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1 Introduction

The study of conformal field theories (CFTs) has been a recurring theme in 20th century the-
oretical and mathematical physics. Conformal invariance is certainly not an exact symmetry
of nature. The appearance of atomic structure and elementary particles with characteristic
lengths and masses showed, that even the weaker dilatation symmetry is not directly real-
ized.
We mention a few important results in the field: In 1909 Cunningham and Bateman showed
conformal invariance of the Maxwell equations. Weyl discussed in his book [33] local scale
transformations in general relativity in an attempt to unify gravitation and electromagnetism
[33]. Although this approach failed, these ideas were very influential, because they marked
the beginning of gauge theory.
Dirac proved in the 1930s, that the massless version of his famous equation in relativistic
quantum mechanics is invariant under conformal transformations [4].
From the late 1960s on, results like the indication for a scaling law in the deep inelastic
electron-proton scattering stimulated an active phase of research in the field (although this
particular fact later turned out to be a manifestation of asymptotic freedom). Conformal
field theories require either continuous or vanishing mass spectrum, so they were seen as
an approximation in high energy physics, where the rest mass of the particles is neglectible,
and also as a training ground for the study of field theories with a slightly bigger symmetry
group than the Poincaré group, for which attempts to construct a non-pertubative scheme
had failed to succeed. A review of and references to this early time can be found in [30].
The seminal papers [2] and [9] started an intense research in the field of twodimensional con-
formal field theories. Since any holomorphic function is angle preserving, after a Wick rota-
tion from Minkowski to Euclidean space, methods from complex analysis could be applied
and with the help of new results from mathematics (like the study of infinitedimensional Lie
algebras and the calculation of the Kac determinant) one was able to identify certain models
with models well known from statistical mechanics. Furthermore 2D CFT has found ample
applications in string theory and made it possible to study several exact models based on
affine Lie algebras. Textbooks and reviews of this subject are e.g. [11] or [3].
Interest in higherdimensional conformal field theory was revived in 1997, when the AdS/CFT
correspondence was conjectured by Maldacena [20]. It states, that there is an equivalence be-
tween a string theory on some space, like e.g. a product of Anti-DeSitter space and a sphere,
and a conformal field theory without gravity living on the boundary of that space.
A recent review of the history of research concerning conformal field theories can be found
in [17], which also contains an extensive bibliography.
In 2000 Todorov and collaborators initiated a program, in which conformal invariance, Wight-
man axioms and insights from the twodimensional case were used to study higherdimen-
sional, in particular D = 4, theories. Under the assumption of so-called global conformal
invariance (GCI), fields fulfil the Huygens principle, which says, that the commutator of
two fields is only supported on the light-cones. Together with energy positivity, this implies
rationality of correlation functions with a very restricted pole structure. This can be used
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to set up a higher dimensional analogon of twodimensional vertex operators [25]. It also
makes possible the closer study of Wightman functions with more than three points 1. For
four-point functions, the partial wave expansion (PWE) has proven to be a useful tool for the
study of positivity. Higher correlation functions in global conformally invariant QFT have
the possibility to display a pole structure, which cannot arise from free field realizations
("double poles"). Therefore it would be desirable to find a method to determine, to which
extent this property is compatible with positivity.

The organization of this work will be as followed: In section 2 we start with a summary
of axiomatic or "general" quantum field theory, followed by a paragraph, in which we dis-
cuss the basics facts about the conformal group and its use in field theory.
Then we will discuss the properties of correlation functions in conformal field theory and de-
scribe the idea of partial wave expansions. We close the introductory part with a discussion
of the mentioned program of studying global conformally invariant quantum field theory.

