A\e))
Elk::l:s t’sz Zl
gw-Zn@r%<@H%wmﬁwﬁuwmw
Vicl;;ﬂ:gll
1
+ = 2 dAnBpt. (3.3.16)
i1yeensiN
Elk#ls.t.ik:il
By the same reasoning as in case (a), we obtain the estimate
(@)Y < sup |PeA(Z1)B(Z2) ... A(Tan-1)B(Z2n) Pe|
AeAc(0)1
(Z1,-,T2N)€EL 2N, 5(n)
N
+ —(lAl1BD*Y. (3.3.17)

By taking the limit n — oo we conclude the proof of B3I12). O

Now we are ready to prove that the vacuum state wg is pure and unique in the energetically
connected component of the state space.

Theorem 3.3.4. Suppose that Condition C}, is satisfied. Then there hold the following
assertions:

(a) Let w € A* be a state in the weak™ closure of Tp 1 for some E > 0 which is invariant
under translations in some spacelike ray. Then w = wy. In particular, there holds
Condition V stated in Section [Z2.

(b) wo is a pure state.

Proof. (a) By Theorem BI3l w is a vacuum state, in particular it is translationally
invariant. Let {¢pg}ger be a net of functionals from 7p; approximating w in the weak*
topology and let A € A (O) i.e. wo(A) = 0. We choose families of points {Z;}] in R?® s.t.
{#:}7 € Iy, 5(n) for some sequence {5(n)}7° which diverges to infinity with n — co. We
note the following relation

1 n (n ) 1 n (n
W] = |3 w(A@)] =lim| 3~ es(AE")
i=1 i=1
< sup |—Z<p 7" — 0, (3.3.18)

QOGTEl n i=1 n—oo
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where in the first step we made use of the fact that the state w is invariant under transla-
tions in space and in the last step we made use of Lemma (a). Since local algebras
are norm dense in the global algebra 2, we conclude that ker wy C ker w and therefore the
two states are equal.
(b) In order to show the purity of wy, it suffices to verify that for any A, B € .(O), some
unit vector é € R® and some sequence of real numbers {A™M}5° s.t. A" — oo there
holds

lim wo(AB(A™é)) = 0. (3.3.19)

n—oo
To this end, we recall that the vacuum state wq is energetically accessible i.e. we can pick
a net {¢g}ger of functionals from 7f 1, approximating wy in the weak® topology. Next,

we choose families of points {fﬁ")}? as in part (b) of Lemma and compute

7

R 1< N ) -
wo(ABOA™e)| = |= Y wo(A@™)B@™ + AxMe))|
ni—l
. 1 & —\n =N n)a
= lim o Y es(AE) B + X))
=1

IEN n n
< sup \5290(,4(55 NBE™ +AMe)| — 0,  (3.3.20)

SDETE,I i=1 n—oo

what proves relation (E319). O

From part (a) of the above theorem and from Propositions B4 and we readily
obtain the convergence of states of bounded energy to the vacuum state wg under large
spacelike or timelike translations.

Corollary 3.3.5. Let Condition C, be satisfied. Then, for any state w € Tg, E > 0, and
a spacelike unit vector é € R5tL, there holds

/\lim wre(A) = wp(A) for Ae . (3.3.21)

If, in addition, there holds Condition R, then the above relation is also true for any timelike
unit vector €.

To conclude this survey of applications of Condition C}, let us mention another physi-
cally meaningful procedure for preparation of vacuum states: This is to construct function-
als with increasingly sharp values of energy and momentum and exploit the uncertainty
principle. Let P,y be the spectral projection corresponding to the ball of radius 7 cen-
tered around some point p in the energy-momentum spectrum and 7, .y = Py, )7 Py -
Then, in a theory satisfying Condition C}, any sequence of states w, € 7, ,) converges,
uniformly on local algebras, to the vacuum state wg as r — 0, since this is the only energet-
ically accessible state which is completely dislocalized in spacetime. This fact is reflected
in the following proposition:

Proposition 3.3.6. Suppose that Condition C, is satisfied. Then, for any p € V4 and
double cone O, there holds

lim sup |p(A) —o(Iwo(A)| = 0. (3.3.22)
=0 €T (p,r) 1
AEA(O);
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Proof. We pick A € B(H), ¢ € T(pr)> T € R® and estimate the deviation of this functional
from the translational invariance

|(10(A) - O‘;%QD(AN = |90(P(p,r)AP(p,r)) - @(P(p,r)el(P_ﬁ)fAe_Z(P_me(p,r))|
= |90(P(p,r)ei(P_ﬁ)fA(1 - e_Z(P_mf)P(p,r))

+ @(P(p,r)(l - ei(P_mf)AP(p,r))’ < 2H90H HA” ‘f‘ T, (3323)

where in the last step we applied the spectral theorem. Consequently, for any &1, ...,Z, €
R* and A € A(O) there holds

=S lo() - ol +
k=1

|p(A) = e(Dwo(A)] <

LS (A )
k=1

* 1 =
<Al suwp o —ag el +20Al sup [T e(B@E) (3.3.24)
ke{1,..,N} BeAc (01 M3

Applying to the first term on the r.h.s. estimate B32Z3) and to the second term
Lemma (a) we obtain the statement of the proposition. [J

3.4 Condition Cy: Additivity of Energy

In the previous section we introduced the phase space condition C}, inspired by the phys-
ically expected behavior of coincidence arrangements of local detectors. We showed that
this condition implies the uniqueness and the purity of the energetically accessible vacuum
state as well as various approximation procedures for this state. However, its status in
massless theories is not clear. Since such theories play an important role in our study of
spectral theory of automorphism groups in Chapter Bl we think it is worthwhile to fill this
gap. For this purpose we introduce a different phase space condition C}, stated below. We
note that in contrast to Condition C}, the vacuum state does not enter into the formulation
of the present condition. Thus Condition Cj is a property of the local net and not of a
particular vacuum state, what is certainly an advantage. This criterion is motivated by
a heuristic argument based on the additivity of energy over isolated subregions and it is
shown that it has all the consequences mentioned in Section (except for the purity of
the vacuum). In Section and Appendix[E] we verify that this condition holds in massive
and massless scalar free field theory. In Chapter Bl we discuss its generalizations which
may be useful for the problem of convergence of the asymptotic functional approximants.

The concept of additivity of energy does not have an unambiguous meaning in the gen-
eral framework of local relativistic quantum field theory and we rely here on the following
formulation: We introduce the family of maps X x5 € L(Tg x I'n 5, A(0)* ® (Cé\flp), given
by

Spne(eE) = (Uglez), - Uelezy)), (3.4.1)
where CJ), denotes the space CV with the norm |z|| = SUPkeq1,... N} |2k]. We note that
A(0)* ® (Cé\{lp, equipped with the norm,

(o1, son)ll = sup lgxl (3.4.2)
ke{1,..,N}
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is a Banach space. It is clear that the map Yg ys is compact in theories satisfying
Condition Cy. We claim that a mild (polynomial) growth of the e-contents N'(¢)g ns of
these maps with N, (when § tends to infinity), is a signature of the additivity of energy over
isolated subregions. In order to justify this formulation we provide a heuristic argument:

The physical meaning of the maps X g y s is most easily elucidated if we consider their

restrictions to Sg x I'y 5. Thus we are interested in the e-contents N (e)E.n,s of the setﬂ
Spns(0) = { (p(ws,), - Up(wiy)) € AO) @ CH, |w e S, £€ TN} (34.3)

Given a state w € Sg, we denote by Ej the ’local energy content’” of the restricted state
W|o(O+ay)- The additivity of energy should then imply that Fy +--- + Ey < E for large

spacelike distance J between the regions O+, ..., O+, where & € I'y 5. This suggests
that to calculate ./\N/'(z—:)E,Nﬁ one should count all the families of states (w1, ...,wn), wk €
SE,, F1+---+ Exy < E, which can be distinguished, up to accuracy e, by measurements
in O+ #1,...,0+ Zy. Relying on this heuristic reasoning we write
./\Nf(E)EN,(; =#{(ny,...,nN) € NV |ng < ./\Nf(E)El, oony < ./\7(E)EN,
for some Fy,...,En >0st. Ey+---+ Exy < E}, (3.4.4)

where we made use of the fact that the number of states from Sg, which can be discrim-
inated, up to €, by observables localized in the region O + w}, is equal to the e-content
N(e)g, of the set

SEk(O + &) = {W|Ql(o+fk) |w e SE, }. (3.4.5)

Anticipating that N (¢)E, tends to one for small Ej, we may assume that
/\N/(s)Ek <1+ co(e,E)Ey (3.4.6)

for E, < E. This bound obviously holds in theories with the lower mass gap, satisfying
Condition Cy, where Si contains at most the vacuum state (2| - €2) for sufficiently small
E. (If the vacuum vector €2 exists, it must be unique (up to a phase) by the irreducibil-
ity assumption from Section See e.g. Theorem 4.6 of [Ar]). We also expect that
estimate (BZ0]) holds in massless theories, where de Broglie wavelengths of states from
SE, (O+ 7)) are much larger than the extent of the region O+ 7}, if Ej, is sufficiently small.
Thus the states should be indistinguishable by measurements in this region, up to the ex-
perimental accuracy €. (The existence of massless theories satisfying the bound (BZ.6l)
is indicated in the last part of this section). From the heuristic formula [BZ4]) and the
bound ([BZH]) we obtain the estimate which grows only polynomially with N

N@E)pns < #{(n1,...,nx) ENN[ni+ - +ny <N +cole, E)E }
< (N 4+ 1)°EEE - (3.4.7)

where the last inequality can be verified by induction in N. Omitting the key condition
Ey+---+Ey < Ein ([B234) and setting £y, = E instead, one would arrive at an exponential
growth of N'(¢)g ns as a function of N. Thus the moderate (polynomial) increase of this
quantity with regard to N is in fact a clear-cut signature of the additivity of energy
over isolated subsystems. We encode this fact into the following strengthened variant of
Condition Cy.

!The e-content N(E) of some set S in a Banach space is the maximal number of elements w1, ..., war(¢) €
S s.t. |lwi —wjl|| > € for i # j.
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Condition Cy:
(a) The maps ¥ g n, are compact for any £ >0, N € N, § > 0 and double cone O.

(b) The e-contents N'(¢)g n,s of the maps X y s satisfy, for any e > 0,

lim N(e)pns < (N +1)E)] (3.4.8)

d—00
for some constant ¢(E,¢) independent of N.

The remaining part of this section is devoted to the proof that Condition Cy has all the
consequences, pertaining to the vacuum structure, which were discussed in Section
(apart from the purity of the vacuum). For this purpose it suffices to show that the
present condition implies relation (B3IT]) for some specific sequence {0, nen and some
energetically accessible vacuum state wgy. This goal will be accomplished in the two lem-
mas below. Since no distinguished vacuum state enters into Condition Cy, we have to
prepare such a state first: We fix a unit vector € in a space direction and obtain from
Proposition BTl a net of real numbers {\g}ger s.t. A3 — 0o and a vacuum state wy s.t.
for any A € A

w'- lién A(Xgé) = wo(A)1. (3.4.9)

We will call the triple { €, {\g}ger, wo} the spacelike asymptotic vacuum state.
In the subsequent discussion we keep E > 0 and a double cone O fixed. Moreover, for
any w € Sg and Z € I'y 5 we denote by w® the element of Sg n5(O) given by

Wi (A) = (w(A(TY)), ..., w(A(ZN)), AecAO). (3.4.10)

Furthermore, Sg n,5(0) denotes the closure of Sp ns(0) in A(0)* ® CY, in the topology
given by the norm BZ2)). The following simple lemma summarizes the essential properties
of the sets Sg ns5(O).

Lemma 3.4.1. Assume that Condition Cy is satisfied. Let & = (1,...,&n) € Sgns(0),
let { &, {\g}ger, wo} be a spacelike asymptotic vacuum state and Py the group of permu-
tations of an N -element set. Then:

((1) Wr = (d)ﬂ'(l)? s 7@7T(N)) € gE,N,(;((Q); Jor any ™ € Pn.
(b) & = (&1,...,on-1) € Sp.N-15(0).

(C) "= ((:Jl, - ,(fuN,wo, - ,w(]) S gE,N—i—L,é(O)-
L

Proof. To prove part (a), we first define the action of the group of permutations on the
sets ['ys. Given Z = (71,...,7n) € [ysand m € Py, weset Z, = (Tr(1), - - -, Tr(xv)) Which
is again an element of Iy 5. This induces an action of permutations on the sets Sg n 5(O)
in the obvious manner: Given w® € Sp ys(0) we define (w%), = w®x. Consequently,
all the sets Sg N 5(0), 6 > 0 are invariant under the permutations of the entries of their
elements. This property carries over to their closures: In fact, given @ € EE, ~N,5(O), there
exists for every e > 0 some wZ € Sg n5(0) s.t. |wE — @[ <e. Then [|win — & < e.
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Part (b) of the lemma follows directly from the definition of the sets Sg ns(O) and
their closures. In order to prove part (c) we pick again w® € Sp v 5(0) s.t. [[wE — & <e.
According to Lemma BT, there exists a subsequence {\, }nen of {A\g}ger s.t.

lim (U)\né(A) = wo(A), Ael (3.4.11)

We choose its subsequences )\g), .. ,)\%L) s.t. for k # [ there holds \A,(f) — )\g)] — 00 when
n — o0o. Consequently,

N
Wy, = (wfl, R ’wa’wﬁ-i-)\g})é’ . ’wfl-i-)\%)é) S SE,N+L,5 (3.4.12)

for sufficiently large n, where é is the unit vector in a space direction which entered into
the construction of the state wy. It follows immediately from ([BZIT) and Condition Cy
that

Jim oz o, —wollao) =0 (3.4.13)
for k € {1,...,L}. Consequently, lim, . [|@) —&"|| < e, what concludes the proof. [J

The next lemma demonstrates that a state of bounded energy can deviate only locally
from a vacuum state.

Lemma 3.4.2. Suppose that Condition Cy holds. Let wy be the vacuum state which
appears in Lemma [F4.1l Then there exists a sequence of positive numbers {In}nen s.t.

on /" oo and
N

1 .
_sup N E |k — wollaoy — 0 for N — oo. (3.4.14)
weSE NN (0) T k=1

Proof. First, making use of Condition C} and the diagonal trick, we can find a sequence
dn /" 00 s.t. for any € > 0 the e-contents N (¢)g ns, of the sets Sg s, (O) satisfy

N(@)ensy < 2N +1)%E), (3.4.15)
if N is sufficiently large. Next, we fix some ¢ > 0, 0 < ¢ < 1 and show that for any
O = (01,...,0Nn) € SENsy(O), the inequality

[0k — wollao) > € (3.4.16)

holds for less than [NY] entries if N is sufficiently large. In fact, suppose the opposite is
true i.e. that for any Ny € N there exists NV > Ny and an element @w € §E7N,5N((’)) s.t.
the bound [BZI6]) holds for [NY] entries or more. Making use of Lemma BTl (a) we can
assume that ([BZT0) is satisfied for k£ € {1,...,[NY]} and proceed to the element

~ Il A

W = (wl, R ,@)[Nq],wo, R ,wo) S gE,N,cSN(O)' (3.4.17)
N[N

By permuting the entries of the above expression, we obtain a family of elements &/ €
SE,N,(SN(O) s.t.
|on, — &Ll > ¢ (3.4.18)
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at least for w1, m € Py = PN/(P[N«;} X Pn_[na)); ™1 # 2. The cardinality of Py satisfies

the bound -
_ N! N—[Nq]-l-l Ni—1
#n =2 (wa ) 2R

where the last inequality holds for sufficiently large N. It follows from formulas (BZIH]),

(BZT1Y) that the e-contents of the sets Sg n 5, (O) grow with N faster than any polynomial.
Since the e-content of a set and its closure coincide, we arrive at a contradiction with

relation (BZTH).

With the above information at hand it is easy to estimate the mean, appearing in the
statement of the lemma. In fact, for sufficiently large N we obtain

N
1 . N1 N — [Nq] 2
sup N E Hwk — w()”g((o) < 2—N + N e< N1=q + €. (3.4.20)
k=1

WESE N5y (0)

Since £ > 0 is arbitrary, the desired result follows. [

It is an immediate consequence of the above lemma and of decomposition (LG.2) that for

any N = ($§N), e ,:ng,v)) € I'n 5, there holds

N
. 1
lim  sup N Z ]cp(A(xlgN))) —o(Dwo(A)| = 0. (3.4.21)
N—oo WETE,I k=1

AeA(O)1

This statement coincides with relation ([B3I1l) from Lemma B33 (for the special sequence
{0~} nen introduced in Lemma BZ2). Since Condition C}, was used only via this relation
in the proofs of Theorem B34 (a), Corollary and Proposition 230, these results still
hold after replacing Condition C}, with Condition C}; in their assumptions. Thus we arrive
at the following theorem.

Theorem 3.4.3. Suppose that Condition Cy is satisfied and let wy be any vacuum state in
the weak™ closure of Tg 1 for some E > 0. Then, for any E > 0, there hold the following
assertions:

(a) Let w € A* be a state in the weak* closure of Tp1 which is invariant under trans-
lations in some spacelike ray. Then w = wy. In particular there holds Condition V
stated in Section [Z2.

(b) For any spacelike unit vector é € RST! and w € Sk there holds

lim wye(A) = wo(A) for A e . (3.4.22)

A—00

If, in addition, Condition R, stated in SectionlZ1l, is satisfied, then the above relation
s also true for any timelike unit vector é.

(¢c) For any p € Vi and double cone O, there holds

lim sup [|@(A) —@(Iwo(A)] = 0. (3.4.23)
r—=0 €T (p,r) 1
AcA(O);
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Part (c) of this theorem allows us to show that estimate (BZH6), which we used in our
heuristic discussion, holds in all theories complying with Condition Cy. Since the e-
contents N (¢)p of the sets Sg(O), given by ([BZH), take only integer values, it suffices to
show that

lim N (e)g =1 3.4.24

1 V)5 (3420
for any € > 0. If this relation did not hold, then, by definition of the e-content, we could
find nets {wf'} ps0, {ws }E>0 8.t |lwf — w¥llyo) > € for any E > 0. But choosing p = 0
in Theorem (c), we arrive at a contradiction:

E E
wy — W <2 sup |lw—w — 0. 3.4.25
|y 2 Hm(O) = wespE | OHm(O) £10 ( )

As we show in the next section and in Appendix[E] the set of theories complying with Con-
dition Cy contains also massless models, where relation ([B.424)) is a non-trivial statement
about the infrared structure. (See the discussion after formula (BZ0])).

3.5 Condition Ny implies Condition Cj

In the previous section we introduced the phase space condition Cy and studied it physical
consequences. Although this criterion was motivated by the firm physical principle of
additivity of energy over isolated subregions, its consistency with the general postulates
from Section remains to be verified by establishing it in a model. Since the e-contents
of the maps X g ns are difficult to control directly in concrete theories, we proceed as
follows: We introduce a nuclearity condition Ny, stated below, which is verified by a
relatively straightforward computation in massive and massless scalar free field theory in
Appendix [El In this section we show that this new condition, which is interesting in its
own right, implies Condition Cj,.

To begin with, let us recall the concept of nuclearity in the form which is suitable for
our investigations: Let V', W be Banach spaces and || - || be a norm on the space £(V, W)
of linear maps from V to W. We say that a map Il : V — W is p-nuclear w.r.t. the norm
Il - II, if there exists a decomposition II(v) = >, 1II,(v) into rank-one maps, convergent for

any v € V in the norm topology in W, s.t. v:= (3, |1, ”|p)% < 00. The p-norm |IIJ|, of
this map is the smallest such v over the set of all admissible decompositions. This concept
was first used for the description of phase space in quantum field theory in the work of
Buchholz and Wichmann [BWi86]. Our starting point is a stronger nuclearity condition,
introduced by Buchholz and Porrmann in [BP90)]:

Condition Ny: The maps Il are p-nuclear w.r.t. the standard norm on
L(T,A(0)*) for any 0 < p <1, E > 0 and any double cone O.

For verification of this condition in models, which we present, following [Bos00], in Ap-
pendix [Bl it is convenient to have an equivalent formulation in terms of the maps Og.
It is stated in the following simple lemma. A proof, up to obvious modifications, can be
found in [BPA0]. (See also Lemma BTl above for a similar argument).

Lemma 3.5.1. We fix a double cone O and 0 < p < 1. Then the following conditions are
equivalent:
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(a) The maps I1g are p-nuclear for any E > 0.
(b) The maps ©f are p-nuclear for any E > 0.

Clearly, Condition Ny is stronger than Condition Cy. Thus in theories complying with
this nuclearity criterion we can introduce the local continuous subspace 2A.(0) = { A €
A(O) |wo(A) = 0}, fixed by some energetically accessible vacuum state wq, similarly as in
the first part of Section B33l Moreover, we define the maps I1§, € L(7g,2.(O)*) given by

O%(e) = ¢la (o) (3.5.1)

which satisfy the following identity, valid for any ¢ € 7 and A € A(0O),
5 (p)(A) = p(e) (A — wo(A)) + wo(A)p(I). (35.2)

One easily obtains from the above equality that Condition Ny holds if and only if there
exists an energetically accessible vacuum state and the corresponding maps I}, are p-
nuclear for any 0 < p < 1. However, we note that this condition is still somewhat
conservative, since it does not take into account the fact that for any ¢ € 7g the restricted
functionals gpf\g(c(o) should be arbitrarily close to zero apart from translations varying in
some compact subset of R®, depending on ¢. It seems therefore desirable to introduce a
family of norms on £(7g, X ), where X is some Banach space, given for any N € N and
r1,...,zy € R¥H by

N 1
2
M|z ..o = sup ( ||H(Oé§k90)\|2> , 1l'e L(Tg, X) (3.5.3)
v€Te1 \

and the corresponding family of p-norms ||II||, 4, 2y. It is easily seen that if I is p-
nuclear w.r.t. the standard norm on £(7g,%A:(0O)), then it is also p-nuclear with respect
to the norms [BL3) and vice versa. Important additional information is contained in the
dependence of the nuclear p-norms on IN. The assumption, which is consistent with the
basic postulates and suitable for the purpose of deriving Condition Cy, is the following:

Condition Ny:

(a) There exists an energetically accessible vacuum state wp and the corresponding
maps I1}, are p-nuclear w.r.t. the norms || ||z, 2y forany N € N, zq,... 2y €
Rs*t1 0 < p <1, E >0 and any double cone O.

b) The nuclear p-norms of the maps II%, satisfy
E

limsup [Hg[lpe,,...on < .25 (3.5.4)
where ¢, g is independent of N and the limit is taken for configurations
x1,...,TN, where all x; — x;, i # j, tend to spacelike infinity.

We verify this criterion in massive and massless free field theory, as well as in their even
parts, in Appendix[El It is clear that if this condition holds in a given theory then it holds
also in its sub-theories. In particular it is satisfied by the sub-theory of massless free field
theory generated by the derivatives of the field. (See Corollary [E2.6)).
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We note as an aside that the quantitative refinement ([B5.4]) implies that for any E > 0,
double cone O and sequence {6(n)}° s.t. d(n),—z, oo there holds

n—oo
_.(n
sup (A )| < —HH [ a2 0, (3.5.5)
v€TE 1 Z Vn e 1efn T n—00
AeA:(O)1

where {$,(€")}’1‘ € 'y, 5(n)- This formula coincides with relation (E4ZT), so we immediately
conclude that Condition Ny has all the implications listed in Theorem B.Z3l This approach
to the study of the vacuum structure was taken in [Dy08.1]. However, in the present work
we derived properties of the vacuum states from Conditions Cy and C, whose physical
bases are more solid. Thus Condition Ny serves here only as an auxiliary step in the proof
that Condition Cy is consistent with the basic postulates. Our goal in this section is to
prove the following theorem:

Theorem 3.5.2. In any quantum field theory Condition Ny implies Condition Cy.

Proceeding towards the proof of this theorem, we first decompose the map Xg s €
L(Tg x Ty, A4(0)* @ CL,), given by [BZII), as follows

YENS = ZE,N,J +2XE N5 (3.5.6)
Ypns(e,Z) = (Te(pz,) — ¢(Dwo, ..., TE(pz) — ¢(Iwo), (3.5.7)
Yens(p,Z) = p(Dwo @ (1,...,1). (3.5.8)

vV vV
Since X g n is a rank-one map, its e-content N (¢)p n s satisfies the bound

v 82|13 2 ]2

N(E)pns <1+ w =1+ (3.5.9)
N

which is independent of N. In order to estimate the e-content N (e)E,n,5 of themap X g n 5,

we introduce the auxiliary mapping X% v 5 € L(7 X I'n 5, 2(0)" ® (Cé\{lp) given by

e, L) = (HE(ez), - HE(en))- (3.5.10)
We note that for any (¢1,Z), (p2,Zy) € Tg x 'y 5 there holds

A A
1Xe,n6(01,Z1) — X Ns(p2, o) || < 215% N s(p1, 1) — % N s(02, To)]|- (3.5.11)

AN
Thus, by definition of the e-content, we obtain N'(¢)g n.s < Ne(e/2)E N5, Where Ne(€) g v .5
is the e-content of the map X%, y 5. We will control this quantity with the help of Condi-
tion NNy and the following key lemma.

Lemma 3.5.3. Let V and W be Banach spaces and T be a set. Let S, € L(V xT',C)
fork € {1,....N} and 7 € W be s.t. ||7|| = 1. Then the e-content of the map ¥ €

LV xT,W ® CRp) given by
YX(v,2) =7 (S1(v,2),...,Sn(v,x)), (v,z) eV xT, (3.5.12)
satisfies the bound
27|23
N(e)y < (4eN) =2 (3.5.13)

1

where ||Xl2 = sup(, »yevs w0 Sy [Sk(v, 2)[?)%.
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Proof. Fix ¢ > 0 and let Jo = {(n1 + in2)e | n1,ne € Z}. For each k € {1,...,N}
and u = (v,x) € V4 x T' we choose Jy(u) € Jo so that |Sg(u) — Ji(u)| < v2¢ and
|Ji(u)| < |Sg(u)|. Define the set J = {J1(u),...,JJy(u) | u € Vi x '} of all the N-tuples
appearing in this way. We claim that #J > N(4¢)x. In fact, assume that there are
Uy, ... ,ug € Vi xI') K > #J, s.t. for i # j there holds

de < [|2(wi) —3(uj)|| =  sup  [Sk(ui) — Sk(uj)l. (3.5.14)
ke{l,..,N}

Then there exists such k, depending on (i, ), that 4e < |S; (ui) — Si(uy)]. Consequently,
by a 3e-argument

’J,;(UZ) — J,;(u])\ > |S,;(uz) — S,;(’U/])‘ — 2\/56 > g, (3515)

which shows that there are at least K different elements of J in contradiction to our
assumption.

2
In order to estimate the cardinality of the set J, we define M = [”§2”2], assume for a

moment that 0 < M < 2N and denote by Vi (R) < e2™R* the volume of the M-dimensional
ball of radius R. Then

#] < DD <2]\‘74V> 2V (2VM) < (4Ne)8™ (3.5.16)

ni,...,naNE€ZL
e WY

Here we noted that each admissible combination of integers nq,...,non contains at most
M non-zero entries. Thus to estimate the above sum we picked M out of 2N indices
and considered the points (n;,,...,n;,,) € ZM which belong to the M-dimensional ball of
radius v M. Each such point is a vertex of a unit cube which fits into a ball of radius 2/ M
(since /M is the length of the diagonal of the cube). As in M dimensions a cube has 2M
vertices, there can be no more than 2MVy;(2v/M) points (ns,,...,n;,,) € ZM satisfying
the restriction n?l + - '+n22M < M. In the case M > 2N a more stringent bound (uniform
in V) can be established by a similar reasoning. For M = 0 there obviously holds #J = 1.
O

Next, by a straightforward combination of Lemma 2.3 and Lemma 2.4 from [BD95], we
obtain the following useful result which says, essentially, that the e-content of a sum of
maps is equal to the product of their respective e-contents.

