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Introduction

Black holes are perhaps the most fascinating objects in Einstein’s general theory of relativ-
ity. The discovery of their properties initiated some of the most remarkable developments in
theoretical physics in the last thirty five years, by revealing unforseen connections between
otherwise distinct areas of physics, such as general relativity, quantum physics and statistical
mechanics.

Bekenstein [5] was the first to point out that there might exist a close relationship between
certain laws in black hole physics and the laws of thermodynamics. Hawking’s area theorem in
classical general relativity [12] asserts that the area of a black hole can never decrease in any
process. This result bears a resemblance to the second law of thermodynamics, which states
that the total entropy of a closed system can never decrease in any process. Furthermore,
Bekenstein proposed that the area of a black hole (times a constant of order unity in Planck
units) should be interpreted as its physical entropy. Shortly after that, this analogy was
reinforced by a systematical analysis by Bardeen, Carter, and Hawking [3]. They found a
mass variation formula for two nearby stationary black holes, which bears a resemblance to
the first law of thermodynamics. Furthermore, the authors found that the surface gravity κ of
a stationary black must be uniform over the event horizon. This result is very similar to the
zeroth law of thermodynamics.

However, within the classical framework these analogies must be considered to be formal
and of a pure mathematical nature. For instance, there is no physical relationship between the
surface gravity κ and the classical temperature of a black hole, since it is a perfect absorber.
Despite this difficulty, the analogy between the laws of thermodynamics and the laws of black
hole mechanics gained a deep physical significance, when Hawking discovered [14] that black
holes radiate all species of particles to infinity with a perfect black body spectrum at temper-
ature κ/2π. This result left little doubt that a suitable multiple of the area of a black hole
must represent the physical entropy of a black hole in general relativity.

Even though, general relativity is a physical theory which is experimentally confirmed to
a very high precision, we are still far from a theory which describes the quantum aspects of
the gravitational field. Many of the attempts to find such a theory consider modfications to
the Einstein theory. In particular, within the context of perturbative quantization of general
relativity [8], [26], [28], and the construction of an effective action for string theory [11], one
is naturally led to the consideration of gravitational actions, which involve higher derivative
terms. Of course, one can ask what the status of the laws of black hole mechanics in such
gravitational theories is. To study black hole thermodynamics in such generalized theories of
gravity might answer the question if the analogy between the ordinary laws of thermodynamics
and the laws governing the behaviour of a black hole is a peculiar accident of general relativ-
ity or a robust feature of all generally covariant theories of gravity or something in between.
Ultimately, the hope is that one can learn something about the possible nature of quantum
gravity from this analysis [19].

In this thesis want to study a theory of gravity whose gravitational Lagrangean contains,
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in addition to the Einstein-Hilbert term, an additional Ricci-tensor squared contribution. In
particular, we interested in the question if a second law can be established in such a theory.

This thesis is organized as follows. In part I, the basic results about black holes in gen-
eral relativity are summarized. We do this in oder to introduce the necessary terminology and
to fix our notation. Throughout this part we will always point out where the Einstein equa-
tions are used, such that it becomes transparent which features are peculiar to the Einstein
theory. Chapter 1 introduces the basic notions from global lorentzian geometry along with
some theorems about the properties of causal boundaries. This will be necessary in order to
understand the definition of a black hole properly. Chapter 2 presents the definition of asymp-
totically flat spacetimes which is motivated by a calculation how Minkowski spacetime can be
conformally embedded into the Einstein static universe. Chapter 3 is devoted to the geometry
of null hypersurfaces. Special emphasis is placed on the construction of a particulary useful
coordinate system (Gaussian null coordinates), which will be extensively used throughout this
thesis. Furthermore, we will be concerned with null congruences and the Raychaudhuri equa-
tion, which governs their dynamical evolution. This equation will be the key ingedient in the
proof of the area theorem. After a phenomenological introduction, the definition of a black
hole is presented in chapter 4. General properties of stationary and nonstationary black holes
will be discusssed and in particular a proof of the area theorem will be given. In chapter 5 we
briefly recall the laws of black hole mechanics according to Bardeen, Carter, and Hawking and
discuss their physical relevance.

Part II is devoted to higher derivative theories of gravity (HDTG) and the covariant phase
space formalism of Wald and Zoupas. After we have discussed the relevance of such HDTG,
we will present the particular theory which is investigated throughout this thesis in chapter 6.
Furthermore, the status of the laws of black hole mechanics in such HDTG will be summarized.
Chapter 7 is devoted to the covariant phase space formalism of Wald and Zoupas. A derivation
of the first law of black hole mechanics within this framework as well as a computation of the
black hole entropy in our HDTG will be presented. Chapter 8 summarizes the main results of
our own work. We will present two ideas for a proof of a second law of black hole mechanics
in the HDTG which we consider. In the first idea we will try to show that the rate of change
of the entropy in our HDTG is positive along the null geodesic generators of the horizon. This
idea is mainly based on the idea for the proof of the area theorem. The second idea for a proof
applies the Wald-Zoupas formalism to the event horizon of a black hole, in order to define
a “conserved quantity” on the horizon. This is done for the Einstein theory and the HDTG
which we consider.

The appendices cover the following topics. Appendix A summarizes the notations and
conventions which we use. Appendix B gives a list of the standard energy conditions in general
relativity. Appendix C summarizes some useful relations from tensor analysis. Appendix D
presents further details about GNC. The results for the Christoffel symbols are summarized
here, and we present additional useful relations which will be extensively used. Furthermore,
we prove that the null geodesic generators are hypersurface orthogonal and we show that the
uu-component of the Einstein equation (in GNC) corresponds to the Raychaudhuri equation,
if the null generators are affinely parametrized. These facts provide the main motivation for
the first idea for a proof. Besides this, we compute the pullback of a certain tensor field to a
horizon cross-section. This result will be needed in the last part of the analysis.
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Part I.

Black Holes in General Relativity
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1. Causal Structure of Spacetime

The causal structure of a Lorentzian manifold describes the causal relationships between points
in the manifold. These causal relations are interpreted as describing which events can influence
other events in the spacetime. In this section we will state the definitions and basic results
concerning such causal relationships. This “vocabulary” will be further needed to state the
definition of a black hole. For proofs of the theorems and propositions we refer the reader to
[29], [15] and [4].

1.1. Preliminaries

Let (M,gab) be a spacetime. At each p ∈M , the tangent space TpM is isomorphic to Minkowski
spacetime. As in special relativity, each lightcone, sitting inside TpM , has two connected
components which we arbitrarily label “future” and “past”. If such a choice can be made
in a continuous manner, as p varies over M , the spacetime is said to be time orientable. A
timelike or null vector lying in the “future/past half” of the light cone will be called future/past
directed. In the following we will only consider time orientable spacetimes. An important
property satisfied by every time orientable spacetime is expressed in the following

Proposition 1. Let (M,gab) be a time orientable spacetime. Then there exists a (nonunique)
smooth nonvanishing timelike vector field ta on M .

Conversely, if a continuous nonvanishing timelike vector field can be chosen, then (M,gab) is
time orientable.

Definition 1. A differentiable curve c : I →M is said to be

• timelike if its tangent vector is timelike for all s ∈ I

• null if its tangent vector is null for all s ∈ I

• spacelike if its tangent vector is spacelike for all s ∈ I

• causal( or non-spacelike) if it is timelike or null.

Definition 2. A causal curve is called

• future directed if, its tangent vector is future directed for all s ∈ I

• past directed if, its tangent vector is past directed for all s ∈ I.

Definition 3. Let c : I →M be a future directed causal curve. We say that p ∈M is a future
endpoint of c if for every open neighborhood O of p there exists a t0 such that c(t) ∈ O for all
t > t0. The curve c is said to be future inextendible if it has no future endpoint.

Past inextendibility is defined similary.

9



1. Causal Structure of Spacetime

1.2. Futures and Pasts

Now we will introduce two types of causal relations between spactime points.

Definition 4. Let p, q ∈M , then we say that

• p chronologically precedes q, denoted p ≺≺ q, if there exists a future directed timelike
curve c : [a, b] →M with c(a) = p and c(b) = q

• p causally precedes q, denoted p ≺ q, if there exists a future directed causal curve
c : [a, b] →M with c(a) = p and c(b) = q.

These relations are transitive, i.e.

• p ≺≺ q, q ≺≺ r implies p ≺≺ r

• p ≺ q, q ≺ r implies p ≺ r

and the following implications hold:

• p ≺≺ q implies p ≺ q

• p ≺≺ q, q ≺ r implies p ≺≺ r

• p ≺ q, q ≺≺ r implies p ≺≺ r.

Definition 5. For p ∈M we define

• the chronological future of p, denoted I+(p), as the set of all points q ∈ M such that p
chronologically precedes q, i.e.

I+(p) = {q ∈M | p ≺≺ q} (1.2.1)

• the chronological past of p, denoted I−(p), as the set of all points q ∈ M such that q
chronologically precedes p, i.e.

I−(p) = {q ∈M | q ≺≺ p} (1.2.2)

• the causal future of p, denoted J+(p), as the set of all points q ∈M such that p causally
precedes q, i.e.

J+(p) = {q ∈M | p ≺ q} (1.2.3)

• the causal future of p, denoted J−(p), as the set of all points q ∈M such that q causally
precedes p, i.e.

J−(p) = {q ∈M | q ≺ p}. (1.2.4)

The sets I+(p), I−(p), J+(p), J−(p) for all p ∈M are collectively called the causal structure of
M .

Definition 6. For any subset S ⊂M , we define

I±(S) =
⋃

p∈S

I±(p), J±(S) =
⋃

p∈S

J±(p). (1.2.5)
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1.2. Futures and Pasts

As we see, the sets I+(S) and J+(S) represent events that could be influenced by a set S of
events.

From the properties of the relations ≺≺ and ≺ we mentioned above clearly follows for any
p, q ∈M and S ⊂M

• p ∈ I−(q) ⇔ q ∈ I+(p)

• p ≺ q ⇒ I−(p) ⊂ I−(q)

• p ≺ q ⇒ I+(q) ⊂ I+(p)

• I+(S) = I+(I+(S)) ⊂ J+(S) = J+(J+(S))

• I−(S) = I−(I−(S)) ⊂ J−(S) = J−(J−(S)).

Furthermore we have the following important property:

Proposition 2. If q ∈ J+(p)\I+(p) with q 6= p, then there exists a future directed null geodesic
from p to q.

Note that if p is a point in Minkowski spacetime (R4, ηab), then I+(p) is open, J+(p) is closed
and ∂J+(p) = J+(p) \ I+(p) is just the future null cone at p. I+(p) consists of all points
inside the future null cone, and J+(p) consists of all points on and inside the future null cone.
However, this picture can drastically change when curvature and topology come into play. For
instance, if p is a point in a generic spacetime, then J+(p) does not need to be closed anymore,
i.e. J+(p) 6= I+(p) in general.

Although the situation is more complicated in curved spacetimes, the following properties
are still valid for all p ∈M and S ⊂M :

• I±(p) is open

• I±(S) is open

• int(J±(S)) = I+(S)

• J±(S) ⊂ I±(S)

Note that from the above properties follows in particular ∂J±(S) = ∂I±(S).

In section 4.3 we will define the event horizon of a black hole as the boundary of the causal
past of a certain region in spacetime. The next theorem assures that this surface is in a certain
sense “well behaved”.

Definition 7. A subset S ⊂ M is called achronal if there do not exist p, q ∈ S such that
q ∈ I+(p), i.e., if I+(S) ∩ S = ∅.

Theorem 1. Let (M,gab) a time orientable spacetime, and let S ⊂ M . Then ∂I±(S) (if
nonempty) is an achronal, 3-dimensional, embedded, C0-submanifold of M .

Furthermore, causal boundaries are generated by inextendible null geodesics:

Theorem 2. Let C be a closed subset of the spacetime manifold M . Then every point p ∈
∂I+(C) with p /∈ C lies on a null geodesic γ which lies entirely in ∂I+(C) and either is past
inextentible or has a past endpoint on C.

A similar statement holds for points p ∈ ∂I−(C) with “past” replaced by “future” in the above
theorem

11



1. Causal Structure of Spacetime

1.3. Causality Conditions

The Einstein equation admits solutions which contain closed causal curves. It is generally
believed that such spacetimes are not physically realistic. If we consider a spacetime where
causal curves exist which come arbitrarily close to intersecting themselves, an arbitrarily small
perturbation of the spacetime metric could cause again causality violations. These spacetimes
seem also physically unreasonable. The following two definition give conditions that assure
that such a pathological, acausal behavior does not occur.

Definition 8. A spacetime (M,gab) is called strongly causal if for all p ∈ M and every
neighborhood O of p, there exists a neighborhood V of p contained in O such that no causal
curve intersects V more than once.

A useful consequence of strong causality is expressed in the following lemma:

Lemma 1. Let (M,gab) be strongly causal and K ⊂ M compact. Then every causal curve γ
confined within K must have past and future endpoints in K.

There are certain examples of spacetimes which, even though they are strongly causal, are “on
the verge” of displaying bad causal behavior in the sense that a small modification of gab in
an arbitrarily small neighborhood of some point would cause causal curves to become closed.
The following definition of “stably causal” spacetimes imposes stronger conditions, such that
these causal pathologies are ruled out.

Definition 9. A spacetime (M,gab) is said to be stably causal if there exists a continuous
nonvanishing timelike vector field ta such that the spacetime (M, ḡab), with ḡab = gab − tatb,
possesses no closed timelike curves.

The following theorem shows that stable causality is equivalent to the existence of a “global
time function”.

Theorem 3. A spacetime (M,gab) is stably causal if and only if there exists a differentiable
function f on M such that ∇af is a past directed timelike vector field.

As a corollary, we have:

Corollary 1. Stable causality implies strong causality.

1.4. Domain of Dependence, Global Hyperbolicity

The notion of global hyperbolicity is of fundamental importance in general relativity, since
spacetimes with this property admit a well posed initial value formulation.

Definition 10. Let S ⊂ M be closed and achronal. We define the edge of S as the set of
points p ∈ S, such that every open neighborhood O of p contains a point q ∈ I+(p), a point
r ∈ I−(p) and a timelike curve c : [a, b] → M with c(a) = r and c(b) = q which does not
intersect S.

Proposition 3. Let S be a (nonempty) closed, achronal set with edge(S) = ∅. Then S is a
3-dimensional, embedded, C0-submanifold of M .

12



1.4. Domain of Dependence, Global Hyperbolicity

Definition 11. Let S be a closed, achronal set (possibly with edge). We define the future
domain of dependence of S, denoted D+(S), by

D+(S) = {p ∈ S | every past inextendible causal curve through p intersects S} (1.4.1)

The past domain of dependence of S, denoted D−(S), is defined by interchanging “future” and
“past” in (1.4.1). The domain of dependence of S, denoted D(S), is defined as

D(S) = D+(S) ∪D−(S). (1.4.2)

Definition 12. A closed, achronal set Σ for which D(Σ) = M is called Cauchy surface.

Since Cauchy surfaces Σ are achronal, we may think of Σ as representing an “instant of time”
throughout the universe.

Definition 13. A spacetime (M,gab) which possesses a Cauchy surface Σ is said to be globally
hyperbolic.

A few basic consequences of global hyperbolicity are the following:

Proposition 4. Let (M,gab) be a globally hyperbolic spacetime. Then,

1. The sets J±(A) are closed, for all compact A ⊂M .

2. The sets J±(A) ∩ J±(B) are compact, for all compact A,B ⊂M .

Furthermore, we have the important property:

Theorem 4. Let (M,gab) be a globally hyperbolic spacetime. Then (M,gab) is stably causal.
Furthermore, a global time function, f , can be chosen such that each surface of constant f is
a Cauchy surface. Thus M can be foliated by Cauchy surfaces and the topology of M is R×Σ,
where Σ denotes any Cauchy surface.
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2. Conformal Infinity

In order to give a precise definition of a black hole, we need a concept of spacetimes that repre-
sent ideally isolated systems. Such systems are represented in general relativity by asymptot-
ically flat spacetimes. Intuitively, such spacetimes have the property that the metric becomes
flat at large distances from the source.

The notion of asymptotic flatness was first introduced by Penrose [23], [24] at “null infinity”,
i.e. as one goes to large distances along null geodesics. Seperately, Geroch [10] gave a definition
of asymptotic flatness at “spatial infinity”, which was based on earlier work of Arnowitt, Deser
and Misner [1]. These two notions were combined into a single notion by Ashtekar and Hansen
[2], and in the following we will follow their approach.

The key idea is to use a conformal transformation to bring “infinity” to a “finite distance”,
or more precisely, to attach suitable boundaries , which represent “points at infinity”. This
procedure has several advantages: Instead of imposing certain falloff conditions on the space-
time metric in a particular coordinate system, this notion is manifestly coordinate independent.
Within this framework it is also possible to define quantities such as the total energy of a space-
time. Furthermore, this technique enables us to represent an entire spacetime in a compact
region in a way that preserves the causal structure.

Note that the following exposition will be mainly based on [29].

2.1. Conformal Embedding of Minkowski Spacetime into the

Einstein Static Universe

In order to illustrate the key idea, we will consider first of all Minkowski space (R4, ηab). In
spherical coordinates {t, r, θ, ϕ} the metric of Minkowski spacetime is given by

ds2 = −dt2 + dr2 + r2dσ2, (2.1.1)

where dσ2 = dθ2+sin2 θdϕ2 is the standard metric on the 2-sphere S
2. We want to analyze the

form of the metric “far out”, i.e. for large lightlike distances, so it is convenient to introduce
the advanced and retarded null coordinates

u = t+ r, v = t− r. (2.1.2)

In coordinates {u, v, θ, ϕ} the Minkowski metric is given by

ds2 = −dudv +
1

4
(v − u)2(dθ2 + sin2 θdϕ2). (2.1.3)

15



2. Conformal Infinity

Figure 2.1.: Spacetime diagram of the Einstein static universe. Minkowski spacetime is iso-
metric to the shaded region O = I+(i−) ∩ I−(i+). The (attached) boundary of O
defines a precise notion of “infinity” for Minkowski spacetime.

In order to bring “null infinity”(|u|, |v| → ∞) to a finite place in our spacetime, we consider
the following coordinate transformations1

V = T +R = tan−1 v, U = T −R = tan−1 u, (2.1.4)

where T and R have ranges restricted by the inequalities

− π < T +R < π, −π < T −R < π, R ≥ 0. (2.1.5)

In the coordinates {T,R, θ, ϕ} the Minkowski metric is given by

ds2 = Ω−2

[
−dT 2 + dR2 + sin2R(dθ2 + sin2 θdϕ2)

]
=: Ω−2ds̃2 (2.1.6)

with

Ω2 =
4

(1 + v2)(1 + u2)
. (2.1.7)

Note that ds̃2 is the natural Lorentz metric on the manifold S
3 × R, known as Einstein static

universe.

Thus, we have found the following result: There exists a conformal isometry2 of Minkowski
spacetime (R4, ηab) into the open region O of the Einstein static universe (S3 × R, g̃ab) given
by the coordinate restrictions (2.1.5).

Definition 14. Conformal infinity of Minkowski spacetime is defined as the boundary, ∂O, of
O in the Einstein static universe as illustrated in Figure 2.1. This boundary can be devided
into five parts

1This transformation is similar to the stereographic projection of the real line to the unit circle.
2A conformal isometry of (M, gab) into (M ′, g′ab) is a diffeomorphism ψ : M → M ′ such that (ψ∗g)ab = Ω2g′ab.
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2.2. Asymptotically Flat Spacetimes

Figure 2.2.: (a) The shaded region of Figure 2.1 with only one spatial coordinate suppressed.
(b) The Penrose diagram of Minkowski spacetime; each point represents a two-
sphere, except for i+, i− and i0, each of which is a single point, and points on the
line r = 0.

• i+ = future timelike infinity (given by R = 0, T = π)

• i− = past timelike infinity (given by R = 0, T = −π)

• i0 = spatial infinity (given by R = π, T = 0)

• I + = future null infinity (given by T = π −R for 0 < R < π)

• I − = past null infinity (given by T = −π +R for 0 < R < π)

Remark 1. All timelike geodesics of Minkowski spacetime begin at i− and end at i+, all
spacelike geodesics begin and end at i0, and all null geodesics begin at I − and end at I +.

Since it can be quite difficult to draw spacetime diagrams on Ō as in Figure 2.1, and since
two spatial dimensions are suppresed in this diagram, one often represents Ō as two null
cones joined at their base as illustrated in Figure 2.2a. But this representation is somehow
misleading, since i0 is represented as a two-sphere rather than a point. One can also draw
such spacetime diagrams as in Figure 2.2b known as Penrose diagrams, which still reflect the
qualitative, causal structure of the spacetime.

2.2. Asymptotically Flat Spacetimes

Taking this construction of conformal infinity for Minkowski spacetime as a motivation, we
will now turn to the definition of asymptotic flatness for arbitrary spacetimes. We would
like to define a generic spacetime to be asymptotically flat if a similar construction, as in
the Minkowski case, is possible. Therefore, we need to find a conformal isometry to map our
physical spacetime (M,gab) into an “unphysical spacetime” (M̃ , g̃ab). Then, the boundary of
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2. Conformal Infinity

the image of the physical spacetime under the conformal isometry would give us again a precise
notion of infinity.

However, there are two important modifications which have to be made in order to include
physically interesting spacetimes into the notion of asymptotic flatness. First, we do not im-
pose any requirements on the presence of the points i+ and i−, since we would also like to
describe isolated bodies which are present at early and late times. Second, although we require
g̃ab to become flat at i0, smoothness or even differentiability is too strong a requirement (see
[29] for details).

Before we state the definition of asymptotic flatness for curved spacetimes we still need some
technical definitions. Let {xµ, µ = 1, . . . , 4} be a smooth coordinate system at i0. We define
the “radial function” ρ by

ρ2 =
4∑

µ=1

(xµ)2 (2.2.1)

and the angular functions φα, (α = 1, . . . , 4) by the same formulas which are used to define
the 3-sphere coordinates in 4-dimensional Euclidean space.

Definition 15. A function f : M → R is said to have a regular direction-dependent limit at
i0 if the following three properties are satisfied:

1. For each C1 curve γ ending at i0, the limit of f along γ exists at i0. Furthermore the value
of limit only depends on the tangent directions of γ at i0. We define F (φα) = limi0 f ,
where the limit is taken along a curve whose tangent direction at i0 is characterized by
φα.

2. F is a smooth function on the 3-sphere.

3. Along every C1 curve ending at i0, we have for all n ≥ 1

lim
i0

∂nf

∂φn
=
∂nF

∂φn
, lim

i0
ρn∂

nf

∂ρn
= 0. (2.2.2)

(Here ∂n/∂φn denotes the n-th partial derivative with respect to φα, where it is under-
stood that the same partial derivative occurs on both sides of the equation.)

Definition 16. g̃ab is said to be of class C>0 iff

1. g̃ab is continuous at i0 and

2. all the first partial derivatives of the components of g̃ab in a smooth chart covering i0

have regular direction-dependent limits at i0.

Now we can state the definition of asymptotically flat curved spacetimes according to Ashtekar
and Hansen [2].

Definition 17. A vacuum spacetime (M,gab) is called asymptotically flat at null and spatial
infinity (or asymptotically flat for short) if there exists a spacetime (M̃ , g̃ab) - with g̃ab being
C∞ everywhere except possibly at a point i0 where it is C>0 - and a conformal isometry
ψ : M → ψ[M ] ⊂ M̃ with conformal factor Ω (so that g̃ab = Ω2(ψ∗g)ab in ψ[M ]) with the
following conditions:
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2.2. Asymptotically Flat Spacetimes

1. J+(i0) ∪ J−(i0) = M̃ \M . (Here and in the following we write M instead of ψ[M ] for
notational simplicity.) Thus i0 is spacelike related to all points in M and the boundary,
∂M , of M consists of the union of i0, I + = ∂J+(i0) \ i0 and I − = ∂J−(i0) \ i0.

2. There exists an open neighborhood V of ∂M = i0 ∪ I + ∪ I + such that the spacetime
(V, g̃ab) is strongly causal.

3. Ω can be extended to a function on all of M̃ which is C2 at i0 and C∞ elsewhere.

4. a) On I + and I − we have Ω = 0 and ∇̃aΩ 6= 0. (Here ∇̃a is the derivative operator
associated with g̃ab).

b) We have Ω(i0) = 0, limi0 ∇̃aΩ = 0, and limi0 ∇̃a∇̃bΩ = 2g̃ab(i
0). (We take limits at

i0 since g̃ab need not be C1 there, and thus ∇̃a need not be defined at i0.)

5. a) The map of null directions at i0 into the space of integral curves of na = g̃ab∇̃bΩ
on I + and I + is a diffeomorphism.

b) For a smooth function ω on M̃ \ i0 with ω > 0 on M ∪ I + ∪ I − which satisfies
∇̃a(ω

4na) = 0 on I + ∪ I −, the vector field ω−1na is complete on I + ∪ I −.

Remark 2. Note that since M and ψ[M ] are conformally isometric, they are in particular
diffeomorphic. In general relativity, spacetimes which differ only by a diffeomorphism are
identified as representing the same physical spacetime.3 This is why we wrote M instead of
ψ[M ] in the above definition.

Remark 3. According to the above definition we have M̃ = ψ[M ] ∪ I + ∪ I − ∪ i0 with
ψ[M ] = int(M̃). Since M and ψ[M ] represent the same spacetime we will think of M being
embedded into M̃ in the same way as ψ[M ] is embedded into M̃ . Having this in mind, the
physical and unphysical metric are related by g̃ab = Ω2(ι∗g)ab, where ι : M̃ →֒ M is the
inclusion map, i.e. we can think of g̃ab as an extension of gab. For notational simiplicity we
omit the pullback of the inclusion map in the following.