In two dimensions the action of the conformal group factorizes into an action on the chi-
ral (light-cone) variables x0 ± x1. We will later use this fact and restrict fourdimensional
objects (namely the correlation functions) to two dimensions. The simplest conceivable re-
striction is the one to the submanifold x2 = x3 = 0. It is related to a specific embedding
of the twodimensional conformal algebra into the fourdimensional one. There is however a
second inequivalent embedding and we will investigate in section 3, whether it corresponds
to another twodimensional submanifold, on which the twodimensional conformal group
acts chirally.
In section 4 we relate the partial wave expansion of four-point functions in two and four di-
mensions by expanding the latter in a series of the former. This expansion is then compared
to the group theoretic decomposition of a representation of the fourdimensional conformal
group into representations of the twodimensional subgroup.
A six-point function was found, which cannot be realized by free fields in [26]. Unfortu-
nately, general fourdimensional partial waves in this case are extremely difficult to obtain.
One possibility to perform "a simpler version" of a PWE is to restrict the general form of
a six-point function to two dimensions, obtain the PWE there, expand the "non-trivial" six-
point function and see, what obstructions arise from demanding Wightman positivity in two
dimensions. If a contradiction comes up, the double-pole structure can also be ruled out in
four dimensions. This will be addressed in section 5.

1Note, that two and three point functions in conformal field theories are fixed up to normalization.
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Notation:
We give a list of notations used in the main text.

MD D-dimensional Minkowski space
D Spacetime dimension
x = xµ = (x0, .., xD−1) Point inMD

~x = (x1, .., xD−1) Spatial components of a point x
diag(..) Diagonal matrix
ηµν Minkowski metric diag(+,−, ..,−) on RD

x · y = xµy
µ = ηµνx

µyν Scalar product of x, y ∈MD

x2 x · x
∂µ = ∂

∂xµ Partial differentiation by xµ

H Hilbert space of the QFT
Aut(H) Automorphisms ofH
U(g) Unitary operator associated with group element g
L↑+ Proper orthochronous Lorentz group
P↑+ Proper orthochronous Poincaré group
φ(x) Quantum field (operator valued distribution)
φ(f) Quantum field smeared with test function f
Ω Vacuum vector inH
Wn Wightman distributions
MD D-dimensional compactified Minkowski space
M4,C Complexification ofMD

KD Dirac cone forMD

ηab Metric diag(+,−, ..,−,+) on RD+2

ξa Vector in the Dirac cone
CD Conformal group in D dimensions
SO(p, q) Pseudo-orthogonal group of signatur (p, q)
SU(p, q) Pseudo-unitary group of signatur (p, q)
C

(n)
D n-th order Casimir operator of CD

CnD Value of n-th order Casimir operator of CD
Bnm(u, v) Twodimensional partial wave
Gn(u) Onedimensional partial wave
F (a, b; c;x) Hypergeometric function
(a)n Pochhammer symbol
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2 The setting

2.1 General quantum field theory

Since the study of conformal field theories mostly takes place in the axiomatic Wightman
setting, we will give a short account of it in this section.

In the 1950s, quantum field theory (QFT) had turned into a great success story since its
birth thirty years before. Using pertubation theory and so-called renormalization, quantum
electrodynamics was able to explain experimental observations such as the anomalous mag-
netic moment of the electron and the Lamb shift with astonishing precision. The study of
non-abelian gauge groups started with the works of Yang and Mills, which led to the elec-
troweak theory and later to the standard model of elementary particle physics. In spite of
these successes, there remained some open problems:

• A theory based entirely on pertubation theory seemed conceptually unsatisfactory.

• Haag’s theorem showed, that mathematically the interaction picture used throughout
pertubative QFT does not exist.

• It was unclear, why renormalizability should be a fundamental requirement for an
admissible quantum field theory.

• The prescriptions for the correct calculations of higher order pertubations rapidly be-
come very complicated and hard to communicate.

• There were situations like the strong interaction, where pertubation theory was not
applicable at all.