Lemma 3.5.4. Let V., W be Banach spaces, let {3, }nen be a family of compact maps
in L(V x T, W) and N (e),, be the corresponding e-contents. Suppose that >, ||3,|| < co.
Then the e-content N(€) of the (compact) map ¥ =3, %, satisfies, for any sequence of
positive numbers {en}nen s.t. Y, en < /4, the following bound

k
N(e) < liminf EN(an)n. (3.5.17)

After this preparation we are ready to prove Theorem The argument relies on
techniques from the proof of Proposition 2.5 (ii) in [BD95].

Proof of Theorem Fix 0 < p < % Then Condition Ny provides, for any
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v > 0, a decomposition of the map II%, into rank-one mappings I, (-) = 7, Sp,(-), where
Tn € A(O)* and S,, € T3, s.t.

oo ) f .
OB, en)? < A+ DTl (3.5.18)
n=1

Assuming that the norms ||II,|/z, .. ., are given in descending order with n, we obtain

the bound

TN

e Lo

I llzs,..on < p (3.5.19)

Similarly, we can decompose the map Y% Ng» glven by (BEI0), into a sum of maps
Sn € L(Tg x Ty 5, A(O)* @ CX,) of the form

En(@,f) = (Hn((pﬁ)v s aHn(‘pr)) =Tn (Sn(‘pﬁ)’ s >Sn((10f'1v))' (3'5'20)

Now we apply Lemma BA3 with 7 = 7,,/||7,|| and S, € L(Te x 'y 5,C), k € {1,...,N}
given by
Sk(p, L) = |70l Sn(z,)- (3.5.21)

From estimate (BZ2I9) we obtain

N
1
[Enll2 = sup (D IImalP1Sn (e, ) )2

(0.2)€TE1XINs 1 —1

A+ DN llp,er,...on
nl/p

sup  [[Mpllz;,...zn < : (3.5.22)

el s el n s

where zj, = (0,Z), k € {1,..., N}. Substituting this inequality to the bound [B5I3]) we
get

N(&)n < (4eN) 2,3/7 : (3.5.23)

Since [|X,|| = ||II,]|, it follows from (BAIY) that the summability assumption of

. . —2/(3p)
Lemma B54 is satisfied. We choose €, = %Xf"’nif;/(gp)’ make use of the bounds (B5.23))
ny=1"1

and [BAIT), and take the infinum w.r.t. v > 0. There follows

Ne(e) s < (4eN) 2 (5 n /G0y (3.5.24)

From decomposition ([BAH]), estimate (B5) and Lemma B2l we obtain the bound on
the e-content of the map X g n s

v 84
N(E)EN,(; < NC(E/8)E7N,5NC(E/8)E7N,5 < NC(E/B)E,Nﬁ(l + 6_2) (3.5.25)

The L.h.s. of this inequality is a decreasing and bounded from below function of §, so we
can take the limit § — oo. With the help of formula [B524]) and Condition Ny we obtain
the bound ([BZ3) in the statement of Condition Cy. O
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Chapter 4

Conclusions and Outlook

In this work we have developed a detailed spectral theory of translation automorphisms
in quantum field theory, pursuing the programme initiated in [Bu90]. Motivated by the
spectral properties of unitary representations of translations acting on a Hilbert space, we
proposed a decomposition of the algebra of local observables 2l into subspaces which differ
in their behavior under translations in space. Our investigation has led to new insights
into the infrared structure of quantum field theories, their particle content and properties
of the vacuum states.

First, we identified the counterpart of the pure-point subspace. In order to find the nat-
ural projection Pygy on this subspace in the absence of orthogonality, we have established
a variant of the ergodic theorem for the space translation automorphisms. It relies on
physically motivated phase space conditions, whose consistency with the basic postulates
has been verified by explicit computations in models of non-interacting particles. We have
shown that these criteria have, in addition, a number of consequences pertaining to the
vacuum structure, including the uniqueness of the energetically accessible vacuum state wg
and relaxation of physical states to wg under large timelike translations. Moreover, this
vacuum state is simply related to the above mentioned projection: Pyoy(-) = wo(-)[.
The continuous subspace has been defined as the kernel of this projection, or equivalently
Sﬁlc = ker wy.

Proceeding to a more detailed spectral analysis, we took the quantum-mechanical
framework as a guide: We noted that the square-integrability of the transition ampli-
tude between a vector and its translate implies that this vector belongs to the absolutely
continuous subspace. We convinced ourselves that this property always holds for ’local’
vectors whose wavefunctions are compactly supported in configuration space, which serve
as analogues of local operators. More importantly, transition amplitudes between an arbi-
trary vector and translates of a 'local’ one are also square-integrable, but not necessarily
integrable with any smaller power. Summing up, the square-integrability of the transition
amplitudes on the one hand implies the absolute continuity of the spectrum and on the
other hand is the strongest decay property to be expected from ’local’ vectors. Therefore,
in quantum field theory we have defined the absolutely continuous subspace A,e as con-
sisting of square-integrable elements i.e. A € A, satisfying || A|| g2 < oo for any E > 0. We
have shown that in a number of cases this subspace can be expressed as the intersection of
kernels of a finite family of linear functionals i.e. ﬁlae = ker wgNker mN...Nker 7,. Then its
direct sum complement is finite dimensional, akin to the pure-point part, what motivates
the term ’point-continuous subspace’ ﬁlpc. We emphasize that this subspace does not have

59



60 Chapter 4. Conclusions and Outlook

a quantum mechanical counterpart - it carries information about the infrared structure
which is specific to quantum field theories. If lec is non-trivial, then 2, contains some
elements A which are not square-integrable. Their deviation from square-integrability can
be quantified with the help of a new concept: the ’infrared order’ ord(A) of the observ-
able A. It captures the regularity properties of the distribution Z(ﬁ) which, as we argued
in Section [C4], is a natural analogue of the spectral measure for the Arveson spectrum.
Since the infrared orders of observables from 2, can also be computed with the help of the
functionals {7;}7 (see the proof of Theorem in Section [CJ)), a model-independent
construction of such functionals would constitute a major progress in our understanding
of the spectral theory of automorphism groups. Taking our study of non-interacting ex-
amples as a guide, decent phase space properties and sufficiently rich field content of a
theory should be relevant to the study of this problem.

As explained in Section [ 3, to unravel particle aspects of a theory, one needs integrable
observables i.e. such C € 2 that ||C||g1 < oo for any £ > 0. In view of the above
discussion we conjecture that there do not exist non-zero local operators which satisfy this
property. A class of almost local, integrable observables was found in [Bu90]. However,
apart from the case of Wigner particles, it was not known under what conditions the
particle content of a theory is non-trivial. We have proposed a criterion, suitable for a
class of massive theories, which introduces a new family of particle detectors. With these
novel integrable observables one can approximate pointlike localized fields in the topology
generated by the seminorms || - ||g,1. Assuming in addition the existence of the stress-
energy tensor, we have obtained non-triviality of the particle content, substantiating the
strategy put forward in [Bu94]. We expect that the conditions mentioned above, or their
strengthened variants, have other interesting consequences, perhaps even some weak form
of asymptotic completeness, as discussed in the last part of Section It would therefore
be desirable to find similar criteria in the realm of massless theories. There we have
acquired thorough understanding of the square-integrability properties of observables, but
integrable detectors, which could approximate the stress-energy tensor, have not been
found as yet.

Another interesting problem is the convergence of the asymptotic functional approx-
imants {Jg) }ier, , defined by formula {36]), as t — oo. This property is certainly
expected on physical grounds, since the results of particle physics experiments stabilize
for sufficiently large times. Although we do not know any examples, where this property
would fail, a proof relying only on the basic postulates of QFT is out of sight at the
moment. On the other hand, our study of the problem of convergence to the vacuum in
Chapter Bl suggests an approach based on phase space conditions. Let us outline briefly
a possible strategy: First, we note that Condition Cj, stated in Section B4l provides a
promising starting point as it does not require any a priori knowledge of the limiting state.
This is a great advantage in the present context, since the asymptotic functionals Jff), in
contrast to the asymptotic vacuum states, depend in a complicated manner on the initial
functional ¢. In fact, they should describe all the possible asymptotic particle configura-
tions, so no uniqueness result is expected here. To reformulate Condition Cy so that it
describes the results of particle measurements, separated by large time intervals, we define

TN ={t:=(t,....,tn) €RY ||t —t;] > 0 for i £ 5 }. (4.0.1)

Next, we adopt Condition L(!) stated in Section 223, and note that 2.(0) 3 A — O'g) (A(g))
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is a bounded linear functional for any t € Ry, ¢ € 7 and a suitable time-smearing function
g € S(R). It is convenient to shift the smearing on the functional ¢ i.e. to write ag )(A)
instead of ag) (A(g)). Now we introduce the maps Eg}v& Tr X F(+) — A(0)* ® CY,
given by o

S a(@t) = (08D, gy, (4.0.2)
The limits of {agg) }ier, as t — oo are directly related to the asymptotic functionals
which constitute the particle content of the theory. Thus in physical terms the ranges of
these maps consist of collections of data (summed over time-slices) obtained in particle
physics experiments. In a typical experiment, after a finite number of rescattering events
there emerges a stable, asymptotic configuration. (See [Hal, Section VI.2.3). As a first
orientation, let us make the 'uniform dispersion’ assumption which says that the number
of such events, which can be detected up to some accuracy ¢, is bounded by some constant
c(e, E), independent of the initial functional ¢ € 7 ;. Hence we obtain that the number
of distinguishable collections of data should not exceed ( C(g E)) < N<=E) Therefore, we

impose on the maps Egz)v s the following variant of Condition Cj:

Tentative Condition C’h(Jr):

(a) The maps Zgz)v s are compact for any £ > 0, N € N, 6 > 0 and any double cone
O Cc R

(b) The e-contents N (e ) ¢ of the maps 25‘3 J)V 5 satisfy, for any € > 0,

lim A (e) f N < (V4 1)Fe), (4.0.3)

d—00
for some constant ¢(F,¢) independent of N.

Under this condition we immediately obtain the convergence of the asymptotic functional
approximants on the class of detectors introduced in Condition L™M): We fix ¢ € Tg,1. By
the compactness of the map Egi & there exist limit points ag;r) of the net {agg) Her,

Z7L

}nen in the norm topology
(1 +) (2 ) ie. there

holds |0_(1+ (A) — 0&29+ (A)| > € for some A € A(O); and € > 0. By choosing suit-
able subsequences of their approximating sequences, one can easily show that for any
i1,...,in € {1,2} the elements

as t — oo, which can be approximated by sequences {0’@

of A.(O)*. Suppose that there are two different limit points oy, "’ and oy

(@it olvt)) e 9 (0)* @ CX, (4.0.4)

belong to the closures of the ranges of the maps Eg])\, s for any 6 > 0. Since there are

2V such elements and their mutual norm distances are larger than &, the bound (B3

is violated. We conclude that all the limit points JS;JF) are equal. Thus, for any ¢ € Tg,

we obtain the unique functional ac(;r) = lim;_ ag) describing the asymptotic particle

configuration. Moreover, by part (a) of the above assumption, the set {a \cp €Tg1}
is compact in the norm topology of A.(O)*.
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Unfortunately, we do not have a complete verification argument for the above ten-
tative condition. Preliminary computations in massive scalar free field theory confirm
the qualitative part (a). On the other hand, the quantitative refinement (b) seems to be
satisfied only after replacing the space 2.(O) with a smaller, but infinitely dimensional

subspace 2(O)*) in the definition of the maps ES'J)V s5- This indicates that our "uniform
dispersion’ picture can be maintained only after exc7lu7ding some ’oversensitive’ detectors.
In this particular model it can be shown that the subspace QlC(O)(+) is sufficiently large to
ensure non-triviality of the asymptotic functionals, but it is not clear how to formulate this
requirement in general terms. Interestingly, Qlc((’))(+) can be expressed as the intersection
of kernels of a (countable) family of functionals, akin to the spectral subspaces discussed
above. Better understanding of the origin of this subspace may, on the one hand, shed
light on the question of convergence of the asymptotic functional approximants, on the
other hand open the door to deeper understanding of the spectral theory of automorphism
groups.



Appendix A

Haag-Ruelle Scattering Theory in
Presence of Massless Particles

In this appendix, which complements our discussion in Section [[2] we construct a scatter-
ing theory of stable, massive particles without assuming mass gaps. This extension of the
Haag-Ruelle theory is based on advances in the harmonic analysis of local operators [Bu90)]
restated in Theorem of the present Thesis. Our construction is restricted to theories
complying with a regularity property introduced by Herbst, stated as Condition A’ below.
The appendix concludes with a brief discussion of the status of this assumption. The
analysis presented here has been published in [Dy05].

A.1 Introduction

It is the aim of this appendix to prove that the Haag-Ruelle collision theory can be
extended to stable massive particles, obeying a sharp dispersion law, in the presence of
massless excitations. Thus we do not touch upon the infraparticle problem [Sch63, [Bu&6],
mentioned in Section [LZ, but our arguments are applicable, for example, to electrically
neutral, stable particles such as atoms in quantum electrodynamics. Before we enter into
this discussion we briefly outline our notation, state our assumptions and comment on
previous approaches to this problem.

Similarly as in Section [L2, we adopt here a more restrictive framework than the one
expounded in Section [LA First, we restrict attention to the physical case of dimension of
space s = 3. Next, we assume that the Poincaré transformations are unitarily implemented
i.e. there exists a continuous unitary representation PJTr 3 (z,A) — U(x,A) acting on the
Hilbert space H s.t. a(y)(-) = U(z,A) - U(z,A)*. It is also required that there exists
in ‘H a unique (up to a phase) vacuum vector €2 which is invariant under the action of U.

Finally, we suppose that the point spectrum of the mass operator M = \/ H? — P2 consists,
apart from 0, of a unique eigenvalue m > 0. We also postulate that the representation
U, restricted to the corresponding spectral subspace HI™M | coincides with the irreducible
representation of the Poincaré group of mass m and spin 0. In other words, we consider
a single species of massive, spinless particles. In the pioneering work of Haag [Hah&] and
Ruelle [Ru62] these general postulates were amended by two additional requirements:

Condition A: The time-dependent operators A(fr) = [ A(z) fr(z)d*z, constructed
from A(z) = U(z)AU(x)~!, A € 2(0O) and suitably chosen sequences of functions
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fr € S(RY), satisty A(fr)Q # 0, A(fr)Q € H™ and L A(f7)0Q =

Condition M: The vacuum is isolated from the rest of the energy-momentum
spectrum.

Both of these conditions are ensured if the mass m is an isolated eigenvalue of the mass
operator M. On the other hand, if the mass of the particle in question is an embedded
eigenvalue, then it seems difficult to meet the requirement A. It was, however, noticed by
Herbst [Her71] that, in fact, it is only needed in the proof that s - limp_. . A(f7)S2 is a non-
zero vector in H[™ and || L A(fr)9| is an integrable function of T. We summarize here
Herbst’s analysis since it will be the starting point of our considerations: The operators
A(fr) are constructed in a slightly different manner than in the work of Haag and Ruelle:
First, a local Operator A is smeared in space with a regular solution Of the Klein-Gordon

equation f(t,7) = 3/2 [ emw@HHPT f (5 dBp, (where f € C5°(R®), = /D% +m?)
_ / At 3) F(t, 7). (A1)

Next, to construct the time averaging function, we choose s(T") = ", 0<v<l1landa
positive function h € S(R) such that its Fourier transform satisfies h € C§°(R), h(0) =

(2m)72. Then we set hp(t) = Sép)h(t( T)) for T > 1 and define [Her71l, [Bu77]

Altr) = [ hr©A)ar (A12)

It is clear from formulas (ALI) and ([(AID) that fr(z) = hy(2°)f (2%, 7). Its Fourier
transform fr has a compact support which approaches a compact subset of the mass
hyperboloid as T" — oo. In view of this fact we will refer to A(fr) as creation operators and
to A(fr)* as annihilation operators. This terminology is also supported by the following
simple calculation

S _Th—1>n A(fT)Q = P[m]A(f)Q, (A13)

where A(f) = Ai=o(f) and Py, is the projection on the single-particle space HI™. The
integrability condition requires the following assumption:

Condition A’: There exist operators A € (O) such that Py,;AQ # 0 and for every
0>0
|P(m? — 6 < p* <m® +6)(1 — Py AQ| < 7, (A.1.4)

where P(-) is the spectral measure of the energy-momentum operators and ¢, > 0.
We refer to such operators as ‘regular’.

For regular operators there holds the bound

T A0 < (A15)

_°
S(T)l—i-e

which implies integrability if v > 1—_}_5 Now we are ready to state the main result of

Herbst; we restrict attention to the outgoing asymptotic states W™, since the case of
incoming states is completely analogous.
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Theorem A.1.1. [Her71] Suppose that the theory respects Conditions M and A’. Then,

for reqular operators A;, i € {1,...,n}, there exists the limit
\I’+ =S —Tlim Al(flT) e An(fnT)Q (Alﬁ)

and it depends only on the single-particle states P[m}Ai(fi)Q. Moreover, given two states

U+ and UT, constructed as above using creation operators Ai(fir) and A\,(ET), 1 €

{1,...,n}, their scalar product can be calculated as follows
(WHTH) = ST QAL Py Aoy (F) ) - (A f) P A, (Fr) ). (ALT)
O'ESn

Here the sum is over all permutations of an n-element set.

It was, however, anticipated already by Ruelle [Ru62] that in a purely massive theory
Condition A can be replaced by the following, physically meaningful, stability requirement

Condition S: In a theory satisfying M a particle can only be stable if, in its
superselection sector, its mass is separated from the rest of the spectrum by a lower
and upper mass gap.

This condition is also stated in Herbst’s work [Her71], but he expects that scattering theory
should be a necessary tool to study the superselection structure. Subsequent analysis by
Buchholz and Fredenhagen [BES2| clarified this issue: There exist interpolating fields
which connect the vacuum with the sector of the given particle. Although they are, in
general, localized in spacelike cones, they can be used to construct a collision theory.
Thereby there exists a prominent alternative to the approach of Herbst in the realm of
massive theories.

It is the purpose of our investigations to extend Herbst’s result to the situation where
massless particles are present, that is Conditions M and S do not hold. A model physical
example of a system with a sharp mass immersed in a spectrum of massless particles is
the hydrogen atom in its ground state from the point of view of quantum electrodynamics.
Although the approach of Herbst seems perfectly adequate to study such situations, the
original proof of Theorem [AZT1] does not work because of the slow, quadratic decay of
the correlation functions. In order to overcome this difficulty, we apply the bounds on
creation operators obtained by Buchholz [Bu9(]. Namely, if A is any compact subset of
the energy-momentum spectrum and f vanishes sufficiently fast at zero then

[A(fT)P(A)|| <, (A.1.8)
[A(fT)* P(A)] < ¢, (A.1.9)
where the constant ¢ does not depend on time. In fact, these bounds easily follow from

Theorem First, we note that by the Cauchy-Schwarz inequality there holds for any
e>0,F>0

IPs AP < sup [l e @) ([ | ﬁILEM(mP)%. (A.1.10)

In particular, the r.h.s. is independent of . Next, making use of the fact that the Fourier
transform of fr has a compact support, we can find for any compact set A C R* another
compact subset A’ of the energy-momentum spectrum and £ > 0 s.t.

IACfT) P(A)| = [IP(A)A(fr) P(A)]| < 12y igHI;HPEAt(f)PEH- (A.L11)
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This bound together with estimate ([(AII0) justifies relation (AZ1F). The case of A(fr)*
is treated analogously.

The remaining part of this appendix is organized as follows: In Section we prove
the existence of asymptotic states and verify that the limits are independent of the actual
value of the parameter 0 < v < 1 chosen in the time averages of the operators A(fr).
This property allows us to apply in Section the methods from the collision theory of
massless bosons [Bu77] in order to calculate the scalar product of asymptotic states. In
the Conclusion we summarize our results and discuss the status of Condition A’.

A.2 Existence of Asymptotic States

In order to prove the existence of the asymptotic states we need information about the
time evolution of the operators A(fr) and their commutators. It is the purpose of the
two lemmas below to summarize the necessary properties. Before we enter into these
investigations, we recall that the regular solutions of the Klein-Gordon equation satisfy
the bounds [Ru62]

| f¢(Z)] c(1+ [t) 732, (A.2.1)
/d3x|ft(:?:)| < o1+ )2, (A.2.2)

IN

A

where the constant c¢ is independent of ¢ and T.
Lemma A.2.1. Let A(fr)" denote A(fr) or A(fr)*. Then:
(a) ||A(fr)#| < eT?2.

(b) P(A1)A(fr)#P(Ag) =0 if Ay N (Ay & suppfr) = 0. The (+) sign holds for A(fr),
(=) for A(fr)*

(¢) Suppose that the functions fi, i € {1,...,n}, vanish sufficiently fast at zero. Then,
for any compact subset A of the energy-momentum spectrum:

|AL(frr)® .. Ap(far) T P(A)] < 1. (A.2.3)

The constants ¢, ¢ do not depend on T.
Proof.

(a) The statement follows from the estimate

IN

A < [l4#) / dthr(t) / a2l f(t, 7)) < co / dt hp(1)(1 -+ [1])%/2

= co/dth(t)(l + |s(T)t + T))*? < ¢T3/, (A.2.4)

where in the second step we used property ([AZ21]) of regular solutions of the Klein-
Gordon equation.

(b) See, for example, [Ar&2].
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(c) For n =1 the assertion follows from ([(ATS) and (AT9). Assuming that (AZ3J) is
valid for n — 1 and making use of part (b) of this lemma we estimate
1AL (fLr)™ . An(far)* P(A)]
= A (A0)® - Anci(fao10) P P(A £ suppfor) An(for)* P(A)]|
< A () Ane1(fam12) T P(A £ supp fo ) || An (fa,r)* P(A)]|(A.2.5)

The last expression is bounded by the inductive assumption and the support prop-
erties of functions fr. O

Now we turn our attention to the commutators of the operators A(fr). It will simplify
this discussion to decompose the function fr into its compactly supported dominant con-
tribution and a spatially extended, but rapidly decreasing remainder [BBSO1]. To this
end, let us define the velocity support of the function f

r(f)=AQ, (4)) | 7 € suppf}. (A.2.6)

We introduce a function x5 € C$°(R*) such that ys = 1 on T'(f) and x5 = 0 in the
complement of a slightly larger set I'(f)s. fr(z) = fr(z)xs(z/T) is the asymptotically

dominant part of fp, whereas fr(x) = fr(z)(1 — xs(z/T)) tends rapidly to zero with
T — oo [Her7ll [He66]. In particular, for each natural N and some fixed Ny > 4 there
exists a constant ¢y such that

/ |fr(2)|d*z < en (T;JJV:NO (A.2.7)

We remark that this bound relies on the slow increase of the function s(7°), so Condition A’
cannot be eliminated simply by modifying this function.

As was observed first by Hepp [He65], particularly strong estimates on commutators
can be obtained in the case of particles moving with different velocities.

Lemma A.2.2. Let Ai(fir), A2(for), As(fsr) be defined as above. Moreover, let f1,
fo have disjoint velocity supports. Then, for each natural N, there exists a constant cy
such that:

(a) [Ax(frr), A2 (for)lll < 75
() [A1(fr,7), [A2(for), As(fa )]l < 2%

The same estimates are valid if some of the operators A(fr) are replaced by their adjoints
or time derivatives.

Proof.

N \
(a) Making use of the decomposition fr = f+ fr, we obtain

[Av(fr0), Ao (For)] = [A1(F 1), Ao(For)] + [AL(Frp)s As( For)]
AL 1r) As(For)] + (A (F i) As(far)] (A28)
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The first term on the r.h.s. is a commutator of two local operators. For sufficiently
large T their localization regions become spatially separated because of disjointness
of the velocity supports of f; and fo. Then the commutator vanishes by virtue of

\%
locality. Each of the remaining terms contains a factor A(f;) which decreases in

N
norm faster than any power of 7-! by estimate (AZ1). It is multiplied by A(f)
which increases in norm only as 7%/2 by Lemma 2] (a).

(b) First, let us suppose that fs and fo have disjoint velocity supports. Then
[A2(fo,1), A3(f3,1)] decreases fast in norm as a consequence of part (a) of this lemma.
Recalling that the norm of A;(f ) increases at most as T3/2 the assertion follows.
Now suppose that fg and fl have disjoint velocity supports. Then, by application
of the Jacobi identity, we arrive at the previous situation. In the general case we
use a smooth partition of unity to decompose f3 into a sum of two functions, each
belonging to one of the two special classes studied above.

The statement about adjoints is obvious. To justify the claim concerning derivatives we
note that

d 1 (ds(T)
—A =—— A A(fa A ) A29
oAl =~ { S A + ) + Al | (A29)
where fyr is constructed using hg(t) = t%y) and fyr contains hy(t) = %&t). Although
he and hy do not satisfy all the conditions imposed previously on functions h, they are

N \
elements of S(R). This property suffices to prove the decomposition fr = fr+ fp. O

Having constructed creation operators and studied their properties, it will be fairly simple
to demonstrate the existence of the asymptotic states. The following theorem uses the
original method of Haag [Hab8] modified by Araki [Ax].

Theorem A.2.3. Suppose that local operators Ai,...,A, are regular, fl,...,fn h(we
disjoint velocity supports and vanish sufficiently fast at zero. Moreover, s(T') =T", 7= + - <
v < 1, where € is the exponent appearing in the reqularity condition A’. Let us denote
U(T) = A1(fir) - .. An(fur)Q. Then there exists the limit O = s -limp_,oo Y(T') and it
1s called the asymptotic state.

Proof. We verify the Cauchy condition using Cook’s method

Ts
10 (Ty) — w(Ty)| < /T kil Sy

(A.2.10)

Now it has to be checked whether the integrand decays sufficiently fast when T' — oco. By
using the Leibniz rule, and then commuting the derivatives of creation operators with the
other operators until they act on the vacuum, we arrive at the following expression

fz_i - ZAl fir). _Ak(fkT) A (far)Q

= Z{ZA1 fir) - [ FAKe) AR (o)

k=1 I=k+1

+ Al(fl,T) - (fn T) Ak(fk T) } (A.2.11)
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where k denotes omission of Ak (frr)- Each term containing commutators van-
ishes in norm faster than any power of 77! since the rapid decay of commutators,
proved in Lemma (a), suppresses the polynomial increase of ||A(fr)|| shown in
Lemma [AZ2T] (a). To estimate the remaining terms we first note that, by virtue of
formula (AZJ) and Lemma K211 (b), the vector J&Ay(fr ) has a compact spectral
support A. Consequently,

- d
1AL (frr) o K An(for) s Ar(fr )l
= A1) F o An( ) POA) A A i)
- d
< JAr) R AU ) PO ArUr)QN € S (A212)

where in the last step we made use of Lemma[AZ2T] (c) and estimate (ATH). Asv(1+¢) >
1, the integral (AZZI0) tends to zero when 77,75 — oo and the Cauchy condition is
satisfied. O

It is a remarkable feature of the asymptotic states with disjoint velocity supports that
already at this stage it is possible to prove that they depend only on the single-particle
states P[m]A( £)Q rather than on the specific A, f, h, and s that were used to construct
them. As the possibility to relax the increase of functions s(T') is particularly important
for us, we temporarily introduce the notation A(f7) to distinguish between operators
containing different functions s(7"). The following lemma is due to D. Buchholz.