Remark 4. Note that the causal structure is preseved as we proceed from the physical to the
unphysical spacetime, i.e. timelike, null and and spacelike vector remain timelike, null and
spacelike respectively under the conformal isometry. This follows from the fact that g̃ab and
gab differ only by multiplication with a positive function, i.e. g̃ab = Ω2gab.

Remark 5. The association of an unphysical spacetime (M̃, g̃ab) to an asymptotically flat
physical spacetime (M,gab) is essentially arbitrary. If (M̃, g̃ab) is an unphysical spacetime
satisfying the properties of the definition with conformal factor Ω, then so is (M̃ , ω2g̃ab) with
conformal factor ωΩ, provided only that the function ω is strictly positive, is smooth every-
where except possibly at i0, is C>0, and satisfies ω(i0) = 1. Thus, there is considerable gauge
freedom in the choice of the unphysical metric.

Remark 6. The definition of asymptotic flatness did not make any reference to a particular
field equation. Therefore, it is also possible to use this definition to define such spacetimes in
alternative theories of gravity, such as higher derivative theories of gravity. In particular, in
the HDTG which we consider later on, it is assured that asymptotically flat solutions exist
(see section 6.2).

3This means that a solution of the Einstein equation actually corresponds to an equivalence class of spacetimes,
where spacetimes are identified if they differ by a diffeomorphism.
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3. Null Geometry

After we have introduced the notion of a hypersurface of a manifold, we will derive a formula
for the induced metric on a timelike, spacelike and null hypersurface. Furthermore, we will
construct an adapted coordinate system in a neighborhood of non-null and null hypersurfaces,
which will prove to be useful in subsequent calculations. Special emphasis will be placed on
null congruences and the Raychaudhuri equation, which is the essential tool in the proof of
the area theorem.

3.1. Geometry of Null Hypersurfaces

Consider two (topological) manifolds M and S with dimS = r < n = dimM and let
φ : S → M be a map. If φ is locally one-to-one, i.e. for each q ∈ S there exists a
neighborhood O such that φ|O is one-to-one, and φ−1 : φ(O) → S is smooth, then φ(S )
is said to be an immersed submanifold of M . If in addition, φ is globally one-to-one, then
φ(S ) is said to be an embedded submanifold of M . An embedded submanifold of dimension
n− 1 is called a hypersurface.

Let S be a hypersurface of a spacetime (M,gab) and let p ∈ S. Each tangent space TpS
can be naturally viewed as a 3-dimensional subspace of TpM . Thus, there exists a vector
ξa ∈ TpM , unique up to scaling, which is orthogonal (with respect to gab) to each vector in
TpS. The corresponding vector field ξa is said to be the normal of S. The hypersurface S is
said to be spacelike (timelike, null), if ξa is timelike (spacelike, null). If S is spacelike (time-
like), S is a Riemannian (Lorentzian) manifold with respect to the induced metric hab, i.e. gab

restricted to tangent vectors of S. On the other hand, if S is null, then the induced metric is
degenerate, and so does not define a pseudo-Riemannian metric on S. Despite this difficulty,
null hypersurfaces are important in general relativity, since they represent horizons of various
sorts, in particular the event horion of a black hole.

Consider now a smooth null hypersurface N of a spacetime (M,gab). As we mentioned before,
N is a co-dimension one submanifold of M , such that gab : TpN × TpN → R is degenerate.
The normal vector field ka of N has the following properties:

• ka is null and can be chosen future directed,

• [ka]⊥ = TpN ,

• every vector in TpN is either a multiple of ka or spacelike.

Note that ka is smooth if N is smooth. The following fact is fundamental.

Proposition 5. Let N be a smooth null hypersurface and let ka be a smooth future directed null
vector field on N . Then the (affinely parameterized) integral curves of ka are null geodesics.
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3. Null Geometry

Proof. It suffices to show kb∇bk
a = cka with c ∈ R. (In the affine parametrization the geodesic

equation follows.) To show this, it suffices to show that at each p ∈ S we have kb∇bk
a ⊥ TpS,

i.e. gab(k
c∇ck

a)Xb = 0 for all Xa ∈ TpS.

We can extend each Xa, by making it invariant under the flow generated by ka, i.e. we have

LkX
a = [k,X]a = kb∇bX

a −Xb∇bk
a = 0.

Clearly we have gabk
aXb = kaX

a = 0. Differentiation yields

0 = kb∇b(kaX
a) = (kb∇bka)X

a + (kb∇bX
a)ka,

and hence

(kb∇bk
a)Xa = −(kb∇bX

a)ka = −(Xb∇bk
a)ka = −1

2
Xb∇b(k

aka) = 0

Remark 7. In the following we will refer to the integral curves of the vector field ka as null
geodesic generators.

Given the spacetime metric gab, we will now construct the induced metric hab on a hyper-
surface S by restricting the action of gab to tangent vectors of S. Consider first of all the case
where S is either timelike or spacelike.

Non-null case: Let S ⊂M be a timelike hypersurface of M with unit normal vector field ξa.
As we said before, each TpS can be thought of as a subspace of TpM . In each tangent space,
we can define a projection P which maps vectors Xa ∈ TpM onto the orthogonal complement
of ξa. Then, the induced metric hab : TpS × TpS → R on S can be defined by

habX
aY b := gab(PX)a(PY )b, ∀Xa, Y a ∈ TpM. (3.1.1)

For the construction of hab the following properties will be essential:

(i) gabξ
a(PX)b = 0, for all Xa ∈ TpM

(ii) (P 2X)a = (PX)a, for all Xa ∈ TpM

(iii) gabX
a(PY )b = gab(PX)aY b, for all Xa, Y a ∈ TpM .

Properties (i) and (ii) are evident. In order to see that property (iii) holds, consider some
Xa ∈ TpS and Y a ∈ TpM . We have

gabX
a(PY )b = gab(PX)a(PY )b = gab(PY )a(PX)b, (3.1.2)

since Xa remains unchanged under the projection P and gab is symmetric. By interchanging
Xa and Y b we find property (iii). For a timelike hypersurface S, the projector P = P (t) is
given by

(P (t)X)a = Xa − ξagbcξ
bXc. (3.1.3)
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3.1. Geometry of Null Hypersurfaces

Insertion of (3.1.3) into (3.1.1) yields

h
(t)
abX

aY b = gab(P
(t)X)a(P (t)Y )b = gab(P

(t)X)aY b = gab[X
a − ξagcdξ

cXd]Y b

= gabX
aY b − gabξ

aY bgcdξ
cXd = [gab − ξaξb]X

aY b,
(3.1.4)

where we used properties (i)-(iii) from above. As we see, the induced metric on a timelike
hypersurface is given by

h
(t)
ab = gab − ξaξb. (3.1.5)

If S is a spacelike hypersurface, then P = P (s) is given by

(P (s)X)a = Xa + ξagbcξ
bXc. (3.1.6)

A similar calculation as in the timelike case yields

h
(s)
ab = gab + ξaξb (3.1.7)

for the induced metric on a spacelike hypersurface.

Null case: Let N be a smooth null hypersurface in (M,gab). If we restrict the metric gab to
tangent vectors of N , the induced metric will be in general degenerate, i.e. gabX

aY a = 0 for
all Xa does not necessarily imply Y a = 0. This property stems from the fact that the normal
vector ka of N is contained in TpN , but is also orthogonal to every vector in TpN . Due to
this fact, it is not possible to define a unique projector onto the whole tangent space of a null
hypersurface.1

However, we can overcome this difficulty by selecting an auxiliary null vector field la, nor-
malized such that lak

a = 1. Then we can define a projector

(P (n)X)a = Xa − lagbck
bXc − kagbcl

bXc, (3.1.8)

which satisfies properties (i)-(iii) as in the non-null case. Since we have (P (n)k)a = (P (n)l)a =
0, the image of P (n) is a 2-dimensional subspace of TpM which corresponds to the set of vectors

which are orthogonal to both ka and la. In the following, we will refer to this subspace as T̂pN .
Again, by inserting (3.1.8) into (3.1.1) we obtain the following form for the induced metric

µab := h
(n)
ab = gab − lakb − kalb, (3.1.9)

which corresponds to the metric on the (Riemannian) submanifold, specified by the two (nor-
mal) vector fields ka and la. Note that the conditions lal

a = 0 and lak
a = 1 do not determine

la uniquely. Thus, (3.1.9) is not unique. However, as we shall see in the next paragraph,
quantities of interest, like the expansion of a congruence, are the same for all choices of the
auxiliary null vector field.

The inverse of hab (either in the non-null or null case) will be denoted by hab = (hab)
−1,

satisfying habhbc = δa
c. Note that the projection operator P is given in terms of the induced

metric by ha
c = habgbc.

1From this follows in particular that it is not possible to define a Levi-Civita connection on a null hypersurface.
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3. Null Geometry

3.2. Gaussian Null Coordinates (GNC)

In this section, we will present the construction of a special coordinate system, known as Gaus-
sian null coordinates. In order to illustrate the essential idea, we will consider first of all the
case where S is a non-null hypersurface. In this case, the constructed coordinate system will
be referred to as Gaussian normal coordinates.

Gaussian normal coordinates are defined for any non-null hypersurface S with normal vec-
tor field ξa in the following way: For each p ∈ S we can construct a unique geodesic through p
with tangent vector ξa. On (a portion of) the hypersurface S we choose arbitrary coordinates
{x1, x2, x3}. Each point in a neighbourhood of (that portion of) S may be labeled by the
parameter t along the geodesic on which it lies and the coordinates {x1, x2, x3} of the point
p ∈ S from which the geodesic emanated. Thus, we have constructed a chart p 7→ {t, x1, x2, x3}
in a (sufficiently small) neighbourhood of S as we wished to do.

If S is a spacelike hypersurface, the spacetime metric may be written (in a neighborhood of
S) as

ds2 = −dt2 + hABdxAdxB (3.2.1)

in the coordinate system {t, x1, x2, x3}, with A,B = 1, 2, 3. Here, (hAB) is a symmetric, posi-
tive definite 3×3 matrix which corresponds to the induced metric on the hypersurface S. The
metric takes the special form (3.2.1), since we have gtt = −1 due to the normalization of the
vector field ξa = (∂/∂t)a. Furthermore we have gtA = 0, since ξa is orthogonal to any tangent
vector (∂/∂xA)a of the hypersurface S.

Now, we will proceed with the construction of such an adapted coordinate system in the
case where S is a null hypersurface. The following exposition will be largely based on [9].

Let (M,gab) be a spacetime, let N be a smooth null hypersurface and let ζ ⊂ N be a
smooth spacelike 2-dimensional submanifold. On an open subset ζ̃ of ζ, we choose arbitrary
coordinates {x1, x2}. On a neighbourhood of ζ̃ in N , let ka be a smooth nonvanishing normal
vector field on N , such that the integral curves of ka coincide with the null geodesic generators
of N . Without loss of generality we choose ka to be future directed. On an open neighbourhood
R of ζ̃ × {0} in ζ̃ × R, let ψ : R → N be the map which takes each (q, u) into the point in N
lying at parameter value u of the integral curve of ka starting at q. Then, ψ is C∞. From the
inverse function theorem follows that ψ is one-to-one and onto from an open neighbourhood of
ζ̃×{0} onto an open neighbourhood Ñ of ζ̃ in N . The functions x1, x2 can be extended from ζ̃
to Ñ , by keeping their values constant along the integral curves of ka. Then, {u, x1, . . . , xn−2}
is a coordinate system on Ñ . At each p ∈ Ñ , let la be the unique null vector field, satisfying
laka = 1 and laXa = 0 for vectors Xa which are tangent to Ñ and satisfy Xa∇au = 0. On an
open neighbourhood Q of Ñ × {0} in Ñ × R, let Ψ : Q → M be the map which takes each
(p, r) into the point in M lying at parameter value r of the integral curve of la starting at
p. Then, Ψ is C∞. From the inverse function theorem follows that Ψ is one-to-one and onto
from an open neighbourhood of Ñ × {0} onto an open neighbourhood, O, of Ñ in M . The
functions u, x1, x2 can be extended from Ñ to O, by keeping their values constant along the
integral curves of la. Then, {u, r, x1, x2} is a coordinate system of O, which will be referred
to as Gaussian null coordinates. Note that on Ñ we have ka = (∂/∂u). By construction the
vector field la = (∂/∂r) is tangent to null geodesics in O, hence we have grr = 0. Furthermore
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3.3. Null Congruences

we have

gru = gabl
akb = 1 (3.2.2)

grA = gabl
a(∂/∂xA)b = 0 (3.2.3)

for all A = 1, 2 throughout O and

guu = gabk
akb = 0 (3.2.4)

guA = gabk
a(∂/∂xA)b = 0 (3.2.5)

for all A = 1, 2 throughout Ñ . From this follows that, within O, there exist smooth functions α
and βA, with α|Ñ = (∂guu/∂r)|r=0 and βA|Ñ = (∂guA/∂r)|r=0 such that the spacetime metric
in O takes the form

gµνdxµdxν = dudr + drdu− 2rαdu2 − rβAdudxA − rβAdxAdu+ µABdxAdxB, (3.2.6)

where the µABdxAdxB is a 2-dimensional Riemannian metric. Note that in the coordinate
system {u, r, xA} the null hypersurface N is specified by r = 0. Using the abstract index
notation, we can rewrite (3.2.6) as

gab = 2

[
(dr)(a(du)b) − rα(du)(a(du)b) − rβA(dxA)(a(du)b)

]
+ µAB(dxA)(a(dx

B)b). (3.2.7)

The construction of this coordinate system is of a very general nature, in the sense that we
can construct such coordinates in a neighborhood of any null hypersurface - in particular the
event horizon of a black hole (see figure 4.3).

In appendix D.4 we will prove α = O(r), i.e. the function α vanishes on the null hypersurface
N . Hence, we can make the replacement α → rα, such that in the region O the metric takes
the following form

gab = 2

[
(dr)(a(du)b) − r2α(du)(a(du)b) − rβA(dxA)(a(du)b)

]
+ µAB(dxA)(a(dx

B)b). (3.2.8)

In the region O, the inverse metric takes the form

gab = 2

[
(∂u)(a(∂r)

b) + rβA(∂A)(a(∂r)
b)

]
+ r2[β2 + 2α](∂r)

(a(∂r)
b) + µAB(∂A)(a(∂B)b), (3.2.9)

where we introduced the shorthand notation

(∂u)a :=

(
∂

∂u

)a

, (∂r)
a :=

(
∂

∂r

)a

, (∂A)a :=

(
∂

∂xA

)a

, (3.2.10)

and we defined βA := µABβB , β2 := βAβA.

3.3. Null Congruences

Consider a spacetime (M,gab) and some open subset O ⊂ M . A congruence in O is a family
of curves γs, such that through every p ∈ O there passes one and only one curve in this family.
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3. Null Geometry

The tangents to a congruence yield a vector field in O and conversely, every continuous vector
field generates a congruence of curves. The congruence (s, t) 7→ γs(t) is said to be smooth, if
the associated vector field is smooth.

Consider now a smooth congruence of null geodesics in a spacetime region O. We assume
that the geodesics are affinely parametrized, with affine parameter u, i.e. the associated vector
field ka satisfies

kak
a = 0, ka∇ak

b = 0. (3.3.1)

By choosing the parameters s, u as coordinates on the 2-dimensional submanifold, which is
spanned by the curves γs, we may write ka = (∂/∂u)a. Furthermore, the congruence gives
rise to a “deviation vector field” ηa which may be written as ηa = (∂/∂s)a in this coordinate
system. The vector ηa represents the displacement to an infinitesimal nearby geodesic. Note
that since ka and ηa are coordinate vector field, they commute2:

[k, η]a = kb∇bη
a − ηb∇bk

a = Lkη
a = 0. (3.3.2)

In the following we are interested in how the congruence evolves with “time”, i.e. we want to
study if the individual geodesics start “winding around” each other or if the congruence starts
to develope “focal points”. In order to do so, we need to study the behavior of the deviation
vector as a function of the affine parameter along some reference geodesic.

Since ηa is only supposed to represent the separation of two neighbouring curves, not the
separation of particular points on these curves, there is an ambiguity in the specification of
the deviation vector: ηa and η′a = ηa + cka respresent a displacement to the same geodesic,
for some constant c ∈ R. Thus, one is only interested in the equivalence class of deviation
vectors, where vectors are said to be equivalent if they differ by a multiple of ka.

In order to illustrate this problem, let us consider the case of a smooth congruence of timelike
geodesics, with associated unit tangent vector field ta. We can overcome the ambiguity we
mentioned above by choosing taη

a = 0 at some initial proper time value τ0. Since we have

ta∇a(tbη
b) = ηb t

a∇at
b

︸ ︷︷ ︸
=0

+tbt
a∇aη

b (3.3.2)
= tb Ltηb︸︷︷︸

=0

+tbη
a∇at

b =
1

2
ηa∇a(tbt

b) = 0, (3.3.3)

taη
a is constant along each geodesic. So if taη

a is chosen to vanish at τ0, it will do so for
all other values of τ . As we see, the set of unambiguous deviation vectors corresponds to
a 3-dimensional subspace in each TpM, p = γs(τ) ∈ O, which is comprised by the vectors
orthogonal to ta. One can show that this space is isomorphic to the space of equivalence classes
of vectors in TpM which differ only by addition of a multiple of ka (see [15] for details).

In the case of a smooth congruence of null geodesics, kaη
a is also constant along each

geodesic, but the condition kaη
a = 0 is not sufficient to remove the ambiguity, since we have

kaη
′a = ka(η

a + cka) = kaη
a, (3.3.4)

2This follows from the commutativity of mixed partial derivatives, since we have

∂

∂s

∂

∂τ
f(γs(t)) =

∂

∂τ

∂

∂s
f(γs(t)),

for any f ∈ C∞(M,R), in the coordinate system we described above.
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3.3. Null Congruences

i.e. we have kaη
′a = 0 whenever kaη

a = 0. This property stems from the fact that ka is null,
i.e. the 3-dimensional subspace of TpM , consisting of all vectors orthogonal to ka, contains ka

itself. In order to overcome this difficulty, we choose another vector la with the properties

lal
a = 0, lak

a = 1. (3.3.5)

Furthermore, we choose la to be parallely transported along the geodesics, i.e. we have

ka∇al
b = 0. (3.3.6)

In the previous paragraph, we have shown that ka and la are coordinate vector fields in an
adapted coordinate system (Gaussian null coordinates). Hence, ka and la commute:

ka∇al
b = la∇ak

b. (3.3.7)

The ambiguity in the specification of the deviation vector field ηa in the case of a null congru-
ence may be removed by requiring

ηal
a = 0, in addition to ηak

a = 0. (3.3.8)

As we see, the set of unambiguous deviation vector field corresponds to a 2-dimensional sub-
space of TpM , consisting of all vectors which are orthogonal to both ka and la. In the previous

paragraph we referred to this subspace as T̂pN . In the following, we will always assume that

deviation vectors are elements of T̂pN . One can show that T̂pN is isomorphic to a subspace
of TpN , consisting of equivalence classes of vectors which differ only by a multiple of ka (see
[15] for details).

Now, let us define the tensor Bab := ∇bka. It is orthogonal to ka, in the sense that we
have

Babk
a = ka∇bka =

1

2
∇b(kak

a) = 0,

Babk
b = kb∇bka = 0,

(3.3.9)

since ka is geodesic and normalized to one. As we will see, this tensor determines the evolution
of the deviation vector field. However, Bab is not orthogonal to la and hence, Bab has compo-
nents in the “ambigious directions” of ηa. We can fix this problem by using the projector µa

b

from the previous section to project Bab onto T̂pN . We have

B̂ab = µc
aµ

d
bBcd

= (δc
a − lcka − kcla)(δ

d
b − ldkb − kdlb)Bcd

= Bab − kaBcbl
c − kbBacl

c + kakbBcdl
cld

= Bab − ka(∇bkc)l
c − kb(∇cka)l

c + kakb(∇dkc)l
cld

= Bab − ka ∇b(kcl
c)︸ ︷︷ ︸

=0

+kakc∇bl
c − kb l

c∇cka︸ ︷︷ ︸
=0

+kakbl
c ld∇dkc︸ ︷︷ ︸

=0

= Bab + kakc∇bl
c.

(3.3.10)
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One can check that B̂ab is orthogonal to la, i.e. we have

B̂abl
a = B̂abl

b = 0. (3.3.11)

Now, we introduce the following quantities:

Definition 18. The expansion ϑ, shear σab, and twist ωab of a congruence are defined as
follows

ϑ := B̂abµab (3.3.12)

σab := B̂(ab) −
1

2
ϑµab (3.3.13)

ωab := B̂[ab]. (3.3.14)

Using these quantities, B̂ab can be decomposed as follows

B̂ab =
1

2
ϑµab + σab + ωab. (3.3.15)

The tensor B̂ab has the following interpretation: The covariant derivative of some ηa ∈ T̂pN
in the direction of ka represents the relative velocity of two neighbouring geodesics. We have

kb∇bη
a = kb∇bµ

a
cη

c = kb∇b(δ
a
c − kalc − lakc)η

c = µa
ck

b∇bη
c = µa

cB
c
bη

b

= µa
cB

c
bµ

b
dη

d = B̂a
dη

d,
(3.3.16)

where we have used kb∇bk
a = kb∇bl

a = 0 for the third equality, kb∇bη
a = ηb∇bk

a = Ba
bη

b for

the fourth equality and the fact that ηa remains unchanged under projection onto T̂pN . As
we see, B̂ab measures the failure of ηa to be parallely transported along the congruence. From
this follows that along any geodesic in the congruence, ϑ measures the average expansion of
infinitesimally nearby surrounding geodesics; ωab, being the antisymmetric part of the linear
map B̂ab, measures their rotation; and σab measures their shear3.

According to their definition, ωab and σab are orthogonal to ka and la, i.e. we have

ωabk
a = ωabk

b = σabk
a = σabk

b = ωabl
a = ωabl

b = σabl
a = σabl

b = 0. (3.3.17)

Furthermore, congruences which are hypersurface orthogonal are characterized by the following

Proposition 6. A congruence is hypersurface orthogonal, if and only if ωab = 0.

Proof. If ωab = 0, then

0 = k[aωbc] = k[aB̂bc] = k[aBbc] + k[akbk|d|∇c]l
d = k[a∇bkc]. (3.3.18)

The last equality follows since we have

k[akbk|d|∇c]l
d =

1

6
(kakbkd∇cl

d − kbkakd∇cl
d + kbkckd∇al

d − kckbkd∇al
d

+ kckakd∇bl
d − kakckd∇bl

d) = 0.
(3.3.19)

3 An inital sphere in a tangent space which is Lie transported along ka will distort towards an ellipsoid where
the principal axes given by the eigenvectors of σa

b and the rate of change is given by the eigenvalues of σa
b.
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By Frobenius’s theorem follows that ka is orthogonal to a family of hypersurfaces.

Conversely, if ka is orthogonal to a family of hypersurfaces, then Frobenius’s theorem implies
k[a∇bkc] = 0. Then, by reversing the previous steps we find that

0 = k[aωbc] =
1

3
(kaωbc + kbωca + kcωab).

Contraction with la yields ωab = 0, since we have laka = 1 and ωabl
a = ωabl

b = 0.

That the expansion does not depend on the choice of the auxiliary null vector field la can
be seen in the following manner:

ϑ = B̂abµab

= (Bab + kakc∇blc)(gab − kalb − lakb)

= Babgab + kbkc∇blc − (kaka)︸ ︷︷ ︸
=0

kclb∇blc − (kala)︸ ︷︷ ︸
=1

kbkc∇blc

= Babgab

= ∇ak
a.

(3.3.20)

Since ϑ plays an essential role in the proof of the area theorem, we will further investigate
its physical interpretation: Consider the null geodesic congruence which is generated by the
normal vector field ka of a null hypersurface N . The extrinsic curvature Kab of N is defined
as

Kab = B̂ba = Bba + kbkc∇al
c. (3.3.21)

This tensor is orthogonal to ka, i.e. we have Kabk
a = Kabk

b = 0. Since the congruence is
hypersurface orthogonal, we have ωab = 0. Therefore, from the definition of B̂ab follows that
B̂ab, and hence Kab, are symmetric. The Lie derivative of the spacetime metric gab with respect
to the vector field ka is given by

1

2
Lkgab =

1

2
(∇akb + ∇bka)

=
1

2
(Kab − kbkc∇al

c +Kba − kakc∇bl
c)

= Kab − k(ak|c|∇b)l
c,

(3.3.22)

where we used Kab = Kba in the last equality. Consider now the induced metric µab of the
2-dimensional submanifold ζ of N which is specified by the two (normal) vector fields ka and
la. Contraction of Kab with µab yields

Kabµ
ab = (

1

2
Lkgab + k(ak|c|∇b)l

c)µab =
1

2
(Lkgab)µ

ab, (3.3.23)

where we used µabk
a = µabk

b. Furthermore we have

Lkµab = Lk(gab − kalb − lakb) = Lkgab, (3.3.24)

since Lkka = Lkla = 0. In an adapted coordiante system {xα, α = 0, . . . , 3} (Gaussian null
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coordinates) the Lie derivative of µab with respect to ka can be expressed as

Lkµαβ =
dµαβ

du
, (3.3.25)

where u is the affine parameter of the geodesics generated by the vector field ka. Overall we
obtain,

ϑ = B̂αβµ
αβ = Kαβµ

αβ =
1

2
(Lkµαβ)µαβ =

1

2
µαβ dµαβ

du
=

√
µ−1 d

du

√
µ, (3.3.26)

where we have used the relation

d

du

√
µ =

1

2

√
µµαβ dµαβ

du
(3.3.27)

for µ = det(µαβ). This calculation justifies the interpretation of ϑ as a measure for the
average expansion of infinitesimally nearby geodesics. Equation (3.3.27) corresponds to the
rate of change of the volume of submanifold ζ, which is generated by intersecting the null
congruence with a spacelike hypersurface, with respect to the affine parameter.