Therefore Streater, Garding, Wightman and others attempted to give quantum field theory
a mathematically solid foundation ([29],[15]), a program which was called axiomatic or gen-
eral quantum field theory. They formulated a set of independent and compatible require-
ments or "axioms", that any reasonable relativistic quantum field theory on Minkowski space
M4 should fulfil. The term "axiom" should not be taken too literally here, but more in the
sense of "plausible working hypothesis", which might undergo some changes in the final
formulation of the theory.
Within this setting, one was able to reproduce familiar results from QFT like the spin-statistics-
and the CPT-theorem. Haag and Ruelle also succeeded in formulating a rigorous scattering
theory.
One was however not yet able to construct field theories besides the (generalized) free ones,
that fulfil the axioms.
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Here is what Wightman et al. proposed:

• Poincaré invariance: States of the theory correspond to rays in a Hilbert space H,
which carries a unitary representation U of the proper, orthochronous Poincaré group
P↑+ = L↑+ n R4:

U : P↑+ → Aut(H)
g 7→ U(g) (2.1)

where g is of the form (Λ, a) with Λ ∈ L↑+ a proper, orthochronous Lorentz transfor-
mation and a a translational four vector. The Lorentz transformations are the homoge-
neous linear transformations Λ, such that Λx · Λy = x · y for all x, y ∈ M4. They are
called proper, if det(Λ) = +1 and orthochronous, if Λ0

0 > 0.
The action of g on a spacetime point is then

x 7→ Λx+ a. (2.2)

Demanding unitarity asserts the probabilistic interpretation of quantum theory.

• Spectrum condition/Energy positivity: The spectrum of the generator of translations
Pµ in the unitary operator U(1, a) = exp(iaµPµ) lies in the closure V + of the forward
light cone

V + = { x = (x0, ~x) ∈ R4 , |x0| > |~x| } (2.3)

This reflects the idea, that the possible energy levels of a system should be bounded
from below.

• Fields: The fields φi(x) (i = 1..N ) of the theory are operator valued distributions

φi(f) =
∫
dx φi(x)f(x), (2.4)

which are in general unbounded 1 and together with their adjoints φi(f)† are defined
on a dense, Poincaré invariant domainD ⊂ H. D contains the vacuum (see below) and
is invariant under the action of the field algebra. The functions f are out of some ap-
propiate test function space, e.g. the Schwartz space S(R4) of smooth functions, which
together with all their derivatives decrease faster at infinity than any polynomial.

• Transformation of fields: Under the action of the Poincaré group P↑+ the fields trans-
form as

U(a,Λ)φi(f)U(a,Λ)−1 =
∑
j

Sij(Λ−1)φj(fa,Λ), (2.5)

where fa,Λ(x) = f(Λ−1(x− a)) and Sij is a suitable representation of P↑+.

1Therefore the integral sign should be understood symbolically.
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• Vacuum: There exists a unique ray Ω in D ⊂ H called the vacuum vector, which is
invariant under the Poincaré action:

U(g)Ω = Ω (2.6)

for all g ∈ P↑+. It is a cyclic vector forH, i.e. the span of all terms of the form

φi1(f1)...φik(fk)Ω , k ∈ N , fi ∈ S(R4) , ij ∈ {1, .., N} (2.7)

is dense inH.

• Locality: If the supports of two test functions f and g are mutually spacelike separated,
the commutator of any two field operators φi and φj smeared with them vanishes:

[φi(f), φj(g)] = 0 (2.8)

The unsmeared version of this reads [φi(x), φj(y)] = 0, if (x − y)2 < 0. For fermions
appropiate incorporation of anticommutation relations can be done.
This requirement is also called Einstein causality and reflects the experimental fact,
that no causal signal can travel faster than the speed of light.