Lemma A.2.4. Suppose that the families of operators Al(ffvT),...,An(f;T), resp.
El(j/’\f’T), e ,En(:f’T), satisfy the following conditions:
(a) The functions fiveeos [, TESD. fl, e ,fn, have, within each family, disjoint velocity
supports and vanish sufficiently fast at zero.

(b) Py Ai(fi)Q2 = P[m]ji(ﬁ)ﬁ, i€{l,...,n}, i.e. the single-particle states correspond-
ing to the two families of operators coincide.

(c) ¥F = s -limr—oo A1 (fi 7). - An(fy ) exists.
Then the limit U+ = s -limp_,o El(j/’\fT) . A\n(fiT)Q exists and coincides with U .

Proof. We proceed by induction. For n = 1 the assertion is satisfied by assumption. Let
us assume that it is satisfied for states involving n—1 creation operators. Then the follow-
ing inequality establishes the strong convergence of the net A1 (ff 7)A2(f57) - .- An(f, 7)2

AL (FE ) A2 (f3r) - - An(for)Q = Ai(fir) Ao (f5 ) - - An(Fim)Q
< AL (F ) PO A2 (f57) - An(For) = Aa(for) - An(for)Ql,  (A2.13)

where A is the spectral support of the product of creation operators acting on the vacuum
which is compact by Lemma [AZ2T] (b). The r.h.s. of this expression vanishes in the
limit of large T' as a consequence of estimate (A8 and the induction hypothesis. By
applying the bound on commutators proved in Lemma (a) and the estimate from
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Lemma [A277] (a) we verify that also ﬁz(ng) . A\n(:SLT)Al(ffT)Q converges strongly
and has the same limit. Finally, our claim follows from the estimate

A2 (F5 1) - An(Fo ) (A (Fir) — Ar(fig) Q)
< NAs(fip) .- A Fir) PADIN(AL(fir) — Al(fip) 0l (A2.14)

where A; is again a compact spectral support. The r.h.s. of this inequality tends to zero
with T'— oo by assumption (b) and the bound in Lemma [A21] (c). O

A.3 Fock Structure of Asymptotic States

It was instrumental in the original proof of the existence of the asymptotic states that
s(T) = T", where v was sufficiently close to one. Lemma [A24] allows us to relax this
condition and choose any 0 < v < 1. Using this piece of information, we will verify
the Fock structure of the scattering states by the following strategy: First, we establish
a counterpart of the relation aa*Q = (Q|aa*|Q2)Q satisfied by the ordinary creation and
annihilation operators. Once this equality is proven in the sense of strong limits, we
combine it with the double commutator bound from Lemma (b) to obtain the
factorization of the scalar product of the scattering states.

We start from two definitions: O(r) is the double cone of radius r. By 2y we denote
the weakly dense subalgebra of 2 consisting of operators for which the operator valued
functions * — A(x) are infinitely often differentiable in the norm topology. (We remark
that, given any regular operator, we can construct a regular operator in 2y by smearing
it with a smooth function).

Now we proceed along the lines set in the scattering theory of massless bosons. (See
[Bu77] p.169). The analysis is based on the following result, due to Araki, Hepp and
Ruelle, on the two-point function of operators from 2l localized in double cones.

Lemma A.3.1. [AHR62] Let Cy and Cy be local operators in g, localized in double cones
O(r1), O(ra). Then, for all |Z] > 2(r1 + 12),

(QIC1(T) (1 = Po)C2)| < |77 (r1 + r2)* {CTQ100C20] + 1C5Q[|00C12}, (A.3.1)

where Py = |Q)(Q| and ¢ is a constant which depends neither on & nor on Ci, Cy and
T1, T2.

We will apply this lemma, taking as C; and C5 the commutators [A;(t;, @), A;(t;,Z;)]. It
will be used in the proof of the following statement that these operators are localized in
regions of finite volume, as long as the differences [t; — t;| are kept small.

Lemma A.3.2. Let Ay,..., Ay € Ay be localized in double cones O(r1),...,0(ry). We
define

K = (Q[[A1(t1, %1), Ag(ta, T2)](1 — Po)[As(ts, T3), As(ts, T4)]Q), (A.3.2)

where Py = |Q)(2|. Then the following estimate holds
oL o 1 if |Zo — 73| < 4R
K| < ex(|Z1 — 2| < R)x(|T5 — T4 SR)'{ R? if |2 — 7| > AR

[£2—&'3]2+R?

(A.3.3)
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where R =33 (ri+ |t —t]), t = 1(t1+t2+t3+1t1) and x are the characteristic functions
of the respective sets. The constant ¢ depends neither on ty,...,t4 nor on ry,...,ry4.

Proof. Using the translation invariance of the vacuum, we can rewrite K as follows:
K = (Q[[A1 (t1—t,712), A2 (ta—t,721)|U(Z) (1—Po) [A3(t3—1, T34), As(ta—t,743)|2), (A.3.4)

where 7, = 1(%; — &), & = (&1 + T> — T3 — Z4). The commutator [A;(t; — ¢, 7)), Ak (ty —
t,7;)] is localized in a double cone of radius r given by

r=|Fi| + 1+ e+ |t =t + [t — 2] (A.3.5)
But it is zero (owing to locality) if
2| > 7+ 1 4 [ti — ] + [t — t]. (A.3.6)
Consequently, there follows the bound for r

3
r < §(Ti+rk+|ti—t|+|tk—t|). (A.3.7)

Now we can apply Lemma A3 and get for |Z| > 33550, (r; + |t; — t])

4
- 3
K| < o@D (ri+ [t — 1))
i=1
{I[A1(t1, 1), Az(t2, Z2)]" Q| [[[O0As(ts, T3), Aa(ta, T4)]Q2
+ [Ag(tg,fg),@oA4(t4,f4)]QH + (1 — 3,2 4)} (A38)
The r.h.s. of this expression vanishes, if either of the following two conditions holds
|Z1 — Zo| > [t — ta] + 11 + 12, (A.3.9)
| T3 — Z4| > |t — ta| + r3 + 74. (A.3.10)

We may therefore estimate |Z| as follows

" Ly - Lo . o
|7 = 5‘2(:172 —T3) — (Fo — 71) — (T4 — ZEg)‘
Lo 1. Lo
2 |@2 = Tl = 5 (182 — 21| + |T4 — T5])
1 o 1
> |@y — 7 —§;(ri+]ti—t]) = |72 — 73| - R (A.3.11)
If |Zy — @3] > 4R, then |Z] > 3R and it follows from the bound ([AZZF) that
’K‘ < CR3(‘f2 - fg’z + R2)_1X(‘fl - fg’ < R)X(’fg — f4‘ < R) (A.3.12)
When |#; — @3] < 4R, we estimate trivially
I[A1(t1, T1), Ao (ta, T)]|| [[[As(ts, T3), Aa(ts, Za)]|
Ix([T1 — To| < R)x(|T5 — 74| < R), (A.3.13)

K| <
<
what concludes the proof. [J

Now we are ready to prove that the product of a creation operator and an annihilation
operator acting on the vacuum reproduces it.
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Proposition A.3.3. Suppose that Ay, Ay are local operators from g, s(T) =T", v <
1/8. Then

s - lim Ar(f1) Ao(f2)2 = (Q1AL(F1) Py Ao ()2 (A.3.14)

Proof. We start by performing the integration of the function K from the preceding
lemma with the regular Klein-Gordon wave-packets and estimating the behavior of the
resulting function of ¢4, ..., t4. We will change the variables of integration to @, = Ty — 1,
Uy = To, Uz = Ty — X9, Uy = T4 — T3. In the region |¥y — T3] > 4R we obtain

/ | fi(tn, 7). / @l faltn, 20) || K]

_ _ to, U ts, U3 + U
RY(L+ )20+ )2 [ Py [ b2 )

CRY(1+ [t )32 (1 + [t4]) 32 (1 + [t2])?/2. (A.3.15)

IN

IN

Here in the first step we applied the bound [A21]) to fi and f;. In the second step
we exploited estimate ((AZ2) to control the integral w.r.t. @3 and we used the inequality

2 \z‘zﬁ2(+3%‘2 < (|53‘21+R2 )2+ f3(-,-)|? in order to verify that the integral over i3 is bounded in

t3. In the region |7 — 3| < 4R our estimate becomes improved by the factor (1+ [t3])~%/2,
so ([AZ3Th) holds without restrictions.
Since A(f7)*Q = 0 for sufficiently large 7', we can estimate
1A (f1,7)" Az (for) = (AL (frr) " Ao (fo,r) )0
= (Q[A2(f2,0)", Ar(fr0)](1 = Po)[Ar(fr,r)", A2 (fo,r)]€)
< /dtlhT(tl) . /dt4hT(t4)cR9(1 )T A+ Jta]) TR A+ [ta])P
3(T)12

Now the assertion follows from the slow increase of the function s(7"). O

After this preparation it is straightforward to calculate the scalar product of two asymp-
totic states.

Theorem A.3.4. Suppose that Ai(fi1),..., An(fu1), Tesp. Ai(fir), .., An(fn1), are
two families of creation operators constructed using local operators from o, functions f;,

resp. fi, 1 =1,...,n, vanishing sufficiently fast at zero and having, within each family,
disjoint velocity supports. Moreover, s(T) =TV, where 0 < v < 1. Then

lim (QAn(far) .. AL(fir)* AL (frr) - - An(for)Q)

T—o00

= > (A (A) P Aoy (o)) - (QAn(fn)" Py Ac, (F,)). (A.3.17)

O'GSTL
Here the sum is over all permutations of an n-element set.

Proof. First, we make use of Lemma [AZ24] to ensure a sufficiently slow increase of the
function s(7"). Next, we proceed by induction. For n = 1 the theorem is trivially true.
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Let us assume that it is true for n — 1 and compute

QA (far)* - AL (i) AL (Fir) - An(fa 1))

= Y (QA(far) - A(for) A(frr) - [AL (i) Ar(fir)] - - An(fa)Q)

k=1
= Y { > QAfur) - Ao(for) AL (frr) - -
k=1 I=k+1

o AP, A (Fer)), A Fur)] - An(Far))
QA Fur) - As(for) As (i) - K An(Fur) Ar (fr)* Ar(Frr)2) }(A.3.18)

The terms containing double commutators vanish in the limit by Lemma A2 (b) and
Lemma [A227] (a). The remaining terms factorize by the preceding proposition and by
Lemma [A27] (b) and (c):

QA (for) . As(for) A (fir) . koo Ap(Fa) AL (L) Ar(frr)Q)
QAR (far)* . As(for) A (fir) - Koo A(Fur) ) -
A(QIAL(F1) Pon) A (Fr)Q). (A.3.19)

lim
T—o00

Pl

lim
T—o00

This quantity factorizes into two-point functions by the induction hypothesis. [J

It is also evident from the proof that the scalar product of two asymptotic states involving
different numbers of operators is zero. Now the Fock structure of the asymptotic states
and the construction of the wave operators follows by standard density arguments: By
Condition A’, there exists a regular operator A € A(O) s.t. PjAQ # 0. Since the
representation U acts irreducibly in H[™, the vectors {U (2, A) P AQ | (2, A) € PJTF}
span a dense set in this subspace. Making use of the fact that a Poincaré transformation
of a regular operator is regular, we obtain that the set of vectors

{ P A(f)2 | A-regular, f € C3°(R?) vanishes sufficiently fast at 0 } (A.3.20)

is total in HI™. In view of Theorem [A.23 the wave operator W+ can be defined on a
dense set in T'(H[™), extending by linearity the following relation

W+ (a*(P[m}Al(fl)Q) e a*(P[m]An(fn)Q)Q) =S _Th—lgo Al(fl,T) . An(fn,T)Q7 (A.3.21)

where A and f satisfy the conditions stated in (A320). Due to Theorem [A34 W+
preserves norms, thus it extends to an isometry from F(H[m]) to H. The wave operator
W~ is constructed analogously, making use of the incoming states, and the scattering
matrix S : D(H™) — T(HIM) is given by S = (WH)*W~.

A.4 Conclusion

We have constructed a scattering theory of massive particles without the lower and upper
mass gap assumptions. The Lorentz covariance of the construction can be verified by
application of standard arguments [Ar]. Including fermions would cause no additional
difficulty, as the fermionic creation operators are bounded uniformly in time [Bu75].
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The only remaining restriction is the regularity assumption A’. We note that it was
used only to establish the existence of the scattering states - the construction of the Fock
structure was independent of this property. Moreover, we would like to point out that it
does not seem possible to derive it from general postulates. In fact, let us consider the
generalized free field ¢ with the commutator fixed by the measure o:

[6(2), 6(y)] = / do(NAr( — ), (A1)

where Ay is the commutator function of the free field of mass V/A. Suppose that the
measure o contains a discrete mass m and in its neighborhood is defined by the function
F(A\) = 1/In|XA — m?|. Then it is easy to find polynomials in the fields smeared with
Schwartz class functions which violate the bound from Condition A’. However, the exis-
tence of the scattering states, constructed with the help of such polynomials, can easily be
verified using properties of generalized free fields. These observations indicate that Condi-
tion A’ is only of technical nature. To relax it one should probably look for a construction
of asymptotic states which avoids Cook’s method - perhaps similarly to the scattering
theory of massless particles [Bu7hl, [Bu77].



Appendix B

Scalar Free Field Theory and its
Phase Space Structure

In this appendix we collect some known results on the phase space structure of scalar free
field theory in a slightly modified form, suitable for our purposes. They provide a basis
for the proofs that the new Conditions L&, L), Ny and C}, introduced in the main body
of this work, hold in the model of scalar, non-interacting particles. These arguments are
given in the subsequent appendices. For Conditions LM and C}, only the massive case will
be considered.

Verification of phase space conditions in models is an integral part of phase space
analysis in QFT as it proves consistency of the introduced criteria with the basic postulates
of quantum field theory. This issue was treated already in the seminal paper of Haag
and Swieca [HS65], who verified their compactness condition in massive scalar free field
theory. Serious technical improvements, including the reduction of the problem to a single-
particle question, appeared in the work of Buchholz and Wichmann [BWiR6], who noted
the importance of nuclearity. The massless case was included for the first time in [B.Ja87).
Conditions Cy and Ny, stated in Sections Bl and B3, respectively, were first verified
in [BP90]. A particularly flexible and explicit formulation of the subject was given by
Bostelmann in [Bos(0] and our presentation relies primarily on this work.

The goal is to construct an expansion of the map Op : 2A(O(r)) — B(H), given by
©g(A) = PgpAPg, into rank-one mappings. More precisely, we are looking for functionals
7; € A(O(r))* and operators S; € B(H), i € N, s.t.

Op(A) =) 7i(A)S, A e A(O(r)), (B.0.1)

7
S nlP ISP <00,  0<p<1. (B.0.2)
7

Thus, in view of Lemma 5.1, we corroborate the well known fact that Condition Ny holds
in scalar free field theory [BP9(0]. Moreover, we establish properties of the functionals
{m}7° and {S;}7° which will be needed to verify the new conditions introduced in this
Thesis.

This appendix is organized as follows: In Section [B] we explain our multiindex no-
tation. Section introduces scalar free field theory, its even part and its sub-theory
generated by the derivatives of the field. In Section we construct the functionals

75
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{7:}7° and estimate their norms. Apart from the material familiar from Section 7.2.B of
[BosO0], we establish certain energy bounds on these functionals which we need to verify
Condition LM, In Section B4 two expansions of the single-particle wavefunctions are
developed, following Sections 7.2.2 and 7.2.3 of [BosO(]. They give rise to an expansion of
the map O into rank-one mappings, which we introduce in Section [B.5l It is a variant of
the 'mixed expansion’ from Section 7.2.6 of [Bos(0]. In order to avoid the unduly compli-
cated infrared structure and phase space properties of low dimensional massless models,
in this appendix we adopt the following:

Standing assumption: Unless stated otherwise, all statements concerning scalar free
field theory hold either for m > 0 and s > 1 or m =0 and s > 3.

B.1 Multiindex Notation

A multiindex is a sequence p = {u(7)}3° of elements from Ny s.t. only a finite number of
components is different from zero. Addition of multiindices is performed component-wise.
The length of a multiindex is given by

ul =3 o) (B.L.1)

The factorial of a multiindex is defined as p! = [, p(¢)!. Given a sequence a = {a;}{°,
valued in any set with multiplication, its multiindex power is defined as

at = Ha’;(i). (B.1.2)

It is convenient to extend the above conventions to pairs of multiindices 7 = (u™, u™):
The length of such 2-multiindex is given by || = |u"| + |¢~| and the factorial is defined
as il = pT!lp~!. Given any sequence of pairs b = {b;r, b, }1°, we define the 2-multiindex
power of b as follows

b= (BT (b (B.1.3)

Finally, an n-index x is a multiindex s.t. k(i) = 0 for ¢ > n. All the above conventions
extend naturally to n-indices.
We recall that for any sequence of complex numbers {¢;}° and k € N there holds the

multinomial formula
n
o) = > f—,'t“, (B.1.4)
j=1 wlul=k
where the sum on the r.h.s. extends over all n-indices of length k. Assuming that the

sequence {t;}7° is absolutely summable, we can take the limit n — oo, obtaining on the
r.h.s. the sum over all multiindices u of length k.

B.2 Scalar Free Field Theory and Related Models

In this section we recall from Section X.7 of [RS2] some basic properties of scalar free field
theory of mass m > 0 in s space dimensions. The single-particle space of this theory is
L?(R®,d*p). On this space there act the multiplication operators w(p) = +/|p]2 + m? and
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P1,-..,Ps which are self-adjoint on a suitable dense domain. The unitary representation
of the Poincaré group PJTr > (z,A) — Uj(x, A), acting on the single-particle space, is given
by

(Ur(z, A) f)() = D20 f(A=15)  f e LA(R®, d°p), (B.2.1)
where A~1p'is the spatial part of the four-vector A=!(w(p), ). The full Hilbert space H of
the theory is the symmetric Fock space over L?(R®, d*p). By the method of second quanti-
zation, we obtain the unitary representation of the Poincaré group U(z,A) = I'(U;(z, A))
which implements the corresponding family of automorphisms acting on B(H)

() =Ux,A) - Uz, A)" (B.2.2)

The Hamiltonian H = dI'(w), and the momentum operators P; = dl'(p;), i = 1,2,...,s
are defined on a suitable domain in H. The joint spectrum of this family of commuting,
self-adjoint operators is contained in the closed forward light cone.

The elements of H have the form ¥ = {¥,}>° , where ¥, is an n-particle vector.
We denote by D the dense subspace of finite particle vectors, consisting of such ¥ that
¥, # 0 only for finitely many n. On this subspace we define the annihilation operator
a(f), f € L*(R*,d*p), given by the formula

@) ) = VT T / EpF P Cnir (.1 ) (B.2.3)

and its adjoint a*(f). With the help of these operators we construct the (time zero)
canonical fields and momenta for any g € S(R?)

6rla) = (o h) +alw i) (B.2.4)
6_(9) = —=(a"(iw}g) + aliw?)). (B.2.5)

The algebra A(O(r)) of observables localized in the double cone O(r), whose base is the
s-dimensional ball O, of radius r, is given by

A(O(r)) = {V2+EDFV2- (D) | FE € D(O,)r )", (B.2.6)

where D(O,)r is the space of real-valued test functions supported in this ball. Let us
mention an equivalent definition of the local algebra which is more convenient for some
purposes: We define the following (non-closed) subspaces in L2(R®, d*p)

LE = wF2D(0,), (B.2.7)

where tilde denotes the Fourier transform. We denote by J the complex conjugation in
configuration space and set

L,=0+ )L+ 0 —0)L. (B.2.8)
Then every f € £, has the form f = f* +if~, where

7 = wFa (B.2.9)
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for some F* € D(O,)g. For any f € L, we define the Weyl operator
W(f):= ci@ (N+alf) — giv2e4 (FH)+iv2¢_(F7) (B.2.10)
In view of the second equality and definition (B:2:6) there holds
AO(r) ={W(f)|fe L} (B.2.11)

With the help of the translation automorphisms «,, introduced above, we define local
algebras attached to double cones centered at any point x of spacetime

AO®F) + ) = s (AO(r))). (B.2.12)

Now for any open, bounded region O we set

m(o>:< U Ql(O(r)—l—x)) : (B.2.13)

O(r)+zCO

obtaining the local net 2. The global algebra, denoted by the same symbol, is the C*-
inductive limit of all such local algebras. It is well known that the triple (2, o, H) satisfies
the postulates 1-5 from Section [RS2].

We can immediately construct two related theories: First, we define the local algebra
generated by the derivatives of the free field

AD(O(r)) = { Y20+ Ea 0TV | P P~ € D(O,)r, j € {1,...,5} ),
(B.2.14)

which is clearly a subalgebra of 2(O(r)). In the massive case one can show that
AD(O(r)) = A(O(r)), making use of the equation of motion. In the massless case,
however, the inclusion is proper. The global C*-algebra, constructed as in the case of the
full theory, is denoted by 2@ and the theory (Ql(d),oz,H) satisfies the postulates from
Section

The second example is the even part of scalar free field theory. Here the local algebra,
attached to the double cone O(r), is given by

A (O(r)) = {cos(V2¢(FT) +V2¢_(F7)) | F*,F~ € D(O,)r}". (B.2.15)

The corresponding local net 2A(®) | constructed as above, gives rise to the theory (A, o, H)
which satisfies all the postulates from Section except for irreducibility. In order to
ensure this latter property, we represent the algebra %) on the subspace H(©) in H spanned
by vectors with even particle numbers. We define 2(®) = =A® |, o), U a: A = Uz, )|y
and a(; o) () = U(z,A) - U(z,A)~!. The resulting theory ( 917-{ ) satisfies all the
general postulates.

For future convenience we discuss the relation between the theory (52((0), a,H), acting
on the full Fock space, and the theory (ﬂ(o), a, H(e)) acting on H(®). First, we define the
C*-representation 7 : 2A© — A given by

Te)(A) = A=Ay, Aecdl. (B.2.16)
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Due to the Reeh-Schlieder property of the vacuum and the fact that local operators are
norm dense in 2 we obtain that m) is a faithful representation. Thus there holds, by
Proposition 2.3.3 of [BRI,

1Al = [l4f,  AeA®. (B.2.17)

Next, we note that the natural embedding H(® < H induces the embedding of the
preduals ¢(e) : T — T, where 7(® = B(H(®),. There clearly holds
Yoy (P)(A) = p(4), AecA peT®, (B.2.18)

and it is easy to see that ¢() is an isometry: The absolute value of any ¢ € T can

be expressed as |¢| = >, pi|¥;)(¥;], where p; > 0 and ¥; € H(®) form an orthonormal
system. Completing it to an orthonormal basis in H, we obtain

el = Trlel = Trlee) ()] = [lee) (]I- (B.2.19)

Thus, making use of the fact that the embedding H(® < H preserves the energy of a
vector, we obtain that
L(e) : TE(J? — TE71, (B.2.20)

what implies, together with relation (B2I8), that ||Al|g2 < ||A| g2 for square-integrable
operators A € (),

Our next goal is to describe the field content of these theories. (Cf. Section for a
general discussion of this concept). For this purpose we introduce the domain Dg = { ¥ €
Dp |V, € S(R®**™) } on which there acts the annihilation operator of the mode p’ € R*

(a(@m)n(ﬁlv v 75”) =vVn-+ 1qln+1(ﬁv ﬁl) s aﬁn) (B221)

Clearly, on Dg there holds the equality

a(f) = / Epf@Pal), | € SR, (B.2.22)

The adjoint a*(p) is only a quadratic form on Dg x Dg. The Hamiltonian can be expressed
as a quadratic form on this domain by

H= / d*pw(F) a* (Fa(p). (B.2.23)

Similarly, we define the pointlike localized canonical fields and momenta as quadratic forms
on DS x D S
- 1 d’p —ipE * ipT
b:(3) = (770" () + P a(F), (B.2.24)

(2m)s/2 | \/2w(p)
o_(T) = (27:)8/2 / dsm/“;m (e a* () — e a(p)). (B.2.25)

This terminology is justified by the fact that on this domain there holds for any g € S(R®)

bi(g) = / & 64 (2)g(3). (B.2.26)



80 Appendix B. Scalar Free Field Theory and its Phase Space Structure

Moreover, for any s-index k, (see Section [BJl for our multiindex notation), we define the
derivatives 0"¢y := 0"¢4(Z)|z—¢ and the corresponding Wick monomials

T Gy O GO T h_ . D (B.2.27)

which are also quadratic forms on Dg x Dg. The Wick powers are defined by the standard
prescription consisting in shifting all the creation operators to the left disregarding the
commutator

It is a well known fact (see e.g. [Bos00]) that the Wick monomials can be extended by
continuity to bounded functionals on 7, and the field content of scalar free field theory
is given by

ey = Span{ :0 ¢ .. O 6, 0 G- 0 p_: W € N, F € {1, KF),
k* e Ny }(B.2.28)

i.e. it consists of finite linear combinations of the Wick monomials. Furthermore, it can be
extracted from Section 7.4.2. of [Bos0] that the field content of the sub-theory (A4, o, H)
generated by the derivatives of the field has the form

oW = Span{: 9% dy ... N+ GO G_ ... p_: w5 €N, e {1, k),
k* € No, |sT,| >0} (B.2.29)

(d)

(As mentioned above, in the massive case one can show that ¢y = ®pp, making use
(d)

of the equation of motion. In the massless case, however, ®r; is a proper subspace of

®py). Finally, the even part (2®), o, H(®)) of scalar free field theory has the following field
content

(IJ(FeP)I = Span{ :8“1+¢+ ... 8“Z+¢+8“;¢_ A | /i;.ti eNs, jEe{l,... k),
k* € Ng, kT 4+ k™ is even }, (B.2.30)

where the underlining indicates that the Wick monomials act on the Hilbert space H(©).
To close the present section, we show that Condition T, stated in Section 23], holds in
massive scalar free field theory and its even part.

Theorem B.2.1. Massive scalar free field theory and its even part satisfy Condition T
for any dimension of space s > 1.

Proof. First, we consider the full massive scalar free field theory. The (0,0)-component
of the stress-energy tensor T% € ®py is given by

- L2 42 Z 0;04)* +1m (G2 (B.2.31)

The standard computation, which makes use of representation (B:Z23]) of the Hamiltonian,
gives for ¥, ® € Dg

/dsx (|7 (2)®) = (V|HD). (B.2.32)

"We warn the reader that the Wick ordering is not linear on the algebra of (smeared) creation and
annihilation operators.
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Certainly, equality ([B232) still holds if T is replaced with T%(g), where the time-
smearing function g is specified in Condition T'. It is shown in Appendix [Dl that massive
scalar free field theory satisfies Condition L(!) which ensures that [|7%(g)|z.1 < co. (See
relation (ZZ310))). Due to this bound and the fact that Dg N PgH is dense in PpH, we
obtain for any ¥, ® € Pr'H

/ & (W7D (g)(2)D) = (V| HD). (B.2.33)

Making use of the fact that any functional ¢ € Tp is of the form ¢(-) = 3 ,(¥;] - &;),
where U;, ®; € PpH and ), [|¥;]| [|®;]| < oo [BR], we conclude the proof for the full

theory. The even part is treated analogously, exploiting the fact that 7% is an element of
@gal){ and restricting attention to ¥, ® € H©. O

B.3 Special Functionals on Local Algebra

In this section we construct suitable functionals on the local algebra 2A(O(r)), estimate
their norms and establish certain energy bounds. For this last purpose we introduce the
Sobolev spaces [RS2] given, for any [ > 0, by

L*(R®,d*z)y = { f € L*(R®,d"7) | /dsp(l + 1)1 F @) < oo} (B.3.1)

These spaces are equipped with the norm

1l = ( / Ep(1 + [N F @) (B3.2)

Clearly, || - |l20 = || - |l2. The goal of this section is to prove the following proposition
which is a slight generalization of Lemmas 7.8 and 7.9 of [Bos00].