3.4. The Raychaudhuri Equation

In the following, we will derive the Raychaudhuri equation, which determines the rate of change
of ϑ, ωab and σab along each geodesic in the congruence. Consider:

kc∇cB̂ab = kc∇c(Bab + kakd∇bl
d)

= kc∇cBab + kakdk
c∇c∇bl

d

= kc∇c∇bka + kakdk
c∇c∇bl

d

= kc∇b∇cka +R d
cba k

ckd + kakdk
c∇c∇bl

d

= ∇b(k
c∇cka︸ ︷︷ ︸

=0

) − (∇bk
c)(∇cka) +R d

cba k
ckd + kakdk

c∇c∇bl
d

= −Bc
bBac +R d

cba k
ckd + kakdk

c∇c∇bl
d.

(3.4.1)

By taking the trace of of the left hand side of (3.4.1) we obtain

µabkc∇cB̂ab = µabkc∇cB̂ab + B̂abk
c∇c(g

ab − lakb − kalb)

= µabkc∇cB̂ab + B̂abk
c∇cµ

ab

= kc∇c(B̂abµ
ab)

= kc∇cθ

=
dϑ

du

(3.4.2)

where we used the compatibility of the metric and ka∇ak
b = ka∇al

b = 0 for the first equality.
By taking the trace of the right hand side of (3.4.1) we obtain

−Bc
bBacµ

ab +R d
cba k

ckdµ
ab + kakdk

c∇c∇bl
d = −Bc

bBacµ
ab +R d

cba k
ckdµ

ab (3.4.3)
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since µab is orthogonal to ka, and therefore

−Bc
bBacµ

ab +R d
cba k

ckdµ
ab = −Bc

bBac(g
ab − lakb − lbka) +R d

cba k
ckd(g

ab − lakb − lbka)

= −BcaBac +R d
cba g

abkckd −R d
cba k

ckdk
bla −R d

cba k
ckdk

alb

= −BcaBac −Rcbdag
ab

︸ ︷︷ ︸
=Rcd

kckd −Rabcdk
albkckd

︸ ︷︷ ︸
=0

−Rabcdk
akblckd

︸ ︷︷ ︸
=0

= −BcaBac −Rabk
akb,

(3.4.4)

by using the symmetries of the Riemann tensor. One can rewrite the first term in (3.4.4) as
follows:

BcaBac = (B̂ca − kckd∇ald)(B̂ac − kake∇cl
e)

= B̂caB̂ac + (kc∇cl
e)︸ ︷︷ ︸

=0

kekdka∇ald

=

(
1

2
ϑµca + σca + ωca

)(
1

2
θµac + σac + ωac

)

=

(
1

2
ϑµac + σac − ωac

)(
1

2
ϑµac + σac + ωac

)

=
1

4
ϑ2 µacµac︸ ︷︷ ︸

=2

+σacσac − ωacωac + ϑµacσac.

(3.4.5)

The last term in (3.4.5) vanishes, since we have

µacσac = µacB̂(ac) −
1

2
ϑµacµac

= µacB̂ac − ϑ

= 0.

(3.4.6)

Hence we obtain
dϑ

du
= −1

2
ϑ2 − σabσ

ab + ωabω
ab −Rabk

akb, (3.4.7)

which is known as Raychaudhuri equation for a null geodesic congruence.

Let us investigate the nonpositivity of the right hand side of (3.4.7). If the congruence
is hypersurface orthogonal, we have ωab = 0. The terms, −ϑ2 and −σabσ

ab, are manifestly
nonpositive. Furthermore, if we assume that the null convergence condition (see appendix B),
Rabk

akb ≥ 0 for all null vectors ka, is satisfied, we obtain

dϑ

du
+

1

2
ϑ2 ≤ 0, (3.4.8)

which implies
d

du
ϑ−1 ≥ 1

2
(3.4.9)

and hence

ϑ−1(u) ≥ ϑ−1
0 +

1

2
u, (3.4.10)

31



3. Null Geometry

where ϑ0 is the initial value of ϑ. Suppose, that ϑ0 is negative. Then (3.4.10) implies that ϑ−1

must pass through zero, i.e. ϑ → −∞, within affine length u ≤ 2/|ϑ0|. Thus we have proven
the following lemma.

Lemma 2. Let ka be a tangent field of a hypersurface orthogonal congruence of null geodesics.
Suppose Rabk

akb ≥ 0, as will be the case if the Einstein equation holds in the spacetime and
the null energy condition is satisfied by the matter. If the expansion ϑ takes a negative value
ϑ0 at any point on geodesic in the congruence, then ϑ goes to −∞ along that geodesic within
affine length u ≤ 2/|ϑ0|.

This result can be heuristically interpreted as follows: ϑ0 < 0 states that the congruence is
initially converging. The attractive nature of gravity then implies that the congruence must
continue to converge which eventually leads to a “focal/conjugate point”.

3.5. Conjugate Points

In order to understand the result of lemma 2 properly, we will need to introduce the notion
of conjugate points: Let γ : [a, b] → M be a null geodesic with γ(a) = p and γ(b) = q. An
unambigious deviation vector field ηa is called Jacobi field, if it solves the geodesic deviation
equation

ka∇a(k
b∇bη

c) = −R c
abd ηbkakd (3.5.1)

with ηa|p = ηa|q = 0. Two points p, q are called conjugate if there exists a Jacobi field
connecting p and q. Together with Lemma 2, the next lemma states that q is conjugate to p
if and only if the expansion of a null geodesic congruence emanating from p approaches −∞
at q.

Lemma 3. Let (M,gab) be a spacetime satisfying Rabk
akb ≥ 0 for all null vectors ka. Let

γ be a null geodesic and let p ∈ γ. Suppose the expansion ϑ of the null geodesic congruence
emanating from p attains a negative value ϑ0 at r ∈ γ. Then within affine paramerter length
u ≤ 2/|ϑ0| from r, there exists a point q conjugate to p along γ, assuming that γ extends that
far.

For a proof of this Lemma, we refer the reader to [29].
A similar notion of conjugacy can be defined for a point and an 2-dimensional spacelike

submanifold S. At each q ∈ S there exists two future directed null vectors ka
1 , k

a
2 which are

orthogonal to S. If S is orientable, a continuous choice of ka
1 and ka

2 over S can be made
and thereby we can define two families of null geodesics, which we will refer to as “outgoing”
and “ingoing”. Let γ be a null geodesic in one of these families. A point p ∈ γ is said to
be conjugate to S along γ, if there exists a deviation vector field satisfying (3.5.1) which is
nonzero at S but vanishes at p. In analogy to lemma 3, we have

Lemma 4. Let (M,gab) be a spacetime satisfying Rabk
akb ≥ 0 for all null vectors ka. Let S be

a smooth 2-dimensional spacelike submanifold such that the expansion ϑ of the “outgoing” null
geodesics has a negative value ϑ0 at q ∈ S. Then within affine parameter length u ≤ (n−2)/|ϑ0,
from q, there exists a point p conjugate to S along the outgoing null geodesic γ passing through
q.

The following result is the key technical lemma in the proof in the area theorem:
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3.5. Conjugate Points

Lemma 5. Let (M,gab) be a globally hyperbolic spacetime and let K be a compact, orientable,
two-dimensional spacelike submanifold of M . Then every p ∈ ∂I+(K) lies on a future directed
null geodesic starting from K which is orthogonal to K and has no point conjugate to K
between K and p.

For a proof of this Lemma, we refer the reader to [29].

33





4. Gravitational Collapse and Black Holes

In the following, we will summarize the essentials of the theory of black holes. After a phe-
nomenological part, which explains under what circumstances the formation of a black hole
occurs, we will see that, within general relativity, spherically symmetric gravitational collapse
leads to the formation of a spacetime singularity. In the following, we will assume that these
singularities cannot be seen from distant observers (cosmic cencorship conjecture). After that,
we will state the mathematical definition of a black hole according to Hawking. We will dis-
cuss the properties of the event horizon and in particular the area theorem due to Hawking.
Furthermore, we will talk about stationary black holes which are expected to represent the
equilibrium configuration of a black holes at sufficiently late times.

4.1. Phenomenology

After a star has exhausted its nuclear fuel, it can no longer remain in equilibrium and must
ultimately undergo gravitational collapse. Depending on the initial mass of the star, gravita-
tional collapse will lead to the formation of a white dwarf, neutron star or black hole. In this
section we will briefly review some of the physical processes that lead to the formation of these
astrophysical objects.

When a star forms due to condensation of a gas cloud, it contracts and heats up until
the central temperature and density is sufficiently high such that nuclear processes set in,
which convert hydrogen to helium. The collapse of the star is then halted and an equilibrium
configuration is obtained, since the total pressure due to nuclear reactions balances gravity.
During this phase of the stellar evolution, a large core of helium is built up. If the star is
sufficiently massive, this core will start to contract until helium reactions begin to occur which
lead to the formation of heavier elements. This process may repeat itself until a large core of
nickel and iron is produced.

When the star runs out of nuclear fuel it can no longer support itself against gravitational
collapse. As the density of the star approaches values of nuclear matter (∼ 1014g/cm−3)
quantum mechanical effect begin to play an important role. According to the Pauli exclusion
principle no two electrons can be in the same state simultaneously, so not all electrons can be
in the lowest energy level. Rather, electrons must occupy a band of energy levels. The interior
of the star consists of a plasma, i.e. ions and free electrons. As the compression of the electron
gas proceeds due to gravitational collapse, the number of electrons in a given volume increases
as well. Thus, the maximum energy level is raised, i.e. the energy of the electrons increases
upon compression. In order to compress the electron gas further, an additional compressing
force is required, which manifests itself as a resisting pressure. This is the origin of the so
called electron degeneracy pressure.

The fate of the collapsing star depends on whether the electron degeneracy pressure is
sufficient to support the star against gravity. If the mass of the star is below the Chandrasekhar
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4. Gravitational Collapse and Black Holes

limit

mC ≈ 1, 4

(
2

µN

)
m⊙, (4.1.1)

where µN is the number of nucleons per electron and m⊙ denotes the mass of the Sun, the
star will approach an equilibrium configuration supported by electron degeneracy pressure.
These bodies are known as white dwarfs. No further nuclear reactions will occur and the
white dwarf slowly cools down as it radiates away its remaining thermal energy. If the mass
of the star is greater than mC , electron degeneracy pressure is not sufficient to support the
star against gravity. The nickel and iron core will undergo gravitational collapse. If the mass
of the collapsing part of the star is below the so called cold matter upper mass limit (∼ 2M⊙),
the neutron degeneracy pressure is sufficient to halt the collapse, resulting in the formation of
a neutron star. If the mass of the star is above the cold matter upper mass limit, the star
will eventually undergo complete gravitational collapse and it is believed that the result will
be a black hole. It should be noted that black holes formed by stellar collapse are in the mass
range 2m⊙ ≤ m ≤ 100m⊙ since stars with m ≤ 2m⊙ should not collapse, while stars with
m ≥ 100m⊙ do not exist due to pulsational instabilities.

Besides the formation of black holes resulting from stellar collapse, there are also other phys-
ical processes which may lead to the formation of a black hole due to gravitational collapse.
One can think for example of the collapse of an entire central core of a dense cluster of stars.
The most likely site for the formation of such massive black holes is the center of a galaxy.
Another, much more speculative, process by which black holes may have been produced is by
gravitational collapse of regions of enhanced density in the early universe. These are commonly
referred to as primordial black holes.

Concerning the detection of black holes: Due to the fact that black holes are extremely small
objects (the Schwarzschild radius of a black hole of one solar mass would be ∼ 3 km) and
since they are literally “black”, it seems hopeless to detect these objects in any direct (optical)
way. But if we consider a black hole resulting from stellar collapse, which is in close binary
orbit with a star, the situation looks more promising. One would expect that matter would
flow from the star to the black hole, thereby forming an accretion disk around the black hole.
Viscous heating in the accretion disk could result in the production of X-rays. A number of
X-ray sources with an ordinary star in a close binary orbit around an unseen companion have
been found such as Cygnus X-1. In [22], a lower mass limit for the unseen companion of ∼ 9m⊙

was found. This is above the upper mass limit of neutron stars and white dwarfs, suggesting
that the unseen companion of Cygnus X-1 is a black hole.

Furthermore, one would expect that a massive black causes a brightness enhancement as
well as an increase of the average velocity very near the center of a galaxy. Exactly such
a brightness enhancement and an increased “velocity dispersion” have been observed at the
center of the galaxy M87 [39], [25], thus providing strong evidence for the existence of a black
hole of mass ∼ 5 · 109m⊙.

4.2. Definition of a Black Hole

It is a well known fact from general relativity that the complete gravitational collapse of a
spherical, non-rotating body, such as a star, always results in the production of a Schwarzschild
spacetime as a finial equilibrium configuration. The Penrose diagram of the (extended)
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Figure 4.1.: Penrose diagram of the maximal extension of the Schwarzschild solution. Null
lines are at ±45◦

Schwarzschild solution is depicted in figure 4.1. Region I represents the exterior gravitational
field of the spherical body. An interesting property of this spacetime is that any observer which
enters region II can never escape from it. Once the the null surface r = 2m is crossed, the
observer will fall into the (future) singularity r = 0 within a finite proper time. Furthermore,
any light signal which was sent by the observer will remain region II. Therefore, this region is
called black hole. Region III is the time-reversed analog of the black hole: the white hole. Any
observer in region III must have originated from the singularity and the observer must leave
this region within a finite proper time. Region IV corresponds to another asymptotically flat
spacetime with properties identical to those of region I.

The most interesting fact about the Schwarzschild solution is that is contains a singularity
which is hidden within a “region of no escape” which we referred to as black hole. However, this
solution to the Einstein equation is very special, because of its spherical symmetry. That the
formation of a singularity is a genuine feature, even for non-spherical gravitational collapse, is
guaranteed by the singularity theorems of Hawking and Penrose [15]: For small deviations from
spherical symmetry a spacetime singularity must neccesarily occur in gravitational collapse.
But the singularity theorems do not tell us whether or not this singularity is visible to distant
observers or not. If the singularity is visible to far away observers, we say that the star has
ended as a naked singularity. If the singularity is not visible to far away observers, i.e. it is
hidden behind a spacetime region, we say that the star has ended as a black hole.

The Einstein equation admits solutions involving naked singularities . The presence of such
naked singularities cause severe problems, since it is impossible to predict the behavior of
spacetime in the causal future of the singularity. General relativity would therefore lose its
predictive power in this spacetime region. Due to these problems, Penrose conjectured that
naked singularities do not appear in physically reasonable spacetimes. This conjecture is com-
monly referred to as the

Cosmic Censorship Conjecture. The complete gravitational collapse of a body always
results in a black hole rather than a naked singularity, i.e. all singularities of gravitational
collapse are “hidden” within black holes, where they cannot be “seen” by distant observers.
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Figure 4.2.: Definition of the black hole region B and the event horizon E.

From now on we will assume that this conjecture is true. The notion of strongly asymptotically
predictable spacetimes assures that spacetimes do not posses naked singularities.

Definition 19. Let (M,gab) be an asymptotically flat spacetime with associated unphysical
spacetime (M̃ , g̃ab). We say that (M,gab) is strongly asymptotically predictable if in the un-
physical spacetime there is an open region Ṽ ⊂ M̃ with M ∩ J−(I +) ⊂ Ṽ such that (Ṽ , g̃ab)
is globally hyperbolic.

Note that the closure of M ∩ J−(I +) is taken in the unphysical spacetime M̃ , so we have
i0 ∈ Ṽ . That this definition assures that singularities are not visible from infinity can be seen
in the following manner: The requirement that (Ṽ , g̃ab) is a globally hyperbolic region of the
unphysical spacetime implies that (M ∩ Ṽ , gab) is a globally hyperbolic region of the physical
spacetime.1 Furthermore, from theorem 4 we know that M ∩ Ṽ can be foliated by a family of
Cauchy surfaces Σt. So, for all p ∈M ∩ Ṽ and for all Σt with p ∈ J+(Σt), every past directed
inextendible causal curve from p intersects Σt. This can be interpreted as saying that2 no
singularities are visible to any observer in [M ∩ Ṽ ] ⊃ [M ∩ J−(I +].

The following definition gives a precise meaning to the notion of a black hole as a “place
of no escape”. For asymptotically flat spacetimes, the crucial property that distinguishes the
black hole region from the rest of the spacetime is the impossibility of escaping to future null
infinity.

Definition 20. A strongly asymptotically predictable spacetime is said to contain a black hole,
if M is not contained in J−(I +). The black hole region B of such a spacetime is defined as
B := M \J−(I +). The boundary of B in M , E := ∂J−(I +)∩M = [J−(I +)\J−(I +)]∩M ,
is called the event horizon (see figure 4.2).

Note that since i0 and I − are contained in J−(I +), i0 and I − are not contained in E.

1 According to property (1) of the definition of asymptotic flatness we have M = M̃ \ [J+(i0)∪J−(i0)]. Hence,
a Cauchy surface for (Ṽ , g̃ab) which passes through i0 will be a Cauchy surface for (M ∩ Ṽ , gab). The fact
that gab and g̃ab = Ω2gab have the same causal structure implies that (M ∩ Ṽ , gab) is globally hyperbolic.

2apart from an initial singularity, such as a white hole

38



4.3. General Properties of Black Holes

Furthermore, since J−(I +) is open in M (see section 1.2), the black hole B is closed in M .
From this follows that the event horizont E is contained in B.

Remark 8. This definition does not make use of any field equation, and is therefore not
limited to Einstein gravity. Thus, in alternative theories of gravity (such as a higher derivative
theory of gravity) which admit strongly asymptotically predictable solutions, black holes can
be defined in the same manner. In the HDTG which we consider later on, it is assured that
there exists solutions which contain a black hole (see section 6.2).

4.3. General Properties of Black Holes

In the following we will list the properties of the event horizon E. The normal vector field of
E will be denoted by na and its integral curves will be refered to as null geodesic generators.

(a) E is a global notion in the sense that one needs to know the entire future developement
of the spacetime in order to determine if a black hole is present.

(b) E has all the properties of a past causal boundary as descricbed in section 1.2 (i.e. E is
an achronal, three-dimensional, embedded C0-submanifold of M).

(c) E is a null hypersurface.

(d) The null geodesic generators of E may have past endpoints (in the sense that their
continuation into the past may leave E, e.g. r = 0 in the spherically symmetric case).

(e) The null geodesic generators of E have no future endpoints.

(f) The expansion of the null geodesic generators cannot become negative.

From properties (d) and (e) follows that geodesics may enter E but cannot leave it. This
reflects the “intuitive notion” of a black hole as a “place of no escape”. Properties (a)-(d) are
evident. Property (e) follows from theorem 2. Property (f) will be further investigated in the
proof of the area theorem (see below).

Remark 9. Let us discuss which of these properties are peculiar to general relativity. Prop-
erties (a)-(e) essentially follow from the definition of a black hole as a past causal boundary.
Therefore, black hole solutions of other theories of gravity (such as higher derivative theories
of gravity) also possess these characteristics. An exception is property (f). As we will see in
the proof of the area theorem, the positivity of the expansion is established by means of the
null convergence condition (see appendix B), which makes explicit use of Einstein’s equation.
Therefore, one cannot expect that property (f) is satisfied in other theories of gravity.

Remark 10. In section 3.2 we introduced the Gaussian null coordinate system which can be
constructed in a neighborhood of any null hypersurface. Since E is a null hypersurface, this
construction can also be applied to the event horizon of a black hole (see figure 4.3).

Now, we will define the notion of a black hole at an “instant of time”.

Definition 21. Let (M,gab) be a strongly asymptotically predictable spacetime, with globally
hyperbolic region Ṽ ⊃ M ∩ J−I + in the unphysical spacetime and let B be the black hole
region of the spacetime. If Σ is a Cauchy surface for Ṽ , then we will call each connected
component B of Σ ∩B a black hole at time Σ. Furthermore, we will refer to the boundary ∂B
of B as a horizon cross-section and we will denote it by E .
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4. Gravitational Collapse and Black Holes

Figure 4.3.: Gaussian null coordinates {u, r, xA} for a black hole with one spatial dimension
suppressed. The coordinates u and r correspond to the affine parameters of the
integral curves of the vector fields na and la, respectively. The coordinates xA, A =
1, 2 are arbitrarily chosen coordinates on a spatial cross-section E .

The number of black holes in (M,gab) may vary with “time” (i.e. choice of Cauchy surface),
since new black holes may form and black holes present at one time may merge at a later time.
However, the next theorem states that black holes can neither disappear nor bifurcate.

Theorem 5. Let (M,gab) be a strongly asymptotically predictable spacetime and let Σ1 and
Σ2 be Cauchy surfaces for Ṽ with Σ2 ⊂ I+(Σ1). Let B1 be a nonempty connected component
of B ∩ Σ1. Then J+(B1) ∩ Σ2 6= ∅ and is contained within a single connected component of
B ∩ Σ2.

Proof. see [29]

The next theorem concerns the evolution of the event horizon. Consider a horizon cross-
section E = E ∩ Σ, where Σ is a spacelike Cauchy surface with respect to Ṽ . The following
theorem, due to Hawking [12], states that the area of E never decreases with time.

Theorem 6 (The Area Theorem). Let (M,gab) be a strongly asymptotically predictable space-
time satisfying the null energy condition. Let Σ1 and Σ2 be spacelike Cauchy surfaces with
respect to Ṽ satisfying Σ2 ⊂ I+(Σ1) and let E1 = E ∩Σ1, E2 = E ∩Σ2. Then the area of E1 is
greater than or equal to the area of E2

Proof. The setup for the proof is summarized in figure 4.4a. In the following, we will consider
a null geodesic congruence from E1 to E2 which is tangent to the affinely parametrized normal
vector field na = (∂/∂u)a of E. This vector field gives rise to a one-parameter group of
isometries φu : M → M . We define a family of two-surfaces E(u) := φu(E1) by following the
null geodesic generators from E1 by an amount u of the affine parameter. The parametrization
of this isometry is chosen to be E(u0) = E1. On the horizon E we choose coordinates {u, x1, x2},
such that each E(u) is parametrized by {x1, x2}. As we have seen in section 3.3, the expansion
of this congruence can be written as

ϑ =
√
µ−1 d

du

√
µ,
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4.3. General Properties of Black Holes

Figure 4.4.: Proof of the area theorem.

where µ is the determinant of the induced metric µab = µab(u) on the cross-section E(u). From
this follows

A(E(u)) −A(E1) =

∫ u

u0

du′
d

du′
A(E(u′)) =

∫ u

u0

du′
[∫

E(u′)
ϑ
√
µ d2x

]
,

where A(E(u)) denotes the area of the cross-section E(u). If we could show ϑ ≥ 0 on E, then
A(E(u)) ≥ A(E1) would follow, and in particular A(E2) ≥ A(E1).

In order to show ϑ ≥ 0, we will derive a contradiction by assuming ϑ(p) = C < 0 for some
p ∈ E. Let Σ be a spacelike Cauchy surface for Ṽ such that p ∈ Σ and consider the two-surface
E = E∩Σ. Since we have ϑ < 0 at p, we can deform E outward in a neighborhood of p to obtain
a surface E ′ ⊂ Σ which enters J−(I +) and has ϑ < 0 everywhere in J−(I +). Let K ⊂ Σ
be the closed region lying between E and E ′ and let q ∈ ∂J+(K) ∩ I +. In the unphysical
spacetime, let γ be the null geodesic generator of ∂J+(K), on which q lies (see figure 4.4b).
According to lemma 5, γ must meet E ′ orthogonally with no conjugate point between q and
Σ. On the other hand, since we have ϑ|E ′ = C < 0, there must be a conjugate point in the
causal future of E ′ after u ≤ 2/|C| according to lemma 4. Hence, we have a contradiction and
ϑ ≥ 0 follows.

Remark 11. The proof of this theorem crucially depends on lemma 4 which assumes that the
null convergence condition (see appendix B) is satisfied. This condition is implied by the null
energy condition together with the Einstein’s equations. Therefore, this way of proving an area
increase theorem cannot be applied to theories of gravity which satisfy other field equations
(such as higher derivative theories of gravity), since it is tightly linked to the particular form
of Einstein’s equation.

Remark 12. Most discussions of the event horizon assume C1 or even higher differentiability
of E. Recently, this higher order differentiability assumption has been eliminated for the proof
of the area theorem by [7].
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4. Gravitational Collapse and Black Holes

4.4. Stationary Black Holes

In gravitational collapse that was strongly asymptotically predictable, i.e. no naked singularity
evolved, one would expect the solution outside the horizon to become stationary for sufficiently
late times. Therefore, it is interesting to study stationary solutions which contain a black hole,
since these are expected to describe the final state of the collapsed system.

First of all, let us introduce the following terminology:

Definition 22. A black hole B is said to be

• stationary if there exists a one-paramerter group of isometries on (M,gab) generated by
a Killing field ta which is unit timelike at infinity.

• static if it is stationary and, in addition, ta is hypersurface orthogonal.

• axisymmetric if there exists a one-parameter group of isometries on (M,gab) which cor-
respond to rotations at infinity.3

Definition 23. Consider a Killing field Ka and the set of points on which Ka is null and not
identically vanishing. Let Ki be a connected component of this set which is a null hypersurface.
Any union K =

⋃
i Ki is called a Killing horizon.

Thus, K can be thought of as a null hypersurface whose null generators coincide with the orbits
of a one-parameter group of isometries (so that there is a Killing field Ka which is normal to
K).

Definition 24. A bifurcate Killing horizon is a pair of null surfaces KA and KB , which
intersect in a spacelike two-surface C, called bifurcation surface, such that KA and KB are
Killing horizons with respect to the same Killing field Ka.

From this definition follows that Ka must vanish on C, and conversely, if a Killing field Ka

vanishes on a spacelike two-surface C, then C will be the bifurcation surface of a bifurcate
Killing horizon associated with Ka .