• Asymptotic completeness: In scattering theory, the incoming and outgoing free parti-
cle states are labelled by their momenta and spin. These states span Hilbert spacesHin
andHout. One requires, that these spaces coincide with the Hilbert space of the theory:

H = Hin = Hout. (2.9)

In this formulation of the axioms, the field algebra is the central object under consideration.
One can also define the theory in terms of the Wightman distributions

Wn(f1, .., fn) = 〈Ω, φ1(f1)..φn(fn)Ω〉 (2.10)

with fi ∈ S(R4) for all i = 1, ..n. They are also called correlation or n-point functions.
Wn(f1, .., fn) is a tempered distribution in each fi separately. Schwartz’ nuclear theorem
then implies, that there is a unique tempered distributionWn(f) for f ∈ S(R4n). We denote
its unsmeared version by

Wn(x1, .., xn) = 〈Ω, φ1(x1)..φn(xn)Ω〉. (2.11)

The axioms can then be formulated as conditions on theWn or the Wn, respectively. We will
work only with the Wn in the following, bearing in mind, that for the involved objects to be
well defined, in general one needs to smear them with appropiate test functions.
Both formulations are by construction equivalent and one has a scheme, which allows to
reconstruct a unique QFT (up to unitary equivalence), once all the correlation functions are
known. So finding a procedure, that facilitates their calculation within a given setting, is one
possible approach to the formulation of a quantum field theory.
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2.1.1 General conformal quantum field theory

It is clear, that if the symmetry group of spacetime is changed from the Poincaré group to
the conformal group C4 = SOe(4, 2)/Z2, the Wightman axioms have to be changed in the
appropiate places:

1. The Poincaré invariance is replaced by the invariance under C4 and the existence of a
unitary representation of it on the Hilbert spaceH.

2. Fields transform under induced representations of C4.

3. The vacuum is invariant under the whole action of C4.

4. The requirement of asymptotic completeness is dropped, because conformal quantum
field theories are not particle theories (they have trivial S-matrix).

In this next section we consider in more detail, what the properties of a theory with those
requirements are.
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2.2 The conformal group and conformal field theory

In conformal field theory (CFT) the Poincaré group, the group of spacetime symmetries in
ordinary QFT, is expanded to a bigger one, the conformal group. It is the maximal group
preserving the causal structure of a spacetime (i.e. timelike/spacelike/null vectors in the
tangent space are mapped to timelike/spacelike/null ones).
We will now introduce the group of conformal transformations and its properties, especially
the ones relevant for field theory. We will stepwise reduce the generality, going from gen-
eral manifolds to D-dimensional Minkowski spaceMD and finally to the cases, which are
of central interest in this work, namely D = 2 and D = 4.

2.2.1 Conformal transformations

Let x→ x′(x) be a map from a (Semi-)Riemannian manifoldN with metric gµν to itself. Then
the mapping is called conformal, if it leaves gµν invariant up to a local scale factor Ω(x) > 0:

gµν(x)→ g′µν(x) = Ω(x)gµν(x). (2.12)

The name conformal stems from the fact, that these transformations preserve angles between
two vectors, but they can change their respective lengths.
One possible way to introduce their precise form is to consider the conformal Killing equa-
tion (CKE)

∇µξν +∇νξµ = f(x)gµν(x). (2.13)

Here f(x) is a scalar function and ∇ν is the covariant derivative associated with the Levi-
Civita connection of gµν .
Just as the ordinary Killing equation arises from demanding invariance of the metric under
an infinitesimal coordinate transformation xµ → x′µ = xµ + ξµ, the CKE arises from the
requirement, that the associated change of the metric is proportional to the original metric
(see e.g. [32]).

2.2.2 The conformal transformations of Minkowski space MD

We are in this work only interested in the flat Minkowski spaceMD, so

gµν = ηµν = diag(1,−1, , ..,−1) (2.14)

and ∇µ = ∂µ. We first take arbitrary spacetime dimension D and consider the solutions of
the CKE.
For f(x) = 0 we have the ordinary Killing equation, which has two types of solutions, the
translations

Pαµ = −δαµ (2.15)

and the Lorentz transformations

Mα
µν = xµδ

α
ν − xνδαµ . (2.16)

They generate the isometries of Minkowski space (the Poincaré group). Furthermore, for
f(x) = −2 there are the dilatations

Dα = −xα (2.17)
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and for f = 4xµ the special conformal transformations