Proposition B.3.1. Let [ > 0 and {b; }5°, {b; }5° be two sequences of J-invariant vectors
from L*(R®,d*x);. Let u*,pu~ be two multiindices, f* € LF and f = f+ +if~. Then
there exists a normal functional o+ ,~ on B(H) s.t.
12 ) ey
O W) = e 2V RET ) |7y, (B.3.3)
_ _ + — o
IR0 B < e I T DI IS 1671, (B34)

where R = (1 + H)™', ¢, = (12 + 2m?)"2, and m is the mass of the theory. Moreover, if
bl =b; for anyi € N and {b;}$° form an orthonormal system of vectors in L*(R®, d°x),

then there holds
+ p—
ot - I < AT+l l*/lf’!lf!- (B.3.5)

For the proof of this proposition we need two simple lemmas. First, we introduce energy
damping operators which are more convenient than the resolvents R considered above.

Lemma B.3.2. Let >0 and G; = [ d°*p log(2 + w(p))! a*(p)a(p). Then there holds

[R™e %1 < 1. (B.3.6)
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Proof. Let n > 1 and ¥,, be an n-particle (Schwartz-class) wavefunction. Then there
holds

: (1+w@) + -+ w(@n)
2+w@) .. (2+wF)
< w3, (B.3.7)

(U,|R7 e Cw,) = /dspl...dspn|\Ifn(ﬁl,...,ﬁn)

where we made use of the fact that R~'e~C" is a positive operator and that (z+y) < zy for

any x > 2, y > 2. We can thus drop the restriction that ¥, is a Schwartz-class function.
Now making use of the fact that any vector W in the Fock space can be expressed as
U =3 U,, where ¥y = 2 for some ¢ € C and [|¥||? = 320 || ¥, || < oo, we obtain

from (B31)
(U|R~ e C10) < |0, (B.3.8)

what concludes the proof. [J

Next, we recall the elementary combinatorial Lemma 7.6 of [Bos(0] which gives useful
bounds on the lengths of certain vectors in the Fock space.

Lemma B.3.3. For any family of vectors by ...b, € L*(R* d*x) there holds
la(by)...a(by)a*(bprr)-..a*(bn)Q < Vallbi]l...|bal. (B.3.9)

Moreover, if {b;}3° form an orthonormal system of vectors in L*(R* d°x) and «, (3 are
multiindices, then there holds

la(e)®a*(e)’Q| < /(o + B). (B.3.10)

After this preparation we are in position to prove the main result of this section.
Proof of Proposition [B.3.dk This is a slight generalization of the argument from
Appendix 4.2.B of [BosO(]. Consider the generating functional

F(u,w)(A) = (Q’e%a(iglf—wlf)ega*(iglf—wlf)Ae—% *(iglf—wlf)g), (B.3.11)

where A is a bounded operator on the Fock space and u = {u;}5°, w = {w;}{° are
sequences of real numbers with only a finite number of entries different from zero. We
denote ub™ = > uibj, wb™ =>", w;b;” and define the exponentials above by their Taylor
series expansions which converge in view of Lemma In particular, for A = W (f)
we obtain

F(u,w)(W(f)) = e 2llf13 a1/ )+l |f7) (B.3.12)
Differentiating the above formula, we obtain

O O (= 0.0y F (w, w) (W (f)) = e 2B (5| )™ (o= o m (B.3.13)

w

Therefore, we can define

+

Oyt - (A) := 0 O | (ww)=(0,0)F (1w, w) (A). (B.3.14)
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From this definition and formula (B:311l) we obtain

[t | +1 ll
o (A) = (% s Y ) I P
BTp 2 L~ atlatla/t o~ o/~ o/~
a++a++a +:“+
a+a/ " +a" =

(a(v™)™ a(b™)*a"(bF)" " (b7)* Aa” (57)* 0 (b7)"

1 |;m+|;(|+ - e T
_ <§> I SRy g Iy

11—

)

alalo
atal +a'=n
(Qad)%a* (b)™ Aa* ()™ Q). (B.3.15)
Here @ = (a*,a”) etc. are 2-multiindices. Since the operator Gj, introduced in

Lemma [B37 satisfies ||[R~'e~%|| < 1 and e%a*(b)e~ % = a*((2 + w)'b), there holds
sup  |(Qa(d)®a*(b)* RAR a* (b)™"
AEB(H)1
< sup [(Qa((2 +w) )%t (2 + w)')Y Aa* (2 + w)'b)®
AEB(H)1

+_|_ — — + _ _
V(s I et DA 1 [ Tl (B.3.16)

where in the last step we made use of estimate (B3] and ¢; is defined in the statement of
the proposition. It follows from this relation and formula (B3TH) that R~'o,+ ,- R~ is a
bounded functional. Making use of relation (B.3I3]) and exploiting the following formula,

valid for any n € N,
|
n!
E—1 B.3.17
Z ala’la’! ’ ( )

a,a’,a" €Ny

a+a’+a'"=n

Q)|

11

)|

IN

we prove estimate (B34 from the statement of the proposition. In order to verify rela-
tion (B33), suppose that b = b, for i € N and {b; }$° form an orthogonal system. Then

estimate (B310) gives
sup  |(Qa(d)®a* (b)* Aa*(b)* Q)| < /(ut +p)! < ol Il /1T, (B.3.18)

A€B(H)1

Substituting this bound to formula (B3.JHl) and making use again of identity (B3.14),
we conclude the proof of the proposition. [

B.4 Expansions in Single-Particle Space

In this section we derive two expansions of the functions F* € D(O,)r which enter into
definition (B26)) of the local algebra. The first expansion relies on the fact that F'* are
analytic functions and thus can be expanded into convergent Taylor series. The coefficients
of these expansions are given in terms of vectors {bir}i’o defined by (BAI) below. We
show in Lemma [B-A3] stated below, that these vectors have finite Sobolev norms. Thus

the corresponding functionals ¢+ ,-, constructed in Proposition [B.3.1], satisfy the energy
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bounds (B34)). Due to the rapid growth with |u*| + [u~|, this estimate does not suffice
to establish the convergence of the sum (BILZ)) in the massless case. In order to exploit
the more tame estimate (B331), in the second part of this section we construct a suitable
orthonormal basis expansion.

B.4.1 Taylor Expansion

We introduce two approximate characteristic functions: p'— xg(p) € C§°(R®) which is
equal to one on the set { p'€ R* | |w(p)| < E} and & — x(O,)(Z) € C§°(R?®) which is equal
to one on the ball O,, and define, for any s-index x, the functions from L?(R®, d*p)

1o (O,
) — (2;); w(P) H!X(Or)(ﬁ), (B.4.1)

7 1.k
hep@® = (=)"w@ 2 (ip)*xp(d). (B.4.2)
We recall that f* € £F have the form f* = w2 FE, where F* € D(O,)g, set FF =

yeF* and note that the functions F* are analytic. From their Taylor expansions we
obtain [Bos00)]

oo

l ~ ~
TR FE = xpft =) (b g =Y PR (B.4.3)
K j=1

where in the second step we numbered the s-indices x with some index j € N in such a
way that k1 = 0. There holds the following proposition.

Proposition B.4.1. [Bos((] Expansion [B4.3) converges in L*(R?,d*p).

This statement follows from estimate (BZI7) below which relies on the bounds on the
norms of functions (BZJ]) and (BZZ), established in Lemmas [B43 and B4 respec-

tively. Actually, we derive here more general estimates on the Sobolev norms of these
functions, (see definition ([B32)), which appear in Proposition [B331] above. First, we
note the following auxiliary fact.

Lemma B.4.2. Let x € Cj°(R®). Then, for any s-index k, i € {1,...,s} and n € N,
there holds

[ 1o @@ < o) (B.4.4)
for some constant c,,, independent of k.

Proof. We note the following identity which follows from the Leibniz rule

min(n,x(z))

n :EH z :l"‘% n! ’{(Z)' K(l) n—=k
0y (") (Z) kZZO R e R O (@), (B.4.5)

where the s-index & is obtained from & by setting k(i) = 0. There easily follows the bound

/f\mmx<m“w" M/f k(@) (B.4.6)

for some constant ¢, independent of x. [J

Now we are ready to prove the required bounds on the Sobolev norms of b-.
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Lemma B.4.3. For any | > 0 the functions b, defined by [B41), satisfy the bound

K,T?

(Cl T)IHH_l

+
||b/~£,rH2,l < ! )

(B.4.7)

where the constant c;,, is independent of k.

Proof. First, we note that ||b} . |l2; < (1 + m)1/4||b;,r||27l+%, so it suffices to consider the
(=) case. Clearly I — ||by ,|l2,; is a monotonically increasing function, so it is enough to
establish the bound for [ = n + %, n € N. We consider the expression

™2 X (ONI2, .y = (#x(On) (@)~ (1 + 57" 227X (O,))

<ol @B + O I ex(0)) ). (B
=1

where on the r.h.s. above we mean the scalar product in L?(R?® d*p) and the constant c,

depends only on n and s. In order t(l) study the first term on the r.h.s. above, we write

w2 = (w2)4 + (w2)_, where (w2)4(p) = w(p)"20(=(|p] — 1)). There clearly holds

L1 . 1
[(w™2)+2%x(Op) |2 < [|2"x(Oy) |2 < 5(67’)‘ I+ (B.4.9)

1

1 —~ —~ 1 1
[(w™2)—2"x(Or)ll2 < [[#"X(Or)[|oo||(w™2) |2 < 5(@)‘“'“7 (B.4.10)
for some constant ¢, > 0, independent of , and therefore
b (01 2 < (). (B.4.11)

Next, we study the second term on the r.h.s. of (B:ZH). Making use of Lemma [BZ2 we
obtain

(@5(0,) [ x (0,)) = / |0 (2" (O @) < (enr)HH, (B.4.12)

where the constant ¢, , does not depend on x. This concludes the proof of the lemma. [J

While the above result holds for any m > 0, in the next statement, concerning the Sobolev
norms of the functions hff gy We have to make a distinction between the massive and the
massless case.

Lemma B.4.4. In massive scalar free field theory for s > 1 the functions isz, defined
by relation (BZ]-3), satisfy, for any A >0, B € R,

lw™PhE pllaa < (ex )", (B.4.13)

where the constants cy g g are independent of k. In massless scalar free field theory for
s > 3 the bound (B-Z.13) holds (in particular) in the following two cases:

(a) For any <1 and X\ = 0.

(b) For } = :F% and any X > 0. (The + signs are correlated with these appearing in

formula (B.13)).
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Proof. We define x5(p) := w(ﬁ)_ﬁjF%XE(ﬁ). Then
(Wi ) (B) = (=1)"(ip)"x5(D)- (B.4.14)

We first consider the case m = 0. Then the functions X% are square-integrable for g < 1
and there holds for some constant cg, independent of k,

lw™ PR plla < i I L2, (B.4.15)

what proves part (a) and part (b) for A = 0. For m > 0 inequality (B:ZTI3) holds for any
B eR.

In the massive case and the case considered in part (b), § — x5(p) are smooth,
compactly supported functions. It suffices to take into account A € N, since the functions
A — |lw™B fli gll2,x are monotonically increasing. By Hélder’s inequality applied to the

term (1 + |£]?)?, identity (BZI4), Lemma and relation (B.4TH) there holds the

following bound

\M%UM<QWWHm+Z/ﬁnzwmw) (en5) "1, (B.4.16)

where the constant ¢y g g is independent of . [

From Lemmas [B:43] and [B:24] we obtain the bound for any combination of +-signs, any
0<p<land0<p<l1

— (CO,T Co, ,E)p(IHH_l)
% 16218 o 0RE | < EN: (i!)P < . (B.4.17)
KENG KENG

Thus we have proven Proposition [B.4.11

B.4.2 Orthonormal Basis Expansion

Let Qg be the projection on the single-particle space onto states of energy lower than

E. Let h, € D(Oy)r be s.t. h, > 0. We introduce the closed, linear subspaces L =
[wi%f)(@r)] in L?(R*,d*p) and denote the respective projections by the same symbols.
We choose % < v < % and define operators Tg 4+ = w_%QEEﬁE, Th+ = w_“/ﬁqln/zﬁf,
where h, is the corresponding multiplication operator in momentum space. We recall that
the p-norm of an operator A is given, for any p > 0, by ||A||, = |||A|p||1/p, where || - ||
denotes the trace norm. By a slight modification of Lemma 3.5 from [BP90], one obtains

the following result:
Lemma B.4.5. For any p > 0 the operators Tg + and T}, + are p-nuclear i.e. there holds

|Texllp, < oo, (B.4.18)
[Thxlly < oo (B.4.19)
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Proof. In order to show that the operators T} + are p-nuclear for any p > 0, it suffices
to demonstrate that their adjoints 7} , are products of an arbitrary number of Hilbert-
Schmidt operators. (The Hilbert-Schmidt property is preserved under the adjoint opera-
tion due to the cyclicity of the trace). We set, as in [BP90)], for i € N

hi = w(l+w?)5(0,)(1 4 w?) Bw! (B.4.20)
ki = (14 w?) D5 (0,)(1 4 w?)75. (B.4.21)

These operators, and also w_%hl, w_%k‘l, are in the Hilbert-Schmidt class [BP90]. For
any n € N there hold the identities

T, = Lro 2hi.. hyw 7T2(1+ 0?02, (B.4.22)

Ti_ = Lrw 2k kaw 7F3(1 4 w?)RY2, (B.4.23)
so it suffices to check that hnw_'”% and knw_“H'% are Hilbert-Schmidt. Since the Hilbert-
Schmidt norm || - ||gs of an operator is equal to the L?-norm of its integral kernel, we
obtain

™72 | = (2m) /dsp d*qw()?(1+w(@)?)? D (00 (7 - @)
1 1

'(1 + w(q_)2)2ns w(q—)zwl . (B.4.24)

Making use of the following two identities (see e.g. formula (7.2.109) of [BosO0] for the
proof of the first statement)

% < (|F—q+1)%, (B.4.25)
w(P)? < 2w(@— §)* +w(@?), (B.4.26)
we arrive at the bound
o™ 43 g
< 20 [ Erdo o sEm (A + D0 O

1 1 "
T+ (@ @

+ o202 / Epd B2 + D05 [ (O (). (B.A.27)

These integrals are clearly convergent for 0 < v < 8;21 The (simpler) case of k:nw_“”% is
treated analogously. Finally, the p-nuclearity of the operators T 1 follows from the fact
that Qgh, ! is a bounded operator and there holds T + = (QEh;l)Th’i for v = % d

We define the operator 1" as follows
T = (T +Tp -2+ [Th [P + [T - )2 (B.4.28)

Making use of the fact [Ko84] that for any 0 < p < 1 and any pair of positive operators
A, B s.t. AP, BP are trace-class, there holds ||[(A + B)P||y < ||AP]|y + || BP||1, we get

TG < 1Te+ 11y + 1Te,~ 1[5 + T+ 1[5 + [ Th,~[[5- (B.4.29)
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Since T' commutes with the operator J of complex conjugation in configuration space, it
has a J-invariant orthonormal basis of eigenvectors {e; }7° and we denote the corresponding
eigenvalues by {t;}7°. As we will see in the next section, the expansion

[e.e]

Qeft =) (e|f5)QuLlie;, (B.4.30)

J=1

valid for any f* € Eﬁc, has the required convergence properties.

B.5 Expansion of Oy into Rank-One Mappings

In this section we will decompose the map O : A(O(r)) — B(H), given by Og(A) =
PrpAPg, as follows

O5(A) = Op1(A) + Opi(A) + Opa(4),  AcAO0). (B.5.1)

Here é £,1 is a finite rank map, the part é £,1(A) collects the terms involving high deriva-
tives of the field and ©p2(A) contains the contributions to A coming from high Wick
powers. In order to construct such a decomposition, we evaluate the map ©p on a Weyl
operator W(f), f € L,, given by definition (BZI0). We obtain the following expansion
valid in the sense of quadratic forms on Dp x Dp:

Op(W(f) = e :MIEpy V20 (FH)iv20-(F7), p,

1 Z\/§ kt+k— -
LAY %PE@JF(FJF)“qb_(F ) Pp,(B.5.2)
ket k—€Ng o

where f* = wF3 F*. Now we introduce natural numbers K T, K~ and the set of indices
S={(k",k7) e N}|kT < KT and k= < K~}. We decompose the above sum into two
parts

Os(W(f)) = ©s1(W(f))+Or20W(f)),
(iﬁ)lﬁ—i—k*

Opa(W(f)) = e 2/l > WPEZ¢+(F+)H¢—(F_)KZPE7 (B.5.3)
kt+.k—eS R
1 2 ) kF k™ + -
Opa(W(f) = ezlflz 3~ %PE:MF*)’“ 6_(F7)* : Py, (B.5.4)

Kkt k—eS

where &' is the complement of S and O 1, O 2 are understood as linear maps from the
x-algebra A(O(r)) of finite linear combinations of the Weyl operators, given by

A(O(r)) = Span{ W(f) | f € L, }, (B.5.5)

to quadratic forms on D x Dp. In the sequel we will show that © 1 and ©f 2 have their
ranges in B(H). Moreover, we will extend their domain, by continuity, to the whole local
algebra 2A(O(r)). For this purpose we will use the expansions of the functions f* € £F
introduced in Section [B.41
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B.5.1 Expansion of Op;
First, recalling that F fEE := ygF* and exploiting the Wick ordering, we obtain
Pg ¢ (FO) ¢ (F) . Py = Py ¢ (FF)F ¢_(F)* - Pg. (B.5.6)

With the help of the multinomial formula (Bl and expansion (BZA3) we get the fol-
lowing identity

Pg ¢y (FE)F ¢_(Fp)* : Py

1o~ N _ n _
= 3 I R ) P (0020 (060): P, (B5T)

- atla—
|oci\:ki
where oF are multiindices and we introduced the short-hand notation
+ > +
0¢+)* = [0 ¢s)* 9, (B.5.8)
j=1

which refers to the numbering of the s-indices x, introduced in formula (BZ3]). Iden-
tity (B5) relies on the fact that the vectors b,fm and f* are real in configuration space
and exploits the relation

lat|+|a~| - = + i 2 o
<%> P < (a*(hf ) +a(hl )" (a*(ihy ) +alihy, 5))* : Pg

= Py :(064)* (06_)* : Pg.  (B.5.9)
Substituting expansion (BA7) to (BR3]), we obtain

. +lala—
[(GY2) LT

OraW(f) = > o (B £ 7
(Jat | Jo- )es
- P (064)* (9¢_)* : Pg. (B.5.10)

Next, we choose some finite subset M of the set of all pairs of multiindices and decompose
the map O, as follows

Opi(W(f) = Opi(W(f))+Op(W(f). (B.5.11)
A s i/2)lat [+ | . _
Opa(W(f) = e 2l Z) %<b:,rrf+>“ (bl )
(at,a™)eM
(Jat|la™)es
- P :(004)* (8¢_)* : Pg,(B.5.12)
v - /2ot [+ N ~
e () = AR S R I
at,a”)eM’
(lat]la)es

- Pg (06" (0¢_)* : Pg.(B.5.13)
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The above expressions can be restated in terms of suitable normal functionals on B(H).
We denote by ") the functionals from Proposition [B237], corresponding to the families

at o
of vectors {bfjﬂn}jeN- Next, we define the normal functionals 7A'g+)7a7 on B(H) given by

AT ) 2 |Oé+|+‘a7‘ r
a0 VR ey (B.5.14)

at,e” atla~! at,a”

Making use of formula ([BETI2), we can write

Opi(A) = Y Tara(A)P:(86:)" (9¢-)* : Pg, (B.5.15)

where A € A(O(r)) is any finite linear combination of Weyl operators. The Wick
monomials : (¢4 ) (8¢_)* : belong to the field content of the theory (see defini-
tion (ZZI) and relation (B2Z2]])), hence they are elements of 7. It follows that

IPe + (96:)* (96-)° + Pull < oo, thus O is a finite rank map from A(O(r)) to
B(H). Since the functionals Qiﬁ)
A(O(r)) to B(H).

\
In order to simplify expression (B5I3)) defining the map ©p 1, we note that for any
two families of functions {FJJr bjens {F] ten from S(R®)g and for any pair of multiindices
(o, a™) there holds the identity

A
o— are normal, ©g 1 extends to a finite rank map from

azlotlgzle™l s g (FF) g (F7)
atla™! SN ok e Fpt e e
= Y oo O G al(f ) alif ), (B5.16)

Tltlp=lv-!
ot K K
ptvt=at
potrT=a

where f* = wF3 F* and the equality holds in the sense of quadratic forms on Dg X Dp.
Consequently, we obtain from (BEI3)

©r1(W(f))
AR ) i I o _ _
= X M T Pua (s p) P (B5.17)
ﬁ—l—ggj\/l’

(et [+t L u [+~ )es

A\
We introduce the normal functionals 7V'(ﬁr )g and the quadratic forms Sz on Dp X Dp given
by
() T2l
oy = —ggjv, (B.5.18)

o
Spw = Ppa’(hgp)a(hep)” Pp. (B.5.19)
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Now expansion (BAIT) takes the form

\ v(T) \
Opi(d)= Y 7,54 S (B.5.20)
FATEM’

(ut I+t p [+~ ))es
In order to study its convergence properties we collect several auxiliary results. From
Proposition [B:3] we obtain the following lemma.

Lemma B.5.1. For anyl > 0, the functionals TL 5, defined by (B2218), satisfy the bound
_ \/( _ T v — — n+v
IR~'7 I < @e) PP/ (T + D bel5 (B.5.21)

where ¢; = (12 4+ 2m )1/2, and m 1is the mass of the theory.

vV
Next, to study the forms Sp 7, we recall the so-called energy bounds [BPI(]:

Lemma B.5.2. For any hi,...,h, € L?*(R*,d*p) in the domain of w2 there holds the
bound ) )
”CL((/.)5 hl) S a(wihn)PEH < FEz2 ”hl ”2 R th”g (B.5.22)

Making use of the above result and Lemma [B44], we obtain that the forms Sy, defined
by ([BEI9), are actually elements of B(H) and satisfy the bound

\MH |

ISpoll < BT o 2R pl5 T (B.5.23)
Now we are ready to prove the convergence of expansion (B5.20).
Proposition B.5.3. [Bos00] Let S = {(k*,k™) e N3 | kT < KT and k= < K~} for some
K* € Ny. Then, for any 0 < p < 1, there holds

> HT II”IIS 7P < oo. (B.5.24)
v

(It [+t L™ +Hv~)es

Proof. From estimates (B2.21)), (BZ523]) we obtain
> HT VH”HSu,qu<
wv
(It |+t~ [+ v~ )es
< (2K (KT KNP > (w15 lw™2 P 5) 7+ (B.5.25)
v
[El+7I<KT+K~

The sum on the r.h.s. can be estimated as follows
M +Mg

2
_ 1=~ n+v _ 1= +
S (b 8 o e "g( T Z (62 2 [ zh;En’;)“)
ﬁ7g k+_0
g+ 1P| <KT+ K~ W+| it
ME+Mg 2
_ _1~_ -
< > Z (AR zhn,Eué’)“)-
k—=0
= \:k

(B.5.26)
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Making use of the fact that the multinomial coefficients are larger or equal to one and of
the multinomial formula (BIZl), we get

ST BB w2 R gl < (ST b ™ 2R ) (B.5.27)
ut KENG
|t |=k*

and similarly for the sum w.r.t. pu~. The last expression is finite due to relation (BZTIT).
U

\
This proves the uniform convergence of expansion (BEID). It follows that the map O 1,

which was defined on the norm dense subalgebra 2(O(r)), can be extended to the full
local algebra 2A(O(r)).
From definition (BEJY) we obtain that in massive scalar free field theory of mass

m > 0 there holds éﬁ,; = 0 for [| > Mg or [7| > Mg, where Mg = £. Thus, choosing

\
M =0 and KT = K~ = 2[Mg]|, we obtain that ©p = ©p;. Hence Proposition
and Lemma B5l give the known fact [BPI0, [Bos(0] that Condition Ny holds in massive
scalar free field theory.

Proposition B.5.4. In massive scalar free field theory there holds the identity
=S () Spm AcAOM)), (B.5.28)

in the sense of norm convergence in B(H). Moreover, for any 0 < p < 1 there holds the
bound

ZH A 1P SaslP < oo (B.5.29)

However, the methods of the present subsection do not suffice to verify Condition Ny in
massless free field theory. This goal is accomplished in the next subsection.

B.5.2 Expansion of O,

Our last task is to complete the construction of the map ©f . In Subsection we
introduced the p-nuclear positive operator 1" which has a J-invariant orthonormal basis
of eigenvectors {e;}$°. We expand the functions f* € £F in this basis
(0.]
=) el ey (B.5.30)
j=1
and make use of the multinomial formula (B.I4l), obtaining the following equality valid
on Dp
T L S T (B.5:31)
ik |pE|=m* el
Using relation (B.ET6]), we obtain from definition (B2 the following expansion, under-
stood in the sense of quadratic forms on Dp X Dp

Op2(W(f))
F _ _
= > — ~2l113 (e| £YPH7 Pga* (Lre)Fa(Lre)” Py (B.5.32)
E?v ’ ’

(e 1+ F L [+ Des’
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From the second part of Proposition [B.31] there follows the existence of normal functionals
Tpy on B(H) which have the property

et L
Tao(W () = ——=——e 2 Wl (e| 1)+ (B.5.33)

ol

and satisfy the bound

, (B.5.34)

Izl <

4lEl+17] ((ﬁ+7);>é B o3 (7l+7))
@)z \ Al (7lD!)3

where we used properties of multinomial coefficients. Finally, we define the quadratic
forms on Dp x Dp given by

Sy = Pga*(Lre)a(Lre)” Pg. (B.5.35)

We note that a(£Fe)”Pr = a(QpLie)”Pr and w_%QEﬁ,eri = Tg +e;, where T 4 are
bounded operators by Lemma Thus we obtain from the energy bounds (B.2.22])
and definition (B:Z28]) of the operator T

[z 7] [El+[7

IS5l S B2 |w 2QpLlee|Fllw 2 Qplrelf < Bz 47, (B.5.36)

where {t;}7° are eigenvalues of T'. We have arrived at the following expansion, still in the
sense of quadratic forms on Dp X Dp

Op2(A4) = Z Tuw(A) Sup, (B.5.37)

v
(T L™ [+ es’

valid for any A € A(O(r)) i.e. for any finite, linear combination of Weyl operators. Our
task is to establish the convergence of this sum in the norm topology of B(H) and extend
this map by continuity to all A € A(O(r)). It suffices to consider the case S = {0,0} when
there holds

Op(A) = wo(A)Pr + Opa(4),  AeAO). (B.5.38)

The following proposition verifies the known fact that Condition Ny holds in scalar free
field theory.

Proposition B.5.5. [BPI(, [BosO(] In massive and massless scalar free field theory there
holds the identity

Op(4) =Y mp(A)Sim,  AcUO(r)), (B.5.39)
v

in the sense of norm convergence in B(H). Moreover, for any 0 < p < 1 there holds the
bound

> P 1SzslP < oo (B.5.40)
iz
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Proof. We note the following estimate

5 ) sp(|al+7
S ol ISuslr < 3 EET
) B () B
(252 B2 ), ol +m 40 7)
< . (B.5.41
B mi%i:eNo (mﬂm_!n*‘!n_!)%p ( )

where in the first step we used (B34 and (BX5.30). In the second step we made use of
the fact that the multinomial coefficients are larger or equal to one, of the identity

mi. + +
> ey = (i (B.5.42)

pE |t |=m®

and its counterpart for the sums w.r.t. v*. O

Thus the map O o, given by (BL37), has its range in B(H) and extends by continuity
to the whole local algebra A(O(r)). We denote the resulting map by the same symbol.