In general relativity, a key result in the theory of black holes is a theorem due to Hawk-
ing [13] which relates the global concept of an event horizon to the local notion of Killing
horizons. This result is commonly referred to as rigidity theorem. The result of this theorem
will be stated in two steps:

Theorem 7 (Rigidity Theorem, part 1). The event horizon of a stationary black hole spacetime
is a Killing horizon, provided that the spacetime is analytic, the present matter fields obey
well behaved hyperbolic equations and the energy-momentum tensor fulfills the weak energy
condition.

For a proof of this theorem we refer the reader to [13] and [15]. A consequence of this theorem
is that one of the following alternatives must hold:

Theorem 8 (Rigidity Theorem, part 2). The horizon Killing field Ka either coincides with
the stationary Killing field ta, or the spacetime admits at least one axial Killing field φa.

3By convention, the associated axial Killing field φa is normalized such that its orbits have affine length 2π.
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4.4. Stationary Black Holes

In the first case the black hole is said to be nonrotating (for this case it is known that the black
hole must be static [31],[37]). In the second case, provided that there exists no third Killing
field which would imply spherical symmetry, the black hole is said to be rotating and one has

Ka = ta + ΩEφ
a, (4.4.1)

where the angular velocity of the horizon is denoted by the real constant ΩE. In this case it
can be shown that the black hole must be axisymmetric and stationary [13], [15]. This result
is also refered to as rigidity theorem since it implies that the null geodesic generators of the
horizon must rotate rigidly with respect to infinity.

Remark 13. Note that the proof of this theorem heavily relies on the fact that the event
horizon cross-sections E are topologically 2-spheres (see topology theorem below). This is
a nontrivial assumption which must not necessarily hold in HDTG. Therefore, the rigidity
theorem does not readily extend to this context. As to our knowledge, such a theorem does
not exists in a gravitational theory with an additional RabR

ab contribution in the gravitational
Lagrangean.

Another important result in the theory of black holes is the topology theorem, which is also
due to Hawking [13]. This theorem asserts that, under suitable circumstances4, horizon cross-
sections E in asymptotically flat stationary black hole spacetimes obeying the dominant energy
condition are spherical, i.e. all E are homeomorphic to the 2-sphere S

2.

Remark 14. The proof of this theorem implicitly assumes that Einstein’s equation is satisfied.
Therefore, the topology theorem does not readily extend to the context of HDTG. As to our
knowledge, such a theorem does not exists in a gravitational theory with an additional RabR

ab

contribution in the gravitational Lagrangean.

The rigidity and topology theorem are key results for the proof of the so called black hole
uniqueness theorems which are due to Israel, Carter, Hawking and Robinson. These theorems
were obtained between 1967 and 1975 and assure that all stationary black hole solutions are
specified by a finite number of parameters, namely, in the vacuum case, their mass and angular
momentum. This is why these theorems are sometimes also referred to as no hair theorems.5

These results imply that 2-parameter Kerr family is the only possible stationary axisymmetric
vacuum black hole solution to Einstein’s equation.

Remark 15. The black hole uniqueness theorems do not readily extend to HDTG since they
rely on the rigidity and topology theorem.

4The proof of the topology theorem requires the spacetime to be “regular predictable” (see [15], p.318 for a
definition).

5Consider for example two bodies which differ greatly from each other in composition, shape and structure.
If we assume that they undergo complete gravitational collapse, their final state will be the same provided
only that their mass and angular momentum are the same. Therefore, black holes have no “individual
features”(such as hairs) distinguishing them among each other, besides their mass and angular momentum.
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5. Laws of Black Hole Mechanics

In the following we will state the laws of black hole mechanics which are due to Bardeen, Carter
and Hawking [3]. As we will see, these laws have a remarkable similarity to the ordinary laws
of thermodynamics. However, this similarity should only be considered to be a mathematical
analogy within the classical framework. Only when when quantum effects are taken into
account this analogy obtains a physical relevance.

This section will be concerned with the laws of black hole mechanics in general relativity,
but we will also comment on the possible generalizations of these theorems. In section 6.3 we
will discuss the status of these laws in higher derivative theories of gravity.

5.1. Zeroth Law

Consider a Killing horizon K (not necessarily the event horizon of a black hole) with normal
Killing field Ka. On K we have KaKa = 0, so in particular KaKa is constant on K. Hence
∇a(KbKb) is normal to K, so there exists a function κ, known as surface gravity, such that

∇b(KaKa) = −2κKb. (5.1.1)

By taking the Lie derivative of (5.1.1) with respect to Ka we obtain

LKκ = 0, (5.1.2)

so κ is constant along the obits of Ka, i.e. κ is constant on each null geodesic generator of K.
In general, κ may vary from generator to generator but in the following we will show that κ is
constant on the entire K.

The surface gravity κ can be physically interpreted as follows: One can show (see [29]) that
we have

κ = lim(V a), (5.1.3)

where a = (acac)
1/2, ac = (Kb∇bK

c)/(−KaKa) is the magnitude of the acceleration of the
orbits of Ka in the region off of K where Ka is timelike, V = (−KaKa)

1/2 is the “redshift
factor” and the limit is taken as one approaches K. Thus, V a is the force that must be exerted
at infinity to hold a unit test mass in place near the horizon. This justifies the terminology
surface gravity, since κ is the limiting value of this force.

Remark 16. Note that the surface gravity of a black hole is only defined when it is in
“equilibrium”, i.e. in the stationary case, so that its event horizon is a Killing horizon.

The following theorem asserts that κ is uniform over K.

Theorem 9 (Zeroth Law of Black Hole Mechanics). Let K be a Killing horizon. Then the
surface gravity κ is constant on K, provided that Einstein’s equation holds with matter satisfying
the dominant energy condition.
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5. Laws of Black Hole Mechanics

Proof. First of all, let us derive some useful formulas which will be needed in the proof.
Equation (5.1.1) may be written as

∇a(KbKb) = (∇aKb)Kb +Kb∇aKb = 2Kb∇aKb = −2κKa. (5.1.4)

Since Ka is a Killing vector field, this implies

Kb∇aKb = −Kb∇bK
a = −κKa. (5.1.5)

Furthermore, since Ka is hypersurface orthogonal on the horizon, by Frobenius’s theorem we
have on the horizon

K[a∇bKc] = 0. (5.1.6)

Using Killing’s equation ∇bKc = −∇cKb, this implies

Kc∇aKb = −2K[a∇b]Kc. (5.1.7)

Now, by applying K[d∇c] to (5.1.5) we obtain

KaK[d∇c]κ+ κK[d∇c]Ka = K[d∇c](K
b∇bK

a)

= (K[d∇c]K
b)(∇bKa) +KbK[d∇c]∇bKa

= (K[d∇c]K
b)(∇bKa) +KbR

e
ba[c

Kd]Ke,

(5.1.8)

where we have used equation (C.0.3) was used in the last step. The first term in the last line
of equation (5.1.6) may be written as

(K[d∇c]K
b)(∇bKa) = −1

2
(Kb∇dKc)∇bKa

= −1

2
κKa∇dKc

= κK[d∇c]Ka,

(5.1.9)

where we used equation (5.1.7) for the first equality, equation (5.1.5) for the second equality
and Killing’s equation for the last equality. By inserting this result into (5.1.8) we find

KaK[d∇c]κ = KbR
e

ab[c
Kd]Ke, (5.1.10)

where the symmetries of the Riemann tensor were used.

On the other hand, if we apply K[d∇e] to equation (5.1.7) we obtain

(K[d∇e]Kc)∇aKb +KcK[d∇e]∇aKb = −2(K[d∇e]K[a)∇b]Kc − 2(K[d∇e]∇[bK|c|)Ka. (5.1.11)

By using (5.1.7) repeatedly, we find that the first term on the left-hand side of (5.1.11) cancels
the the first term on the right hand side of the equation. Therefore, by using equation (C.0.3),
we obtain

−KcR
f

ab[e Kd]Kf = 2K[aR
f

b]c[e Kd]Kf . (5.1.12)

My multiplying this equation with gce and contracting over c and e, the left-hand side vanishes,

46



5.2. First Law

and we find
−K[aR

f
b] KfKd = K[aR

f
b]cd KcKf . (5.1.13)

Now, the term on the right-hand side of this equation is the same as the right-hand side of
equation (5.1.10). Therefore, we have

K[d∇c]κ = −K[dR
f

c] Kf . (5.1.14)

In the following we will use Einstein’s equation and the dominant energy condition (see
appendix B) to show that the right-hand side of equation (5.1.14) vanishes. First of all,
one can make the observation that the expansion ϑ, shear σab, and twist ωab of the null
geodesic generators of a Killing horizon vanish on the horizon (see [29]). Therefore, from the
Raychaudhuri equation follows that we have

RabK
aKb = 0. (5.1.15)

Now, the dominant energy condition states that −T a
bK

b must be future directed timelike or
null. Einstein’s equation together with (5.1.15) implies T a

bK
bKa = 0. From this follows that

−T a
bK

b points in the direction of Ka, i.e. K[cTa]bK
b = 0. By using Einstein’s equation again

we find that the right-hand side of (5.1.14) vanishes. Thus, we have found

K[d∇c]κ = 0, (5.1.16)

which states that κ is constant on the horizon.

Remark 17. Kay and Wald [33] have shown that it is also possible to establish the uniformity
of κ over K without requiring the Einstein equation, if the Killing horizon is of a bifurcate
type1. There is also another way to establish the above result in a purely geometrical manner,
which neither relys on any field equations nor energy conditions of the matter. However, this
derivation only works in the case of static or axisymmetric Killing horizons.

Remark 18. This law bears a resemblance to the zeroth law of thermodynamics, which states
that the temperature T must be uniform over a body in thermal equilibrium. Stationary black
holes represent equilibrium configurations in black hole physics. Theorem 9 asserts that a
certain quantity, the surface gravity κ, must be constant over E. This mathematical analogy
suggests that T and κ should represent the same physical quantity.

5.2. First Law

The Komar mass of a stationary, asymptotically flat spacetime which is a solution of the
vacuum field equations near infinity is given by

m = − 1

8π

∫

S2
∞

ǫabcd∇ctd, (5.2.1)

where S
2
∞ is a two-sphere at spatial infinity and ta is a stationary Killing field. It will turn

out useful to rewrite this asymptotic integral as a volume integral. Consider a stationary,

1This is not a strong restriction, since, according to Rácz and Wald [35], [36], all “physically reasonable”
Killing horizons are either bifurcate horizons or degenerate (κ = 0).
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5. Laws of Black Hole Mechanics

axisymmetric, asymptotically flat black hole solution to the vacuum Einstein equation and a
spacelike hypersurface Σ which extends out to spatial infinity and intersects the event horizon
E in a two-surface E , such that we have ∂Σ = E∪S

2
∞. By defining the two-formXab = ǫabcd∇ctd

we find

m−mBH = − 1

8π

∫

S2
∞

ǫabcd∇ctd +
1

8π

∫

E
ǫabcd∇ctd

= − 1

8π

∫

S2
∞
∪E
Xab

= − 1

8π

∫

Σ
(dX)abe

= − 3

8π

∫

Σ
∇[e(ǫab]cd∇ctd)

= − 1

4π

∫

Σ
Rd

f t
f ǫdeab

=
1

4π

∫

Σ
Rabn

atbdV

=
1

4π

∫

Σ

(
Tab −

1

2
Tgab

)
natbdV,

(5.2.2)

where mBH corresponds to the Komar expression for the mass of a black hole. For the third
equality we used Stokes’ theorem2 and for the fifth equality we used the Ricci identity for
Killing fields ∇a∇bKc = −R d

bca Kd. For the sixth equality we introduced na, the unit future
pointing normal to Σ, so that ǫabc = ndǫdabc is the natural volume form on Σ, represented by
dV . Finally, for the last equality we used the Einstein equation. By using (4.4.1) we find

mBH = − 1

8π

∫

E
ǫabcd∇cKd +

ΩE

8π

∫

E
ǫabcd∇cφd

= − 1

8π

∫

E
ǫabcd∇cKd + 2ΩEJ,

(5.2.3)

where we interpreted J = (1/16π)
∫
E ǫabcd∇cφd as the angular momentum of the black hole.

The first term of (5.2.3) may be evaluated as follows: The volume form on E may be written
as ǫab = ǫabcdl

cKd, where la is the “ingoing” future directed null normal to E , such that
laKa = −1. Thus, we have

ǫabǫabcd∇ctd = leKf ǫ
abef ǫabcd∇ctd = −4lcKd∇cKd = −4κ, (5.2.4)

where we used (C.0.2) for the second equality and (5.1.1) for the third equality. By using
(C.0.1) we find

− 1

8π

∫

E
ǫabcd∇cKd = − 1

16π

∫

E
(ǫef ǫefcd∇cKd)ǫab =

1

4π
κA, (5.2.5)

2 In order to apply the Stokes’ theorem, the orientations of S2
∞ and E must be chosen appropriatly. Hence we

have m−mBH instead of m+mBH .
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where A =
∫
E ǫab is the area of a horizon cross-section. Thus, we obtain

m =
1

4π

∫

Σ

(
Tab −

1

2
Tgab

)
natadV +

1

4π
κA + 2ΩEJ. (5.2.6)

Remark 19. One should note that the Komar expression for the mass and angular momentum
of a black hole only apply to black hole solutions of the Einstein equation which contain Killing
fields ta and φa which are stationary and axisymmetric, respectively.

In 1973 Bardeen, Carter and Hawking [3] derived a differential formula for m, i.e. a formula
for how m changes when a small stationary, axisymmetric change is made in the solution.
This differential formula is commonly refered to as first law of black hole mechanics. In the
following we will only treat the vacuum case Tab = 0. For a generalization, where the matter
outside the black hole is modeled as a perfect fluid, see [3].

A formula for δm can be obtained by varying (5.2.6):

δm =
1

4π
(Aδκ+ κδA) + 2(JδΩE + ΩEδJ). (5.2.7)

But this is not the desired formula yet. A significantly longer computation shows (see [3]),
that we can also express δm as

δm = − 1

4π
Aδκ− 2JδΩE . (5.2.8)

By adding (5.2.7) and (5.2.8) we obtain the following result:

Theorem 10 (First Law of Black Hole Mechanics). The variation of the total mass of two
infinitesimally neighboring stationary, axisymmetric, vacuum black hole solutions can be ex-
pressed in terms of the horizon quantities κ, δA, ΩE and δJE by

δm =
κ

8π
δA + ΩEδJ. (5.2.9)

Remark 20. The original derivation of this law [3] required the perturbations to be stationary
and made explicit use of the Einstein equation. This derivation can be generalized to hold for
non-stationary perturbations [37], [32], provided that the change in area is evaluated on the
bifurcation surface C of the unperturbed black hole. Furthermore, it has been shown [32] that
the validity of this law does not depend on the details of the field equations. Specifically, a
version of this law holds for field equations which were derived from a diffeomorphism covariant
Lagrangian (see sections 6.3 and 7.2.1 for details).

Remark 21. This law stands in clear analogy with the first law of thermodynamics, δE =
TδS + pδV . As we have already seen, the zeroth law indicates a relationship between the
surface gravity κ and the temperature T . Thus, the variation formula (5.2.9) suggests an
analogy between the horizon cross-section area A and the entropy S. This analogy is reinforced
by the second law of black hole mechanics (see below), which asserts that A cannot decrease
in any process.
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5. Laws of Black Hole Mechanics

5.3. Second Law

In section 4.4 we obtained a theorem about the event horizon of a strongly asymptotically
predictable spacetime. The area theorem asserted that the horizon cross-section area is a
nondecreasing quantitiy, i.e. if we consider two spacelike Cauchy surfaces Σ1 and Σ2 such
that Σ2 is contained in the chronological future of Σ1, then we have A(E2) ≥ A(E1), where
Ei = E ∩ Σi.

Thus, if we consider all black holes in the universe, their total cross-section area cannot
decrease in any physically allowed process, δA ≥ 0. This implication of the area theorem is
commonly refered to as the second law of black hole mechanics. It bears a resemblance to the
second law of thermodynamics, which states that the total entropy S of all matter present in
the universe cannot decrease in any physically allowed process, δS ≥ 0.

At first sight, this resemblance seems to be a very superficial one, since the area theorem is
a theorem in differential geometry whereas the second law of thermodynamics has a statistical
origin. However, as we will see below, when quantum effects are taken into account, the
mathematical analogy between A and S obtains physical significance. From this observation
follows that A/4 represents the physical entropy of a black hole.

Remark 22. In section 6.3 we will discuss why it is not possible to establish a second law by
means of an area theorem in higher derivative theories of gravity.

5.4. Physical Relevance

As we have seen, there is a remarkable similarity between the physical laws governing the
behavior of a thermodynamic system and the laws that describe the behavior of a black hole
in general relativity. The zeroth law stated that κ is constant on E, the first law established
the mass variation formula δm = (κ/8π)δA + ΩEδJ , and the second law asserted δA ≥ 0.
These similarities with the laws of thermodynamics led Bekenstein [5] to propose the following
identifications:

E ↔ m, T ↔ γκ, S ↔ 1

8πγ
A, (5.4.1)

where γ is an arbitrary, undetermined, real constant. Although E and M represent the same
physical quantitiy, the other identifications remain on a formal level, since the temperature of
a black hole (being a perfect absorber and emitting nothing) is absolut zero within the classical
framework. Thus, it appears as if κ could not physically represent the temperature of a black
hole. When quantum effects are taken into account this picture is drastically changed.

In 1975 Hawking [14] discovered that quantum effects cause the creation and emission of
particles from a black hole with a blackbody spectrum at temperature T = κ/2π. Thus, κ/2π
does physically represent the thermodynamic temperature of a black hole, and is not merely
a quantity playing a role mathematically analogous to the temperature of a black hole. This
immediately suggests that A/4 is the entropy of a black hole.

However, when black holes are discussed within a quantum context as above, the area
theorem and the second law of black hole mechanics can be violated. For instance, the area
of a black hole which evaporates due to Hawking radiation decreases to zero. But already the
second law of ordinary thermodynamics fails in the presence of a black hole. When matter is
dropped into a black hole, it will disappear into the spacetime singularity. All entropy initally
present would be therefore lost and no compensating gain of entropy occurs. Therefore, the
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total entropy of the universe would decrease when matter falls into a black hole.3 In 1974
Bekenstein [6] proposed a way to remedy these two problems simultaneously by introducing a
generalized entropy

Sgen = S +
A
4
, (5.4.2)

where S represents the entropy of matter outside the black hole, and conjecturing that a
generalized second law holds, i.e.

δSgen ≥ 0 (5.4.3)

in any process. So when matter is dropped into a black hole, the decrease of S is accompanied
by an increase of A (and vice versa), such that δSgen ≥ 0 remains valid. If this law turns out
to be correct, the laws of black hole mechanics may be considered to be the ordinary laws of
thermodynamics applied to a quantum system containing a black hole.

Remark 23. So far we have not mentioned if there exists an analog to the third law of
thermodynamics, which states that S → 0 (or a universal constant) as T → 0, in black hole
physics. The analog of this law fails in black mechanics since there exists extremal black holes
(κ = 0) with finite A. However, there do exist analogs of alternative versions of the third law
which appear to hold for black holes [18].

3One could of course argue that one must still count the entropy of the matter after it fell into the black hole,
as contributing to the total entropy of the universe. But then, the second law would have the status of being
observationally unverifiable.
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6. Higher Derivative Theories of Gravity
(HDTG)

6.1. General Relevance

On the classical level, the predictions of general relativity are in perfect accord with exper-
iments, so there is no reason to modify this theory. However, since the experimental tests
of general relativity only refer to the large-distance behaviour of the theory, we are free to
add terms to the Einstein-Hilbert Lagrangean which leave this behaviour untouched. Such
terms are for example R2 or RabR

ab (see below). Therefore, gravitational theories whose field
equations contain derivatives of the metric of order greater than two were considered since
the early days of general relativity, as possible other candidates for theories that describe the
classical gravitational interaction.

Further motivation for the consideration of such HDTG is provided by attempts to quantize
general relativity. The Einstein theory is perturbatively non-renormalizable at two loops in the
vacuum case and at one loop for gravity interacting with matter [28], [8]. By adding suitable
higher derivative terms to the gravitational Lagrangian, the ultraviolet behavior of the theory
is improved [26]. Unfortunately, these modified theories contain, besides the usual massless
spin-two excitation, an additional massive spin-two excitation with negative energy which leads
to a breakdown of causality of the classical theory [27]. Furthermore, this additional excitation
causes a loss of unitarity of the quantum theory [26]. Therefore, higher derivative theories have
proven inadequate as a foundation for quantum gravity.

However, such theories might still be interesting within the context of effective field theories.
It is expected that there exists a low energy effective action to a quantum theory of gravity. This
action would yield field equations for a background metric field for sufficiently weak curvatures
and sufficiently long distances. Presumably, this action will be generally covariant, and will
consist of the Einstein-Hilbert action plus a series of higher curvature and higher derivative
terms of the low energy matter fields. Such additional contributions naturally arise within
the context of the renormalization of the stress-energy tensor of a quantum field propagating
on a curved spacetime [17], and the constructions of an effective action for string theory [11].
Within this context, higher derivative theories of gravity such as Lovelock gravity, Gauss-
Bonnet gravity for spacetimes with dimension d > 4, and polynomial-in-R gravity gained
increased interest.
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6. Higher Derivative Theories of Gravity (HDTG)

6.2. The Theory under Consideration

In the following we will consinder a vacuum HDTG which is given by the action1

I[g] =
1

16π

∫

M
d4x

√−g
[
R+ λRabR

ab

]
(6.2.1)

where λ is a real constant with dimension length-squared. In contrast to the Einstein-Hilbert
action, this action contains an additional Ricci tensor squared term. Therefore, the field equa-
tions will contain derivatives of the metric up to order four. In the following we will derive the
equations of motion for this theory

Since the first term in (6.2.1) is the usual Einstein-Hilbert action, a variation2 yields

δ

[∫

M
d4x

√−g R
]

=

∫

M
d4x

√−g
[
Rab −

1

2
gabR

]
δgab. (6.2.2)

The variation of seconds may be written as

δ

[∫

M
d4x

√−g RabR
ab

]
=

∫

M
d4x(δ

√−g)RabR
ab +

∫

M
d4x

√−g
[
(δRab)R

ab +Rab δR
ab

]
.

(6.2.3)
By using the identities

δ
√−g = −1

2

√−ggab δg
ab, (6.2.4)

and

Rab δR
ab = Rab δ(g

acgbdRcd)

= Rab(δg
ac)gbdRcd +Rabg

ac(δgbd)Rcd +Rabg
acgbd δRcd

= 2RabR
b

c δg
ac +RabδRab.

(6.2.5)

we obtain

δ

[∫

M
d4x

√−g RabR
ab

]
=

∫

M
d4x

√−g
[
−1

2
gabRcdR

cd δgab + 2RacR
c

b δgab + 2Rab δRab

]
.

(6.2.6)
The variation of the Ricci tensor is given by the standard identity

δRab =
1

2
gcd

[
∇c∇b δgad + ∇c∇a δgbd −∇a∇b δgcd −∇c∇d δgab

]
. (6.2.7)

Substitution of (6.2.7) into (6.2.6) yields

2

∫

M
d4x

√−g Rab δRab =

∫

M
d4x

√−g Rabgcd

[
2∇c∇b δgad −∇a∇b δgcd −∇c∇d δgab

]
. (6.2.8)

1Actually, the prefactor 1/16π is not necessary for a vaccum theory. However, we still include it in order to
obtain the correct form for the first law of black hole mechanics in this gravitational theory (see section
7.2.1). Furthermore, this prefactor assures that the entropy formula of Wald (equation (7.2.27)) yields A/4
for λ = 0.

2See appendix A for a clarification of the notation in variational calculations.
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In order to move the covariant derivatives onto the Ricci-tensor in (6.2.8), we perform a partial
integration. Exemplary, for the first term in (6.2.8) we obtain

∫

M
d4x

√−g gcd(∇c∇b δgad)R
ab =

∫

M
d4x

√−g∇c

[
gcd(∇b δgad)R

ab

]

−
∫

M
d4x

√−g gcd(∇b δgad)(∇cR
ab),

(6.2.9)

where we used the Leibniz rule and the compatibility of the metric. By using Stokes theorem
and the asymptotic boundary condition for the metric, we obtain

∫

M
d4x

√−g∇c

[
gcd(∇bδgad)R

ab

︸ ︷︷ ︸
=:wc

]
=

∫

∂M
w · ǫ = 0, (6.2.10)

where “·” denotes the contraction of the vector field wa into the first index of the volume form
ǫ on M . By the integral over ∂M we mean a limiting process in which in the integral is first
taken over the boundary, ∂K, of a compact region K in M (so that Stokes’ theorem3 can be
applied) and then K approaches M in a suitable manner. By performing a partial integration
twice in each term of (6.2.8) we obtain the following:

2

∫

M
d4x

√−g Rab(δRab) =

∫

M
d4x

√−g gcd

[
2(δgad)∇b∇cR

ab − (δgcd)∇b∇aR
ab

− (δgab)∇d∇cR
ab

]
.

(6.2.11)

Using the identity δgab = −gacgbd δg
cd yields

2

∫

M
d4x

√−g Rab(δRab) =

∫

M
d4x

√−g gcd

[
−2gajgdk∇b∇cR

ab + gcjgdk∇b∇aR
ab

+ gajgbk∇d∇cR
ab

]
δgjk

=

∫

M
d4x

√−g
[
−2∇b∇kR

b
j + gjk∇b∇aR

ab + �Rjk

]
δgjk

=

∫

M
d4x

√−g
[
−2∇c∇bR

c
a + gab∇d∇cR

cd + �Rab

]
δgab.