Kα
µ = 2xµxα − x2δαµ . (2.18)

The α is a Killing vector index and the µ, ν are spacetime indices. The chosen nomenclature
will become clear from the finite transformations belonging to these generators (see below).
One can show, that any other solution of the CKE can be expanded in these

n =
(D + 1)(D + 2)

2
(2.19)

solutions. This is also the maximum number of solutions a CKE in a D dimensional space V
can have. The conformal group of V is then called maximal and this is the case, if and only
if V is conformally flat [30], i.e. if its metric gµν is related to the Minkowskian as

gµν(x) = Λ(x)ηµν (2.20)

for some smooth, strictly positive function Λ(x).

From the conformal Killing vectors ξαi (i = 1..n) we form the vector fields

Xi = ξαi ∂α (2.21)

with {∂α = ∂
∂xα } being the coordinate basis of TMD.

They generate the following finite transformations:

Translations xµ → xµ + aµ (2.22)
Lorentz transformations xµ → Λµνx

ν (2.23)
Dilatations xµ → λxµ (2.24)

Special conformal transformations xµ → xµ − bµx2

1− 2b · x+ b2x2
(2.25)

The special conformal transformations Kµ can be understood as the composition of a Weyl
reflection

Ir : xµ → −x
µ

x2
(2.26)

and a translation Pµ, followed by another Weyl reflection:

Kµ = Ir ◦ Pµ ◦ Ir. (2.27)

We note at this point, that the conformal analogue of Wightman positivity usually is to re-
quire, that the "conformal Hamiltonian" H0 = 1

2(P 0 + K0) has non-negative spectrum. Be-
cause ofK0 = Ir ◦P0◦Ir = Ir ◦P 0◦Ir, this notion is equivalent to Poincaré positivity P 0 ≥ 0.

2.2.3 The conformal algebra and conformal fields

The generators of the conformal transformations (the conformal Killing vector fields Xi)
form a Lie algebra, which is called the conformal algebra. We focus now on the algebraic
properties of this algebra. From the viewpoint of the Wightman axioms, we are interested in
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the unitary implementations of the associated Lie group on the Hilbert space of the theory
and the induced field representations.
We first have to clarify, what the properties of fields in conformally invariant theories are.
We recall, that Wigner’s analysis [34] of the positive energy representations of the Poincaré
group led to a classification of covariant fields according to their mass m and spin s. In
conformal field theory one does the same and labels fields by the quantum numbers of the
unitary positive energy representations of the conformal group CD. We will discuss these
representation later for the cases D = 2 and D = 4 in more detail.
A common feature for fields in all spacetime dimensions D is, that one of the quantum
numbers, the so-called scaling dimension d, describes the behaviour of a field ψ(x) under a
conformal transformation x→ g(x).
The transformation is implemented by a unitary operator U(g) and has the form

ψ(x) 7→ U(g)ψ(x)U(g)† =
∣∣∣∣∂g(x)µ

∂xν

∣∣∣∣−d/D · ψ(g(x)), (2.28)

where
∣∣∣∂g(x)µ

∂xν

∣∣∣ is the Jacobi determinant of the transformation g(x) and U(g)† = U(g)−1

the adjoint of U(g). Since the translations and Lorentz transformations are isometries, the
prefactor is only non-trivial for the scale transformations and the special conformal transfor-
mations.
By Stone’s theorem, unitary transformations are generated by hermitean generators Yi as

U(g) = exp(itiYi) (2.29)

with certain parameters ti. For the conformal transformations we denote these generators in
accordance with the previous names by Pµ, Mµν , D and Kµ (µ, ν = 0, .., D − 1).
They fulfil the following list of commutation relations among each other:

[D,Pµ] = −iPµ (2.30)
[D,Kµ] = iKµ (2.31)

[D,Mµν ] = 0 (2.32)
[Kµ, Pν ] = −2i(ηµνD −Mµν) (2.33)