Appendix C

Verification of Condition L?) in
Scalar Free Field Theory

The goal of this appendix is to verify that Condition L(?, introduced in Section 222, holds
in scalar free field theory. In the massive case this fact follows from Condition L(}), verified
in Appendix [0 and Theorem EZ31 Thus our main interest in the present appendix is in
massless scalar free field theory, although some results will be stated for general m > 0 to
facilitate their application in other contexts. Our aim is to prove Theorems ZZ2H P20l
and ZZ7 which are at the basis of our discussion in Subsection

The proofs of these three statements are given in Section They rely on the
auxiliary Theorem [CC Tl stated below, whose proof is the subject of the later part of this
appendix. In Section we define the functionals 73, k € {1,2,3}, on U and verify that
they have the properties required in the statement of Theorem We also show that

the map R, defined in Theorem KIL1] can be expressed in terms of the maps é E,1 and

Op,2, introduced in Appendix[Bl In Section [C3 we show that the range of R® consists of

square-integrable operators. The argument is divided into three parts: In Subsection [C.3.1]

we prove a variant of Theorem [CEJl which is applicable to the present problem. In

Subsections and we apply this result to prove the square-integrability of the
Vv

ranges of the maps O 1 and OF 2, respectively.

C.1 Proofs of Theorems 2.2.5, 2.2.6 and 2.2.7 based on The-
orem C.1.1

Our discussion in this section is based on the following theorem, whose proof is given in
Sections and

Theorem C.1.1. In massless scalar free field theory in s > 3 dimensional space there
exist linear functionals 71, T2, T3 on A, invariant under translations in space, s.t. for any
A € 2 the quantity

R (A):= A — wo(A)T — 11(A)py — a(A) 1021 —13(A) 103, (C.1.1)

defined as a quadratic form on the domain Dp X Dp of vectors of bounded enerqgy, satisfies
||R(2)(A)||E,2 < oo for any E > 0. Moreover, wg,T1,T2,73 form a linearly independent

95
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family. In addition, there hold the following assertions:

A(¢) c ker 1y Nker 75 and T2lge) 7 0, (C.1.2)
AW < ker 7 Nker 75 N ker 73. (C.1.3)

It is an immediate consequence of this theorem that the theory (Ql(d),oz,H), generated
by the derivatives of the massless scalar free field, satisfies Condition L(?) and has trivial
point-continuous subspace. In fact:

Proof of Theorem ZZT: The statement follows directly from relations ([CI3]) and

CI). O

Let us now consider the full massless scalar free field theory (2, a, H). Theorem
reduces the analysis of the point-continuous subspace in this model to the study of the
three pointlike-localized fields: ¢, :qﬁ 5 :qﬁ . We will show below that the concepts
of square-integrability and of the infrared order of an operator, defined for observables
from 2, by relations Z2T17) and ZZ2Z2Z), respectively, can be extended to the fields in
question. Moreover, there holds the following proposition, whose proof is given in the later
part of this section.

Proposition C.1.2. In massless scalar free field theory the following statements hold true:
(a) If s > 3, then ord(¢4) = 2.

(b) If s =3, then ord(:¢% :) = 1.
If s = 4, then ord(:¢%:) = 0.
If s > 5, then || :¢?: ||g2 < oo for any E > 0.

(c) If s =3, then ord(:¢3 :) = 0.
If s >3, then || :¢°: g2 < oo for any E > 0.

Part (b) also holds if :¢2 : is replaced with :¢? : € @gﬁ

We note that vanishing of the infrared order does not imply that a given operator is
square-integrable. There remains an open question if :gbi : for s = 4 and :gbg’r: for s =3
have the property of square-integrability. Its resolution would allow one to determine
exactly the dimensions of the point-continuous subspaces in Theorem (a) and (b),
and Theorem (b).

After this preparation we estimate the dimension of the point-continuous subspace in

(full) massless scalar free field theory and compute the infrared orders of its elements. As
expected, the infrared structure improves with increasing dimension of space, in the sense
that the dimension of the point-continuous subspace decreases. However, this subspace
remains non-trivial for any s > 3.
Proof of Theorem We consider only the case s = 3 as the remaining cases can be
proven analogously. Since we do not know whether : ¢3 :, whose infrared order is zero by
Proposition [CT.2 is also square-integrable, we have to consider both possibilities. First,
we show that if || : ¢3 : ||p2 = oo for some E > 0, then for any A € 2. there hold the
following statements:

(i) 7 (A) #0 < ord(A) = 2.
(ii) (m1(A) =0 and m2(A) # 0) < ord(A) = 1.
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(iii) (m1(A) =0,72(A) =0 and 73(A) # 0) < (ord(A) = 0 and dE>0 s.t. HA”E,2 = 00).
(iv) (11(A) =0,72(A) =0 and 13(A) =0) & Ve>o ||A]|E2 < .

To justify these claims, suppose that 79(A) = --- = 7_1(A) = 0 for some [ € {1,2,3,4}.
(70 := wp is understood here). Then relation (CII]) gives the following bounds for any
(NS TE,I

3

< Y ) sw ([ @GO @R+ B RD )]s (C14)

k=l+1 ¢'€Tma

N

i{( [ el @@R)* - (I [ eplleol @)

We note that all the terms in this expression are finite for sufficiently large 3 by esti-
mate (Z2ZI5]) and Proposition We will now study their behavior with decreasing (3.
By Proposition CT2, ord(: ¢4 :) > ord(: ¢% :), for k > [ in the above formula. Thus, by
considering /3 in a small neighborhood of ord(: qﬁﬂ_ :) and taking supremum w.r.t. ¢ € Tg 1,
we easily obtain that ord(A) = ord(: ¢}, :) if and only if 7;(A) # 0. Hence, there holds (i)
and (ii). In part (iii) we set 3 = 0 and make use of our assumption that | :¢3 : |2 = 00
for some E > 0. In (iv) the implication (=) follows trivially from the square-integrability
of R®(A). The opposite implication is a consequence of (i), (ii) and (iii).

Thus we have verified that Ord(2.) = {0, 1,2} and the subspace ., consisting of the
square-integrable observables, can be expressed as follows

A, = ker wo Nker 7 N ker 75 N ker 73, (C.1.5)

Now computation of the dimension of the point-continuous subspace is a simple exercise in
linear algebra: Since the above functionals are linearly 1ndependent (by Theorem [CTT),
we can find Ay, Ay, A3 € U, s.t. 7i(Aj) = 0; ;. Forany A € 21, we obtain the decomposition

A= (A — A (A) — AQTQ(A) — Ang(A)) + A1y (A) + AQTQ(A) + Ang(A), (016)

where the term in bracket belongs to s due to (CIH). Choosing the point-continuous
subspace as ﬁlpc = Span{A;, As, A3} and noting that {A;}} are linearly independent, we
obtain that dim ﬁlpc = 3.

Assuming that for any E > 0 there holds || : ¢3 : ||g2 < oo, we can incorporate the
term 73(-) : ¢% : to R?)(-) in formula (CIT)). Thus, proceeding analogously as in the

previous case, we verify the following facts for any A € A
(") 11(A) #0 < ord(A) =2

(it") (11(A) =0 and 72(A) #0) < ord(A) =

(iii') (71(A) =0 and 7(A) = 0) & (VExo [|AllE2 < 00).

Again, it follows that Ord(ﬁlc) = {0,1,2}. However, the absolutely continuous subspace
is now given by R
A = ker wg N ker 71 N ker 7. (C.1.7)

Hence the point-continuous subspace is two-dimensional in this case. In view of rela-
tions ([CLH) and (17 the theory satisfies Condition L), O
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The last example which we consider is the even part of massless scalar free field theory.
Making use of Theorem [ZT], we will show that the theory (), a, H(®)), introduced in
Section B2, satisfies Condition L® and we will analyze the resultlng point-continuous
subspace. To this end, we define the functionals wy = wp o 77(_0)1, Tg=T0 77(_0)1 and set for
any A€

REE)’ (A) == A - wy(A)L — 15(4): 6% (C.1.8)

as a quadratic form on states of bounded energy in H(®). Then, due to relation (BZIS)
and the fact that p(:¢?% :) = L(e) (@)(:¢3 1) for any ¢ € Tbgc), there holds

P(RYW) =19 (@ (RO @),  Ae2®, peT?.  (C19)

Finally, making use of relation (B220]), we obtain || e < |RP (x Mo )( NMEe2 <
00, where the last bound follows from Theorem [C] \<7V)1th the help of Proposition

we obtain the description of the point-continuous subspace in the even part of massless
scalar free field theory. Here the only possible obstruction to the square-integrability of

observables form ﬁﬁe) is the presence of the term :¢% : in relation (CIF).
Proof of Theorem Exploiting relation (CI8) and the subsequent discussion,
and proceeding as in the proof of Theorem above, we obtain the result. [J

The remaining part of this section is devoted to the proof of Proposition which
was the main technical input of the above discussion. We note that any field ¢ € $py
belongs to 73 and therefore p(¢(7)) is a bounded, continuous function for any ¢ € 7g.
We are interested in the regularity properties of its Fourier transform ¢(¢(p)) which is a
tempered distribution. To begin with, we prove a simple, technical lemma.

Lemma C.1.3. Let 0 < 3 < s, ¢ € Ty and D C 'H be a domain s.t. PgHND is dense in
PrH and ]ﬂ%(\lll\(g(ﬁ)\llg) is square-integrable, uniformly in V1, Ve € (PeH N D)y. Then
\ﬁ]gcp(g(ﬁ)) is square-integrable, uniformly in ¢ € Tg 1, and

sup / | (B3P = sup / EpPle@@)E. (C110)

V1,V2e(PrHND); weTE 1

Proof. By the Cauchy-Schwarz inequality, there holds for any g € S(R®) and ¥, ¥y €
(PEHN D)
[(P1]o(9)¥2)|
1
<pwilivel s ([l @@ vaR) ([ el ) e

U/, U'ee(PEHND)1

The above bound extends, by continuity, to any ¥, ¥y € Pp’H and we can proceed as in
the proof of Theorem 2.5 from [Bud0]: Let L*(R®)(g) be the Hilbert space of (classes of)
functions h on R® for which

1Al ) = [ 9172 )P < oc. (C1.12)
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Clearly, the subspace of test functions from S(R®) is dense in L*(R®)(g). It follows from
relation (CITT)) that for any ¢ € T4

lo(é(9))]

~ 1
< |NPeé(g9)Pell < llgll2,ps) sup (/dsp|17|5|(‘1’/1|¢(253‘1’/2)|2)2- (C.1.13)
U/, W'ye(PEHND),

The above inequality and the Riesz theorem imply that o(é(7)) € L2(R® )(—p) and

- ~ 1
sw [ Elple@@P s s ([Ea i E@YR)E (1
QDETE,l \Pll,\PIQE(PEHﬂD)l

The opposite inequality is trivial, since the supremum on the r.h.s extends over a smaller
set. O

Setting in the above lemma ¢ = ¢ and D = Dg, we obtain a prescription for computation
of the infrared order of the field ¢ :
Proof of Proposition [C.1.2 (a): We will establish the bound

swp [ (G (PP < oo (C.115)
w€TE 1

and show that the power of the mollifier [p|?> cannot be reduced. By Lemma [CI13 it
suffices to consider ¢(-) = (V1| - ¥s), where ¥y, Uy € Dg N Pg’H. Making use of the fact
that

6+ (7) =

(a*(p) + a(—p)), (C.1.16)

1
V2l

in the sense of quadratic forms on Dg x Dg, we obtain the estimate

/ 0Dl (0114 (5) To)
< / &2 pl1 (11 |2 (Wala™ (P)a(@)s) + [0 ]2(¥1]a (P)a()P1))
< 2|0, | W, (C.117)

where we used representation (B223) of the Hamiltonian. To show that the bound for

¢4 is optimal, we construct a suitable sequence of functionals: We choose a positive
function h(p) € C§°(R®) s.t. supph(p) C {p € R*||p| < E}, [|h(p)]*d*p = 1 and set

S

H,(p) = nzh(np) for n € N. Then the functionals on B(H), given by
o) = (HZ" D] HP™), (C.1.18)

clearly belong to 7z 1. We note that for any € > 0

[l e @m? = 5 [ et Da@ag?

- / I h(P)]2. (C.1.19)

By taking the limit n — oo, the claim follows. [J

In order to compute the infrared orders of higher Wick powers of ¢, we need the following
lemma.
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Lemma C.1.4. Let V1,V be normalized vectors from Dg N Pg'H. Then

/ &y ) PP (W] 2 h (B1) - Dy () W2)|? < s, (C.1.20)

for some constant ¢, s g independent of Uy, Wa.
Proof. Due to formula (CITG), it is clear that the expression on the Lh.s. of (CI20)
can be bounded by a linear combination of terms of the form

/dsm || Pl [(Tr]a (7)) - @ (Br)a(Bigr) - - (@) P2) [

S /dspl e dspk‘ﬁﬂ e ‘ﬁk‘(qflla*(ﬁl) e a*(ﬁk)a(ﬁk) e a(ﬁl)\Ill)

'/dspk+1---d5pn|ﬁk+1|---|17n|(‘1f2|a*(ﬁk+1)---a*(ﬁn)a(ﬁn)---a(ﬁkﬂ)‘l’z) < E",
(C.1.21)

where in the first step we made use of the Cauchy-Schwarz inequality and in the second
step of the representation ([B:Z23)) of the Hamiltonian. [

After this preparation we turn to the Wick powers of the field ¢ .

Lemma C.1.5. Letn > 1, s > 3. Then, for any 3 >0 s.t. 3 >2— (s —2)(n—1), there
holds the bound

swp [ il (D) < . (C.1.22)

weTE 1

Proof. We fix U, Uy € (Dg N PgH); and define the functions
FA5) = [ gl GPIG - B gl

W]y (F— T4 (T — @) - - Dy (Gnr): W) [2(C.1.23)

which, according to Lemma (.14 belong to L!(R?®, d*p) and their L'-norms are uniformly
bounded in ¥y, ¥y from the above set. We introduce the function xz(p) € C§°(R®) which
is equal to one on the set { p'€ R*|[p] < E'} and obtain the following string of inequalities

/dsplﬁlﬁl(\hl 0 ()0))

< (27T)—s(n—1) /dsp’ﬂﬁ‘ /dsql o dsqn_1XE£p __)QI) XEEQI __)Q2) o XE_(f]n—l)
P — i |41 — @2 |Gn—1]

2
D= qlla — @l - Gn=1|(1] : o4 (P — 1) o4+ (01 — @) - - . ¢+ (Gn—1): ¥2)
< (2m) T URBY ||y

S o2 S o2 > 2
sup /dsql...dsqn—1|xij(p1_, ;]i); |XE_(,Q1 #q22)| |XE£qn_12)|
D1 — 1] |71 — @2 |gn—1]

(C.1.24)

p1ERS

Here in the first step we made use of the fact that the Fourier transform of a product is a
convolution of the Fourier transforms of the factors. We also used the support properties
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of the wavefunctions corresponding to ¥y, 5. In the second step we applied the Cauchy-
Schwarz inequality and the bound [pl” < nP(|p'— @1|° + |¢1 — @|° - -+ + |Gu—1]?) valid for
any 8 > 0. To show that expression (CI.24) is bounded in the cases considered in the
lemma, we make use of the Young inequality [RS2] which implies that for f; € L™ (R?, d°p),
i € {1,...,n}, there holds

[ Sulle < [ frlle - fnllr (C.1.25)

if 1 <r,r; <ooare s.t. 7’1_1 +-o-dr b =n—1+7r"L First, we assume that 3 > 2. Then,
by choosing ;' = 0, r;! = --- = r1 = 1, we conclude the proof of estimate ([(123).

For 0 < 3 < 2, it follows from our assumptions that there exists e > 0 s.t. (2—0)(1+¢) <
1

min(s, (s — 2)(n — 1)). We choose ;' = %, ot ==l =1 (21:1). One
easily checks that these parameters satisfy the conditions specified above and, moreover,

2—-0)r1<s,2ri<sforie{2,...,n}. O
Proof of Proposition (b) and (c): Upper bounds from part (b) and part (c)
follow from Lemma It remains to prove the lower bound in part (b) for s = 3. Let

H,, be defined as in the proof of Proposition [C.T.2 (a) above and let us consider the family
of functionals from 7g ; given by

() = (HE | - HE). (C.1.26)

n

We fix € > 0 and compute

/dsplﬂl‘slsoﬁ?)(: o1 ()

(2m)~*® 2

1 — n
=B [aeplit| [ ate—— (1D ol (@ B
7- a2lat?
2m) s n3(n — 1 h(p— q) k(D) |?
:( 4) (8+1 )ns/dsp\ﬁll_6 /dsqiip (IB (q? . (C.1.27)
Z p- b |

By taking the limit n — oo, we verify that ord(: qﬁ_ :) = 1 for s = 3. In the case of

i T € (IJ(FeP)I the lower bound is established analogously, restricting attention to even n.
Similarly, the upper bound established in Lemma [C.T.H still holds, since the supremum
in relation (CI22)) extends now over a smaller set of functionals. [J

C.2 Proof of Theorem C.1.1 (I): Functionals {7;}}

In Section we introduced the decomposition of the map ©p : A(O(r)) — B(H), given
by ©g(A) = PpAPg, into three components
O =0Og1+ 061+ 0g2, (C.2.1)

which are determined by the sets & and M. With the statement of Theorem [C.T.T] in
mind, we choose K+ =3, K~ = 0 in the definition of the set S and define the set M as
consisting of four 2-multiindices

M = {ao, - ,ag} (C.2.2)



102 Appendix C. Verification of Condition L in Scalar Free Field Theory

which are given by: o; (j) = kd; 1, o (j) = 0 for k € {0,1,2,3}, j € N. Then, making use

of definition (BXATH) of the map Op; and recalling that our numbering of the s-indices
{K;1}7°, introduced after formula (B:A3), was chosen so that x; = 0, we obtain

A A(r) A(r) A(r)

Op,1(A) = Pg(wo(A)] + T4, (A)¢ + o, (A) 1¢*: +74, (A) :¢°: ) Pg, (C.2.3)
for any A € 2A(O(r)). Now we are in position to construct the functionals 74, k € {1,2, 3},
appearing in Theorem [CTJl and verify that they have the required properties.

Proposition C.2.1. In mqssless scalar free field theory for s > 3 there exist linear func-
tionals 1, k € {1,2,3} on A which satisfy
A(T)
Trlaom) = Tay, (C.2.4)
Tr(A(@)) = 7 (A) (C.2:5)

for any r > 0, A € A and T € RS, Moreover, wqg,T1, T2, T3 form a linearly independent
family. In addition there holds:
A(¢)  ker 1y Nker 73 and Tolge) 7 0, (C.2.6)
A(Y < ker 1, Nker 15 N ker 73. (C.2.7)

Proof. Let ay, k € {1,2,3} be the multiindices introduced in ([C22) above. By defini-

tion (BLI4), there holds
ORI GV L

T

(C.2.8)

where 6%3

of vectors {bfﬂ}jeN. Thus for any f € £,, and r > ro we obtain

are the functionals introduced in Lemma [B:3J] corresponding to the families

sOW(f)) = e HIBEE k. (C.2.9)

aj

where we made use of our convention that x; = 0. We recall that f* = w3 F + where
F* € D(O,,)r. Moreover, by definition (B41J),

b7 = (2;);“’(@*%7((97)@), (C.2.10)

where x(O,) =1 on O,. We note that for r > ry and any iy € R® s.t. O,, + ¥ C O, there
holds

Nt = — HEH) = o HFT(F—§
(b U@ = (2ﬂ)%<X(Or)‘U(?J)F+> = (zﬂ)é/d X(O) (@) F* (& — )
1 o
— (zﬂ)g/da;FJr(a;), (C.2.11)

i.e the functions r — <bar7 AU (%) f1) are constant for r > ro and independent of § within
the above restrictions. Thus for any 7,7/ > 79, A € A(O(rg)) (i.e. A is a finite linear
combination of Weyl operators) and ¢ as specified above, we obtain

A(r) A(T")

a (A) = To (A) =0, (C.2.12)
NG A()

Ta, (A) — 75 (A7) = 0. (C.2.13)
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Since the functionals above are normal, the identities extend to any A from 2(O(r¢)). In
view of the above relation and the fact that any A € 2 belongs to 2A(O(r¢)) for sufficiently
large rg, the following formulas

m(A) = lim ?g:(A), Ael (C.2.14)
define linear functionals on 21 which satisfy conditions [(CCZ4) and (C2H). By this former
condition, relation (CZ8) and formula ([C21T]), we obtain

Aro) i) a1 s )
(W) = 2o W) = Dt <W / dxF+(x)> C (c21)

for f, F* defined as above. The last integral vanishes if F7(Z) = > =1 aijf(f) for

some F j+ € D(O,,)r. From this fact and the strong continuity of ?gﬁ : there follows

statement ((Z27). Next, we note that, by formula (CZTH),

A(T0) A(ro)

(W () +W(=F) =Ta, W () +W(=f) =1+ (=)) 75, (W(f).  (C.2.16)

Thus for k € {1,3} the functionals ?g: ) are zero on A (O(ry)), since they vanish on a
strongly dense subspace of this algebra. This implies that () belongs to ker 71 N ker 73.
Choosing f so that [d*z F*(Z) # 0, we obtain from formulas (C2Z15), ([C2IG) that
(W (f) + W(—f)) # 0, what concludes the proof of statement ([C20l).
We still have to show that the functionals wg, 71, 72, 73 are linearly independent. Sup-
pose that
cowop+ci1Ti+coamo+c3m3 =0 (C.2.17)

for some complex numbers cg, ..., cs. Evaluating this expression on the unity operator we
obtain from relation [CZZJ) that ¢y = 0. Since there exist A € A©) s.t. m(A) # 0, we
get ¢y = 0. It remains to find B € A s.t. 71(B) = 0 and 73(B) # 0. Given f, FT as
introduced above, with the additional condition that [ d*z F'*(Z) # 0, we pick a function
h € S(R) s.t.

/e_%“QHfH%uh(U) du =0, (C.2.18)
/e‘éuznf”%ugh(u) du = 1. (C.2.19)

(The existence of such function can be established with the help of the Gram-Schmidt
procedure as in the proof of Lemma [D3.7]). The weak integral

B := /W(uf)h(u)du (C.2.20)

defines an element of 2A(O(rg)) by the von Neumann bicommutant theorem. With the help

of relations (CZF), ([C29) and (CZII)) as well as properties ([C2I]), ([CZTIJ) of the

function h we obtain that 71(B) = 0 and 73(B) # 0. Since 71 is non-zero, this concludes
the proof of linear independence of the functionals. [
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The functionals 73, k € {1, 2,3}, constructed in the above proposition, determine the map
R® introduced in the statement of Theorem [CCTIl For any A € 2A(O(r)) we obtain

RA(A) = A~ wo(A)] — 11 (A)py — 2(A) 102 : —13(A) 193 2, (C.2.21)

in the sense of quadratic forms on the domain Dp x Dp of vectors of bounded energy. In
view of property (C24), formula ([C233) and decomposition ([(CZJ]) there holds

PR (A Py = éE,l(A) +Opa(A),  AcAO(r)). (C.2.22)

Thus to conclude the proof of Theorem [C Tl we have to verify that the ranges of the

\Y
maps Og 1, ©p 2 are square-integrable. This is the subject of the next section.

C.3 Proof of Theorem C.1.1 (II): Square-Integrability of R?)

In this section we complete the proof of Theorem [C Tl After introducing the necessary
technical background in Subsection [C3Jl we prove the square-integrability of the ranges

A\
of the maps O ; and O 5 in Subsections [C3.2 and [C33 respectively.

C.3.1 Key Lemma

The main goal of this subsection is to prove Lemma below, which is inspired by
Lemma 2.2 of [Bu90)]. To state and prove this result, it is convenient to proceed to the full
(non-symmetrized) Fock space H on which there act the (prototype) creation operators
b*(¥), U € L?(R®, d*p), given by

V(P =Vod  deH (C.3.1)

and their adjoints b(¥). Upon restriction to the symmetric Fock space H, the formula

a(¥) = V Nb(¥), where N is the number operator, gives the standard annihilation oper-
ator introduced in Subsection [B22. With these definitions at hand we proceed to the main
technical result of this appendix.

Lemma C.3.1. Let E > 0 and h be a Borel function on R® which is bounded on {p €
R |w(p) < E}. We denote the operator of multiplication by h on L*(R®,d*p) by the same
symbol. Let {g1:}5°, {92.i}3° be two families of functions from L*(R®,d*p) which belong
to the domain of hw? and let w, v be multiindices. Then

" 1 1 * 1 v 1 v
sup / 1 p(a* (hw g1 7V a(hw gy )" )p(a* (hw go.z) alhw i ga 2)7)
3067'51 K

< ( sup Ih(ﬁ)IQE)“'”/ d*y[(21b(g1)"D* (91,7)" )|
w(p)<E AK
[(2b(g2)"b* (g2,7)" )], (C.3.2)

where K is any compact subset of R®, AK = {Z —¢ | &,y € K}, griz = U1(Z)gk,is
ke{1,2},ieN.
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Proof. Let Q = [} d*zb*(g1.2)"b(g1,2)" @ b*(g2,2)" b(ga,z)" act on HeH and Uy, Uy € H
be |u|-, resp. |v|-, particle vectors. For |u| = 0 (resp. |v| = 0) we choose ¥; (resp. Us)
to be a multiple of . Then ¢(-) = (V1] - ¥1)(P¥o| - ¥y) is a positive functional on
B(H) ® B(H) and we obtain

PQP < oD(@Q) = o(1) [ dw [ #1012/ Han 2V (01 Hon 5 )
(Wb (92,2)"blgn )b (92.5) b )" V)
/ &z / Y 1115 (91,2 ) (Ublgn 2)b* (917 (bl )" V1)
(Walb (9,2)" (QUblg.2) b (9,7)" ) (Ublg. )" W)
<PDRQ) [ dyI@bo) (0.5 D[ @() D (025 D (C:33)

where in the last step we made use of the inequality |f(Z)f ()| < 1(|f(@)|* + |f(&)]?).
Consequently

/dex (1[0 (g1,2)"b(g1,2)" V1)(¥2|b" (92,5)" b(g2,2)" V2)

< II‘I’1||2H‘P2H2/AdeyI(le(m)”b*(gl,g)”ﬂ)l [(©26(g2)"b" (92,5)" V)| (C.3.4)

We pick ny,n9 € N s.t. ng > |p|, ne > |v|. Given ni- and no-particle vectors ¥,,,, ¥,,, €
(PpH)1, whose wavefunctions are Schwartz-class, we define |ul|-, resp. |v|-particle vectors,
where the remaining arguments are treated as parameters

N N T 1 T /= = 1 =
VLD, - s Pl srseing = PODW ()2 - - R (D) )w (Bl))2 Yy (P15 - - - Py )5 (C.3.5)
1 1
2 2

\IIZ((Ila e 7®V|)ﬂu‘+1,...,§n2 = }_L(_)l)W(_’l)

With these definitions we compute

1 1 * 1 v 1 14
/ &z (U, [a* (hw? g1 g) " a(hw? g1 2) Wi, ) (U, |0 (hw? g2 2) a(hw? go 2) Wy, )
K

n1' n2'

B (nl i ] | /dsp|ﬂ|+1 s dspnl /dSQ|V+1 R dsqn2

— D! (n2 — [v|)!
K d’x (‘IILIMHL---,@” |b* (gl,f)ub(gl,f)uqllvﬁ\quv~--7ﬁn1)
(W2, 41000p [0 (92,2)70(92,2) " W2,G10 41Ty )
< (sup PRV [y l(@lb(on) (9159

[pI<E
|(©2[b(g2)"0" (92,9)" )], (C.3.7)

where in the last step we applied formula (C3.4]) and made use of the following computa-
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tion to control the ny and ny dependence

7”L1'

: S S — — — — 2
o [ A ) ) s )

:]u]!/dspl...dspm S W) () U (B o) 2

i1<...<im‘

< /dspl By (W) + -+ @) O (Brs )2 < BML (C.3.8)

Here in the first step we used the symmetry of the wavefunction and in the second step
we applied the multinomial formula. By an approximation argument, the bound (C30)
holds also without the restriction that ¥, , ¥,, have Schwartz-class wavefunctions.