(6.2.12)

The first term in (6.2.12) can be simplified by using the identity

∇d∇cR
cd = ∇d∇cR

c
d =

1

2
∇d∇dR =

1

2
�R. (6.2.13)

From the commutator of covariant derivatives follows

∇c∇bR
c

a = ∇b∇cR
c

a +R d
cba R

c
d −R c

cbd R
d

a

=
1

2
∇b∇aR−RacbdR

cd +RbdR
d

a . (6.2.14)

3We choose the orientation of ∂K to be the one specified by Stokes’ theorem, i.e., we dot the first index of the
orientation form on K into an outward pointing vector.
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6. Higher Derivative Theories of Gravity (HDTG)

By substituting (6.2.13),(6.2.14) into (6.2.12) and the resulting expression into (6.2.6) we
obtain

δ

[∫

M
d4x

√−g RabR
ab

]
=

∫

M
d4x

√−g
[
−∇b∇aR+ 2RacbdR

cd − 2RbdR
d

a

+
1

2
gab�R+ �Rab + 2RacR

c
b − 1

2
gabRcdR

cd

]
δgab

=

∫

M
d4x

√−g
[
−∇b∇aR+ �Rab + 2RacbdR

cd

− 1

2
gab(RcdR

cd − �R)

]
δgab.

(6.2.15)

Since the variation δgab was chosen arbitrary, the equations of motion read as follows:

Eab := Rab −
1

2
gabR+ λ

[
−∇a∇bR+ �Rab + 2RcdRacbd −

1

2
gab(R

cdRcd − �R)

]
= 0. (6.2.16)

The vacuum Einstein equation

Rab −
1

2
Rgab = 0 (6.2.17)

may be written as Rab = 0, i.e. we have Rab = 0 and R = 0 in the vacuum case. Therefore,
any solution of the vacuum Einstein equation also solves the field equation (6.2.16) of our
HDTG, so all vacuum spacetimes from the Einstein theory also appear the HDTG which we
consider. However, may there may be an abundance of new solutions which are not present
in general relativity. Among the vacuum spacetimes in Einstein gravity is the (maximally
extended) Schwarzschild solution, which is asymptotically flat and contains a black hole region.
Therefore, it is assured that black holes actually appear in the HDTG which we consider.
However, our HDTG also has features which are not present in general relativity. In [27] it
was shown that the static, linearized solutions of (6.2.16) are combinations of Newtonian and
Yukawa potentials. Therefore, it is expected that the observational corrections of this theory
set in at very small scales. Furthermore, we note that this theory possesses a a well posed
inital value formulation (for a suitably defined initial data sets) [21].

6.3. Laws of Black Hole Mechanics in HDTG

A natural question to ask is what the status of the laws of black hole mechanics within the
framework of effective field theories is. If one demands consistency of theses laws with the
effective action, a preferred subclass of theories would be selected. In turn, this would place
certain restrictions on the coefficients of the higher derivative contributions. From this analysis
one might hope to learn something about the possible nature of quantum gravity. Further-
more, it is interesting to study black hole thermodynamics in such generalized gravitational
theories in order to see whether the laws of black hole mechanics are a peculiar accident of
Einstein gravity or a robust feature of all generally covariant theories of gravity, or something
in between.
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6.3. Laws of Black Hole Mechanics in HDTG

In the following we will summarize4 the present status of the laws of black hole mechanics
within the context of HDTG.

• The zeroth law of black hole mechanics states that the surface gravity κ is constant over
the entire horizon. This statement has been proven for Einstein gravity with matter
satisfying the dominant energy condition. The proof of this theorem heavily relies on
Einstein’s equation, so it does not readily extend to HDTG. If one assumes the existence
of a bifurcate Killing horizon, then constancy of κ is easily seen to hold independently
of the field equation [33]. Furthermore, in [20] a zeroth law is established for theories
with gravitational Lagrangian R + λR2 without the assumption of a bifurcate Killing
horizon.5 If a zeroth law holds in general remains an open question.

• The first law of black hole mechanics (in the vacuum case) takes the form

κ

2π
δS = δm − ΩEδJ. (6.3.1)

For Einstein gravity, the black hole entropy S is given by one quarter of the horizon
cross-section area, S = A/4. A remarkable feature of (6.3.1) is that it relates variations
in properties of the black hole as measured at asymptotic infinity to a variation of a
geometric property of the horizon.

The authors in [32] establish the result that, even though the precise expression of S
is altered, the first law is still valid in an arbitrary diffeomorphism invariant theories of
gravity. Such theories are given by diffeomorphism covariant Lagrangian densities of the
form

L = L(gab, Rabcd,∇aRbcde, . . . , ψ,∇aψ, . . . ), (6.3.2)

which depend on the metric gab, matter fields, collectively denoted by ψ, and a finite
number of derivatives of the Riemann tensor and the matter fields (see chapter 7). Within
this context, the black hole entropy is given by

S = −2π

∫

C

δL

δRabcd
nabncd, (6.3.3)

where nab is the bi-normal to the bifurcation surface C and the functional derivative is
evaluated by formally viewing the Riemann tensor as a field independent of the metric.
As we see, the black hole entropy is still given by a local expression evaluated at the
horizon, and so this aspect of the first law is preserved.

• In general relativity, the second law of black hole mechanics is established by the area
theorem which states that the horizon cross-section area cannot decrease in any classical
process, δA ≥ 0. An essential ingredient in the proof of this theorem is the null condition
condition, Rabk

akb ≥ 0 for all null vectors ka. This condition is implied by the Einstein’s
equation together with the null energy condition (see appendix B). In HDTG one can
write the equations of motion in the form

Rab −
1

2
gabR = 8πTab, (6.3.4)

4as to our knowledge
5The idea of the proof is to relate the HDTG to a more conventional theory in which Einstein gravity is

coupled to an auxiliary scalar field, using by a conformal field redefinition.
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6. Higher Derivative Theories of Gravity (HDTG)

by absorbing the higher derivative terms in the energy-momentum tensor. Typically,
these additional contributions spoil the null energy condtion, and so one cannot establish
an area increase theorem in such theories using the standard techniques from general
relativity.

However, this is not the relevant question for black hole thermodynamics. The relevant
question is whether or not the quantity S, whose variation appears in the first law
(6.3.1), satisfies an increase theorem. If so, one would have a second law of black hole
thermodynamics for such a theory. This would further validate the interpretation of S
as the black hole entropy.

In [20] a second law is established for quasistationary processes6, independent of the
details of the gravitational action. For such processes the second law is a direct conse-
quence of the first law, as long as the matter stress-energy tensor satisfies the null energy
condition. Furthermore, the authors proof a second law for theories whose gravitational
Lagrangian is a polynomial in the Ricci scalar.

6 These are dynamical processes where a small amount of matter enters from a great distance and falls into
the (vacuum) black hole. The inital and final black holes are assumed to be stationary.
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7. The Covariant Phase Space Formalism

7.1. Preliminaries

Let (M,gab) be a spacetime . In the following we will consider Lagrangian field theories on M
of a vacuum type, so the only dynamical field that arises is the spacetime metric gab. By F we
will denote the space of “kinematically allowed” metrics on the fixed manifold M . A precise
definition of F would involve additional requirements on gab such as global hyperbolicity, the
condition that a foliation of M is given by spacelike hypersurfaces and asymptotic fall-off
conditions on the metric at spatial and/or null infinity. Therefore, the definition of F crucially
depends of the theory under consideration and what is most suitable for one’s purposes. In
the following we will adopt a pragmatic point of view, in the sense that we assume that F has
been chosen in a way that all integrals that occur below converge.

At the beginning of section 7.3 additional conditions1 on F will be given which assure the
convergence of all relevant integrals.

We will consider theories which are described by a Lagrangian density 4-form2 locally con-
structed from the following quantities

L = L(gab,
◦
∇a1

gbc, . . . ,
◦
∇(a1

. . .
◦
∇ak)gbc), (7.1.1)

where
◦
∇ is an arbitrary, globally defined derivative operator and k is arbitrary but finite. The

theories are assumed to be diffeomorphism invariant, i.e. the Lagrangian is diffeomorphism
covariant in the sense that we have

L(f∗φ) = f∗L(φ), (7.1.2)

for any diffeomorphism f : M →M , where all variables appearing in (7.1.1) were collectively
denoted by φ. The authors in [32] showed that condition (7.1.2) implies that L takes the form

L = L(gab, Rabcd,∇a1
Rbcde, . . . ,∇(a1

. . .∇am)Rbcde), (7.1.3)

where ∇ is the derivative operator associated with gab, m = k − 2 and Rabcd is the Riemann
tensor of gab.

A variation3 of L can be expressed as

δL = E · δg + dθ, (7.1.4)

1All asymptotically flat spacetimes at null infinity in vacuum general relativity satisfy these conditions.
2Actually it is more standard to consider Lagrangian density scalars in field theories. But we can use the

Hodge dual, defined via the volume form ǫ, to convert the Lagrangian density scalar L to a Lagrangian
density 4-form L = Lǫ and for our purposes it will be more convenient to view the Lagrangian density as a
4-form. See appendix A for an explanation of the boldface-notation.

3 See appendix A for a clarification of the notation in variational calculation.
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with
E = E(g), θ = θ(g, δg). (7.1.5)

and
E · δg = (E)ab δg

ab = Eab(δg
ab)ǫ. (7.1.6)

The equations of motion of the theory are then simply E = 0. The 3-form θ is called presym-
plectic potential. Note that θ corresponds to the boundary term that arises from the integration
by parts in order to remove the derivatives from δgab if the variation is performed under an
integral sign. Even though E is uniquely determined by (7.1.4), the symplectic potential is
only unique up to addition of a closed 3-form. Since the symplectic potential is required to
be locally constructed out of the metric g and the perturbation δg in a covariant manner, the
freedom in the choice of θ is limited to

θ → θ + dY , (7.1.7)

where Y is locally constructed out of g and δg in a covariant manner.

The presymplectic current 3-form ω is defined via the antisymmetrized variation4 of θ, i.e.

ω(g, δ1g, δ2g) := δ1θ(g, δ2g) − δ2θ(g, δ1g). (7.1.8)

Note that ω is a local function of g and the two linearized perturbations δ1g and δ2g off of g.
The ambiguity (7.1.7) in the choice of θ leads to the ambiguity

ω → ω + d[δ1Y (g, δ2g) − δ2Y (g, δ1g)] (7.1.9)

in the choice of ω.

Let Σ be a closed, embedded 3-dimensional submanifold without boundary; we will refer to
Σ as a slice. The orientation of Σ is chosen to be ǫ̃a1a2a3

= nbǫba1a2a3
, where na is the future

pointing normal to Σ and ǫba1a2a3
is the positively oriented volume form on M . We can define

a 2-form on F via

ΩΣ(g, δ1g, δ2g) :=

∫

Σ
ω. (7.1.10)

From the definition of ω follows that ΩΣ is antisymmetric in the perturbations. Therefore, ΩΣ

is presymplectic form on F associated with Σ. Although this definition depends, in general, on
the choice of Σ, it can be shown that if δ1g and δ2g satisfy the linearized equations of motion
and Σ is a Cauchy surface, then ΩΣ does not depend on the choice of Σ, provided that Σ is
compact or suitable asymptotic conditions are imposed on g (see [34]).

The ambiguity (7.1.9) in the choice of ω gives rise to the ambiguity

ΩΣ(g, δ1g, δ2g) → ΩΣ(g, δ1g, δ2g) +

∫

∂Σ
[δ1Y (g, δ2g) − δ2Y (g, δ1g)] (7.1.11)

in the presymplectic form ΩΣ. By the integral over ∂Σ above (Σ is assumed to have no
boundary) we mean a limiting process in the sense that the integral is first taken over ∂K, of
a compact region K, of Σ and then K approaches all of Σ. The orientation of ∂K is chosen
to be naǫba1a2a3

, where na is an outward pointing vector and ǫba1a2a3
is the volume form on

M , such that Stokes’ theorem can be applied. Note that the right hand side of (7.1.11) is only

4Here and in the following we assume that all variations commute, i.e. δ1δ2g − δ2δ1g = 0.
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well defined if the limit exists and is independent of the details of how K approaches Σ. (At
the beginning of section 7.3 additional assumptions will be made which assure convergence of
integrals over “∂Σ”.)

Given the presymplectic form ΩΣ, it is possible to construct a phase space Γ by factoring
out the orbits of the degeneracy subspaces of ΩΣ (for detail of the construction see [34]). This
phase space naturally acquires a genuine symplectic form from ΩΣ. However, for our purposes
it will be sufficient to work with the original field configuration space F and its (degenerate)
presymplectic form ΩΣ. In the following, the subspace of F where the equations of motions
are satisfied will be denoted by F̄ . The space F̄ is called covariant phase space.

Remark 24. A perturbation δg0 off of g0 is a tangent vector at g0 ∈ F in the following sense:
A one-parameter family of metrics gt corresponds to a curve R ∋ t 7→ gt = g(t) ∈ F , which
gives rise the tangent vector δg = dg(t)/dt|t=0 ∈ Tg(0)F with g = g(0) = g0.

Remark 25. A variation δg which is tangent to F̄ always satisfies the linearized equations
of motion: The tangent vector δg = dgt/dt|t=0 = dg(t)/dt|t=0 defines a curve t 7→ gt = g(t)
such that g(t) ∈ F̄ for each t ∈ R. Therefore we have E(g(t)) = 0 for each t ∈ R and in
particular dE(g(t))/dt|t=0 = 0. These are the linearized equations of motion with solutions
dg(t)/dt|t=0 = δg.

Remark 26. A complete vector field ξa on M naturally induces a field variation δξg = Lξg
in the following sense: The flow φt, generated by ξa, induces the action g → φ∗t g = g(t) on F .
The curve t 7→ g(t) gives rise to the tangent vector dg(t)/dt|t=0 = d(φ∗t g)/dt|t=0 = Lξg. This
vector is tangent to F if the flow Φs, generated by Lξg, is a diffeomorphism which maps F
into itself for each s ∈ R (see [34]).

Remark 27. The vector field Lξg on F always satisfies the linearized equations of motion
if g satifies the equations of motion: Since L is diffeomorphism covariant, φ∗t g satisfies the
equations of motion, i.e. E(φ∗t g) = 0, if g satisfies the equations of motion. Therefore
we have dE(φ∗t g)/dt|t=0 = 0 which are the linearized equations of motion with solutions
d(φ∗t g/dt)|t=0 = Lξg.

The vector field δξg = Lξg may be viewed as a dynamical evolution vector field on F ,
corresponding to the notion of “time translation” defined by ξa. Its role is analogous to the
Hamiltonian vector field in classical mechanics and motivates the next definition.

Definition 25. Consider a diffeomorphism invariant theory as in the above framework with
field configurations space F and solution subspace F̄ . Let ξa be vector field on M , let Σ be
a slice in M and let ΩΣ be the presymplectic form defined by (7.1.10). (If the ambiguity in
the choice of ω gives rise to an ambiguity in ΩΣ according to (7.1.11), then we assume that a
particular choice of ΩΣ has been made.) Furthermore, we assume that F , ξa and Σ have been
chosen in a way such that the integral

∫
Σ ω(g, δg,Lξg) converges for all g ∈ F̄ and all tangent

vectors δg to F̄ at g. Then, a function Hξ : F → R is said to be a Hamiltonian conjugate to
ξa on slice Σ, if for all g ∈ F̄ and field variations δg tangent to F we have

δHξ = ΩΣ(g, δg,Lξg) =

∫

Σ
ω(g, δg,Lξg). (7.1.12)

Note that if there exists such a function Hξ, its value on F̄ is only determined up to addition
of an arbitrary constant by (7.1.12). This constant can be fixed by requiring that Hξ vanishes
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for a reference solution, such as Minkowski spacetime. The value of Hξ off of F̄ is essentially
arbitrary.

Furthermore, there does not need to exist a function Hξ at all which satisfies (7.1.12). For
instance, this is the case in general relativity when ξa is an asymptotic time translation and the
slice Σ extends to null infinity. It was shown in [38], that a necessary and sufficient condition
for the existence of a Hamiltonian Hξ conjugate to ξa on Σ is that for all solutions g ∈ F̄ and
all pairs of perturbations δ1g, δ2g tangent to F̄ we have

∫

∂Σ
ξ · ω(g, δ1g, δ2g) = 0, (7.1.13)

where “·” denotes the contraction of ξa into the first index the differential form ω. There are
two situation in which (7.1.13) is automatically satisfied:

(i) The asymptotic conditions on g are such that ω(g, δ1g, δ2g) goes to zero sufficiently rapid
such that the integral of ξ · ω over ∂K vanishes in the limit as K approaches Σ.

(ii) If ξa is such that K can always be chosen such that ξa is tangent to ∂K, since then the
pullback of ξ · ω to ∂K vanishes.

The value of Hξ provides a natural candidate for a conserved quantity associated with ξa at
“time” Σ. In section 7.3 we will investigate the issue of defining “conserved quantities” even
when no Hamiltonian exists.

7.2. Black Hole Entropy as Noether Charge

First of all, let us introduce some further useful quantities. The Noether current 3-form
associated with ξa is defined by

J = θ(g,Lξg) − ξ · L. (7.2.1)

The standard identity
LξΛ = d[ξ ·Λ] + ξ · dΛ, (7.2.2)

which holds for any vector field ξa and differential form Λ, together with (7.1.4) implies that
we have

dJ = −E · Lξg. (7.2.3)

Therefore, J is closed whenever the equations of motion are satisfied. Furthermore, J is not
only closed but also exact if E(g) = 0 holds [30]. From this follows that there exists a 2-form
Q, locally constructed from g and ξa, such that whenever E(g) = 0, we have

J = dQ. (7.2.4)

When the equations of motion are not satisfied, the Noether current may be written as

J = dQ + ξaCa, (7.2.5)

where Ca are the “constraints” of the theory, i.e. we have Ca = 0 whenever the equations of
motion are satisfied. The quantity Q = Q[ξ] appearing in (7.2.4) is the Noether charge 2-form.
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In [32] it was shown that Q can always be written in the form

Q = Xab(g)∇[aξb] + Ua(g)ξ
a + V (g,Lξg) + dZ(g, ξ), (7.2.6)

where Xab,Ua,V and Z are covariantly constructed from the indicated quantities and their
derivatives (with V linear in Lξg and Z linear in ξ). In particular, the first term in 7.2.4 is
given by

Xcd = (Xcd)c1c2 = −Eabcd
R ǫabc1c2, (7.2.7)

with

Eabcd
R =

∂L

∂Rabcd
−∇a1

∂L

∂∇a1
Rabcd

+ · · · + (−1)m∇(a1
. . .∇am)

∂L

∂∇(a1
. . .∇am)Rabcd

. (7.2.8)

In fact, (7.2.8) are the equations of motion for Rabcd if it were viewed as a field independent
of the metric.

The quantities J and Q inherit the following ambiguities from (7.1.7):

J → J + dY (g,Lξg) (7.2.9)

Q → Q + Y (g,Lξg) + dW , (7.2.10)

where W is a 1-form locally constructued in a covariant manner.

7.2.1. Application to the First Law

Wald and Iyer [32] used the covariant phase space formalism to show that a version of the first
law of black hole mechanics holds in every diffeomorphism invariant theory of gravity. In the
following, we will illustrate their line of argument.

Consider some g ∈ F̄ and an arbitrary variation δg off of g (not necessarily tangent to F̄). Let
ξa be a complete, fixed vector field on M . Then, we have

δJ = δθ(g,Lξg) − ξ · δL
= δθ(g,Lξg) − ξ · dθ(g, δg)

= δθ(g,Lξg) −Lξθ(g, δg) + d[ξ · θ(g, δg)],

(7.2.11)

where we used (7.1.4) and E = 0 in the second line and the identity (7.2.2) in the third
line. Since θ is covariant, Lξθ is the same as the variation induced in θ by the field variation
δ′g = Lξg. Therefore, we have

δθ(g,Lξg) − Lξθ(g, δg) = ω(g, δg,Lξg), (7.2.12)

where we used the definition (7.1.8). From this follows that (7.2.11) reads as

ω(g, δg,Lξg) = δJ − d[ξ · θ]. (7.2.13)

By using (7.2.5), this can be rewritten as

ω(g, δg,Lξg) = ξaδCa + dδQ − d[ξ · θ], (7.2.14)
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where we used the fact that δdQ = dδQ holds. Therefore, if there exists a Hamiltonian
conjugate to ξa on Σ, then it must satisfy

δHξ =

∫

Σ
ξaδCa +

∫

∂Σ
(δQ − ξ · θ), (7.2.15)

for all g ∈ F̄ and all δg. The integral over ∂Σ has the meaning as described below equation
(7.1.11). When δg satisfies the linearized equations of motion, i.e. δg is tangent to F̄ , then
(7.2.15) takes the form

δHξ =

∫

∂Σ
(δQ − ξ · θ). (7.2.16)

As we will show in the following, this equation can be used to define conserved quantities
which are associated with asymptotic symmetries generated by ξa. If we can find a 3-form B,
such that

δ

∫

∂Σ
ξ · B =

∫

∂Σ
ξ · θ, (7.2.17)

then the Hamiltonian H is given by

H =

∫

∂Σ
(Q[ξ] − ξ · B). (7.2.18)

Now, let g be a solution which corresponds to an asymptotically flat spacetime and let Σ be a
slice, which extends to spatial infinity, such that ∂Σ = S2

∞, where S2
∞ is a two-sphere at spatial

infinity. First of all, let us assume that the asymptotic conditions on g have been specified
in such a way that ξa is an asymptotic time translation, B exists and the surface integral
in (7.2.18) approaches a finite limit. Then, the canonical energy E of an asymptotically flat
spacetime may be defined as

E =

∫

S2
∞

(Q[t] − t · B), (7.2.19)

where ta is an asymptotic time translation.

Consider now case where ξa is an asymptotic rotation φa. We can choose the surface S2
∞

in such a way that φa is everywhere tangent to S2
∞, such that the pullback of φ · θ vanishes.

Then, the canonical angular momentum J of an asymptotically flat spacetime can be defined
as

J = −
∫

S2
∞

Q[φ]. (7.2.20)

It is assumed that the asymptotic conditions on the metric g have been specified in such a way
that this surface integral converges.

We will now apply equation (7.2.16) to the case of a stationary black hole solution with
bifurcate Killing horizon. This will directly lead us to a generalized first law. Let ξa be a
Killing field that vanishes on the bifurcation surface C, normalized such that

ξa = ta + ΩEφ
a, (7.2.21)

where ta is a stationary Killing field with unit norm at infinity. Since we have Lξg = 0, the left
hand side of (7.2.13) vanishes as ω(g, δ1g, δ2g) is linear in δ2g (see [34]). Therefore, equation
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(7.2.16) reads as

0 =

∫

∂Σ
(δQ − ξ · θ). (7.2.22)

Furthermore, let Σ be an asymptotically flat hypersurface that extends from the bifurcation
surface C to S2

∞, such that ∂Σ = C ∪ S2
∞. Then, we have

0 =

∫

∂Σ
(δQ[ξ] − ξ · θ)

= δ

∫

∂Σ
(Q[ξ] − ξ · B)

= δ

∫

C
(Q[ξ] − ξ · B) − δ

∫

S2
∞

(Q[ξ] − ξ · B)

= δ

∫

C
Q[ξ] − δ

∫

S2
∞

(Q[ξ] − ξ · B),

(7.2.23)

where we used the fact that ξa vanishes on C for the fouth equality. From the form of the
Noether current (7.2.6) follows

Q = Xab(g)∇[aξb], (7.2.24)

since we have Lξg = 0 and ξa ↾ C = 0. Therefore, insertion of (7.2.21) into (7.2.23) yields

δ

∫

C
Q[ξ] = δ

∫

S2
∞

(Q[ξ] − ξ · B)

= δ

∫

S2
∞

(Q[t] + ΩEQ[φ] − t · B − ΩEφ · B)

= δ

∫

S2
∞

(Q[t] − t · B) + ΩEδ

∫

S2
∞

Q[φ]

= δE − ΩEδJ.

(7.2.25)

Here, we used the fact that S2
∞ can be chosen in such a way that φa is tangent to S2

∞, so that
the pullback of φ · θ to S2

∞ vanishes for the third equality. One can show (see [32]), that the
left hand side of (7.2.25) may be written as

δ

∫

C
Q[ξ] = κδ

∫

C
Xcdncd, (7.2.26)

where κ is the surface gravity of the black hole and ncd is the binormal to C, i.e. ncd is the
natural volume element on the tangent space perpendicular to C, oriented so that ncdT

cRd > 0
when T a is a future-directed timelike vector and Ra is a spacelike vector that points “towards
infinity”. This result establishes the following theorem, which is due Wald and Iyer [32].

Theorem 11 (Generalized First Law of Black Hole Mechanics). Let g be an asymptotically
flat stationary black hole solution of an arbitrary diffeomorphism invariant theory of gravity
with a bifurcate Killing horizon C. Let δg be a (not necessarily stationary), asymptotically flat
solution of the linearized equations of motion about g. If we define S by

S = 2π

∫

C
Xcdncd, (7.2.27)
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then we have
κ

2π
δS = δE − ΩEδJ. (7.2.28)

Remark 28. In the above discussion we explicitely assumed that C is the bifurcation surface
of a bifurcate Killing horizon. However, in [19] it was shown that for stationary black holes
with a bifurcate horizon the integral of Q is independent of the choice of cross-section. Namely,
if we define the entropy S, for an arbitrary cross-section E = E ∩Σ, of a stationary black hole
by

S[E ] = 2π

∫

C′

Xcdn′cd, (7.2.29)

where n′cd is the binormal to E , then S is independent of the choice of E . In order to see this,
one has to recognize that Xcd is invariant under the one-parameter group of isometries χt,
generated by the vector field ξa. From this follows immediately S[χt(E)] = S[E ]. Since we

have χt(E)
t→−∞−→ C, and since Xcd is smooth, we obtain S[E ] = S[E ].

Therefore, for stationary perturbations, the first law holds when S taken to be the entropy
of an arbitrary cross-section. When non-stationary perturbations are considered, it is essential
to evaluate S on the bifurcation surface, in order to establish a first law.

7.2.2. Black Hole Entropy in our HDTG

In this section we will use the above framework to calculate the black hole entropy Sλ in our
HDTG.