[Kρ,Mµν ] = −i(ηρµKν − ηρνKµ) (2.34)
[Pρ,Mµν ] = −i(ηρµPν − ηρνPµ) (2.35)

[Mµν ,Mρσ] = −i(ηνρMµσ − ηνσMµρ + ηµσMνρ − ηµρMνσ) (2.36)

Apparently the generators of the isometries form a subalgebra, the Poincaré algebra.
At this point, one can use the Baker-Campbell-Hausdorff formula (see appendix .1.2) to cal-
culate, that

eiαDP 2e−iαD = e2αP 2, (2.37)

so the Lorentzian momentum square P 2 = PµP
µ, which in Poincaré QFT equals the mass

square m2, is not invariant under dilatations. Therefore conformal field theories have either
vanishing or continous mass spectrum.
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Setting

Jµν = Mµν , JµD =
1
2

(Pµ −Kµ) , JµD+1 =
1
2

(Pµ +Kµ) , JDD+1 = D (2.38)

and Jba = −Jab, it is easily checked, that the conformal algebra is isomorphic to the Lie alge-
bra of the pseudoorthogonal group SO(D, 2), whose commutation relations can be written
compactly as

[Jab, Jcd] = i(ηacJbd − ηadJbc + ηbdJac − ηbcJad), (2.39)

with a, b, ... = 0, 1, ..., D + 1 and the metric ηab = diag(+,−, ...,−,+).
SO(D, 2) is the matrix Lie group of the (D + 2)× (D + 2) matrices M satisfying

M tηM = η, (2.40)

where M t is the transpose of M , and the corresponding matrix Lie algebra so(D, 2) are the
matrices m satisfying

mtη + ηm = 0. (2.41)

One can express an arbitrary generator m in terms of a basis of the n basis elements Jab as

m =
∑
a,b

mabJab. (2.42)

The Jab generate either rotational (sine/cosine type) or boost (sinh/cosh type) group ele-
ments in a (D + 2)-dimensional space.

Dirac realization of conformally compactified Minkowski space

How the action on the (D + 2)-dimensional space induces the conformal transformations in
Minkowski space is reflected in a realization by Dirac, in which SO(D, 2) acts on a (D + 1)-
(pseudo)-cone. We consider RD+2 with metric ηab = diag(+,−, ..,−,+). Then the cone is
defined as

KD = {ξ ∈ RD+2 | ξ · ξ = 0 , ξ 6= 0} (2.43)

We identify ξ and λξ (λ 6= 0), since they will correspond to the same point in Minkowski
space (see below). In other words, we go over to the factor space

MD = KD/R∗, (2.44)

where R∗ = {λ ∈ R|λ 6= 0}. This space is the compactification MD of Minkowski space,
which is

MD = SD−1 × S1, (2.45)

where Sn is the unit n-sphere. For ξD+ξD+1 6= 0 we define the Minkowski space coordinates
as

xµ =
ξµ

ξD + ξD+1
(2.46)

for µ = 0, 1, .., D − 1.MD is a homogeneous space for the conformal group

CD = SOe(D, 2)/Z2, (2.47)
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where we divided out the center of SOe(D, 2), which is isomorphic to the cylic group Z2 of
two elements.
One can check now, that the SOe(D, 2)/Z2 action on an element ξa induces the correct confor-
mal transformations on the Minkowski coordinates xµ. We illustrate this for the dilatations,
the other transformations can be calculated similarly. The corresponding transformation on
the ξ-space is a pseudo-rotation in the (D,D + 1) plane:

ξ0

...
ξD−1

ξD

ξD+1

→


1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0
0 0 0 cosh(t) sinh(t)
0 0 0 sinh(t) cosh(t)




ξ0

...
ξD−1

ξD

ξD+1

 =


ξ0

...
ξD−1

cosh(t)ξD + sinh(t)ξD+1

sinh(t)ξD + cosh(t)ξD+1


On the Minkowski space coordinates this has the effect

xµ → x′µ =
ξµ

cosh(t)ξD + sinh(t)ξD+1 + sinh(t)ξD + cosh(t)ξD+1
= e−txµ (2.48)

for µ = 0..D − 1, which is indeed a dilatation.