To conclude the argument, we need several simple, geometrical observations: We note
that any ¢ € ’TE+71 has the form ¢(-) = > 72 pr (V| - ), where pp > 0, > 72 p < 1,
and U, € (PgH);. Let Cp, Cy be a pair of bounded, positive operators. (The op-
erators PEa*(hw%gl)“a(hw%gl)“PE, PEa*(hw%gg)”a(hw%gg)”PE, appearing on the Lh.s.
of relation (C37), are bounded due to the energy bounds (Bh22]) and the fact that
|QEh| < 00). There holds the simple estimate

sup /K @1 o(C1 () 9(Ca (7))

+
peTp

S sup /dsx(\IlllCl(f)\Ill)(\Ilg\Cg(f)\Ilg) (039)
\111,\1/2€(PE'H)1 K

Finally, we can decompose any ¥ € (PgH)1 as ¥ = ¢oQ + > .2, ¢, ¥y, where U, are
normalized n-particle wavefunctions and |co|? + > 0% | |en|? < 1. Consequently, for C; and
(5 as above, conserving particle number, we obtain

/K d’x (\1’1’01 (f)\Ifl) (\1’2’02(5)\112)

S sup/ dsx(\I’Lnl‘Cl(f)\lflml)(\llgmz’Cg(f)\llgmz).(c.&l())
K

ni,n2

Now the bound in the statement of the lemma follows from estimate (C3.7). O

In the next two subsections we will use the above lemma to prove the square-integrability

\
of the individual terms appearing in the expansions of the maps O and ©g2. Then
the square-integrability of the ranges of these maps follows from the special case of the
Minkowski inequality [Hal] which we state below.

Lemma C.3.2. For any family of f, € L*(R®,d*p), n € N, whose norms || f,||2 form a
summable sequence, there holds the bound

([an Y n@P) <X [anlnw?)’ (C3.11)
n=1

n=1

After this technical preparation we can proceed with the proof of Theorem [C.T.1]
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Vv
C.3.2 Square-Integrability of Oy
In this subsection we apply Lemma [C.3.1] to prove the square-integrability of the range

\
of the map ©g ;. In order to control the expressions appearing on the r.h.s. of esti-
mate ([(C3.2), we need the following result:

Lemma C.3.3. Let A > 5 and suppose that h e L2(R®,d*p)y. Then the function R® >
Z — (h|U(Z)h) is absolutely integrable and there holds

/ & | (U @R < ex ], (C.3.12)

where the constant cy depends only on A and s. (Here (-|-) denotes the scalar product in
L2(R*, d*p) ).

Proof. We pick h € S(R?), a compact subset K C R® and estimate
[ aal@v@n) = [ @ [epe @)
K K
< [a| [eyi@ne+ o)< ([ evmm)?
1
< Sy - Sy (1 12\ A =\ 2
< [y [ @1 @)
_ cAHhHi\, (C.3.13)

where in the fourth step we made use of the Cauchy-Schwarz inequality. Since S(R?)
is dense in L?(R®,d®p)y, this estimate extends to any h € L2(R® d®p). Finally, as the
constant ¢y is independent of K, we can take the limit X ~ R*. O

With our choice of the sets S and M, (see definition (CZ2)), the map (Z)EJ, given by
formula (BE20), has the following form

Vv v(T) Vv
Op1(4) = S r (A S, AEU(O(r), (C.3.14)
pt ot
Fj>1 st pt(G)+rT(5)#£0
[t [+ ]<3
where we made use of the fact that p= = v= = 0, since K~ = 0. We recall from

formula (BEIJ) that

\

Syt = Pra’(hf )" a(h )" Pp (C.3.15)
and that the numbering {x;}7° of the s-indices is chosen so that x; = 0. The following
lemma establishes the square-integrability of these operators under the restrictions on the
multiindices uT, v given in the sum (C3I4). We will exploit the useful fact that for any
C € B(H) which satisfies ||C| g2 < oo there holds

N

Clea <4 s ([ dalolc@)?) (C.3.16)

3067'};1

This bound follows immediately from decomposition (C6.2]).
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Lemma C.3.4. Suppose that pt(j) +v+(j) # 0 for some j > 1. Then in massless scalar
free field theory for s > 3 there holds the bound

Vv
1S+ B2 < ((ZIJL';‘Jrl)”ﬂ”’+ (C.3.17)
for some constant cg independent of k.

Proof. We assume, without restriction, that there exist j > 1 s.t. v (j) # 0. Thus we

can choose multiindices v, v, in such a way that v+ = v} + 1, and |v}| = v/ (j) = 1.

Making use of formula (C331H), we obtain for any compact subset K C R®

sup /K & p(S e e (2)2

goETEfl

< sup / Epe(a* (0 ) alhd ) (e (0 )" alhit ")
goETEfl K

T 2(|pt |y s *
< B dp 30T sup [ dwntar (6 pali, o) (€318)
80675,1 K

where in the first step we applied the Cauchy-Schwarz inequality and in the second step
we exploited the energy bounds (BE22), Lemma [B44] the fact that a(h, E)’ﬁPE =
a(hmE)VlfPEa(h,{,E)”‘jPE and the properties of v,
We will apply Lemma to the integral on the r.h.s. of relation ([C3I8): Since
AN

kj # 0, we can write k; = /A{j —|—/v£j in such a way that |/A1]| = 1. Next, we set h(p) = —(Z’(g.)j for
p# 0 and h(0) = 0. There holds [|hl|s < 1 and b , = hw?(w2hy )+ (We recall that

Ky,

ﬁ:E(ﬁ) = (—1)'“@(15')_%(1']))“)(,9(13) by definition (B:Z2])). Moreover, by Lemma [BZ4]
there holds for any A > 0

1 ~
”wEh:—,E”ZA < (62 E)MH’ (C.3.19)

'y 92

_ 1~ s
lo™2hf pllz < (e )", (C.3.20)

where the constants Cy_1 s Co L are independent of k. We pick some A > 5 and obtain

2
from Lemmas [C3.1] and m

swp [ dwpsla’ (b oty ) < B [ daliiy 0@tk )
peT VK ” ” AK R 15, B
< Beylwrhi |3,
Kj,E ’
+
< (ep)lFilt = ((ep)lRiFhy”e. (C.3.21)

Here in the third step we used the bound (C3T9l), absorbed the constants involved into one
constant cg, independent of /v{j, and made use of the fact that |x;| = |/V£]| + 1. Substituting
the above bound to relation ([(C3I8) and making use of estimates (C320) and (C3.10),
we obtain the estimate in the statement of the lemma (after readjusting the constant cg).
O

Vv
After this preparation we can prove the square-integrability of the range of the map O ;.
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A\
Proposition C.3.5. In massless scalar free field theory for s > 3 the map O 1, given by
relation (C.5.14), satisfies the bound

sup  |[Op1(A)]E2 < . (C.3.22)
AeA(O(r)

Proof. First, we recall that due to the bound (B52I]) and Lemma B2 there holds

() + ot
7 el < 20 L T o D [l

(CT’)|“+1>”++V+

T+ (8

A

IN

(C.3.23)

for some constant c¢., independent of x. Next, making use of the Minkowski inequal-
ity (C311]), we obtain for any A € A(O(r))1

\Y; \/(7‘) v
101 Ales < S IRl 1S ot e
ptt
Tjs1 st T ()0t ()20
It |+t <3
ot
(CrCE)lﬁH_l T %
< ¥ wwmuﬂ)!(i
ot Al
|ut|+]vT|<3
T\ 2
(CTCE)M—H 1
| AP =
<va( x (e
pt,lut|<3
3 kN 2
(CTCE)‘KH-l
| AT
SREIONPIE" , (C.3.24
k=0 reENS

where in the second step we made use of the bounds (C323), (C3I7). In the last step
we used the fact that the multinomial coefficients are larger or equal to one and we
applied the multinomial formula ([BI4l). The last expression is clearly finite. [J

C.3.3 Square-Integrability of O

Now we proceed to the proof of the square-integrability of the range of the map Og o,
defined by expansion ([BE3M). Again, we will first apply Lemma to the individual
terms of this expansion and then use the Minkowski inequality (C3I]) to conclude the
proof. In order to control the terms appearing on the r.h.s. of estimate (C3.2), we need
two auxiliary lemmas proven below.

In Subsection B4l we introduced, for any p > 0, a function x(0,) € C§°(R®) s.t.
x(0,)(&) =1 for & € O,. Here we demand in addition that x(0,)(Z) = 0 for & ¢ O,
for some fixed € > 0, independent of p. We denote the operator of multiplication by x(O,)
in configuration space by the same symbol.

Lemma C.3.6. Suppose that F € S'(R®) coincides with a bounded, measurable function
in the region {y§ € R%||y] > p} and its Fourier transform F is a positive, measurable
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function s.t. FY? e L2 R?, d*p) + L°°(R®,d*p). Then F1/2x O,) is a bounded operator
14
and there holds

IXNONFxa(O)I| < cpe _sup |F(E+8)| for |#] = 3(p + ). (C.3.25)
|21<2p+3¢

where xz(O,)(¥) = X(Op)(§ — T), the constant c, ¢ is independent of ¥ and we denote the
operator of multiplication by F' in momentum space by the same symbol.

Proof. In order to prove the first statement, we make a decomposition F1/2 = 13'21 / 2—1—1:"010/ 2,
where F21/2 € L*(R?®,d%p), E}f € L>®(R%,d°p). Since E}f is a bounded operator, it
suffices to consider F21 / 2x((9p). We pick f1, fo € S(R?®) and estimate

(1B X(0,) f2)] = (2m) 5] / &pdiq f(5)Fy(0)X(0,) (5 — 0)fa(@)]

< | AR 1x©@) 2l fll2 < el fill2ll B ol (O 2]l fll2s - (C.3.26)

where in the second step we made use of the Young inequalityﬂ [RS2] and in the last
estimate we applied Holder’s inequality.

Next, we verify relation ([C32H). If |Z| > 3(p + €), then |§ — Z| < 2p + 3¢ implies
|] > p and the expression

Fs(p) := (2m) 72 / d*y PV F(§)X#(Os(p4)) (7) (C.3.27)

defines a bounded, continuous function. The operator of multiplication by F> in momen-
tum space, denoted by the same symbol, satisfies the identity

X(Op)Ffo(Op) = X(Op)FXf(Op)- (0-3-28)

To justify this equality of two bounded operators, it suffices to compare their matrix
elements between f1, fo € S(R®). We introduce vectors g1 = x(O,)* f1, 92 = xz(O,) f2
and compute

(1IX(Op) Fx2(0,) f2) = /dsp§1(mﬁ(@§2(ﬁ) = F(,G2) = F((2m) 231 * g2)
= (X#(O2p422) F)((27) 7237 * g2) = (f1lX(Op) Fixz(O,)| f2), (C.3.29)

where ¢7(Z) = ¢1(—Z), in the fourth step we made use of the support properties of g;
and go in configuration space and in the last step we reversed the first three steps with F’
replaced with xz(O2p42¢)F. Finally, we obtain from (C3.27)

Fe()] < (27)3 / &y X (Ogpre)) @) sup  |F(Z+ 7))
|Z|<2p+3&
=c,z sup |F(Z+ ). (C.3.30)

|21<2p+3¢

!The Young inequality states that for any positive functions f € L™ (R®,d*p), g € L™(R®,d°p), h €
L™ (R?®,d°p), where 1 < ri,7r2,73 < 00 8.t. % + % + % = 2, there holds the bound

/dsp d’q f(ﬁ)g(ﬁ_ ‘Dh(‘?) < Cryyrayrs Hf”rl HQHW HhHT3



C.3. Proof of Theorem C.1.1 (II): Square-Integrability of R( 111

From this bound and identity ([C3328) there follows the estimate in the statement of the
lemma. [J

We recall that h,. € D(O,)r has strictly positive Fourier transform and, by Lemma [B-45]

the operators Th 4+ =W “Thy /2£i are bounded for any 3 <4< % Thus we can set

in Lemma [C3T h = hr Ok = W 2hr£ﬁceZ for k € {1,2} and i € N, where {e;}° is
the orthonormal basis of eigenvectors of the operator T', given by (BZ28). The resulting
estimate, studied in Lemma below, relies on the decay properties of the functions
s o 2 -7 pt S s

R* 3> % — (w zh Le;|U(X)w™ 2h,. L7 e;) (C.3.31)
which appear on the r.h.s. of relation (C3J]). These properties are established in the
following lemma with the help of the relation

L£E = wFay(0, )wre LE, (C.3.32)

which provides a link with Lemma

Lemma C.3.7. Assume that s > 3 and let e be a normalized eigenvector of the operator
T, gwen by (B-4.2§), corresponding to the eigenvalue t. Then there holds
(a) (w 2h Loe|U(F)w 2h,Le) =0 for |7] > 4r,
_1lz N -t - T 42
(b) (™ 2he el U (@)™ 2he L e)| < et

where the constant c.(m) is independent of ¥, e and finite for any m > 0. (If m > 0, the
above relations hold for s > 1).

Proof. To prove part (a), we set again xz(O;)(%) = x(O;)(§ — Z) and note that

= (w2 hy Ly e|x (O )X O2r)U (@)™ 2y Lye) = 0, (C.3.33)
for |Z] > 4r, since h, € D(O ) and hence w ~2h, L e € [D(Oy,)]. This latter statement fol-
lows from the fact that w™2 hrﬁr e=(w™ 2 he L)L e and w ~3h +L, is a bounded operator

due to Lemma In view of the uniform bound
(w2 h LEe|U(@)w™ 2o Life)| < 07 2R 2|2 (e TR e} < [o® helloot?,  (C.3.34)

which involves the parameter v € [%, %[ from the definition of the operator 7', there also
follows the (—) part of (b). To prove the (+) part we estimate
™3 LU @ LT e)| = (et £F elx(Onr o™ xa( O B3 U@LE )
< PP oo IX(O2r)o ™ xi(O2r )| (C.3.35)

Now we are in position to apply Lemma C36F We set F(5) = (|p]2 + m?)~!, m > 0 and
obtain

F@)'? = (97 +m®)720(= |5+ 1) + (1p1” + m*)726(|p] - 1) € L*(R*, d"p) + L®(R, d"p).
(C.3.36)



112 Appendix C. Verification of Condition L in Scalar Free Field Theory

For s > 2, F(Z) = m%(m\f])%lf%z (m|Z]), where K% is the modified Bessel function
of the second kind. It satisfies the following bound for s > 3 and z > 0

[ 1N

Z%K%(Z) < ce z, (C.3.37)

where the constant c¢ is independent of z. (See Section 7.2 of [GI] for a proof). Conse-
quently, we obtain for |Z| > 6r + 3¢

o= B (17-4r=32)
(|2 — 4r — 36)5—2

IX(O2)w ™ xz(O2r) || < (C.3.38)

Making use of the uniform bound (C334]), we get the estimate from the statement of the
lemma for a suitable constant ¢,(m) and s > 3.

It remains to consider the massive case in low dimensions. For s = 2 there holds F(Z) =
Ko(m|#|), what implies |F()| < ¢, me” ™! for |£] > 2r. (See [GJ] Proposition 7.2.1. (c)).
For s = 1 we have the explicit formula F(Z) = ((QW)%m)_le_mm. In both cases we easily

verify, by an analogous argument as above, that the estimate in part (b) of the lemma
holds for m > 0. O

With our choice of the set S, (see Section [C2), the map O 2, given by expansion (B2.31),
has the form

Op2(A) = > m25(A) Sy . (C.3.39)
v

[+ >3 or |u|+lv=]>0

We recall from formula (B530) and the bound (BA34) that
Spw = Ppa*(Lre)'a(Lre)” Pp (C.3.40)

are bounded operators. In the following lemma we show that they are square-integrable
under the restrictions on 7, 7 appearing in the sum (C3.39).

Lemma C.3.8. Let (i, 7) be a pair of 2-multiindices (@,v) s.t. |u*|+ vt > 3 or
™|+ |v~| > 0. Then, in massless scalar free field theory for s > 3, there holds the bound

[Z+7l 7

HSpp”E,g < Cr,EE 2t (C.3.41)

where {t;}3° are the eigenvalues of the operator T given by ([B-4.28) and the constant Cy. i
is independent of @, V.

Proof. Any pair of 2-multiindices (77, 7) satisfying the restrictions from the statement of
the lemma can be decomposed as follows:

ﬂa + ﬂbv (0342)
= Uy + Dy, (C.3.43)

NERS

where |11, + |[Ta| = |uf| + v = 4 or [m,] + |[Pa] = |u, | + |v, | = 1. For any compact
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subset K C R® and ¢ € T, E+ | We obtain

| eloma@P < [ Eopela(Loelallee) pala’ (Ere)alte)’)
K K
:/Kdsa:gpf(a*(Ere)“aa*(ﬁre)“ba(ﬁre)“ba(ﬁre)“a)
: 90:?:'(&*(Ere)paa*(ﬁre)vba(ﬁre)vba(ﬁre)va)

SElub|+vbt2ubt2vb/ &5z o2 (Lye)oa(Loe) )
K
~pz(a(Lre)a(Lre)™),
(C.3.44)

where in the first step we made use of the Cauchy—Schwarz mequahty and in the third
step we used estimate (B536). Now we set in Lemma T3 h = At gry = w™ 2hLEe;
for k € {1,2}, i € N, where the function h, > 0 entered into the definition (BZZ28) of the
operator T'. We obtain

sup /d5$|90(5u,y(:f))|2SEﬁHD'tzﬁbtzpb( sup | by (p)|72)FalHI7al
peTd VK w(P)<E

. / 5y [(QUb(orw ™3 Lr€)Eab™ (U (§) ™3 Ly o))
AK
1 QUb(hrw ™3 L,e)72b* (U (§)hrw ™3 Lye)7 Q)]
< BRI 220 ( sup Ry (5)|72)Fal FVal
w(p)<E
/ &y | (™3 Loe|U (§) 5 Ton Lo | - (™ Lo U () ri™ 3 L) 7|
AK

< C? pEIFFIPI2E7 1 (C.3.45)

We note that the integral, obtained in the second step, converges with AK " R*® due to
the properties of the 2-multiindices 7,, fi, and Lemma Thus the constant C;. ; can
be chosen independently of K and the above bound still holds after replacing K with R?.
Now the estimate in the statement of the lemma follows from the bound ([C3I6) after
readjusting the constant C, p. O

Now we are ready to prove the main result of this subsection.

Proposition C.3.9. In massless scalar free field theory for s > 3 the map O 2, given by
relation (CZ339), satisfies the bound

sup ”9E72(A)HE,2 < 0. (0346)
AeA(O(r)

Proof. First, we recall that the bound (BXL34) gives ||mz5| < 25( 7D (1 'y')_%. Next,
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making use of the Minkowski inequality ((C311]), we obtain for any A € A(O(r));

2°E
10p2(A)|E2 < > Il I1Srollms < G S ( _')_'
wv 0 (/.LI/)

|ut |+l T[>3 or |u™|+[v~[>0

C (DB o (S EHIBEY

1
= (ut) = K

where in the second step we applied Lemma [C:3.8 and in the last step we made use of the
fact that the multinomial coefficients are larger or equal to one, and of the multinomial
formula (BI4). Clearly, the last expression on the r.h.s. of the above estimate is finite.
O

From relation (CZ22) and Propositions [C3H, [C39, we conclude that for any r > 0,
E >0and A € 2A(O(r)) there holds

IR (A)|lg.2 < oo, (C.3.48)

what completes the proof of Theorem Thus we have verified that Condition L)
holds in massless scalar free field theory, its even part and its sub-theory generated by the
derivatives of the field for s > 3.



Appendix D

Verification of Condition Lél) in
Massive Scalar Free Field Theory

In this appendix we verify that Condition Lgl), stated in Section 3], holds in massive free

field theory. In Section [DJ] we recall the relevant background material from Appendix [Bl
In Section D2 we verify Condition L. Section [D3lis devoted to its strengthened variant.

D.1 Preliminaries
We infer from Propositions [B.5.4] and that in massive free field theory the map

O : A(O(r)) — B(H), given by Og(A) = PrpAPg, has the following expansions for
A e A (0(r)),

op(4) = 3 A4S, (D.1.1)
w40

Op(4) = Y mu(A)Suz, (D.1.2)
o

v(r)

which converge in the norm topology in B(H). Here we made use of the fact that 7, =

Vv
70,0 = wo. By definitions (BXET9) and (BXL3H), the operators Spp, Spp have the form

Spp = Ppa*(hwp)a(he 5)” P, (D.1.3)
Sz = Pga*(Lre)*a(Lre)” Pg,

where the vectors {ij 170 are defined by ([BA2) and {e;}{° are the eigenvectors of
the operator T', given by (BA28), whose eigenvalues are denoted by {¢;}3°. Due to the

bounds (B523]) and (B536) there holds

[+ (7]

p4 Btz 1~ 4T 2iE-1z e =
1Spsll < B o theplf" < My ® e slly ™ (D.1.5)
ISpall < EBUEC (D-1.6)
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where in the second step of the first estimate we made use of the fact that in the massive
2
theory ||w_%\| = m~2 and we set My = % We note that Spy = Spp = 0 for [fi| > [ME]

— . v(r) . .
or [7| > [Mg]. Thus, by Lemma [B.5.] the normal functionals 7, ;,, 77, entering into the
sums (O1T), (12, satisfy the following estimates for any [ > 0

— v(T’) — a+v
IR R < (2a)*ME/(2[ME)D![bir I (D.1.7)
o3 ([l+17)
(7lD)3

where ¢; = (12 4 2m?)/2, the vectors {b,fﬂ,}‘lx’ are defined by (BTl and the Sobolev
norms are given by (B:3.2). Finally, by Lemmas and [B24] we obtain the following
bound for any combination of +-signs and any A, > 0

IN

< 25Me (D.1.8)

1727l

)(Ixl+1)
Clrc)\OE
Z ”bH rH2l ”h E”2>\ < Z < 0. (D19)

KENG KENG

1)

This concludes the list of auxiliary results which we need to verify Condition Lg .

D.2 Verification of Condition L

Let us first briefly describe our strategy: By Theorem [LET], observables of the form B*B,
where B € 2 is almost local and energy-decreasing, are integrable i.e. they belong to

\2
A1), The operators Sz are of similar form for || # 0 and 7] # 0. In fact, we will
\
show in Lemma below that under such restriction ||Szz||E,1 < co. The role of the

time-smearing function g, entering into Condition Lgl), is to eliminate all other terms.

Lemma D.2.1. Let g € S(R) be s.t. suppg C] —m,m[, where m > 0 is the mass of free
field theory. Let n>1 and hi,...,h, € L?>(R®,d°p). Then

PE (a(hl) N a(hn)) (g)PE = 0. (D.2.1)
In particular, if [f| =0 or [7| =0 but |G| + || # 0 then g’ﬁ,g(g) = Suw(g9) =0.
Proof. Let ¥{,¥s € Pp’H N Dg. Then we obtain
(U1|Pg(a ..a(hyn))(9)Pp¥s)

/dtg /dspl L py h(p)e PR e PN (W a(ph) - alf) )

~ (et / Ep1 . Ao G~ (@ () + - + ()
(B1) - - h(Pn) (¥1|a(pr) . . . a(p)Ps2) = 0, (D.2.2)

where in the last step we exploited the 1support properties of g. Making use of the energy
bounds (BE22)) and the fact that |w™2|| < co in the massive theory, we conclude that

Pa(a(h) ... a(hn))(g)Pg = 0. (D.2.3)

=
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\ \
Given the restrictions on (%, 7) in the statement of the lemma, either Sy 5(g) or (Sp(9))*

is of the form considered above. The same is true for Sy 5. [.

\
Now we are ready to estimate the || - || g,1-seminorms of the operators Sy which are not
covered by the above lemma. We will exploit the fact that for any C' € B(H), which
satisfies ||C||g,1 < oo, there holds

Clea <4 s [ dwlo(C@), (D.2.4)
goeTI;l
This bound follows immediately from decomposition (([CEZ).

Lemma D.2.2. Let (1,7) be a pair of 2-multiindices s.t. || - [7| #0 and X\ > 5. Then
there holds

[El+7]

2

Vv ~ —_ =
1SpollEs <My * |heplby (D.2.5)

where Mg = % and ¢y 1s a constant independent of @i, V.

Proof. For any compact subset K C R® we obtain from the Cauchy-Schwarz inequality

sup / d*z |o(Spw(7))|
K

goeTI;I
v 1 M . 1
< sup (/ &z |o(Szz(Z))])2 sup (/ &z |o(Sv5(2))])2. (D.2.6)
peTg, 'K <p€T];1 K
We decompose 71 into two 2-multiindices 1 = [, + [, in such a way that [@,| = 1.
| loun@) = [ o6 ) Poa (ool Ppath,£)) @)
K K
< Nalhep)PolP | @ (@ eV ralhee)")(2)
K
- oo i -
< WowslFoME [ dolE U@
AK
< Mg gl (D.2.7)

Here in the third step we applied the bound (D.IH) and Lemma with h = w™3.
In the last step we made use of Lemma and of the fact that || f|j2 < ||f|l2,n for any
f € L?(R®,d*p)y. The second factor on the r.h.s. of relation ([2.6)) satisfies an analogous
bound. Thus we obtain

v [ +7] - _
swp [ dalelSna@)| < My * elllE (D.2.5)
goETEfl K

Making use of the bound ([D.2Z.4)), redefining the constant ¢, and taking the limit K " R?,
we obtain the estimate in the statement of the lemma. O

Next, we note that if C' € B(H) satisfies |C||g1 < oo and g € S(R) is a time-smearing
function then there holds
1C@Ner < lglhlClle.- (D.2.9)
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This bound is a simple consequence of the Fubini theorem. It concludes the list of auxiliary
results needed to verify Condition L("). Now we are ready to show that for any r > 0
there holds the bound

1A B < cp |RAR|, A€ A(O(r)), (D.2.10)

where g is defined as in the statement of Lemma [D.221] and the constant ¢; g, is indepen-
dent of A.

Theorem D.2.3. Condition L™V holds in massive scalar free field theory for any dimen-
sion of space s > 1.