The key formula for this calculation is equation (7.2.27), namely

Sλ = 2π

∫

C
Xcdncd = −2π

∫

C
Eabcd

R ǫabc1c2ncd = −2π

∫

C
Eabcd

R nabncd
(2)
ǫ , (7.2.30)

where
(2)
ǫ denotes the induced volume-form on the 2-dimensional submanifold C. The theories

we are considering are given by the Lagrangian

L = Lǫ =
1

16π
(R + λRabR

ab)ǫ. (7.2.31)

Since this Lagrangian does not depend on derivatives of the Riemann tensor, we have

Eabcd
R =

∂L

∂Rabcd
. (7.2.32)

A straightforward calculation yields

∂L

∂Rabcd
=

1

16π
(gacgbd + 2λgbdRac). (7.2.33)

The binormal is chosen to be nab = nalb − lanb, where na and la are two linearly independent
null vectors, which are normalized such that nal

a = −1. Therefore we have

nabncd = (nalb − lanb)(ncld − lcnd)

= nalbncld − nalblcnd − lanbncld + lanblcnd.
(7.2.34)
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Insertion of (7.2.33) and (7.2.34) into (7.2.30) yields

Sλ = −1

8

∫

C
(gacgbd + 2λgbdRac)nabncd

(2)
ǫ

=
1

4

∫

C

(2)
ǫ − λ

2

∫

C
Rab(n

alb + lanb)
(2)
ǫ

=
A(C)

4
− λ

∫

C
Rur

(2)
ǫ ,

(7.2.35)

where we used the fact that the vectors na and la may be written as na = (∂/∂u)a and
la = (∂/∂r)a in Gaussian null coordinates for the last equality.

As we see, the black hole entropy in our HDTG is given by the usual A/4 term from general
relativty, plus an additional contribution which is given by an integral of the ur-component of
the Ricci-tensor over the bifurcation surface C.

7.3. Generalized “Conserved Quantities”

At the end of section 7.1 we stated a condition, (7.1.13), which assured the existence of a
Hamiltonian. However, in many cases of interest this condition is not satisfied, and therefore
it is not possible to define conserved quantities. Wald and Zoupas [38] developed a technique
for defining conserved quantities, even when no Hamiltonian exists. In the following, we will
briefly summarize this method.

In section 8.2 this technique will be used for an attempts to establish a second law of black
hole mechanics in our HDTG.

First of all, let us introduce some terminology and the basic assumptions of this framework.
We consider a diffeomorphism invariant theory of gravity, whose asymptotic conditions are
specified by attaching a boundary B to the spacetime manifold M and requiring a certain
limiting behaviour of the metric g, as one approaches B. The boundary B is assumed to be a
3-dimensional manifold , so that M ∪B is a 4-dimensional manifold with boundary. M ∪B will
be equipped with additional non-dynamical structure - such as a conformal factor on M ∪B or
other tensor fields - which will enter into the specification of the limiting behaviour of g, and
will therefore be part of the definition of F and F̄ . This additional non-dynamical structure
will be refered to as universal background structure of M ∪ B.

The following two main assumptions are made:

1. F has been defined so that for all g ∈ F̄ and all δ1g, δ2g tangent to F̄ the presymplectic
current ω(g, δ1g, δ2g) extends continuously to B.

2. One only considers slices Σ, that extend smoothly to B, such that the extended hyper-
surface intersects B in a smooth 2-dimensional submanifols, which will be denoted by
∂Σ. Furthermore, Σ ∪ ∂Σ is assumed to be compact.

From these two assumptions immediately follows that ΩΣ is well defined, since it can be
expressed as an integral of a continuous 3-form over the compact hypersurface Σ ∪ ∂Σ.

Now, we turn to the definition of infinitesimal asymptotic symmetries.

Definition 26. Let ξa be a complete vector field on M ∪B. ξa is called a representative of an
infinitesimal asymptotic symmetry if its associated one-parameter group of diffeomorphisms
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maps F̄ into F̄ , i.e. if it preserves the asymptotic conditions specified in the definition of F̄ .
Equivalently, ξa is a representative of an infinitesimal asymptotic symmetry if Lξg is tangent
to F̄ .

One can show (see [38]), that if ξa is a representative of an infinitesimal asympotic symmetry,
then the right hand side of (7.2.16), namely

Υ =

∫

∂Σ
(δQ[ξ] − ξ · θ), (7.3.1)

is always well defined and the integral only depends on the cross-section ∂Σ of B, not on Σ.

Now, let us introduce the following equivalence relation.

Definition 27. Two representatives of infinitesimal asymptotic symmetries ξa and ξ′a are said
to be equivalent if they coincide on B and if, for all g ∈ F̄ , δg tangent to F̄ , and all ∂Σ on B,
we have Υ = Υ′. The infinitesimal asymptotic symmetries of the theory are then comprised
by the equivalence class of representatives of the infinitesimal asymptotic symmetries.

Consider now an infinitesimal asymptotic symmetry, represented by the vector field ξa, and
let Σ be a slice with boundary ∂Σ on B. Even though the asymptotic conditions, which we
stated, assure that the right hand side of (7.2.16) is well defined, there does not, in general,
exist a Hamiltonian Hξ which satisfies this equation. Therefore, we have to consider the
following two cases:

(I) Suppose that the continuous extension of ω to B has vanishing pullback to B. Then,
the condition (7.1.13) implies that Hξ exists for all infinitesimal asymptotic symmetries
and is independent of the choice of representative ξa. Furthermore, one can show (see
[38]) that in this case Hξ truely corresponds to a conserved quantity, i.e. its value is
independent of “time” Σ.

(II) Suppose that the continuous extension of ω to B does not have vanishing pullback to B.
Then, in general, there does not exist an Hξ which satisfies (7.2.16). One exception is
the case when ξa is everwhere tangent to ∂Σ, such that the condition (7.1.13) is satisfied.
In this case, if ξa is tangent to cross-sections ∂Σ1 and ∂Σ2 of B, which bound a region
B12 ⊂ B, we have

δHξ|∂Σ1
− δHξ|∂Σ2

= −
∫

B12

ω(g, δg,Lξg), (7.3.2)

where we used (7.2.16) and (7.2.14) in the case we are “on shell”. As we see, even though
Hξ exists, it will, in general, not be conserved in this case.

The first case arises in general relativity for spacetimes which are asymptotically flat at spatial
infinity. Then, equation (7.2.19) gives rise to the usual expression for the ADM mass (see
[32]). The second case arises in general relativity for spacetimes which are asymptotically flat
as null infinity.

Now, we will state the definition of a “conserved quantity” conjugate to an infinitesimal asymp-
totic symmetry ξa in case (II). This quantitiy will be denoted by Hξ to distinguish it from the
Hamiltonian Hξ.
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Remark 29. One should note that the “conserved quantitiy” Hn will, in general, not be
conserved (as in the case of null infinity in general relativity), since symplectic current can
be radiated away. This is due to the fact that no Hamiltonian exists which generates the
asymptotic symmetry. Therefore, Hn should be rather interpreted as the energy which is
radiated through the boundary B.

On B, let Θ be the presymplectic potential for the pullback ω̄ of the (extension of the)
presymplectic current ω to B, so that on B we have

ω̄(g, δ1g, δ2g) = δ1Θ(g, δ2g) − δ2Θ(g, δ1g), (7.3.3)

for all g ∈ F̄ and all δ1g, δ2g tangent to F̄ . Furthermore Θ is required to be a local quantity,
to depend analytically on the metric when L is analytic, and to be independent of the choices
made in the specification of the universal background structure. The quantity Hξ is defined
by the equation

δHξ =

∫

∂Σ
(δQ − ξ · θ) +

∫

∂Σ
ξ ·Θ. (7.3.4)

Note that the last term in this equation is an ordinary integral over the surface ∂Σ of B,
whereas the first integral is understood as an asymptotic limit. Equation (7.3.4) satisfies the
consistency check (7.1.13), and defines therefore a “conserved quantity” Hξ up to an arbitrary
constant. This constant can be fixed by requiring Hξ to vanish on a reference solution g0 ∈ F̄ .

However, the above prescription does not define Hξ uniquely. Equation (7.3.3) gives rise to
the ambiguity

Θ(g, δg) → Θ(g, δg) + δW (g), (7.3.5)

where W is a suitably (see [38]) constructed 3-form on B. Therefore, an additional condi-
tion must be imposed, which selects a Θ uniquely. We have seen above that the “conserved
quantity” Hξ will in general be not conserved, due to the possible presence of radiation at B.
Therefore, there should be a nonzero flux (3-form) F ξ on B, associated with Hξ. It is natural
to demand that F ξ vanishes on B in the case that g is stationary. One can show (see [38])
that this flux can be identified with Θ, i.e. we have

F ξ = Θ(g,Lξg). (7.3.6)

Therefore, if we require Θ(g, δg) and δW (g) to vanish for all δg tangent to F̄ whenever g ∈ F̄
is stationary, a physically reasonable subset of admissible Θ’s is selected. Thus, if we write
down an arbitrary Θ of this subset and we cannot add a term δW , such that this condition is
preserved, a unique Θ is selected.

Thus, if a unique Θ is selected by the above condition and Hξ is required to vanish on a
reference solution g0 (for all cross-sections and all ξa), then (7.3.4) determines a Hξ uniquely.

However, there remains another difficulty in the specification of Hξ. The reference solutions
g0 and ψ∗g0, where ψ : M ∪ B → M ∪ B is any diffeomorphism, cannot be distinguished in
any meaningful way. Therefore, if we require Hξ to vanish on g0, we must also require Hξ

to vanish on ψ∗g0. This overdetermines Hξ (so that no solutions exists), unless the following
condition is imposed: Let ξa, ηa be a representatives of infinitesimal asymptotic symmetries
and consider a field variation δg = Lηg about g0. Under this field variation we must have
δHξ = 0. Furthermore we have

δQ[ξ] = LηQ[ξ] − Q[Lηξ]. (7.3.7)
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Since δHξ is determined by (7.3.4) and since Θ is required to vanish at g0, we obtain the fol-
lowing consistency requirement on g0: For all representatives ξa, ηa of infinitesimal asymptotic
symmetries and for all cross-sections ∂Σ we must have

0 =

∫

∂Σ
{LηQ[ξ] − Q[Lηξ] − ξ · θ(g0,Lηg0)}. (7.3.8)

This is a nontrivial condition that must be satisfied by the reference solution g0, such that
Hξ is uniquely defined. One can show (see [38]) that this condition is independent of the
cross-section, and so, it must only be checked for one cross-section.
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8. On a Second Law of Black Hole Mechanics
in our HDTG

In this section we will present the main results of this thesis. We outline two ideas for a proof
of a second law of black hole mechanics in our HDTG. Both approaches were not successful in
establishing such a theorem.

The first idea we present is a “brute force” technique which adapts the essential idea from
the proof of the area theorem in general relativity. By adopting Gaussian null coordinates as a
local coordinate system in a neighborhood of the horizon, we will try find an evolution equation
which implies that the rate of change of the black hole entropy in our HDTG is positive along
the integral curves of the vector field na.

The second idea uses more sophisticated methods. We use the covariant phase space for-
malism from section 7.3 and apply it to the event horizon of a black hole. From this we obtain
a quantity which corresponds, in analogy with the Einstein case (see section 8.2.1), to the
rate of the change of the black hole entropy. However, the positivity of of this quantity is not
investigated.

8.1. First Idea for a Proof

In section 4.3, we have seen that the crucial step in the proof of the area theorem was to show
that the expansion ϑ is positive. This implied that we have

∂uA(E(u)) =

∫

E(u)
∂u

√
µ d2x =

∫

E(u)
ϑ
√
µ d2x ≥ 0, (8.1.1)

from which A(E2) ≥ A(E1) followed. The positivity of ϑ was shown in the following way: The
key ingredient was the Raychaudhuri equation, which may be written1 in symbolic notation
as

∂uϑ = ∂u(
√
µ−1∂u

√
µ) = {something negative} − ϑ2. (8.1.2)

That the terms in the curly brackets are really negative made use of Einstein’s equation, the
null energy condition and the cosmic censorship conjecture. As we showed in appendix D.4,
this equation corresponds to the uu-component of the field equations if they are written in
GNC and restricted to the horizon. The Raychaudhuri equation implied that, if we have ϑ0 < 0
initially at any point of the congruence, we must have ϑ → −∞ within finite affine length.
After that, it was shown ϑ→ −∞ is equivalent to the existence of a conjugate point. However,
since it is impossible that conjugate points exists on causal boundaries, the positivity of ϑ was
established.

The idea for a proof of a second law in our HDTG is analogous to the idea of the proof of
the area theorem, which we outlined above. In section 7.2.2 we found that the entropy in our

1in the case of a hypersurface orthogonal congrunce
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HDTG is given by2

Sλ =

∫

E

(
1

4
− λRur

)√
µ d2x, (8.1.3)

where E is any cross-section of the event horizon. If we could show that we have

∂uSλ =

∫

E(u)
∂u

(
1

4

√
µ− λRur

√
µ

)
d2x ≥ 0, (8.1.4)

we would have established a second law in our HDTG. In order to do so, we must find an
evolution equation for the integrant

I := ∂u

(
1

4

√
µ− λRur

√
µ

)
, (8.1.5)

which implies that is positive and monotonically increasing. In order to find such an equation,
we will apply a strategy which is analogous to the Einstein case: We make the Ansatz (see
section 8.1.2)

∂u(
√
µ−1I) =

1

4
∂uϑ− λ

(
∂2

uRur + (∂uϑ)Rur + ϑ∂uRur

)
(8.1.6)

and we will substitute the uu-component of the field equations in our theory, when restricted to
the horizon, via the ∂2

uRur-term into (8.1.6). Then we will try to bring the resulting equation
in a form which implies the desired behaviour of the integrant. With this Ansatz, such a form
for the evolution equation would be something like

∂u(
√
µ−1I) =

√
µ−1I + C, (8.1.7)

where C is a positive constant, since the evolution equation must be linear for dimensional
reasons (no λ2-terms).

8.1.1. uu-Component of the Field Equations

In section 6.2 we have derived the field equations

Eab = Rab −
1

2
gabR+ λ

[
−∇a∇bR+ �Rab + 2RcdRacbd −

1

2
gab(R

cdRcd − �R)

]
= 0. (8.1.8)

for our HDTG. Since the uu-component of the metric vanishes on the horizon (see appendix
D), we have

Euu|r=0 = Ruu + λ

[
−(∇a∇bR)(uu) + (�Rab)(uu) + 2RcdRucud

]
= 0. (8.1.9)

2Throughout this section we will only consider stationary perturbations.
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A long and tedious calculation3 shows that the terms in the curly brackets may be written as

(∇a∇bR)(uu) = ∂2
u

[
2Rur + µABRAB

]

(�Rab)(uu) = 2∂u∂rRuu + µABD̂AD̂BRuu − 2ΓA
ruD̂ARuu − 4ΓA

ru∂uRuA

− µAB

[
Γu

AB∂uRuu + Γr
AB∂rRuu + 4(ΓC

AuD̂BRuC + Γu
AuD̂BRuu)

]

+ 2Ruu

[
3ΓA

ruΓu
Au − ∂rΓ

u
uu + µAB(2Γu

AuΓu
Bu + ΓC

AuΓu
BC − D̂BΓu

Au)

]

+ 2Rur

[
−∂rΓ

r
uu + µABΓC

AuΓr
BC

]

+RuD

[
3ΓA

ruΓD
Au − ∂rΓ

D
uu − ∂uΓD

ru + µAB(Γr
ABΓD

ru + 3Γu
AuΓD

Bu − D̂BΓD
Au)

]

+ 2RCDµ
ABΓC

AuΓD
Bu

RcdRucud = Ruu

[
∂rΓ

u
uu − ΓA

ruΓu
Au

]

+ 2RuA

[
∂rΓ

A
uu − ∂uΓA

ru − ΓB
ruΓA

Bu

]

− µABRBC

[
∂uΓC

Au + ΓD
AuΓC

Du

]
.

(8.1.10)

3At first, we tried to implement this calculation with the computer algebra package GRTensor II. However,
this attempt did not proove to be fruitful, since the computer program did not “know” how to collect the
terms in a meaningful way. Therefore, the calculation was performed by hand, even though it involved about
150 handwritten pages.
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in Gaussian null coordinates. By substituting this result into (8.1.9) and by making use of the
explicit form of the Christoffel symbols from appendix (D.1), we obtain

0 = Euu|r=0 = Ruu + λ

{
−2∂2

uRur + ∂2
u(µABRAB + 2∂u∂rRuu) + �̂Ruu

− βAD̂ARuu + 2βA∂uRuA + 2(∂uµ
AB)D̂ARuB

+
1

2
µAB

[
(∂rµAB)∂uRuu + (∂uµAB)∂rRuu

]

+Ruu

[
1

2
(∂uµ

AB)∂rµAB − D̂Aβ
A

]

+
1

2
Rur(∂uµ

AB)∂rµAB

+
1

2
RuA

[
βCµAB∂uµBC +

1

2
βAµBC∂uµBC + 5∂uβ

A − D̂C(µAB∂uµBC)

]

−RABµ
BD∂u(µAC∂uµCD)

}
,

(8.1.11)

where we introduced the notation �̂ := µABD̂AD̂B . Again, this result required extensive
calculations which we will not be presented at this point.

8.1.2. Evolution Equation

As we described at the beginning of this section, our Ansatz for the evolution equation is
(8.1.6). Explicitly we have

∂u(
√
µ−1I) =∂u

(√
µ−1∂u

[
1

4

√
µ− λ̄Rur

√
µ

])

=
1

4
∂u(

√
µ−1∂u

√
µ) − λ̄∂u

(√
µ−1∂u(Rur

√
µ)

)

=
1

4
∂uϑ− λ̄

(
∂2

uRur + ∂u(
√
µ−1Rur∂u

√
µ)

)

=
1

4
∂uϑ− λ̄

(
∂2

uRur + ∂u(
√
µ−1∂u

√
µ)Rur + (

√
µ−1∂u

√
µ)∂uRur

)

=
1

4
∂uϑ− λ̄

(
∂2

uRur + (∂uϑ)Rur + ϑ∂uRur

)
.

(8.1.12)
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If we solve the restricted uu-component of the field equations (8.1.11) for the ∂2
uRur-term, we

obtain

∂2
uRur =

1

2λ̄
Ruu +

1

2
∂2

u(µABRAB + ∂u∂rRuu) +
1

2
�̂Ruu

− 1

2
βAD̂ARuu + βA∂uRuA + (∂uµ

AB)D̂ARuB

+
1

4
µAB

[
(∂rµAB)∂uRuu + (∂uµAB)∂rRuu

]

+
1

2
Ruu

[
1

2
(∂uµ

AB)∂rµAB − D̂Aβ
A

]

+
1

4
Rur(∂uµ

AB)∂rµAB

+
1

4
RuA

[
βCµAB∂uµBC +

1

2
βAµBC∂uµBC + 5∂uβ

A − D̂C(µAB∂uµBC)

]

− 1

2
RABµ

BD∂u(µAC∂uµCD).

(8.1.13)

The next step would be to insert this result into our Ansatz (8.1.12).

At this point of the analysis we stopped to pursue this strategy. We inserted (8.1.13) into
(8.1.12) and “played around” with it in order to see if it is possible to bring into the form
(8.1.7). But since the number of terms which were involved was so overwhelmingly large, we
could not see any structure in the resulting equation, so we decided to stop at this point and
to pursue a more systematic approach.

8.2. Second Idea for a Proof

The formalism of Wald and Zoupas, which we summarized in section 7.3, is actually designed
to define conserved quantities on the attached boundary B of the unphysical spacetime. How-
ever, if one carefully checks the assumptions which were made, one realizes that this formalism
is not limited to spacetime boundaries, but can also be applied to the event horizon of a black
hole. The quantity Hξ which one obtains by this procedure, is a “conserved quantity” on E
in the sense of section 7.3. It will, in general, not be conserved and it should be related to the
rate of change of the black hole entropy.

We make the following modifications to the Wald-Zoupas formalism, in order to apply it
to the event horizon of a black hole:

1. The event horizon E will play the role of the attached boundary B. Since E is situated in
a “finite region” of spacetime, one does not need to worry about “asymptotic conditions”
on the metric gab as one approaches E.

2. The vector field ξa which generates the asymptotic symmetry will, in the case of a black
hole, be the vector field na = (∂/∂u)a. Furthermore, we assume that na is proportional
to a Killing vector field.4

4This is a nontrivial assumption. One would have to prove a rigidity theorem for this gravitational theory, in
order to justify this. However, this assumption seemed undispensable for the calculations which will follow.
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Figure 8.1.: Foliation of a black hole spacetime.

3. The universal background structure of the theory will be given by the requirement that a
certain region in spacetime remains fixed under variations g → g+δg. This region will be
a neighborhood UE of the event horizon E. What we mean by “fixed” is the requirement
that if we have two neighborhoods UE , VE′ , such that E ⊂ UE ⊂ (M,g) and E′ ⊂ VE′ ⊂
(M,g + δg), then UE and VE′ are required to be the same as topological manifolds, i.e.
they are ought to be homeomorphic. Since we are free to apply diffeomorphisms to the
spacetime, this can always be achieved after a variation was performed, i.e. we can find a
diffeomorphism ψ : M →M such that VE′ = ψ(UE). Of course, this requirement selects
a subset of admissible variations δg, such that E′ can be “bend back” to E. However,
this class of admissible variation is large enough for our purposes. What we gain from
this requirement is that the coordinates r and u of the Gaussian null coordinate system
do not change under variations, i.e. we have

δr = 0, δu = 0. (8.2.1)

This greatly simplifies the following calculations.

4. When the Wald-Zoupas formalism is applied to spacetime boundaries B, the hypersur-
faces Σ, over which one integrates in order to define quantities like the presymplectic form
ΩΣ, are assumed to be slices, i.e. closed embedded 3-dimensional submanifolds without
boundary. So slices are not admitted to have a boundary in the physical spacetime.

In the case of a black hole, the hypersurfaces of interest are those which extend from
the event horizon to spatial infinity. Therefore, it seems more practicable to use, instead
of a slice, spacelike hypersurfaces Σt which give rise to a foliation of the spacetime (see
figure 8.1).

In order to see that these modifications to the formalism do indeed yield a meaningful result, we
will show in the next section that, in the case of the Einstein theory, the “conserved quantity”
Hn associated with the vector field na satisfies

Hn ∝ LnA(E). (8.2.2)

So, since we have S = A/4 in the Einstein theory, Hn is related to the rate of change of the
black hole entropy along the integral curves of the vector field na.
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The strategy for the computation of Hn on E is the following.

1. Calculate the presymplectic potential θ, the Noether current J and the Noether charge
Q.

2. Make the particular choice5

Θ = ι∗θ + δW , (8.2.3)

where ι : E → M is an embedding. Since we know that Θ is required to vanish for
stationary solutions, we can determine W by finding a decomposition

ι∗θ = {part that vanishes for stationary metrics} − δW . (8.2.4)

3. Then, Hn satifies

δHn =

∫

E
(δQ − n · θ) +

∫

E
n ·Θ = δ

∫

E
(Q + n · W ), (8.2.5)

i.e. we have

Hn =

∫

E
(Q + n · W ) + C. (8.2.6)

The constant C can be fixed by requiring that Hn vanishes on a reference solution g0,
such as the Schwarzschild spacetime.

8.2.1. Calculation of Hn in Einstein Gravity

In this section we will apply that the strategy we outlined above to a black hole solution of
Einstein gravity.

Our first task is to find a decomposition of the form (8.2.4). The presymplectic potential
for Einstein gravity is given by (see the result of section 8.2.2 and set λ = 0)

θabc =
1

16π
ǫdabc(g

fhgde − ghegdf )∇f δghe. (8.2.7)

Since the pullback ι∗θabc of θabc is only allowed to act on vectors which are tangent to E, the
index d is fixed to the value d = r due to the total antisymmetry of the tensor ǫabcd. Therefore,
we will try to find the desired decomposition for

ι∗θabc =
1

16π
ǫrabc(g

fhgre − ghegrf )∇fδghe (8.2.8)

in the following. In GNC, the variation of the metric (3.2.8) is given by

δgab = (δµAB)(dxA)a(dx
B)b =: (δµAB)dxA

a dxB
b =: δµab, (8.2.9)

5 However, this seems to be the most natural choice, since we have

δ1Θ(g, δ2g) − δ2Θ(g, δ1g) = δ1ι
∗

θ(g, δ2g) + δ1δ2W (g) − δ2ι
∗

θ(g, δ1g) − δ2δ1W (g)

= ι∗[δ1θ(g, δ2g) − δ2θ(g, δ1g)]

= ω̄(g, δ1g, δ2g).

Here, we have used the fact that mixed variations (being only partial derivatives) as well as variation and
pullback commute.
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where we have used δr = 0 and r = 0, since we restricted ourselves to the horizon after the
variation was performed. The covariant derivative of this variation may be expressed as

∇cδµab = (∇cδµAB)dxA
a dxB

b + δµAB(∇cdx
A
a )dxB

b + δµABdxA
a (∇cdx

B
b ). (8.2.10)

We have
∇cδµAB = ∂cδµAB − ΓC

cAδµCB − ΓC
cBδµAC (8.2.11)

and

∇cdx
A
a = −

∑

µ,ν

ΓA
µνdxµ

adxν
b

= −
[
ΓA

urduadrb + ΓA
uCduadx

C
b + ΓA

rudradub + ΓA
rCdradx

C
b

+ ΓA
CudxC

a dub + ΓA
Crdx

C
a drb + ΓA

CDdxC
a dxD

b

]
,

(8.2.12)

where we have used ΓA
uu = ΓA

rr = 0. Insertion of (8.2.10) together with (8.2.11),(8.2.12) into
(8.2.9) yields

ι∗θabc =
1

16π
ǫrabc

{
−∂u(µABδµAB)

}
. (8.2.13)

This result required a longer, however straightforward calculation which would not be very
enlightening at this point. At numerous occasions of the calculation we have used the form of
the metric (D.0.1) and the fact that we have grr = grA = 0 on E, i.e. at r = 0. Furthermore,
we have have used the explicit form of the Christoffel symbols (see D.1). Consider now the
following expression

δ∂u
√
µ = δ(

√
µ
√
µ−1∂u

√
µ)

=
1

2
δ(
√
µµAB∂uµAB)

=
1

2
(δ
√
µ)µAB∂uµAB +

1

2

√
µ

[
(δµAB)∂uµAB + µABδ∂uµAB

]

=
1

2

[
1

2

√
µµCDδµCD

]
µAB∂uµAB +

1

2

√
µ∂u(µABδµAB).