2.2.4 Conformal field theory on M2

The case D = 2 is special in the sense, that besides the usual global conformal transforma-
tions there is also an infinitedimensional local conformal algebra, which however does not
leave the vacuum invariant.
We emphasize, that whenever we speak of the twodimensional conformal group or algebra
in this work, we mean the six-dimensional global one, i.e. SO(2, 2) or so(2, 2).
By inversion of the relations (2.38), the basis {Jab} of so(2, 2) with a, b = 0, .., 3 can be re-
placed by the set of physical generators

{P0, P1,K0,K1, D,M01}. (2.49)

One find, that so(2, 2) splits into a direct sum of two identical algebras:

so(2, 2) ' so(1, 2)⊕ so(1, 2). (2.50)

To see this, we set

P± =
1
2

(P0 ± P1), K± =
1
2

(K0 ∓K1), D± =
1
2

(D ∓M01) (2.51)

and get two sl(2,R) algebras commuting with each other:

[D±, P±] = −iP± , [D±,K±] = iK± , [P±,K±] = 2iD±, (2.52)

where sl(2,R) is the Lie algebra of the group SL(2,R) of real unimodular 2x2 matrices

SL(2,R) =
{
A =

(
a b
c d

)
| ad− bc = 1 , a, b, c, d ∈ R

}
. (2.53)
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Then we form the linear combinations

J01 =
1
2

(P± −K±) , J02 = D± , J12 =
1
2

(P± +K±), (2.54)

which fulfil the so(1, 2) commutation relations (cf. (2.39))

[J01, J02] = iJ12 , [J01, J12] = iJ02 , [J02, J12] = −iJ01, (2.55)

hence
sl(2,R) ' so(1, 2). (2.56)

Let the coordinates of twodimensional Minkowski space be denoted by (x0, x1), then we
define the so-called light-cone coordinates x+ = x0 + x1 and x− = x0 − x1. The splitting of
the Lie algebra implies the factorization of SO(2, 2) into two SL(2,R)s on the group level.
This leads to a chiral action of the two copies on the light-cones. This action has the form of
fractional (Möbius) transformations

f(x+) =
ax+ + b

cx+ + d
(2.57)

(and correspondingly for x−), where the parameters are precisely the components of a matrix
A ∈ SL(2,R).
For translations, dilatations and special conformal transformations, respectively, the explicit
form of the matrices is

P :
(

1 a
0 1

)
, D :

(
eb/2 0

0 e−b/2

)
, K :

(
1 0
−c 1

)
. (2.58)

with a, b, c ∈ R.
Since a simultaneous change of sign of all components of A ∈ SL(2,R) leads to the same
fractional transformation, the onedimensional conformal group is really isomorphic to the
projective SL(2,R),

C1 ' PSL(2,R). (2.59)

We saw, that we needed a unitary representation of the group of spacetime symmetries on
the Hilbert space of the theory, so we now consider representations of the conformal group.
Since there are no (non-trivial) finitedimensional unitary representations of non-compact
groups, all relevant representations are necessarily infinitedimensional. Furthermore in ac-
cordance with the Wightman setting, we will demand the representations to be of positive
energy.
We can get the representations of SL(2,R) from those of its Lie algebra sl(2,R). We saw, that

so(2, 2) ' sl(2,R)⊕ sl(2,R), (2.60)

so the representations are tensor products of two sl(2,R) representations. Those are in turn
labelled by a positive number k 2, so a representation of the twodimensional conformal
group can be labelled by a pair of quantum numbers (k, k′).