Proof. Let g € S(R) be s.t. suppg C] —m, m[ and | > 0. Making use of relation ([1.TJ),
we obtain

1Ag)les < (IR'AR' Y |IR'7 m 85595

I
(Al +[71#0

< |[R'AR'|| gl ex(def M) /(2] Z b rll2,t 1o, 12, 0) ™
< [IR'AR!| ||glliea(4c; M)/ (2[ME])!
[ME] ) [MEg] R )
(OO Bt o A gllaa)™) (D O Mol 12y gllaa)™)”.
n1=0 rkeNj n2=0 keN}

(D.2.11)

Here in the second step we exploited estimate (DLI.7), Lemmas [D.27] and [D.222] and
relation (XZJ). In the last step we made use of the fact that the multinomial coefficients
are larger or equal to one and of the multinomial formula (B-I4)). The last expression is
finite by estimate (O.T9). O

We conclude this section with a brief comment on the even part of massive scalar free field

theory (g(e>, a,H©®), introduced in Section B2 There clearly holds for any A € ﬂ((;o)((’))
and g € S(R) as specified in Condition L)

1AW £ < 7y (A9l < collmgy (A = col| Al (D.2.12)
Here in the first step we made use of formula (B2I8) and relation (BZZ20), in the second
step we exploited Condition L(!) (for I = 0), which is valid in (full) massive scalar free field

theory by Theorem [D.23] and in the last step we applied equality (B-ZI1). We obtain:

Corollary D.2.4. Condition L( (a) holds in the even part of massive scalar free field
theory (A, o, H(®)) for any dimension of space s > 1.

We conjecture that this model satisfies part (b) of Condition L™ as well, but we do not
have a complete argument at the moment.
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D.3 Verification of Condition Lg”

In this section we verify the strengthened variant of Condition L(!). In addition to the
bound ([D-ZI0) above, we have to show that the operators A(g), where A € 2, and § is
supported in | — m,m[, can be approximated by elements from €(g) = {C(g)|C € €} in
the TM-topology introduced in Section 33 In view of relation [3I9) we have to find,
for any £ > 0 and € > 0, an observable C' € € s.t.

1A(g) = Clg)llpa < e (D.3.1)

We will accomplish this task in the last part of this section. (See relations ([L3.T6I)
and (L3T7) below). The key observation is that in massive scalar free field theory, for
|| - [7| # 0, there holds

Suw = PeBiByPp, (D.3.2)

where Sy p is given by (LI4l) and By, By € 2 are energy-decreasing and almost local
observables which depend on E. This fact is established in the following lemma.

Lemma D.3.1. Let s > 1 and e € L*(R*,d°p) be s.t. Je = e. Then, in massive scalar
free field theory, for any E > 0 there exist operators Bg € A which are almost local,
energy-decreasing and s.t. a(LFe)Pg = BE'EPE.

Proof. We consider only the (+) case as the (—) case is analogous. Without loss of
generality we can assume that [Mg] > 1 and ||£;e|| # 0. We pick a function h € S(R)
which satisfies, for n € {0,1,...,2[Mg]},

/ du e 3EIEE R yn () = i, . (D.3.3)

Such function can be constructed as follows: Let f,(u) = eI el yn Iy the subspace

X = Span{ fo, fa, .-, fopup) } Of L?(R,du) we can construct, with the help of the Gram-
Schmidt procedure, an orthonormal basis { go, g2, - - - , 92[Mp] }in X, consisting of Schwartz-
class functions. We introduce the projection on X

Px = [90)(g0l + |92)(g2] + - -+ + [921015)) (92(a11] (D.3.4)

and note that (I — Px)f1 # 0, since the functions { fn}?[ME Vare linearly independent. We

set
;U =Px)f
I(I = Px)full*
It is manifestly a Schwartz-class function which satisfies (D.3.3)).
Next, we note that etu(@(£le)+a*(Lie) ¢ 2A(O(r)) for any v € R. (In fact, there

exists a sequence fi7 € (1 + J)LF st. lim,_o ||fF — Lfe|ls = 0. Thus, by Theo-

rem X.41 (d) of [RS2], the corresponding sequence of Weyl operators W (uf,) converges
iu(a(Le)+a* (LFe))

h = (D.3.5)

to e in the strong operator topology). Also the weak integral

A= /du ei“(“(ﬁieHa*(ﬁj‘e))h(u) (D.3.6)
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defines an element of 2A(O(r)) by the von Neumann bicommutant theorem. This operator
satisfies
PpAPp = PE(a*(ﬁje) —I-CL(ﬁ:_e))PE. (D37)

In fact, let ¥y, ¥y € Pg’H. Then, making use of the fact that W, ¥y belong to Dg in a
massive theory, we obtain

(U, |AT,) = /due—%uQIIEielF(\pl|eiU(a*(Eie)eiu(a(ﬁie))%)h(u)

g )Pt
_ /due—§u2||ciell2 3 (H)T(\Ifﬂa (LFe)™ a(Le)™Ws) h(u)
n1,n2€Ng

= (Ui](a”(Lfe) +a(Le)) Uy), (D.3.8)

where in the first step we proceeded to the normal ordered form of A, in the second step
we expanded the resulting exponentials into the (finite) power series and in the last step
we made use of relation (D.33). Finally, we pick a function f € S(R) s.t. f(pg) = (27?)_%
for p° € [-m, —E] and f(p°) = 0 for p° ¢ [—3m, —2E]. By smearing both sides of equal-
ity (O37) in time with f we obtain A(f)Pg = a(L; e) P where we made use of the fact
that A(f) is energy-decreasing. Since it is also almost local, the proof is complete. [J

Thus we have verified relation (3.2). It remains to establish suitable convergence prop-
erties of expansion (D.I.2)). For this purpose we need the following lemma which is similar
to Lemma [D.2.2] above.

Lemma D.3.2. Let (i,7) be a pair of 2-multiindices s.t. |f| - |¥| # 0. Then there holds
in massive scalar free field theory for any s > 1

\u\H \

|SezllEn < crpE 2 Y, (D.3.9)
where the constant c, g is independent of i, U

Proof. For any compact subset K C R* we obtain from the Cauchy-Schwarz inequality
s / & (S (D))

< s ([ EalelSpp@)? s ([ EalSoa@)E 0310

+
veTg

We decompose 71 into two 2-multiindices 1 = [, + [, in such a way that [@,| = 1.

/ &5 o (Sp ()] = / 05 (0" (Lre)™ Psa* (Lre)a(Lye) Pra(Lye)™)(D))]
K K

< [la(£, “GPEII2/ d*z p((a” (Lre)a(Lre)™)(T))

< EIl2A. gup \;}r(my—2/ &z (W2 hp(Lre) ™ |U(Z)w? hy (Lye) )]
w(P)<E AK

¢ pEFIET (D.3.11)
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Here in the third step we applied the bound (OLI.6]) and Lemma with h = fl; L
where h, entered into definition (BZ2]) of the operator T. In the last step we made use
of Lemma [C.3.77] which guarantees the convergence of the integral in the massive case. The
second factor on the r.h.s. of relation (L3I0 satisfies an analogous bound. Thus we
obtain

\ [
sup / Az |p(Spw(X))] < c%EE thv, (D.3.12)
K

p€eT, }; 1
Since the r.h.s. is independent of K, we can take the limit K  R®. Now the statement
of the lemma follows from the bound ([[L2.4) after readjusting the constant ¢, g. O

The last auxiliary result which we need to establish Condition Lgl)

bility property.

is the following summa-

Lemma D.3.3. Let g € S(R) be s.t. suppg C| —m,m[. Then, for arbitrary dimension
of space s > 1, in massive scalar free field theory of mass m there holds the bound

> sl 1Ses(9)ller < oo (D.3.13)
ﬁ7p
[+ P10
Proof. Making use of Lemma [DL2.1] we get

S MmallISer@ller = D Imsl 1Sas(9)lea

v v
747120 177120
[El+7l - -
< Mo plgly Y BT
ﬁ7v
[al- 710
ut]
< 2Mec plgli( Y. BT )N (D3.14)
ut
|pt|<Mg

Here in the second step we made use of Lemma [D32] estimate (OLI.8) and the
bound ([D2I0). The last expression is finite due to the following relation

Wt B y Y=,
o BT = B2 Y ot <Y BT, (D.3.15)
/”’+ k?:O /”’+ k?:O
lut|<Mp |t |=k
where in the last step we made use of the fact that the multinomial coefficients are larger
or equal to one and of the multinomial formula (BI4). O

According to Lemma [D33 for any € > 0 there exists a finite set M; of pairs of 2-
multiindices s.t.

1A = > map(A)Sup(9)lles <e. (D.3.16)
(ﬁvy)er
In view of relation (D.3.2)), proved in Lemma [D.37] there exists C' € € s.t.
> mp(A)Spz(g) = PrC(g)Pe. (D.3.17)

(ﬁvv) eM;
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Substituting this formula to relation ([OL316) we establish property (OL31). We summa-
rize:

Theorem D.3.4. Condition Lgl) holds in massive scalar free field theory for any dimen-
ston of space s > 1.



Appendix E

Verification of Condition Ny in
Scalar Free Field Theory

It is the goal of the present appendix to verify that Condition Ny, stated in Section B.3]
holds both in massive and massless scalar free field theory. The argument relies on
Lemma [E227] stated below, which is a variant of Theorem [LG.1] adopted to the prob-
lem at hand. This result is combined with Lemma which describes the decay of
correlations between certain operators under translations in space.

The necessary background material from Appendix [Bl is summarized in Section [E]]
The verification argument, based on the publication [Dy08.2] of the author, is given in
Section

E.1 Preliminaries
The main object of our interest is the map II, : 7 — A (O(r))*, given by

% (e) = elac o) ¢ €Tg (E.1.1)

for some E > 0, r > 0. In order to find a suitable expansion of this map into rank-one
mappings, we note that there holds

M (0)(A) = ¢(Or(4),  AeA(O(r)). (E.1.2)

The map Op : A(O(r)) — B(H), given by ©p(A) = PgpAPg, was thoroughly studied
in the literature [BP90, [BosO0] and we summarized the relevant results in Appendix
In particular, we recall from Proposition the following decomposition into rank-one
maps

Op(A) =) mp(A)Sim,  A€AO(r)), (E.1.3)
v

where the sum extends over all pairs of 2-multiindices and converges in the norm topology
of B(H). According to definition (B230) and estimate (B2.36), the bounded operators
Sup are given by

Spp = Ppa*(Lre)'a(Lre)” P (E.1.4)
and satisfy the bound -
ISzl < B2 7. (E.1.5)

123
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Here {e;}5° are the eigenvectors of the operator T', defined by (BA28), and {¢;}5° are the
corresponding eigenvalues. The normal functionals 75 can be estimated as follows
95 (IAl+7))
|rwl < ——1r. (E.1.6)
(pv!)z
(See relation (B234))). In view of equality (EI2) we obtain from (EIZ) the following
expansion for any ¢ € T, A € A.(O(r))

M)A = Y ma(A)e(Sio). (E17)
v
([5l,171)#(0,0)
where we made use of the fact that 799 = wy. We associate with operators Sy elements
of 7, denoted by the same symbol, given by 7 3 ¢ — ¢(Sz ). Their norms are clearly
equal to the operator norms of S . Thus we obtain from Proposition [BX5.0 and definition
of the p-norms stated in Section

Mg < > ImaslISesl? < o (E.1.8)

w,v
(Iz1,[71)#(0,0)

That is, the maps II}, are p-nuclear w.r.t. the standard norms on £L(7g,2A.(O(r))). We
will use the same expansion ([EIT) to estimate the p-norms of these maps w.r.t. the
norms || - ||z;,...zy, given by [BBR3). There clearly holds the bound

P
I . ,st( S sl PlSuelt ) . (E.19)

m,v
([7l,[7])#(0,0)
To verify Condition Ny, we have to find estimates on the norms |Sgpls,. . 2y, Whose
growth with N can be controlled at large spacelike distances z; — x; for i # j. We
undertake this task in the next section.

E.2 Verification of Condition Ny

The crucial ingredient of the argument is the following lemma which is inspired by
Lemma 2.2 from [Bu90]. (See also Theorem [[G.I]). Similarly as in Lemma [C3T] the
present estimate is uniform in the particle number and depends only on the energy of the
state in question. This result substantiates the underlying physical idea of additivity of
energy over isolated subregions.

Lemma E.2.1. Let E > 0 and h be a Borel function on R® which is bounded on {p €
R*|w(p) < E}. We denote the operator of multiplication by h on L*(R®,d*p) by the
same symbol. Suppose that g € L*(R®,d°p) is in the domain of hw3. Then, for any
x1,...,xn € R there holds the bound

HPEZ (hwb g)a(hw? g)) (wy) Pe

<E sup [ *{lgl3+ (N — 1)sup [(g|U(z; — z;)g)|}. (E.2.1)
w(p)<E i#]
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Proof. We pick single-particle vectors W1, g; € L?(R*, d*p) and define Q =
Zévzl(a* (91)a(g1))(zk). Then there holds

2

(T1]QQ¥1) <> (¥ a(g1))(z) V1) Z| (k) 911U (z1)g1)]

=1
< (U|QU){llg1 I3 + (N —1)?;1;“ (25)g1|U (x:)g1) |} (E.2.2)

where we made use of the fact that a(U(xg)g1)a(U(x;)g1)¥1 = 0 and of the Cauchy-
Schwarz inequality. Since (U1|QW¥1)? < (¥1|QQW1)||¥1]|?, we obtain

N

> (T1f(a*(g1)alg1)) (xk) 1)

k=1
< 1Pl + (V= Dsw (U)o Udo) ) (B:23)

Next, let n > 1 and V¥,, € Pg’H be an n-particle vector s.t. the corresponding symmetric
wavefunction W, (p1, ..., p,) belongs to S(R**™). We also introduce a single-particle wave-

function associated with ¥,, given by U1(p1)z, . 5, = w(ﬁl)%ﬁ(ﬁl)\lln(ﬁl, .++yDn), where
we treat pa, ..., D, as parameters. With the help of relation (E2Z3]) we get

N 1
S (Wl(a* (o g)a(hwot g)) (21) 0,

k=1

N
= n/dsm---dspnZ(‘I’l,ﬁg,...,ﬁnI(a*(9)0(9))($k)‘Pl,ﬁz,...,ﬁn)
k=1

Sn/dspl Al ()P0 [T (1, o)

{llgll3 + (N - 1)8};19 (glU (@i — zj)g)|}.  (B.24)
i#]
Finally, we note that
n/dspl...dspn|h<ﬁl>|2w<ﬁl>|wn<m,...,ﬁn>|2

< sup ‘h(ﬁ)F /dspl e dspn(w(ﬁl) +---+ W(ﬁn))‘\yn(ﬁla e 7ﬁn)‘2
w(p)<E

< sup [h(p)PE,|? (E.2.5)

w(p)<E

where we made use of the fact that the wavefunction is symmetric. Since the operators
(a*(g)a(g))(xy) conserve the particle number and vectors of the form ¥ = coQ+3 02 | ¥y,
where [|¥[|2 = |co|? + Y0, [|[¥,]|? < oo, are dense in PgH, we easily obtain the bound in
the statement of the lemma. [

Our next task is to control the expressions appearing on the r.h.s. of estimate (E2TI).

Similarly as in Subsection ] we recall from Lemma B that Tj, 4+ = w VA, Y Zﬁi are
bounded operators for any <~ < =L and h, > 0. Thus we can set in Lemma [E-21]
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h= fz;l and g = w_%fzrﬁfe, where e is an eigenvector of the operator T given by (B.42]]).
The resulting estimate, studied in Proposition [EZ24] below, relies on the decay properties
of the functions

R > — (w_%ﬁrﬁfe\U(az)w_%izrﬁ;—L@ (E.2.6)

which appear on the right-hand side of relation (EZZTl). We studied these functions for
x = (0,7) in Lemma In order to obtain estimates which are valid for arbitrary
spacelike translations x, we recall, in a slightly generalized form, the following result from
[BDLRT.

Lemma E.2.2. Let § > 0. Then there exists some continuous function f(w) which de-
creases almost exponentially, i.e. sup, |f(w)|e!!” < co for any 0 < k < 1, and which has
the property that for any pair of operators A, B s.t. € belongs to their domains and to
the domains of their adjoints, satisfying

(Q|[A, e Be= ) Q) = 0 for |t| < 9, (E.2.7)
there holds the identity (QABQ) = 3+ {(QAf(0H)BQ) + (QBf(0H)AQ)}.
With the help of the above lemma we prove the desired bounds.

Lemma E.2.3. Assume that s > 3. Let e € L?(R®,d*p) satisfy Te = te, Je = e and
lel = 1. Then, for any e > 0, 0 < k < 1 and v € R¥™t s.t. |&| > |20|, there hold the
estimates 1 (m s (][]

=1 = 1 Cren(m)e”2(5) (1Z1=laT)" 42

hyw™ 2 LEe|U(z)h,w 2 L) < 20

[(hrw™2 L3 e|U(z)hyw™2 Li7e)| < (2] = [29 + 1) 2=

where the constant ¢, (m) > 1 is independent of x and e, and finite for any m > 0. (If
m > 0, the bound holds for s > 1).
Proof. First, we define the operators ¢*(e) = %(a*(izrﬁje) + a(h Lfe)), ¢ (e) =
%(a*(iﬁrﬁﬁe) + a(iﬁrﬁr_e)) and their translates ¢=(e)(x) = U(z)¢*(e)U(z)~!. Since
the projections £F and the multiplication operators h, commute with J, and Je = e, the
operators ¢T (e) are localized in the double cone of radius 2r centered at zero. In fact, by
definition of the projections £, we can find, for any ¢ > 0, functions g+ € D(O,)r s.t.
|LFe — wi%ﬁng < €. Setting F¥ = (2r)"2h, * g+ we obtain from definitions (B24),
(BZH) of the canonical fields and momenta the following bound

(E.2.8)

WNLTHOOE/

V2

Thus for z € R*T! s.t. Oy, + z and Os, are spacelike separated and for any combination
of £ signs there holds

[67(e), ™ (e)(2)] = ([T (e), o™ () (2)]2) = 0. (E.2.10)

Now we are ready to prove the desired estimate: We assume without loss of generality

that 2 > 0, introduce functions G*(7) = (h,LEe|lw™ U (& + 7éo)h,LFe) for 0 < 7 < 20,
where €g is the unit vector in the time direction, and consider the derivative

dG* (1)

dr

1 - . _
16 () — 6o (FF)Q| = Euhrc?fe — Il < (E.2.9)

= 2|(Qp™ ()™ (e) (T + Té0)2)]. (E.2.11)
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We define §, = |7| — 7 — 4r and assume that |Z| —2° > 5r what guarantees that §, > 0 for
0 < 7 < 20 Then, by relation ([E210), ¢*(e) and ¢* (e)(F + Tép) satisfy the assumptions
of Lemma with § = d,. Making use of this result, we obtain

+
1 7 K K ~
'deT(T) 5|<w_vhr££c€|w27f(57w)e%(57“’) e 20 U (7 4 rég)w T hpLEe)
(W hLEe|w® f(5, w)e%(‘sf“’)ﬁe_%(‘sf“)KU(—f— Téo)w Vh,LEe))|
S Sl sup el (e A (E2.12)

Next, we set 7 = % for 0 < € < 1 and arrive at the following estimate
dG*(T)
dr

1/ m\k (|3 0\k
Cr,s,n(m)e_i(g) (1 —2°)~ 42
B (|Z] — 20 + 1)s—2—=

Z‘O
(o b LEelU @3 b LE 0 = G5 < [6HO)+ [ df1
0

,(E.2.13)

where in the last step we applied Lemma [C37] and estimate (E-Z212)). Since the Lh.s. of
relation (EZZT3) satisfies a uniform bound analogous to (CC3:34)), we obtain the estimate
in the statement of the lemma. [J

Now we are ready to prove the required estimates on the norms of the functionals Sy 5.

Proposition E.2.4. Given a family of points zi,...,xn € Rt we define 6(Z) =
infiz; (|17 — & — |29 — x?\) For s > 3, 6(Z) > 0, (|@],|7|) # (0,0) and any € > 0,
0 < k <1 the functionals Sy satisfy the bound

1S3, en < 16cren(m) sup Iﬁr(ﬁ)l_zE'ﬁ'”tz(ﬁm{lJr (N -1

o3 ()Rs(@)" }
w(p)<E

(8(Z) +1)s=27
(E.2.14)

where the constant ¢, .(m) > 1 appeared in Lemma [EZZ3 and is finite for any m > 0.
(If m > 0, the bound holds for s > 1).

Proof. We denote by ’T+ the set of positive functionals from 7g ;. Making use of the
definition of || - ||z1,...zn> decomposmon (CE2) and the Cauchy-Schwarz inequality, we
obtain

N

N
195503 oy = sUP D 9w (Sap)* <16 sup > |ou, (a*(Lre)Fa(Lre)”)
$€TE1 2 PETH | k=1

N

< 16 SUP Z(’Dmk “(Lre)a(Lre)F) Py, (a*(Lre)"a(Lre)”)
T 1 k=1

N
< 16E77 | Pp > "(a*(Lre) a(Lre)”)(zr) PEll, (E.2.15)
k=1

where in the last step we applied the bound ([EIH). We can assume, without loss of
generality, that 7 # 0 and decompose it into two 2-multiindices 7 = 7, + 7}, in such a way
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that |7,| = 1. Since a(L,e)” = a(Lre)"*a(L,e)">, we get

= EPlt?a Py} " (a*(Lre) a(Lre)™) (z1) Pa, (E.2.16)

where in the last step we used again estimate (EZTI]). From relations (EZ2.T5) and (EZ2.T6)
we obtain the bound

N
185512, on < 16EFHPl2EH70)) Py N = (a*(Lre) a(Lre)™ ) (xr) Ppll.  (B.2.17)
k=1

From Lemmas [E2.7] and we get

N
1PE " (a*(Lre)a(Lre)™) (@) Pell < B sup |7y (5)]"2{|Ihyw™ 3 (Lre) |
k=1 w(p)<E
+ (N = 1) sup [(hyw ™3 (L,e)™|U (i — x5)hyw™ 2 (L,)7)}
i#j
(m) o (5)] 2 2—b{1 (N —1) e (9o }(E218)
< Crer(m) su (D) Bt + — - (E.2.
St M 6@) + 1) 7=

Substituting inequality (EZZTI])) to formula (EZ2TIT), we obtain the estimate in the state-
ment of the proposition. [J

We note that the bound from Proposition [E2.4] has similar structure to estimate ([ELTH)
for the ordinary norms of Szp. Therefore, making use of formulas (ET9) and (EIG),
and proceeding as in the proof of Lemma [B.5.5], we obtain

& (B E)EPR||T||E b
I < Aen ) sup a3 EEE )
wp)k k=0 (k!)zP

oA (m)rs(@)
(6(Z) + 1)8‘2‘5}

=

-{1 + (N —1) (E.2.19)

It follows that lim sups(z)—oo 1% |lpe1,...xy satisfies a bound which is independent of N.
Consequently, we get

Theorem E.2.5. Condition Ny holds in scalar free field theory in s > 3 dimensional
space. (If m > 0, the same is true for s > 1).
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It is obvious that Condition /Ny holds also in the sub-theory (Ql(d),a,H), generated
by the derivatives of the field, since all our bounds remain valid if one restricts attention
to a smaller set of observables. It also holds in the even part of scalar free field theory

(g(‘”,g, H(e)) as can be seen by the following argument: We consider the map II%, : 7, E(C) —
A (0)* given by

O5(0) = Py » L €T - (E.2.20)
Due to formula (B2I]]), we obtain
15 (0)(4) = (10 0) () (4)) (E.2.21)

for any ¢ € ']'bﬂe) and A € ﬂge)(O). Thus the expansion of the map IIf, into rank-one
mappings, given by (ELT), induces the corresponding expansion of the map I},

O5@)A) = Y 1pp(A)S0(), (E.2.22)
Ly
(I, [7)#(0,0)
where 7 5(A) = Tgp(w(;)l(é)) and S5 5(p) = Spw(te)p). Making use of the facts that
Al = HW(_O)l(A)H and ||l = [l¢e)ll; justified in Section B2 we obtain that ||z, ;[ <
| 7,7 and Hﬁﬁijl,m,xN < ||Sazller,..xn- It follows that the p-norms ||I1% || 2,,....zy Satisfy
the bound (EZ219). Thus we obtain:

Corollary E.2.6. Let s > 3. Then Condition Ny holds in the even part of scalar free field

theory (g(e),g,H(e)) and in the sub-theory (A, a, H) generated by the derivatives of the
field. (If m > 0, the same is true for s > 1).
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Appendix F

Verification of Condition C}, in
Massive Scalar Free Field Theory

We showed in Theorem B3l that the qualitative part (a) of Condition C} holds in all
theories satisfying Condition Cy, in particular in (massive and massless) scalar free field
theory in physical spacetime [BP90]. Moreover, we argued in Section that in physi-
cally meaningful, massive theories there should also hold the strengthened, quantitative
part (b) of this condition. We demonstrated that this quantitative refinement has a num-
ber of interesting consequences pertaining to the vacuum structure. It is the goal of the
present appendix to illustrate the mechanism which enforces Condition C), (b) by a direct
computation in the theory of massive, non-interacting particles.

This appendix is organized as follows: In Section [E.]] we present the argument relying
on some technical information stated in Lemma below. The remaining two sections
are devoted to the proof of this lemma.

F.1 Main Line of Argument

In Section we introduced, for any ¥ € I'ys and ¢ € 7g, the following elements of
(A(O(r))<N)*

(P@’(Al X oo X AN) :(p(Al(fl)...AN(fN)) (F.l.l)
and considered the maps Ilg v s € L(Tg x Ty 5, (A(O(r))*N)*) given by
g ns(e: T) = ez (F.1.2)

In Section B3 we introduced the maps 1}, v 5 € L(7 X I'n s, (A (O(r))*N)*) defined as

% N (0, Z) = g, N5 (0, D)l () <N - (F.1.3)

It is our goal to show that lims o [[IIf y 4[| = 0. Then, by Lemma B2 there follows the
statement of Condition C}, (b).

Theorem F.1.1. Massive scalar free field theory satisfies Condition Cy, for any dimension
of space s > 1.

Proof. The main ingredient of the proof consists in the following elementary evaluation
of the N-linear form HCE7N’5(<,0,@, where ¢ € 71, £ € 'y 5, on the generating elements

131
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of A.(O(r)). We pick fi,...,fn € L,, abbreviate their translates U(Z)f; as f;z and
compute
Iy, Na(% D) (AW (f1) —wo(W (AN} x - < AW (fn) = wo(W(fn))I})
e((W(fi :zl)— oW () ... (W(fnzy) — wo(W(fn))I))

\R2
R
- Z | le |f]k”2(p(W(fi1,fi +"'+fiR T )
1 [R11T Ry |
R1,R
_ Z 1) Rele= 30 Mkl o~ Xash<ising Relfip 7 fi 2 )
Ri1,R

o(: W(fil,fil) e W(fi‘Rl"fi\Rl\) )
=Y (—1)IRele=3 Tl IFklB (o~ Zaskersing Relfuea, Mie,) )

R1,Rs

PG Wfnz,) - Wlfig, 2,,) )

_1$N 2
e E R S (O W (o, o fiy ) 9 (L)
Ri1,Ro

where the sum extends over all partitions Ry = (i1,...,i|r,|); B2 = (j1,---,J|r,|) of an N-
element set into two, possibly improper, ordered subsets. (If the condition 1 < k <1 < |Ry]|
is empty, the corresponding sum is understood to be zero). In the second step we made
use of the fact that the Weyl operators are locahzed in spacelike separated regions. In the
third step we applied the identity W (f) = e~ 2 sII113 W (f) : and in the last step we divided
the expression into two parts: The first part tends to zero for large spacelike separations,
due to the decay of (f1 4,|f2,2,) When z1 — x5 tends to spacelike infinity. In the next lemma
we show that the last sum on the r.h.s. of (ELd) vanishes for N > 2£ 5o we can omit
this last term in the subsequent discussion.

Lemma F.1.2. Let ¢ € Tg and N > 2% be a natural number. Then there holds

S = Z (—1)|Rz\(p(: W(fil,fil NI fi\Rl\’fi\Rl\) ;) =0, (F.1.5)

R1,R2

where the sum extends over all partitions of an N -element set.