(8.2.14)

Here we have used equation (D.1.20) at variaous stages, as well as the fact that δ and ∂u

commute, and the identity (δµAB)∂uµAB = (δµAB)∂uµ
AB. From this we obtain

∂u(µABδµAB) =
2√
µ
δ∂u

√
µ− 1

2
µABµCD(∂uµAB)δµCD. (8.2.15)

Insertion of (8.2.15) into (8.2.13) yields

ι∗θabc =
1

16π
ǫrabc

{
1

2
µABµCD(∂uµAB)δµCD − 2√

µ
δ∂u

√
µ

}

=
1

16π
ǫrabc

{
1

2
µABµCD(∂uµAB)δµCD + 2(∂u

√
µ)δ

√
µ−1 − 2δ(

√
µ−1∂u

√
µ)

} (8.2.16)
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The quantity ǫrabc = ldǫdabc corresponds to the volumeform that can only act on vectors which
are orthogonal to la, i.e. we have

ǫrabc = (du)a ∧
(2)
ǫbc = 6

√
µ(du)[a(dx

1)b(dx
2)c] =:

(3)
ǫabc, (8.2.17)

where
(2)
ǫab is the volumeform on a cross-section E . Having this in mind, (8.2.16) can be written

as

ι∗θabc =
1

16π

(3)
ǫabc

{
1

2
µABµCD(∂uµAB)δµCD + 2(∂u

√
µ)δ

√
µ−1 + (

√
µ−1∂u

√
µ)µABδµAB

}

− 1

8π
δ

[
(
√
µ−1∂u

√
µ)

(3)
ǫabc

]
.

(8.2.18)

The additional (
√
µ−1∂u

√
µ)µABδµAB terms appears in the curly brackets in order to com-

pensate the variation of
(3)
ǫabc, since we have

δ(
(3)
ǫabc) =(δ

√
µ)(du)a ∧ (dx1)b ∧ (dx2)c

=
1

2

√
µµAB(δµAB)(du)a ∧ (dx1)b ∧ (dx2)c

=
1

2
µAB(δµAB)

(3)
ǫabc

(8.2.19)

Equation (8.2.18) is the decomposition which we tried to find. The terms in the curly
brackets clearly vanish in the stationary case, since we have ∂uµAB = 0, and therefore ∂u

√
µ,

for stationary spacetimes. From this we find

Wabc =
1

8π
ϑ

(3)
ǫabc, (8.2.20)

where ϑ =
√
µ−1∂u

√
µ is the expansion of the null geodesic generators of the horizon.

Now, we come to the calculation of the “conserved quantity” Hn. First of all, we will show
that we have ∫

E
Q = 0. (8.2.21)

Since the 2-form Q, which is defined on the entire manifold, appears under an integral sign
which is evaluated on the cross-section E , we have have to consider the pullback of Q to E , i.e.
we will show ∫

E
ψ∗Q = 0 (8.2.22)

where ψ : E →M is an embedding. For Einstein gravity, the Noether charge is given by

Qab = − 1

16π
ǫabcd∇cnd. (8.2.23)

We have

ψ∗Q = (ψ∗Q)ab = − 1

16π
ψ∗ǫabcd∇cnd = − 1

16π
ψ∗ǫabcdg

cegdf∇enf . (8.2.24)
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The action of the pullback has the effect that the 2-form Qab can only act on vectors tangent
to E . From this, and the fact that ǫabcd is totally antisymmetric, follows that the indices c, d
are fixed to the values u, r, i.e. we have

(ψ∗Q)ab = − 1

16π
ψ∗ǫaburg

uegrf∇enf . (8.2.25)

Consider now

na = gabn
b = c(xA)

[
(dr)a − r2α(du)b − rβA(dxA)a

]
. (8.2.26)

Since ǫabcd is totally antisymmetric, the expression ∇anb is (8.2.25) antisymmetrised, i.e. we
have

ǫabcdg
cegdf∇enf = −ǫabcdg

cegdf∇fne. (8.2.27)

Consider therefore only the antisymmetric part of ∇anb:

∇[anb] = (∇[ac)

[
(dr)b] − r2α(du)b] − rβA(dxA)b]

]

+ c

[
−∇[e(r

2α)(du)b] −∇[e(rβA)(dxA)b]

]
.

(8.2.28)

From this follows
guegrf∇enf = guegrf∇[enf ] = rc(β2 − 2α). (8.2.29)

Therefore, we have

∫

E
(ψ∗Q)ab =

∫

E
(ψ∗Q)ab = − 1

16π

∫

E
rc(β2 − 2α)

(2)
ǫab = − 1

16π

∫

E
f(r, xA)

(2)
ǫab. (8.2.30)

Since the function f(r, xA) vanishes on E (E is defined by r = 0), it follows
∫
∂ΣQ = 0.

As Q does not contribute to Hn, it is now an easy task the “conserved quantity” Hn. We
find

Hn =

∫

E
naWabc =

1

8π

∫

E
ϑna(3)

ǫabc =
1

8π

∫

E
ϑ

(2)
ǫbc =

1

8π
∂u

∫

E

(2)
ǫbc =

1

8π
∂uA(E) =

1

8π
LnA(E),

(8.2.31)
where we used the fact that the Lie derivative Ln can be locally written as ∂u in an adapted
coordinate system. As we see, Hn is equal to a mupltiple of LnA(E), which corresponds to the
rate of change of the cross-section area along the flow lines of the vector field na.

8.2.2. Calculation of θ in our HDTG

The presymplectic potential θ was determined by the equation

δL = E · δg + dθ. (8.2.32)

So all we have to do in order to determine θ is to pick up all the total divergence terms which
we dropped out in the derivation of the field equations (see section 6.2).

The total divergence terms for the Einstein-Hilbert action arise from the variation of the
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Ricci-tensor, which is given by the standard identity

δRab = ∇c(δΓ
c
ab) −∇b(δΓ

c
ac). (8.2.33)

If we introduce the vector field

wa = gcdδΓa
cd − gcaδΓd

cd, (8.2.34)

we may write ∫

M
gabδRabǫ =

∫

M
(∇am

a)ǫ, (8.2.35)

since ∇a is compatible with the metric. This is the term that drops out due to the asymptotic
conditions on the metric in the derivation of the Einstein field equations by using Stokes
theorem. The vector field ma gives the first contribution to the presymplectic potential. We
have

ma = gcd

[
1

2
gae(∇cδgde + ∇dδgce −∇eδgcd)

]
− gca

[
1

2
gde(∇cδgde + ∇dδgce −∇eδgcd)

]

=
1

2

[
gcdgae∇cδgde + gcdgae∇dδgce − gcdgae∇eδgcd − gcagde∇cδgde

]

= gcdgae∇cδgde − gcdgae∇eδgcd

= gcdgae

[
∇cδgde −∇eδgcd

]
.

(8.2.36)

The other total divergence terms in the derivation of the field equations arise from the term
(6.2.8), namely

2

∫

M
RabδRabǫ =

∫

M
gcd

[
2(∇c∇aδgbd)R

ab − (∇c∇dδgab)R
ab − (∇b∇aδgcd)R

ab

]
ǫ. (8.2.37)

The first term in (8.2.37) may be rewritten as

∫

M
gcd(∇c∇aδgbd)R

abǫ =

∫

M
∇c

[
gcd(∇aδgbd)R

ab

]

︸ ︷︷ ︸
=:uc

ǫ −
∫

M
gcd(∇aδgbd)∇cR

abǫ

=

∫

M
∇cu

cǫ −
∫

M
∇a

[
gcd(δgbd)∇cR

ab

]

︸ ︷︷ ︸
=:−va

ǫ +

∫

M
gcd(δgbd)∇a∇cR

abǫ.

(8.2.38)

So, the vector fields ua and va give another contribution to θ. By proceeding in a similar
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manner with the remaining two terms in (8.2.37), we obtain the following further contributions:

wa = gab(∇bδgcd)R
cd (8.2.39)

xa = −gab(δgcd)∇bR
cd (8.2.40)

ya = gcd(∇bδgcd)R
ab (8.2.41)

za = −gcd(δgcd)∇bR
ab. (8.2.42)

Adding up all the contributions yields

ra := ma + λ(2ua + 2va − wa − xa − ya − za). (8.2.43)

By performing some index gymnastics, this vector can be rewritten as

ra = (gfhgae − ghegaf )∇f δghe

+ λ

{
(2gaeRfh − gafRhe − gheRaf )∇f δghe

+ (gaf∇fR
eh + geh∇fR

af − 2gfh∇fR
ae)δgeh

}
.

(8.2.44)

Now, since the presymplectic potential corresponds to the boundary terms that arises in the
derivation of the field equations, θ = θabc = ǫdabcr

d is given by

θabc =
1

16π
ǫdabc

[
(gfhgde − ghegdf )∇f δghe

+ λ

{
(2gdeRfh − gdfRhe − gheRdf )∇f δghe

+ (gdf∇fR
eh + geh∇fR

df − 2gfh∇fR
de)δgeh

}]
,

(8.2.45)

where the prefactor 1/16π from (8.2.32) was taken into account.

8.2.3. Calculation of J and Q in our HDTG

In order to calculate the Noether current J = Jabc we will use the formula

Jabc = θabc(g,Lng) − ndLdabc. (8.2.46)

By substituting Lngab = ∇anb + ∇anb into (8.2.45) we obtain

θabc(g,Lng) = ǫdabc

[
�nd + ∇e∇dne − 2∇d∇ene

+ 2λ

{
Rfh∇f∇hn

d +RfhRd
fjhn

j −Rdf∇f∇hnh

+ (∇dRfh)∇fnh + (∇fR
df )∇hnh

− (∇fRdh)∇hnf − (∇fRdh)∇fnh

}]
.

(8.2.47)
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Furthermore we have

ndLdabc =
1

16π
ndǫdabc(R+ λRfhR

fh). (8.2.48)

Substitution of (8.2.47) and (8.2.48) into (8.2.46), together with the replacements

Rfh∇f∇hn
d = ∇f (Rfh∇hn

d) −∇h[(∇fR
fh)nd] +

1

2
nd�R (8.2.49)

RfhRd
fjhn

j = nkgdjRfhRjfkh (8.2.50)

(∇fR
df )∇hnh = ∇h[(∇fR

df )nh] − 1

2
nk∇d∇kR (8.2.51)

(∇fRdh)∇fnh = ∇f [(∇fRdh)nh] − nkgdj�Rjk (8.2.52)

yields

Jabc =
1

8π
ǫdabc

[
∇e∇[end] + λ

{
1

2
nk∇d∇kR− nkRfhRd

fkh + nkRdfRfk + (∇dRfh)∇fnh

+ ∇f{Rfh∇hn
d} − ∇h{(∇fR

fh)nd} + ∇h{(∇fR
df )nh} − ∇f{(∇fRdh)nh}

}]
,

(8.2.53)

where we have used the field equations

Eab = Rab −
1

2
gabR+ λ

[
−∇a∇bR+ �Rab + 2RcdRacbd −

1

2
gab(R

cdRcd − �R)

]
= 0 (8.2.54)

to further simplify the resulting expression. Equation (8.2.53) can be further simplified to

Jabc =
1

8π
ǫdabc

[
∇e∇[end] + λ∇eX

ed

]
, (8.2.55)

with

Xab = Rac∇cn
b −Rbc∇cn

a + (∇bRac)nc − (∇aRbc)nc + (∇cR
cb)na − (∇cR

ca)nb. (8.2.56)

One should notice that Xab is antisymmetric.

The Noether charge Q = Qab is given by

Qab = − 1

16π
ǫabcd(∇cnd + λXcd). (8.2.57)

One can check that we have
(dQ)abc = 3∇[aQbc] = Jabc, (8.2.58)

by using the identity
− 2∇b(ǫca1a2a3

T [bc]) = 3∇[a1
ǫa2a3]bcT

bc (8.2.59)

which holds for arbitrary type (2,0)-tensors T ab.
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8.2.4. Calculation of Hn in our HDTG

In this section, we will use the same strategy as in section 8.2.1 to calculate the “conserved
quantity” Hn. Therefore, our first task is to find a decomposition of ι∗θabc in a part that
vanishes in the stationary case, and a total variation. In section 8.2.2 we found

ι∗θabc =
1

16π
ι∗ǫdabc

{
Zd

1 + λ(Zd
2 + Zd

3 )

}
=

1

16π

(3)
ǫabc

{
Zd

1 + λ(Zd
2 + Zd

3 )

}
(dr)d, (8.2.60)

with

Zd
1 = (gdegfh − gdfgeh)∇f δµeh (8.2.61)

Zd
2 = (2gdeRfh − gdfReh − gehRdf )∇f δµeh (8.2.62)

Zd
3 = (gdf∇fR

eh + geh∇fR
df − 2gfh∇fR

de)δµeh. (8.2.63)

For the term Zd
1 (dr)d we already found the desired decomposition in section 8.2.1, so we do

not need to worry about this contribution anymore. For the second part we find

Zd
2 (dr)d = −RAB∂uδµAB − µAB

[
Rru∂uδµAB +Rrr∂uδµAB +RrCD̂CδµAB

]

− 2δµAB

[
ΓA

urR
rB + ΓA

uCR
CB

]

+ 2µAB(δµBC )

[
ΓC

uAR
ru + ΓC

rAR
rr

]
.

(8.2.64)

This result required a fair amount of index manipulations and we used most of the relations
of appendix D. In a similar manner we find

Zd
3 (dr)d = (δµAB)

[
∂uR

AB + 2ΓA
urR

rB + 2ΓA
uCR

CB

]

+ µAB(δµAB)

[
∂uR

ur + ∂rR
rr + D̂CR

rC + 3Γr
rCR

rC

+ ΓC
CuR

ur + ΓC
CrR

rr + Γr
CDR

CD

]

+ µAB(δµBC)

[
D̂AR

rC + ΓC
AuR

ur + ΓC
ArR

rr + Γr
ArR

rC + Γr
ADR

CD

]
.

(8.2.65)

From this follows, after some further simplifications,

[Zd
1 + Zd

2 ](dr)d = (∂uR
AB)δµAB −RAB∂uδµAB

+ µAB

[
(∂uR

ur)δµAB + (∂rR
rr)δµAB + (D̂CR

rC)δµAB

−Rur∂uδµAB −Rrr∂rδµAB −RrCD̂CδµAB

]

+ µAB(δµBC)

[
RruµCD∂uµAD +RrrµCD∂rµAD − D̂AR

rC

]
.

(8.2.66)
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8.2. Second Idea for a Proof

The terms which involve ∂uR
AB, ∂uR

ur and ∂uµAB vanish in the stationary case, so we do not
need to worry about them anymore. Since ∂u and δ commute, we have

RAB∂uδµAB = δ(RAB∂uµAB) − (δRAB)∂uµAB (8.2.67)

RurµAB∂uδµAB = δ(RurµAB∂uµAB) − δ(RurµAB)∂uµAB, (8.2.68)

so these terms are also fine, since they can be decomposed as we wish. Furthermore, we have

(D̂CR
rC)µABδµAB −µABRrCD̂CδµAB = 2(D̂CR

rC)µABδµAB − D̂C(RrCµABδµAB), (8.2.69)

since D̂A is compatible with µAB, i.e. D̂AµBC = 0. The total divergence term can be omitted
since it drops out after using Stokes’ theorem and the boundary conditions. The remaining
terms may be treated as follows: We have

(∂rR
rr)µABδµAB −RrrµAB∂rδµAB + µABµCD(δµBC )Rrr∂rµAD

= (∂rR
rr)µABδµAB −RrrµABδ∂rµAB −Rrr(δµAB)∂rµAB

= (∂rR
rr)µABδµAB − δ(RrrµAB∂rµAB) + (δRrr)µAB∂rµAB,

(8.2.70)

where we have used [∂r, δ] = 0. At r = 0 (on the horizon), the first term in (8.2.70) may be
written as

∂rR
rr = ∂rRuu

= −∂r

[
1

2
µAB∂2

uµAB +
1

4
(∂uµ

AB)∂uµAB

]
.

(8.2.71)

Here we have used the results from appendix D.2. As we see, it vanishes in the stationary case,
since we have [∂u, ∂r] = 0. The second term in (8.2.70) is a total variation. The last term in
(8.2.70) may be written as (see appendix D.2)

δRrrµAB∂rµAB = δRuuµ
AB∂rµAB

= −
{

1

2
µCDδ∂2

uµCD +
1

2
(δµCD)∂2

uµCD

+
1

4

[
(δ∂uµ

CD)∂uµCD + (∂uµ
CD)δ∂uµCD

]}
µAB∂rµAB.

(8.2.72)

Except for the first term in (8.2.72), all other terms vanish in the stationary case. By omitting
these, we find

(δRrr)µAB∂rµAB = −1

2
µCD(δ∂2

uµCD)µAB∂rµAB

= −1

2
δ

[
µCD(∂2

uµCD)µAB∂rµAB

]

+
1

2
(∂2

uµCD)δ

[
µCDµAB∂rµAB

]
.

(8.2.73)
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Again, the last term vanishes in the stationary case. The remaining terms in (8.2.66), which
still need to be treated, are the following:

2(D̂CR
rC)µABδµAB − (D̂AR

rC)µABδµBC . (8.2.74)

We have (see appendix D.2)

D̂AR
rC = D̂A(µCDRuD)

= µCDD̂ARuD

= µCDD̂A

[
1

2
∂uβD +

1

4
βDµ

EF∂uµEF − 1

2
D̂D(µEF∂uµEF ) +

1

2
D̂E(µEF∂uµDF )

]

= µCD

[
1

2
∂uD̂AβD +

1

4
(D̂AβD)µEF∂uµEF

]
.

(8.2.75)

For the first equality we used the results for the Ricci tensor components in GNC from appendix
D.2 and for the second one we used D̂AµBC = 0. For the third equality we used, again, the
results from appendix D.2. For the fourth equality we used [D̂A, ∂u] = 0 and and the fact that
we have D̂AµBC = 0 on each cross-section of the horizon, so this property does not change
along the flowlines of na, i.e. we have ∂uD̂AµBC = 0. Therefore, all the terms in (8.2.75)
vanish in the stationary case, so (8.2.74) does not contribute to Wabc.

By putting everything together, we find the following decomposition of (8.2.66):

[Zd
1 + Zd

2 ](dr)d = Zstat

− δ

[
RAB∂uµAB +RurµAB∂uµAB +RrrµAB∂rµAB +

1

2
µABµCD(∂rµAB)∂2

uµCD

]
,

(8.2.76)

where Zstat denotes all the terms that vanish in the stationary case. We have

Zstat = (∂uR
AB)δµAB + (∂uR

ur)µABδµAB −Rur(δµAB)∂uµAB

+ (δRAB)∂uµAB + δ(RurµAB)∂uµAB

+
1

2
µAB(δµAB)

{
(∂rµ

CD)∂2
uµCD + µCD∂2

u∂rµCD +
1

2
(∂u∂rµ

CD)∂uµCD

+
1

2
(∂uµ

CD)∂u∂rµCD + 2µCD∂uD̂CβD

+ µCDµEF (D̂CβD)∂uµEF

}

+
1

2
(δµAB)

{
∂uD̂AβB +

1

2
µCD(D̂AβB)∂uµCD

}

− 1

2
µAB(∂rµAB)

{
(δµCD)∂2

uµCD − (∂2
uµCD)δ[µCDµEF∂rµEF ]

+
1

2

[
(δ∂uµ

CD)∂uµCD + (∂uµ
CD)δ∂uµCD

]}
.

(8.2.77)
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By combining this result with the results from section 8.2.1 we find

Wabc =
1

16π

{
2ϑ + λ

[
RAB∂uµAB +RurµAB∂uµAB +RrrµAB∂rµAB

+
1

2
µABµCD(∂rµAB)∂2

uµCD

]}
(3)
ǫabc.

(8.2.78)

in our HDTG. On the horizon we have (see appendix D.2)

Rrr = Ruu

= −1

2
µAB∂2

uµAB − 1

4
(∂uµ

AB)∂uµAB .
(8.2.79)

Therefore, equation (8.2.78) can be rewritten as

Wabc =
1

16π

{
2ϑ+ λ

[
RAB∂uµAB +RurµAB∂uµAB − 1

4
µAB(∂rµAB)(∂uµ

CD)∂uµCD

]}
(3)
ǫabc.

(8.2.80)
This expression can be made covariant in the following manner: One has to make the observa-
tions that, in an adapted coordiante system, the Lie derivative with respect to the vector field
na can be written (locally) as ∂u and the vector fields (∂/∂u)a and (∂/∂xA)a clearly commute
since they are coordinate vector fields. A similar statement holds for the Lie derivative with
respect to the vector field la. Locally it may be written as ∂r and it commutes with the vector
fields (∂/∂xA)a since they coordinate vector fields. Furthermore, the Lie derivative with re-
spect to the vector field na (la) of the 1-form (dxA)a vanishes. From this follows that we can
make the following replacements

µAB → µab = µAB(dxA)a(dx
B)b

µAB → µab = µAB(∂A)a(∂B)b

RAB → Rab = RAB(∂A)a(∂B)b

∂u → Ln

∂r → Ll

(8.2.81)

Therefore, we find

Wabc =
1

16π

{
2ϑ+ λ

[
RdeLnµde +RurµdeLnµde −

1

4
µde(Llµde)(Lnµ

fg)Lnµfg

]}
(3)
ǫabc. (8.2.82)

Now we will use the decompositions Lnµab = 2σab + ϑµab and Lnµ
ab = gacgbdLnµcd = 2σab +

ϑµab. The second decompotion follows from the first one under the assumption that na is a
Killing vector field. We obtain

Wabc =
1

16π

{
2ϑ+λ

[
2Rdeσde +ϑRdeµde +2Rurϑ−µde(Llµde)(σfgσ

fg +
1

2
ϑ2)

]}
(3)
ǫabc. (8.2.83)
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Furthermore, since we have gab = µab + 2(∂u)(a(∂r)
b) we find

Rur = Rur = Rab(∂u)a(∂r)
b

= Rab

[
(∂u)(a(∂r)

b) +
1

2
µab − 1

2
µab

]

=
1

2
Rab

[
2(∂u)(a(∂r)

b) + µab

]
− 1

2
Rabµ

ab

=
1

2
Rabg

ab − 1

2
Rabµ

ab

=
1

2
(R−Rabµ

ab).

(8.2.84)

Insertion of this result into (8.2.83) yields

Wabc =
1

16π

{
2ϑ + λ

[
2Rdeσde + ϑR− µde(Llµde)(σ

2 +
1

2
ϑ2)

]}
(3)
ǫabc, (8.2.85)

where we defined σ2 := σabσ
ab.

Now, we can write down for the conserved quantity Hn. We have

Hn =

∫

E
Q + n · W

=
1

8π
LnA(E) +

λ

16π

{∫

E

[
2Rcdσcd + ϑR− µcd(Llµcd)(σ

2 +
1

2
ϑ2)

]
(2)
ǫab −

∫

E
ǫabcdX

cd

}
,

(8.2.86)

where Xab is given by (8.2.56). In appendix D.5 we computed the pullback of the 2-form
ǫabcdX

cd to a horizon cross-section E . Our result is

∫

E
ǫabcdX

cd =

∫

E

{
LnR− Ln(Rcdµ

cd) + µcdD̂c(n
eRed) − ncβdRcd

+
1

2

[
ϑR+ 2Rcdσ

cd + µcd(Llµcd)Refn
enf

]}
(2)
ǫab.

(8.2.87)

As we see, the “conserved quantity” Hn involves the Lie derivative with respect to the vector
field la of the metric µab on the spatial cross-sections E . Since the behaviour of µab off of the
horizon is essentially arbitrary, we strongly doubt that it is possible to make any statement
about the positvity of Hn.

Furthermore, we clearly have Hn[g0] = 0, where g0 is the reference solution (Schwarzschild
spacetime): We have Rab[g0] = 0 and therefore R[g0] since g0 is a solution of the vacuum
Einstein equations. Furthermore, for g0 it is known that the horizon generators have vanishing
expansion and shear. Therefore, all horizon cross-sections are isometric and we have LnA(E) =
0. Hence, the constant C which was involved in the ambiguity of Hn can be really fixed to
zero.
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8.2.5. Calculation of F n in our HDTG

An interesting byproduct of the calculation from the previous section is that it is now very
easy to write down the flux F n = Θ(g,Lng) which appeared in equation (7.3.6). In order to
obtain this quantity, we need to collect the terms in the decomposition ι∗θ = Θ + δW that
vanish in the stationary case and replace δg → Lng. Again, the expression for the flux can be
made covariant by making the replacements

µAB → µAB(dxA)a(dx
B)b =: µab (8.2.88)

µAB → µAB(∂A)a(∂B)b =: µab (8.2.89)

RAB → RAB(dxA)a(dx
B)b =: Rab (8.2.90)

∂u → Ln (8.2.91)

∂r → Ll (8.2.92)

As we explained below equation (8.2.80), this procedure is consistent. In addition, we will
make the replacements

D̂A → (dxA)aD̂A =: D̂a (8.2.93)

βA → (∂A)aβA =: βa. (8.2.94)

As a result we obtain

(Fn)abc =
1

16π

(3)
ǫabc

{
2ϑ2 + λ

[
2(LnR

de)Lnµde +
1

2
(Lnµ

de)LnD̂dβe

+ ϑ

{
2LnR− 2Ln(Rdeµde) +RdeLnµde + 2µdeLnD̂dβe

+ Ll(µ
deLnLnµde) + (LnLlµ

de)Lnµde

}

+ ϑ2

{
2µdeD̂dβe +

1

2
(Lnµ

de)LnD̂dβe +R−Rdeµde

}

− 1

2
µde(Llµde)

{
2(Lnµ

fg)LnLnµfg + 2(Lnϑµ
fg)LnLnµfg

− µfgLnLnµfg + 2(Lnϑ+
1

2
ϑ2 + σ2)

}]}
.

(8.2.95)
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Conclusion and Outlook

In this thesis we presented two attempts for a proof of a second law of black hole mechanics in
a theory of gravity which an additional RabR

ab-contribution in its gravitational Lagrangean.
Neither of these approaches were successful in the sense that we were not able to answer the
question whether it is possible to establish such a theorem in this gravitational theory or not.

The first idea for a proof was not further pursued on the level when we inserted the uu-
component of the field equations into our Ansatz for the evolution equation. The amount
of terms that were involved was so overwhelmingly large, that it was not possible to see any
structure in the resulting equation or to bring it in the desired form.

One way to further pursue this strategy would be to insert the components of the Ricci-
tensor (rewritten in Gaussian null corrdinates) that were involved and to use a computer
algebra program to simplify the resulting equation. Maybe on this level it is possible to see
what the structure of the evolution equation is.

One should of course also note, that the Ansatz for the evolution equation which we took,
was in analogy with the Einstein-case, and therefore more or less ad-hoc.

But the (laborious) work that was done in this approach should not be considered to be
completely in vain. The result for the uu-component of the field equations can be also used
for other purposes, such as an attempt to prove a rigidity theorem in the HDTG which we
considered.

The second idea for a proof was not further pursued on the level when the conserved quantity
Hn was computed. As we already mentioned, we strongly doubt that it is possible to make
any statement about the positivity of Hn, since the Lie derivative with respect to the vector
field la of the metric µab on a cross-section E is involved in the explicit expression for the
“conserved quantity”. However, this issue was not analyzed in detail, due to the amount of
time that was already spent for the first approach.

The main achievement of this part is that we succesfully applied the Wald-Zoupas-formalism
for the definition of conserved quantities to the horizon of a black hole. To our knowledge,
this has not been done so far in the literature. The result for Hn in the Einstein-case suggests
that our modifications to this formalism yield indeed a meaningful result, since it is related
to the rate of change of the black hole entropy along the null geodesic generator of the event
horizon.

One should note that the results for Hn (in the Einstein-case and in our HDTG) are not
unique, since we made a particular choice for the quantity Θ. However, this choice seems to
be the most natural one.

Even though we were not able answer the (ambitious) question if a second law exists in our
HDTG, the results of this thesis should not be considered to be useless, since they can be used
in other contexts as well. Furthermore, we gained the insight that our first idea might not be
the most elegant method to prove a second law. Finally, we give indications how the Wald-
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Zoupas formalism should be modified in order to define conserved quantities on the horizon of
a black hole. Further investigation of this issue might answer the question how to define the
entropy of a nonstationary black hole.
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A. Notation and Conventions

Throughout this thesis we will use the conventions from [29]. Lowercase latin indices a, b, c, . . .
will denote abstract tensor indices. Lowercase greek indices α, β, γ, . . . will denote tensor com-
ponents in a particular coordinate system. In section 8, we will use uppercase latin indices
A,B,C, . . . to denote components (in the Gaussian null corrdinate system {u, r, xA}) of the
induced metric µab = µAB(dxA)a(dx

B)b of the 2-dimensional submanifold, which is generated
by intersecting the event horizon with a spacelike hypersurface. Furthermore, throughout
chapters 7 and 8 we will use boldface letters to denote differential forms on the spacetime
manifold and, when we do so, the spacetime indices of the forms will be suppressed.

The spacetime manifold (or spacetime for short) will be denoted by the pair (M,gab), where M
is a smooth 4-dimensional1 connected paracompact oriented manifold, and gab is a Lorentzian
metric with signature (−,+,+,+). Furthermore, the spacetime (M,gab) is assumed to be time
orientable. The canonical volume 4-form on M will be denoted by

ǫ = ǫabcd =
√−g (dx0)a ∧ (dx2)b ∧ (dx2)c ∧ (dx3)d =:

√−g d4x, (A.0.1)

where {x0, x1, x2, x3} is right handed, and
√−g is the square root of minus the determinant

of the metric gab. Throughout section 7, the abstract indices of the metric will be suppressed
in order to simplify the notation. From the context it should be clear what is meant. The
covariant derivative ∇a on M is chosen to be torsion-free and compatible with the metric,
i.e. we have ∇agbc = 0. Similary, we chose a torsion-free derivative operator D̂A associated
with µAB, i.e. D̂AµBC = 0. Furthermore we define the operators � := ∇a∇a = gab∇a∇b and
�̂ := D̂aD̂a = gabD̂aD̂b.

Abstract tensor indices will be raised and lowered with the metric gab and its inverse gab,
i.e. we have T b

a = gbcTac and T a
b = gbcT

ac. In a similar manner boldface latin indices will be
raised and lowered with µAB and its inverse µAB.

For a diffeomorphism ψ : M → N between manifolds M and N , we denote the pullback
of a tensor field T a1...ak

b1...bl
by (ψ∗T )a1...ak

b1...bl
= ψ∗T a1...ak

b1...bl
. The push-forward of a ten-

sor field Sa1...ak

b1...bl
will be denoted by (ψ∗S)a1...ak

b1...bl
= ψ∗S

a1...ak

b1...bl
.

We define the Riemann tensor R d
abc by (∇a∇b −∇b∇a)ωc = R d

abc ωd, the Ricci tensor Rab by
Rab = R c

acb and the Ricci scalar R by R = R a
a .

1 Most of the results in this thesis can be easily formulated in arbitrary dimensions d ≥ 4. However, since
certain theorems in black hole physics (such as the rigidity, black hole uniqueness, and topology theorem)
do not readily extend to arbitrary dimensions, we decided to stick to d = 4 in order keep their presentation
as simple as possible. Furthermore, since we are primarily concerned gravitational theories with higher
derivative contributions, whose presence already causes severe problems, we decided to place the focus on
higher derivative instead higher dimensional theories of gravity.
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A. Notation and Conventions

Symmetrization of tensor indices will be denoted by parenthesis and antisymmetrization will
be denoted by brackets.

Throughout this thesis we will use the standard shorthand notation in variational calcula-

tions: dg
(t)
ab /dt|t=0 will be denoted by δgab, where, g

(t)
ab is a one-parameter family metrics, such

that g
(t)
ab depends differentiably on t and g

(0)
ab satisfies appropriate boundary conditions. Simi-

lary, the variation δI of a functional gab 7→ I[gab] is understood in the following way: replace

gab by g
(t)
ab and differentiate I[g

(t)
ab ] with respect to t and set t = 0 afterwards.

In chapter 8 we will use the shorthand notation ∂u and ∂r for the derivative operators with re-
spect to the coordinates u and r, respectively, in the Gaussian null coordinate system {u, r, xA}.
By these operators we actually mean the Lie derivatives Ln and Ll with respect to the vector
fields (∂/∂u)a and (∂/∂r)a, respectively, such that covariance is preserved at all steps. This
identification is justified, since one can always write a Lie derivative (locally) as a coordinte
dervative, in a suitably adapted coordiate system.

Furthermore, we will work in units with G = ~ = c = kB = 1.
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B. Energy Conditions in General Relativity

(WEC) Weak Energy Condition

The scalar Tabξ
aξb represents the energy density of matter in a frame defined by the

timelike vector field ξa. If the energy density is positive in all frames, we should have

Tabξ
aξb ≥ 0 (B.0.1)

for all future directed timelike vectors ξa. Condition (B.0.1) is known as weak energy
condition.

(SEC) Strong Energy Condition

This condition states that we have

Tabξ
aξb ≥ −1

2
T (B.0.2)

for all future directed unit timelike vectors ξa.

(DEC) Dominant Energy Condition

The vector field −T a
bξ

a represents the energy- momentum 4-current density in a frame
defined by the timelike vector field ξa. It is believed that the current density flux should
always have velocity smaller than the speed of light. Hence we have

− T a
bξ

a is future directed timelike or null (B.0.3)

for all future directed timelike vectors ξa. Condition (B.0.3) is known an dominant energy
condition.

(NEC) Null Energy Condition

This condition states that we have

Tabk
akb ≥ 0 (B.0.4)

for all future directed null vectors ka.

Note that (DEC) implies (WEC), but (SEC) does not imply (WEC). Furthermore, (NEC) is
implied by (WEC) and (SEC) using continuity arguments. Of particular interest is the

(NCC) Null Convergence Condition

This condition states that we have

Rabk
akb ≥ 0 (B.0.5)

for all future directed null vectors ka.

By using Einstein’s equation, (NCC) is implied by (NEC).
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C. Useful Relations

On an n-dimensional manifold (M,gab) the totally antisymmetric tensor ǫa1...an satisfies the
following relations

ǫa1...anǫb1...bn
= (−1)s n! δ

[a1

b1
. . . δ

an]
bn

(C.0.1)

ǫa1...ajaj+1...anǫa1...ajbj+1...bn
= (−1)s (n− j)! j! δ

[aj+1

bj+1
. . . δ

an]
bn
, (C.0.2)

where s is the number of minuses appearing in the signature of gab.

Let Ka be a Killing vector field. From the definition of the Riemann tensor, together with
Killing’s equation follows

∇a∇bKc = −R d
bca Kd. (C.0.3)
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The metric (3.2.8), and its inverse, may be written in matrix notation as

(g)µν =



−2r2α 1 −rβA

1 0 0
−rβA 0 µAB


 , (g−1)µν =




0 1 0
1 r2(βEβE + 2α) rβA

0 rβA µAB


 , (D.0.1)

where µAB = (µ−1)AB is the inverse matrix of µAB and where βA = µABβB .

D.1. Christoffel Symbols

By introducing ᾱ = −2r2α and β̄A = −rβA we find

Γu
uu = −1

2
∂rᾱ (D.1.1)

Γu
uA = −1

2
∂rβ̄A (D.1.2)

Γu
AB = −1

2
∂rµAB (D.1.3)

Γu
ur = Γu

rr = Γu
rA = 0 (D.1.4)

Γr
ru =

1

2
(∂rᾱ− β̄C∂rβ̄C) (D.1.5)

Γr
rA =

1

2
(∂rβ̄A − β̄C∂rµCA) (D.1.6)

Γr
uu = −1

2
(β̄E β̄E − ᾱ)∂rᾱ+

1

2
∂uᾱ+

1

2
β̄CD̂Cᾱ− β̄C∂uβ̄C (D.1.7)

Γr
AB = −1

2

{
∂uµAB + (β̄E β̄E − ᾱ)∂rµAB

}
+

1

2
(D̂Aβ̄B + D̂B β̄A) (D.1.8)

Γr
uA = −1

2
(β̄E β̄E − ᾱ)∂rβ̄A +

1

2
D̂Aᾱ− 1

2
β̄B(∂uµAB + D̂Aβ̄B − D̂B β̄A) (D.1.9)

Γr
rr = 0 (D.1.10)
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ΓA
BC =

1

2
β̄A∂rµBC + Γ̂A

BC (D.1.11)

ΓA
Bu =

1

2
β̄A∂rβ̄B +

1

2
µCA∂uµBC +

1

2
µCA(D̂B β̄C − D̂C β̄B) (D.1.12)

ΓA
Br =

1

2
µCA∂rµBC (D.1.13)

ΓA
uu =

1

2
β̄A∂rᾱ− 1

2
µCAD̂C ᾱ+ µAC∂uβ̄C (D.1.14)

ΓA
ur =

1

2
µCA∂rβ̄C (D.1.15)

ΓA
rr = 0, (D.1.16)

where D̂A is the derivative operator associated with the matrix µAB, i.e. we have

D̂AωB = ∂AωB − Γ̂C
ABωC , (D.1.17)

where

Γ̂C
AB =

1

2
µCD(∂AµBD + ∂BµAD − ∂DµAB). (D.1.18)

Furthermore, if we introduce µ = det(µAB) we have

∂∗µ
AB = −µACµBD∂∗µCD (D.1.19)

√
µ−1∂∗

√
µ =

1

2
µAB∂∗µAB (D.1.20)

∂u(
√
µ−1∂r

√
µ) = −1

2
µACµBD(∂uµCD)∂rµAB +

1

2
∂u∂rµAB, (D.1.21)

where ∗ stands for u, r or A.

D.2. Ricci Tensor

Here we will give a list of useful relations between components of the Ricci tensor in GNC.
Each of these relations only holds when we are restricted to the horizon r = 0.

Ruu = Rrr (D.2.1)

Rrr = Ruu (D.2.2)

RAB = µACµBDRCD (D.2.3)

Rur = Rur (D.2.4)

RuA = µABRrB (D.2.5)

RrA = µABRuB . (D.2.6)
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and

RA
u = µABRuB (D.2.7)

Ru
u = Rur (D.2.8)

Rr
u = Ruu (D.2.9)

Rr
A = RuA (D.2.10)

RA
B = µACRCB (D.2.11)

(D.2.12)

Furthermore, we have.

Ruu = −1

2
µAB∂2

uµAB − 1

4
(∂uµ

AB)∂uµAB + O(r) (D.2.13)

RuA =
1

2
∂uβA +

1

4
βA∂uµBC − D̂[A(µBC∂uµB]C) + O(r2) (D.2.14)

The result for Ruu comes from appendix D.4, and the result for RuA is taken from [16].

D.3. (∂/∂u)a is Hypersurface Orthogonal on E

In the following we will show that the vector field na = (∂/∂u)a is hypersurface orthogonal at
r = 0, i.e. on the event horizon E. In section 3.3 we have seen that hypersurface orthogonality
is equivalent to the condition ωab = 0. We have

ωab = B̂[ab] = B[ab] − n[al
cB|c|b] − n[bl

cBa]c + n[anb]Bcdl
cld (D.3.1)

The last term in (D.3.1) clearly vanishes since we have n[anb] = 0. First of all, we will show
that we have B[ab] = 0 at r = 0:

B[ab] = ∇[bga]c

(
∂

∂u

)c

= ∇[b

{
(du)a](dr)c + (dr)a](du)c − 2r2α(du)a](du)c

− rβA(du)a](dx
A)c − rβA(dxA)a](du)c + µABdxA)a](dx

B)c

}(
∂

∂u

)c

= ∇[b

{
(dr)a] − 2r2α(du)a] − rβA(dxA)a]

}

= ∇[b∇a]r︸ ︷︷ ︸
=0

−2

{
2r (∇[br)︸ ︷︷ ︸

=0

α(du)a] + r(∇[bα)(du)a] + rα∇[b∇a]u︸ ︷︷ ︸
=0

}

−
{

(∇[br)︸ ︷︷ ︸
=0

βA(dxA)a] + r(∇[bβA)(dxA)a] + rβA ∇[b∇a]x
A

︸ ︷︷ ︸
=0

}

= −r
{

2(∇[bα)(du)a] + (∇[bβA)(dxA)a]

}

= 0.

(D.3.2)
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Here we have used the torsion freeness of the connection, i.e. ∇a∇bf = ∇b∇bf for all f ∈
C∞(M), and the fact that ∇ar = 0 since r = 0 = const on E. The second term in (D.3.1)
may be rewritten as

n[al
cB|c|b] + n[bl

cBa]c =
1

2

{
nal

cBcb − nbl
cBca + nbl

cBac − nal
cBbc

}

=
1

2

{
nal

c(Bcb −Bbc) − nbl
c(Bca −Bac)

}

= nal
cB[cb] − nbl

cB[ca].

(D.3.3)

Since we have B[ab] = 0, it follows that the twist ωab of the congruence, defined by the vector
field na = (∂/∂u)a, vanishes on the horizon E. Therefore, na is hypersurface orthogonal on E.

D.4. Connection Between Sections 3.2 and 3.4

In the following we will show, that if one rewrites the vacuum Einstein equation Rab = 0 in
GNC and restricts them to the event horizon , then uu-component of the resulting equation
corresponds to the Raychaudhuri equation. This result will place an additional condition on
the function α, appearing in the metric.

The uu-component of the vacuum Einstein equation is calculated as follows: We will use
the standard representation of the Ricci tensor in a coordinate system {xα, α = 0, . . . , 3}

Rµρ = ∂νΓν
µρ − ∂µΓν

νρ + Γα
µρΓ

ν
αν + Γα

νρΓ
ν
αµ. (D.4.1)

We will use the Gaussian null coordinate system {u, r, xA} from section 3.2. By writing out all
the internal summations in the above equation, setting µ = ρ = u, inserting the Christoffel-
symbols1 and ommiting those (except for the ones which appear under an ∂r derivative) which
vanish on the horizon (r = 0) we obtain2

Ruu|r=0 = Rabn
anb|r=0 = −1

2
Ln(µabLnµab) −

1

4
µacµbd(Lnµab)Lnµcd +

1

2
αµabLnµab = 0.

(D.4.2)
Again, we have used the replacements ∂u → Ln, µAB → µab and µAB → µab in order to make
the expression covariant (see section 8.2.4).

On E the shear is equal to the trace free part of Lnµab while the expansion ϑ is equal to the
trace of this quantity. Together with equation (3.3.25) follows that we have the decomposition

Lnµab = 2σab + ϑµab. (D.4.3)

For the inverse metric µab we will use the decomposition Lnµ
ab = gacgbdLnµcd = 2σab + ϑµab,

since the vector field na is Killing, according to the result of the Rigidity theorem (see section
4.4). Furthermore, the vector field na is hypersurface orthogonal on E (see appendix D.3),
so we will have ωab = 0 in the following. From the decomposition (D.4.3), we can derive the

1For this calculation we have used the Christoffelsymbols from section D.1 with ᾱ = −2rα.
2This result differs from the the one obtained in [16]. However, the consistency check that the Ruu|r=0 yields

the Raychaudhuri equation shows that our result is correct.
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following identities

1

2
µabLnµab =

1

2
µab(2σab + ϑµab) = ϑ, (D.4.4)

where we have used µabµab = 2 and µabσab = (gab −nalb − lanb)σab = 0. Furthermore we have

µacLnµcb = 2µacσcb + ϑµacµcb

= 2σa
b + ϑ(δa

b − nalb − lanb),
(D.4.5)

from which

µacµbd(Lnµab)Lnµcd = µca(Lnµab)µ
bdLnµdc

=

[
2σc

b + ϑ(δc
b − nclb − lcnb)

][
2σb

c + ϑ(δb
c − nblc − lbnc)

]

= 4σabσ
ab +

ϑ2

4
(δc

b − nclb − lcnb)(δ
b
c − nblc − lbnc)

= 4σabσ
ab +

ϑ2

4
(4 − 1 − 1 − 1 + 1 + 0 − 1 + 0 + 1)

= 4σabσ
ab + 2ϑ2.

(D.4.6)

follows. Insertion of these results into (D.4.2) yields

Rabn
anb|r=0 = −Lnϑ− 1

4
(4σabσ

ab + 2ϑ2) + αϑ

= −dϑ

du
− σabσ

ab − 1

2
ϑ2 + αϑ

(D.4.7)

As we see, this is the Raychaudhuri equation

dϑ

du
= −1

2
ϑ2 − σabσ

ab −Rabn
anb (D.4.8)

for a hypersurface orthogonal congruence defined by the affinely parametrized vector field
na, up the additional factor which involves α. Since the Raychaudhuri equation is a general
identity between geometric objects, and not particular to any field equations, Ruu|r=0 must
yield the Raychaudhuri equation only. Therefore, we obtain the additional condition on the
function α that it must vanish on the horizon. This justifies the replacement α → rα which
we made at the end of section 3.2.

D.5. Pullback of ǫabcdX
cd to E

In the following we will compute the quantity

ψ∗ǫabcdX
cd =

(2)
ǫabX

cd(du)c(dr)d, (D.5.1)

where ψ : E →M is an embedding. In section 8.2.3 we found

Xab = Rac∇cn
b −Rbc∇cn

a + (∇bRac)nc − (∇aRbc)nc + (∇cR
cb)na − (∇cR

ca)nb. (D.5.2)
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From this we find

Xab(du)a(dr)b =Rac[∇cn
b](du)a(dr)b −Rbc[∇cn

a](du)a(dr)b

+ [∇bRac]nc(du)a(dr)b − [∇aRbc]nc(du)a(dr)b

+ [∇cR
cb]na(du)a(dr)b.

(D.5.3)

The last term from (D.5.2) does not appear, since we have na(dr)a = (∂/∂u)a(dr)a = 0.

Before we calculate each term in (D.5.3), let us collect some formulas which will be needed
in what follows. From the form of metric gab and its inverse gab in GNC (see equations (3.2.9)
and (3.2.10)), we find (when restricted to the horizon r = 0)

gab(∂u)a = (dr)b (D.5.4)

gab(du)a = (∂r)
b (D.5.5)

gab(∂r)
a = (du)b (D.5.6)

gab(dr)a = (∂u)b. (D.5.7)

We remind the reader that we have na = (∂/∂u)a.

For the first term in (D.5.3), we find

Rac[∇cn
b](du)a(dr)b = Rac

[
∂c(∂u)b + Γb

cd(∂u)d
]
(du)a(dr)b

= RacΓr
cu(du)a

=

[
RauΓr

uu +RarΓr
ru +RauΓA

Au

]
(du)a

= 0,

(D.5.8)

For the first equality we used the standard formular for the covariant derivative acting on a
vector field. For the second equality we used the fact that we have ∂a(∂µ)b for any coordinate
vector field (∂µ)a = (∂/∂xµ)a. For the third equality we used Γr

uu = Γr
ru = Γr

Au = 0 (at r = 0).

For the second term in (D.5.3), we find

Rbc[∇cn
a](du)a(dr)b = Rbc

[
∂c(∂u)a + Γa

cd(∂u)d
]
(du)a(dr)b

= RbcΓu
cu(dr)b

= RbAΓu
Au(dr)b

= R A
d Γu

Aug
db(dr)b

= R A
d Γu

Au(∂u)d

= R A
u Γu

Au

=
1

2
R A

u βA

=
1

2
βARuA

(D.5.9)

For the third equality we used Γu
uu = Γu

ru = 0 (at r = 0). For the fifth equality we used
equation (D.5.7). For the sixth equality we used the explicit form of the Christoffel symbols
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from appendix D.1. For the last equality we used the results for the Ricci tensor from appendix
D.2.

For the third term in (D.5.3), we find

[∇bRac]nc(du)a(dr)b = [∇bRac](∂u)c(∂r)
a(∂u)b

= [(∂u)b∇bRac](∂u)c(∂r)
a

= (∂u)b∇b[Rac(∂u)c(∂r)
a] −Rac[(∂u)b∇b(∂u)c](∂r)

a

−Rac[(∂u)b∇b(∂r)
a](∂u)c

= ∂uRru −RrcΓ
c
uu −RauΓa

ur

= ∂uRur −RAuΓA
ur

= ∂uRur − βARuA.

(D.5.10)

For this term we used the same techniques (formulas etc.) as for the second term, and we will
not go through each line explicitly.

For the fourth term in (D.5.3), we find

[∇aRbc]nc(du)a(dr)b = ∂rRuu + βARuA. (D.5.11)

The computation is analogous to (D.5.10).

For the fifth term in (D.5.3), we find

[∇cR
cb]na(du)a(dr)b = [∇cR

cb](dr)b

= [∇cR
c
b](∂u)b

= ∇c[R
c
b(∂u)b] −Rc

b∇c(∂u)b

= ∇cR
c
u −Rc

bΓ
b
cu

= ∂cR
c
u + Γc

cdR
d
u −Rc

bΓ
b
cu

(D.5.12)

We have

∂cR
c
u = ∂uRur + ∂rRuu + ∂AR

A
u (D.5.13)

Γc
cdR

d
u =

1

2
µAB(∂uµAB)Rur +

1

2
µAB(∂rµAB)Ruu + Γ̂A

ABR
B

u (D.5.14)

Rc
bΓ

b
cu = −1

2
(∂uµ

AB)RAB . (D.5.15)

Insertion of these results into (D.5.12) yields

[∇cR
cb]na(du)a(dr)b = ∂uRur + ∂rRuu + µABD̂ARBu +

1

2
µAB(∂uµAB)Rur

+
1

2
µAB(∂rµAB)Ruu +

1

2
(∂uµ

AB)RAB .
(D.5.16)
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By combining all of these results we obtain

Xab(du)a(dr)b = 2∂uRur + µABD̂ARuB − βARuA +
1

2
µAB(∂uµAB)Rur

+
1

2
µAB(∂rµAB)Ruu +

1

2
(∂uµ

AB)RAB.

(D.5.17)

This expression can be made covariant by making, again, the replacements

µAB → µAB(dxA)a(dx
B)b =: µab (D.5.18)

µAB → µAB(∂A)a(∂B)b =: µab (D.5.19)

∂u → Ln (D.5.20)

∂r → Lr (D.5.21)

RAB → RAB(dxA)a(dx
B)b =: Rab. (D.5.22)

As we explained below equation (8.2.80), this procedure is consistent. In addition, we will
make the replacements

D̂A → (dxA)aD̂A =: D̂a (D.5.23)

βA → (∂A)aβA =: βa. (D.5.24)

Furthermore, from equation (8.2.84) we have

Rur =
1

2
(R−Rabµ

ab). (D.5.25)

Putting all this together we find

∫

E
ǫabcdX

cd =

∫

E

{
LnR− Ln(Rcdµ

cd) + µcdD̂c(n
eRed) − ncβdRcd

+
1

2

[
ϑR+ 2Rcdσ

cd + µcd(Llµcd)Refn
enf

]}
(2)
ǫab.

(D.5.26)
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