Proof. For any f € L?(R®,d*p) we introduce the map M(f) : B(H) — B(H) given by
M(f)(C) = Pge” DNee e py C e B(H). (F.1.6)

The exponentials are defined by their Taylor expansions which are finite (in the massive
theory) due to the energy projections. The range of M (f) belongs to B(H) due to the

energy bounds ([B322). We note that M(f1)M(f2) = M(f2)M(f1) for any fi,f2 €
L?(R*,d*p) and that M (0)(C) = PgCPg for any C € B(H). We denote by I the identity
operator acting from B(H) to B(H). There clearly holds

§ = > )™M (fiz,) . M(finy .z, D)
R1,R2
= o((M(frz)—1)...(M(fnzy) — D))
= o((M(frz,) — M(0)... (M(fxzy) — M(0))(1)), (F.1.7)
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where the last equality holds due to the fact that ¢ € 7g. Finally, we note that for any
C € B(H)

(M(f)—M©0)(C)= > PE(ia*li{))kC(ia(f))lPE. (F.1.8)

!
k-+H>1
Substituting this relation to (EZI7), we verify the claim. O

We will exploit formula (EI4) to show that for N > 2£ the norms of the maps 0% s

tend to zero with § — oco. To this end, we introduce the *-algebra A(O(r)), generated
by finite linear combinations of Weyl operators, and denote by (A(O(r))*M)* the space
of (not necessarily bounded) M-linear forms on A(O(r)). We define the maps II%; 5/ 5 :

T xTys — (A(O(r))*M)*, linear in the first argument, extending by linearity the
following expression

g ar 500, ) (W (f1) X -+ x W(fur))

= em3 X Ml (™ Zasicisw Resailloes) _ 1y Wt + o+ fargy,) 2. (F-19)

We obtain from (EZI) the equality valid for N > 2£

1% .50, 2) ({W(f1) — wo(W (fl))f}x’”X{W(fN)—wo(W(fN))f})
= > ()Pl (£5,)) . wo(W (fii,)-
R1,R2
Ty gy 1500 TR W (fi) X - X W(fig, ), (F.110)

where T = (7, .. ’f"\Rﬂ) is clearly an element of I'|z, | 5. To conclude the argument,
we need the following technical lemma.

Lemma F.1.3. For any M € N, E > 0, double cone O(r) and sufficiently large 6 > 0
(depending on M, E and O(r)) there exist maps I \; s € L(Tg % Tz g, (RA(O(r))2M)*)
which have the properties

(a) lims—co [T 55/l = 0,

(b) I 1y (0. D) (A1® - @Anr) = Iy 3y 5(0, D) (A1 X -x Ag) for Ay, Ay € A(O(r))
and any (¢,Z) € T x I'pp5.

In view of this lemma, whose proof is postponed to Section [F-2 equality (EET.I0) can now
be rewritten as follows, for sufficiently large N, 6 and any Aj,..., Ay € A (O(r))

% ns(p, D) (AL X - x An) =TT 5(0, ) (A1 @ - @ An), (F.1.11)

where we made use of the facts that wo(A41) = --- = wo(Ay) = 0 and that A(O(r))
is dense in A(O(r)) in the strong operator topology. Consequently, for N > 2%, the
maps IS, y 5 share the properties of I}, ,; s stated in Lemma In addition, we know
from Theorem B3] that the maps H‘jEN (; are compact for any § > 0. We conclude that
Condition Cj, is satisfied. [J

Now it easily follows that Condition C}, is also satisfied in the even part of massive scalar
free field theory (ﬂ(e), a, H(e)), introduced in Section [B22l There we have shown that for
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any A € 2 and € Tée) there holds ||A|| = H?T(_O)l(A)” and [[o|l = [lt@e)¢ll. Making use
of these equalities and formula (B22TS]), one easily obtains the bound

0% nsll < IHE nll, (F.1.12)

where the map on the Lh.s. is defined within (ﬂ(e),g, H(©)) and the mapping on the r.h.s.
corresponds to the full massive scalar free field theory. Thus there follows the corollary:

Theorem F.1.4. The even part of massive scalar free field theory (%(6),% H(e)) satisfies
Condition C}, for any dimension of space s > 1.

We remark that the assumption m > 0 is used only in one (crucial) step in the proof
of Theorem [EET.Jl namely to eliminate the last term in relation (EEI.4)) and establish
equality (EETTT)). The properties of the maps II; ,, s, stated in Lemma [EET3 hold in
massless free field theory as well. However, we do not e7Xpect that the present Condition C),
holds in massless theories as it stands. There, due to the existence of states with arbitrary
number of particles in 7g, the maximal number of localization centers Ny, visible in
an experiment, should depend not only on the energy E of the state, but also on the
experimental accuracy €. We conjecture that an accordingly modified condition has similar
physical consequences to the present one and that it holds in massless free field theory.

F.2 Proof of Lemma F.1.3

The goal of this section is to construct the maps Il 5,5 € L(7g x g, (RA(O(r))®M)*)
and verify that they have the properties (a) and (b) specified in Lemma [EET3 We will
define these maps as norm-convergent sums of rank-one mappings, i.e.

(o @]
Whars = Y 7i Si (F.2.1)
i=1

where 7; € (A(O(r))®M)* and S; € L(Tg x T4, C).

In order to construct a suitable family of functionals 7;, we recall the relevant re-
sults from [Bos00], which we reproduced in Proposition [BZ3J} For any 2-multiindex
= (ut, ) and an orthonormal basis {é;}7° of J-invariant eigenvectors in the single-

particle space L%(R®, d*p) there exists a normal functional 7; on B(H) s.t. for any f € L,
there holds

(W (£)) = e 2 el " el ) (F.2.2)
where fT, f~ are the real and imaginary parts of f in configuration space. These func-
tionals satisfy the bound

Izl < Al Rl )3, (F.2.3)
oM

Turning to the definition of suitable functionals on B(H)®", we introduce M-tuples of
multiindices Hi = (u*,..., ") and the corresponding 2M-multiindices p=(ut,p). We
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extend the standard rules of the multiindex notation (see Section [Bl) as follows

M
el = > (| + ey D), (F.2.4)
i=1
M
po= Tl (F.2.5)
i=1
M . B
@lfe = Tl elfmm, (F.2.6)
i=1
where f1,..., fu € L. Now for any 2M-multiindex p we define the normal functional 7,
on B(H)®M by the expression
Ty = Ty, @ @ Tgy, (F.2.7)

From relations (E22), (E23)) and the polar decomposition of a normal functional [Sal
one immediately obtains:

Lemma F.2.1. Let {¢;}3° be an orthonormal basis in L*(R®) of J-invariant eigenvectors.
The functionals 7, € (B(H)®M)* given by [F-2_4), have the following properties

(a) Tu(W(f1) @ --- @ W(far) = e~ Xl Ikl g )1,

(6) |7l < 4(u1)3,
where fi,..., fm € Ly

In order to construct a basis {&;}5° in L?(R®,d*p) of J-invariant eigenvectors, which is
suitable for our purposes, we modify slightly our discussion from Subsection [B.42] (based
on [BPI0, BosO0]). Let Qg be the projection on states of energy lower than E in the

lw]®

single-particle space. We define the operators T+ = QpLF and T,:E = e 2 L, where

T

0 < k < 1. By a slight modification of Lemma [B.4ZH one finds that these operators satisfy
||TfEE||1 < o0, |T#||]; < oo, where || - |1 denotes the trace norm. Next, we introduce the
operator T given by

T = (TP + T P + TP + 1T P)2. (F.2.8)
Making use of the estimate |[(A + B)P||1 < [|AP]|1 + || BP|1, valid for any 0 < p < 1 and
any pair of positive operators A, B s.t. AP, BP are trace-class [Ko84], we obtain

TN < ITE I+ 1Tg I+ 1T+ 175 < oo (F.2.9)

Since 7' commutes with J, it has a J-invariant orthonormal basis of eigenvectors {&:}9°
and we denote the corresponding eigenvalues by {#;}9°.

Now we proceed to the construction of the functionals S; € L(7g x I'yz 6, C), to appear
in the expansion ([E21). Let 4~ = (afz, . ,aﬁ_LM) be (AQ/[)-tupleS of multiindices and
let & = (&T,&™) be the corresponding 2(]\2/[ ) -multiindex. First, we define the contribution
to the functional which is responsible for the correlations between measurements:

(_1)|a;j\+|af,j|
Li<year \Joi 18 o B!

(Qla(Ly éz,)%a™ (L éz,) Q),  (F.2.10)

(Qla(Lf éx) " a* (L] é5,) Q)
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where we use the short-hand notation ﬁ;téi’fj = U(&;)LEé;. The functionals in question
are given by

et 21T o .
S .03(#:E) = ———=—=—F, 5(Z)p(a" (L,é5) a(L,ég)"),  (F.2.11)

where ¢ € 7 and Z € I'jr 5. The norms of these functionals satisfy the bound, stated in
the following lemma, whose proof is postponed to Section

Lemma F.2.2. The functionals SH%&’& € L(Tg xT'p5,C), given by (EE2Z11), satisfy the

following estimates

pgg e 1 [lat e juga 1 2
<<E75g+v>< o’ Mo FIPTT '9(5)d|+6{§&+6>7 (F.2.12)

S < _

where Mg = £, {£;}5° are the eigenvalues of the operator T given by (EZB) and the
function g, which is independent of & and (3, satisfies lims_, g(d) = 0.

Given the estimates from Lemmas [FE21] (b) and [E22] we can proceed to the study
of the convergence properties of the expansion (EEZT]). For this purpose we need some

notation: For any pair of (Ag)—tuples of multiindices &+ = (afz, . ,aﬁ_l’M) we define
the associated M-tuples of multiindices &, &* as follows
o o= ) o, (F.2.13)
1<j<M
1<j
At +
& = Z Qs (F.2.14)
1<j<M,
j<i

where i € {1,..., M}. The corresponding 2M-multiindices are denoted by & = (a*,a7),

a = (@T,47). The relevant estimate is stated in the following lemma, whose proof is
given in Section

Lemma F.2.3. The functionals 7, € A(O(r))2M)* and S 5 € L(TexTrs, C) satisfy

JInae
> s 118,050 < o0 (F.2.15)
wy —
a,3
(1al,181)#(0,0)

for sufficiently large 6 > 0, depending on M, E and the double cone O(r). Moreover, the
above sum tends to zero with § — 0.

After this preparation we proceed to the main part of this section.
Proof of Lemma [EET.3t We define IT}; 5, s € L(7g % T, (U(O(r))®M)*) as follows

%,M,cg((p’i) = Z TH+Z+6‘ 43 SH7Z75¢,£((’D’£)' (F216)

v — =

é?/B
(1&1,18)#(0,0)
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In view of Lemma [E£.2.3] this map is well defined for sufficiently large § > 0 and satisfies
lims_.o0 [[TI% 57 s/l = O as required in part (a) of Lemma [EXT3l In order to verify part (b),
it suffices to show that

05 07500, D)W (f1) @ - @ W(fm)) = Wy ar (0, Z)(W(f1) x - x W(fu))
_ 6_% 22/1:1 ”fk”% (6_ 21§i<j§M(<fitfi ‘f;yﬁfj>+<f;§l|f;gj>) _ 1)
o W(fia + -+ fazy) 1), (F.2.17)

where the second equality restates the definition of the map II; ,,,, given by for-
mula (EET9). The Lh.s. can be evaluated making use of Lemma [E2.1] (a) and defini-

tion (EE2TT)
g v 5 (0, D) (W (f1) x -+ x W(fn))

At T 42]p |
1 M 2 2= =
— ——Zk:1||fk||2 —< f
—e 2 E
wr o plyly/ 61!
apB
(l&l,181)#(0,0)

LS IEE, J(@)pla (Lréz)Ea(L,é2)). (F.2.18)

«

First, we consider the sum w.r.t. p,v. There holds

et 2] N o )
> T(emﬁ Lo(a(Lréz)a(Lréz)?) = o(: W(f1z + - + fazy) 1), (F.2.19)
H72 o=

as one can verify by expanding the normal ordered Weyl operator on the r.h.s. into
the power series of creation and annihilation operators of the functions f]ifj’ expanding

each function fjjE in the orthonormal basis {¢é;}7° and making use of the multinomial
formula (B1.4)
+)
MGt e ut .
= > Ly (el aN(Lfez ) (F.2.20)
+

+ ., £ .
i lug l=my Y

* m*
a' )(f;t:fj) !

The sum w.r.t. &, 3 in (F2I8) gives

1 &+ R S S Sl
> S LE @ =( [ & hale Valhaly J1 w2
&,f alp! 1<i<j<M
(lal,|B)#(0,0)

This relation can be verified by expanding the exponential functions on the r.h.s. into the
Taylor series, making use of the identity

S +
ki — (Q|a(f1:f:fz)klJa*(fjj,:fg)liQ)
)i = k;-j!

(F.2.22)

and applying to the resulting expressions expansions (E220]). Comparing (E221]) and
([E219) with (E217), we conclude the proof of Lemma O
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F.3 Some Technical Proofs

In this section we provide proofs of Lemmas and which we used to prove
Lemma in the previous section.

The key ingredient of our proof of Lemma is the observation that when the
spatial distance between two local operators is large, then the energy transfer between
them is heavily damped. We exploited this idea in Section B2 where it was encoded in
Lemma In the present context it is more convenient to use a variant of Lemma 2.3
of [BDL&T] which is reproduced as Lemma [EZ2Z2in the present work. With the help of this
result we prove the following lemma which will help us to control the correlation terms

F, 5.

Lemma F.3.1. Let 6 > 0, (Z,9) € I'y 5, {€;}5° be the basis of J-invariant eigenvectors of

the operator T given by (EZ8), let {t,}‘lx’ be the corresponding eigenvalues and let o, 3 be
multiindices. Then there holds, for any combination of + signs,

(Qla(Lyéx)*a* (L ég) Q) < V]all|Bllg(8)l*HA+e, (F.3.1)

where Eﬁcé’m = U(Z)LFé;, the function g is independent of o, B and satisfies
lims_,00 g(8) = 0.
Proof. We consider here only the (++) case, as the remaining cases are treated anal-
ogously. We define the operators ¢ (é;) = %(a*(ﬁjéi) + a(L}é;)) and their translates
¢T(&)(Z) = U(F)pT(&)U(F)~. Since the projections £F commute with J, Jé; = ¢
and 0 > 0, these operators satisfy the assumptions of Lemma (See the proof of
Lemma for a detailed justification). Therefore, we obtain

(el érq) = 2(Ql6% (@) @6 (€)Y
= (40" (2 @) GH)6 (E5) T + (U6 E) DI G ) (@)2)
= S (L al FOR)LTes ) + (L7 e ()L 2), (F.3.2)

where the function f was defined in Lemma Making use of this result, exploiting
the fact that the L.h.s. of (EE3J]) vanishes for |a| # |3| and setting |«| = |3] = k, we get

(Qla(Léz)"a* (L] é7)°Q)
= (Q|a(£jéi1,£) e a(‘ﬁ:—éik@') (£+e]1 y) (£+€way)Q)
= Z <£jéi1,f|ﬁjejal ) <£+euc :c|£+eyak,y>

oc€Sk

1 . . . .
= Z §(<£j€il,5\f(5w)£j€jal )+ (L5, glf(0w)Llés )

oSy
1 . . . .
S (Lt e AFGOLT i ) + (L, A f DL 6 ), (F33)

where the sum extends over all permutations of a k-element set. For any 0 < k < 1 there
holds cfe .= sup,, | f(w)el!"| < co. Consequently, we get

(Lreizlfow)Lré; | = (L5 é | f(dw)ellD em (" =Dlel” -‘“‘“£+é;y~>|

< eV e e e gl (F3a)
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Finally, we note that He £+

After this preparation we proceed to the proof of Lemma [E22.2
Proof of Lemma Exploiting the energy bounds (BE22) and the fact that

||w_% I = m~% in the massive theory, we obtain
1
* o o s(pl+y o o
p(a* (LrézalLrin))) < MEHT|QpL ) |QpL
1 o
< Mg(‘ﬁlﬂz‘)tfrz. (F.3.5)

Next, with the help of Lemma .37l we analyze the expressions F, 4 given by (E210),

Fo@le [ | lthten o)
a,pA =l = : .gﬁr.v — 157
1<i<j<M Q54,5 Va5 P45

a—N1B+13-1 Aea L A
. \/|a !~ I'Iﬁ kR Ig( 5)\a+IBlja+5, (F.3.6)
alp!

(9(8)i )aiﬁﬁf,j +oy +06;

where we made use of the estimate [[;; ;<) \a 1 < (21<2<J<M\ AP =lat|l. Alto-

gether, combining (EE3.H) and (EZ3.6]), we obtain from (E2TT) the bound (E2T12). O

We conclude this appendix with the proof of Lemma [F.2.3]

Proof of Lemma First, we estimate the norms of the functionals Tu ot + ﬁ

Making use of the bound stated in Lemma [EE2T] (b), and of the fact that (a + b+ )
3atbteglplel for any a,b, ¢ € Ny, which follows from the properties of the multinomial
coeflicients, we get

|l +lyl+é +]3 |
17y spll < 4EFEFEIEL f
- — —

o
< <(4\/§)Iul+v (it o) ><4f Jlal+13) g;ﬁ!), (F.3.7)

& +p)!

where we noted that |&| = |&| and @\ 16]. (See definitions (FZI3) and (FZI4)).

The factor /& !ﬁ! in this bound will be controlled by the factor \/&!3! appearing in the
denominator in (EEZT2)). We note the relevant estimate

>

I Tram!

12
12
e

i)'

(Zl<]<M 7> 042 )' (Zl<]<M Jj>i 1,

T1a~!

joN
jo)

a! i=1 (H1<j<M 7> z )' (H1<]<M 7> i,j)!

< M21§i<j§M(|ai,j‘+|ai,j‘) < ]\4\047 (F'g'g)

where we made use of the properties of the multinomial coefficients. Similarly, the factor
\/(p 4 v)! appearing in ([E37) will be counterbalanced by ,/ulv! extracted from the

denominator of (FE2ZI2). The relevant estimate relies on the property of the binomial

coefficients '
WAV,

7 (F.3.9)
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With the help of the last two bounds and relations (E212)), (E37) we obtain

(4 GME)\HH‘\Z\O
> IITWMBHHSE,M,BHs(Z v gt

v Be o
a8
(lal,16)#(0,0)
A a1 BB | A8l s
(Z 6+ a8+ 15 \.(4mg(5))|a|+ﬁta+ﬁ>, (F.3.10)
Y alp!
(1al,|5))#(0,0)

where we made use of the bound ([EE3.§)). The sum w.r.t. y,v can be easily estimated as
it factorizes into 4M independent sums: Let p be an ordinary multiindex, then

N

(Z (4y/6Mp) 1 £u+u>

!
v wr ©

< Z (4y/6 M) M f“) M

o~ (VBMp)* o~ [l )M
= <kzzo VE! u%::k ! tu)
=~ (4v/6Mg || TR\
< <kZ:0 7l > , (F.3.11)

where in the second step we made use of the fact that the multinomial coefficients are
greater than or equal to one and in the last step we used the multinomial formula (BI4).
Clearly, the last sum is convergent. (As a matter of fact it would suffice to consider

k < Mg, since Sg,z,o?,ﬁ’ given by formula (EZTT]), vanishes for |[u| > Mg or |v| > Mg).

As for the sum w.r.t. &, 3 on the r.h.s. of (E310), it suffices to study the case |aT| # 0.
Then it factorizes into four independent sums and we discuss here one of the factors

> vy e

A1
ol
at,|at|£0

A a+ —|—+ Oé+ !OA
= (4v3Mg(5)] (s a1 m) ot

o+ Jati0 O‘I2!"'O‘JJ\F/I—1,M!
o latsy! a1l ear
< Y (AVBM3g(9)T = e
ot Jat|£0 Q9 Xpr—1,M°
kT ’ajj“ooﬁr.
< Y I amBse)s Y el
k;ryZ"'“kXI—l,M Isi<jsM O‘:rj"ajj‘:k;tj I
Zl§i<j§]%ki+,j7é0
< Y @VBMRE)T KT (F.312)
ki‘jZ"“’kltffl,IVI

+
Zl§i<j§]% ki,ﬂéo
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In the second step we made use of the fact that

(|04T,2| +o |aJJ\r/1—1,M|)!

|af2|! e |O‘j\_/l—1,M|!

< M2(‘al+,2‘+"'+‘a]TJ—I,M|) (F313)

and in the last step we exploited the multinomial formula (BI4). The last expression on
the r.h.s. of (E3J2)) is a convergent geometric series for sufficiently large ¢ and it tends
to zero with § — oo, since lims_, o g(d) = 0. O
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Notational Conventions

Minkowski space notation: We work in Minkowski spacetime R**!. We use the
Minkowski metric 7, with signature (+,—,...,—). The Minkowski scalar product of two
———

S
four-vectors is given by p - x = p°z? — p¥, where pir' = > i piti.

Fourier transform: Consider the Schwartz-class functions f € S(R*™!), g € S(R®) and
h € S(R). (h is understood as a function of time). We define their Fourier transforms as
follows

~ s+1

i) = (2m) %
i) = (2m)° / )

0.0 e .
/ds+1£L' e —zpmf(mo’x)’

The Fourier transforms of distributions F' € S’ (I@SH), G € S'(R%) and H € S'(R) are

defined according to the relations F(f) = F(f), G(3) = G(g) and H(h) = H(h). In the

formal notation

F(p) = (2#)_% /ds+1x e_ipoxo"’iﬁfF(aco,f),

G(F) = (20)3 / &5z PG (),



Additional conditions:

Condition Reference

Condition A Page
Condition A’ Page
Condition Cy  Page B4
Condition C},  Page
Condition Cy  Page
Condition L()  Page
Condition Lgl) Page
Condition L  Page
Condition M Page
Condition Ny Page
Condition Ny  Page B4l
Condition R Page B1
Condition S Page
Condition T Page
Condition V' Page

Frequently used symbols:

Symbol Description Reference
|- |E2 Square-integrability seminorm on 2y, Page
|- e Integrability seminorm on () Page
Iy p-norm w.r.t. the norm || - || Page B3
- llp Norm on LP(R®) / p-norm of an operator on L?(R?, d*p) Page R1/Rdl
| - llz1,...2n  Special norms on £(7g, X) Page B4
| - lpazr,..eny p-norm w.r.t. the norm || - ||z, «x Page B4l
I N2 Sobolev norms Page BTl
[ -] Closure in L?(R®, d*p) Page
a*(p), a(p) Creation and annihilation operators of a mode p’ Page
a*(f),a(f) Creation and annihilation operators of a function f Page [[1]
A Observable A restricted to H(©) Page
A Algebra of local observables Page
2(d) Algebra of observables generated by derivatives of the free field Page
() Algebra of observables of the even part of free field theory acting Page
on H(©
() Algebra of observables of the even part of free field theory acting Page
on the (full) Fock space

A Global algebra of observables Page
QI(O) x-algebra of finite, linear combinations of Weyl operators Page
A(0) Local algebra attached to O Page
Ol Translation automorphisms Page

Translation automorphisms of free field theory restricted to H(®  Page



I'ns

LV, W)
LV xT, W)
LV xT, W)
L, LF
L?(R®, d°x)
L2(R?, d*z),;
Ly

I

M

Fourier transform of a local observable

Pure-point subspace of A

Continuous subspace of A

Continuous subspace of 2(O)

Absolutely continuous subspace of 2
Point-continuous subspace of 2

Space of integrable observables

N-linear forms on 24(QO)

Bounded operators on H

Functions appearing in the Taylor expansion of F*
Algebra of particle detectors

CN equipped with the supremum norm

Smooth, compactly supported functions on R?
Vectors of bounded energy

Subspace of finite particle vectors in Fock space
Subspace of vectors with Schwartz-class wavefunctions in Dg
Smooth functions supported in O,

Basis of J-invariant eigenvectors of T’

Field content

Field content of (AW, o, H)

Field content of (A, o, H(©)

Finite rank maps from Banach space V to W
Finite rank maps form V x I' to W

Special elements of (A(0O)*N)*

Canonical field and momentum

Wick powers of the fields ¢

Set of admissible configurations of bounded regions
Hamiltonian

Hilbert space

Even part of the Fock space

Approximate characteristic function of { '€ R® |w(p) < E}
Approximate characteristic function of O,
Functions appearing in the Taylor expansion of F*
Special functions from D(O,)

Isometric embedding 7(® «— T

Complex conjugation in L?(R?, d*z)

s-index

Linear maps from Banach space V' to W

Maps form V x I' to W, linear in the first argument
Maps form V' x I' to W, linear in the first argument
Special subspaces of L(R*, d*p)

Square-integrable functions on R?®

Sobolev space

Special subspaces/projections on L?(R?, d*p)

Pair of multiindices

Finite subset of pairs of multiindices

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page B

Page [[4
Page [T7
Page
Page [T7
Page
Page
Page
Page
Page B4
Page
Page
Page [1]
Page
Page
Page
Page
Page
Page
Page B4)/T09
Page
Page
Page
Page [
Page (6
Page B4
Page
Page
Page [1]
Page
Page
Page
Page [T0l
Page



R®

S(R?)

Sk

Se(0)
SEnN.s(O)
Spp(ags+1)
0

o
Ot =
S0

at,a—
YENS

e-content of a map/set

Open bounded region of R5+!

Double cone of radius r

Ball in R® of radius r

Vacuum state (or translationally invariant state)
Infrared order of A € 910
{ord(A)| A €A}

Special elements of 2A(O0)* ® (Cé\{lp
Ve

Poincaré group

Momentum operators

Spectral projection of H on {w € Ry |w < E'}

Particle content

Maps appearing in Condition Cy

Maps appearing in Lemma B2.T]

Map appearing in Condition C),

Spectral projection on the ball of radius r centered at r
Maps appearing in Condition Ny

Representation of A(®) in B(H(®)

Projection on vectors of energy below E in L?(R®, d*p)
(1+ H)~! / Parameter appearing in Lemma [A3.2
Map appearing in Theorem

Schwartz-class functions on R?

States from Tg

Special sets from the ranges of Ilg

Special sets from the ranges of X g n s

Arveson spectrum of B € 2 w.r.t. oy

Asymptotic functional approximants
Asymptotic functionals

Special functionals on A(O) in free field theory
Special functionals on A(O) in free field theory
Maps appearing in Condition Cj

Dimension of space

Suitable subset of N2

Operators appearing in expansion (BA20) of the map é E1

Operators appearing in expansion (B2.31) of the map O o

Trace-class operators on H

PrT Pg

Positive elements from 7g

Functionals of polynomially damped energy

P T P

Predual of B(H(®))

Functionals appearing in expansion (BX537) of the map O o
A\

Functionals appearing in expansion (BL20) of the map O ;
AN
Functionals appearing in expansion (BEJH) of the map ©p

Page E3/E9
Page
Page [[4
Page [[4
Page
Page
Page
Page
Page [T0l
Page
Page
Page [[4
Page
Page B4
Page
Page
Page BT
Page B4
Page
Page
Page 28/I1]
Page

Page [[4
Page
Page
Page [[4
Page
Page
Page
Page
Page

Page
Page
Page
Page [[4
Page [[4
Page [[4
Page
Page BT
Page
Page

Page
Page



TOO
T 4,Th+

Stress-energy tensor

Suitable nuclear operators on L?(R*, d*p)
(ITp4? + | T5,? + |Th s + [Th— )2
Eigenvalues of T

Map appearing in decomposition ([BE3) of O
Map appearing in decomposition (B3] of O

Map appearing in decomposition (BEIT) of O

Map appearing in decomposition (BETIT) of O
Unitary representation of translations in H
Weyl operator

Page
Page
Page
Page
Page
Page
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