2The onedimensional trivial representation corresponds to k = 0
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We will often call d = k + k′ the scaling dimension and s = k − k′ the spin of the representa-
tion.
Much information about a representation ρ can be written compactly in the form of a char-
acter

χρ(·) =
∑
λ

multλeλ(·) (2.61)

where the sum extends over all weights λ of ρ. The weights of the positive energy represen-
tation k of sl(2,R) are of the form k + n with n ∈ N0, so its character is

χk(t) =
∞∑
n=0

tk+n = tk
∞∑
n=0

tn =
tk

1− t
. (2.62)

The character of a representation of the twodimensional algebra is then the product χk · χk′
of two characters of sl(2,R) representations (c.f. appendix .1.4).
A Casimir element is an element in the universal enveloping algebra of a Lie algebra g,
that commutes with all generators of g (see appendix .1.3). Therefore by Schur’s lemma it
has a constant value within a representation and since the number of independent Casimir
operators for an algebra is equal to the number of quantum numbers necessary to label a
representation of it, they can be used to characterize a representation.
In accordance with the decomposition of the twodimensional conformal algebra, also its
Casimir operator is the sum of two onedimensional ones:

C(2) = C
(1)
+ + C

(1)
− (2.63)

where
C

(1)
± = −D2

± +
1
2

(P±K± +K±P±). (2.64)

The Casimir operators will become important in the context of the partial wave expansions.
Their values in a k± representation are

C1
± = k±(k± − 1). (2.65)

Coming to field representations, we note, that in this work we will only need those of the Lie
algebra, which are obtained by inserting (2.29) into (2.28) and differentiating by the param-
eters ti at ti = 0. For a scalar field ϕ(x) of scaling dimension d in one spacetime dimension
we obtain

[P,ϕ(x)] = −i∂xϕ (2.66)

[K,ϕ(x)] = −i(x2∂x + 2dx)ϕ (2.67)
[D,ϕ(x)] = −i(d+ x∂x)ϕ (2.68)

Since in two dimensions the Hilbert space, that is obtained by applying the field operators
on the vacuum, is a tensor product of two onedimensional ones, one has two of these lists
for the fields, that live on the respective light cones.
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2.2.5 Conformal field theory on M4

In D ≥ 3 spacetime dimensions there exists only the group of global conformal transforma-
tion, which for D = 4 is a 15-dimensional group.
The physically interesting positive energy representations are lowest weight representations
characterized by three numbers [19]

λ = (d, j1, j2). (2.69)

They can be thought of as being induced from the maximal compact subgroup

K = U(1)× SU(2)× SU(2) (2.70)

of the universal covering group SU(2, 2) of the conformal group. The d is the scaling di-
mension and corresponds to the U(1) representation. The ji are integer or half-integer and
correspond to the two angular momentum algebras SU(2). Unitarity sets certain bounds on
the possible values of the scaling dimension:

• d ≥ j1 + j2 + 2 for j1j2 6= 0

• d ≥ j1 + j2 + 1 for j1j2 = 0

• d = j1 = j2 = 0 (the trivial representation)

Some details on this are given in appendix .2.
The field representations for a field ψ(x) of scaling dimension d in four dimensions read

[Pµ, ψ(x)] = −i∂µψ(x) (2.71)
[Mµν , ψ(x)] = −[i(xµ∂ν − xν∂µ) + Σµν ]ψ(x) (2.72)

[D,ψ(x)] = −i(d+ xµ∂µ)ψ(x) (2.73)

[Kµ, ψ(x)] = [i(x2∂µ − 2xµxν∂ν − 2dxµ)− 2xνΣµν ]ψ(x) (2.74)

The matrices Σµν describe the spin-tensor structure of the field, e.g. Σµν = 0 for a scalar field,
Σµν = i

4 [γµ, γν ] for a spinor field (γµ are the Dirac γ matrices) and Σµν = i(ηµτδ
ρ
ν − ηντδρµ) for

a vector field.

Since so(4, 2) is a rank three algebra, there are three Casimir elements C(4)
2 = 1

2JabJ
ab, C(4)

3

and C(4)
4 , which in terms of the physical generators read [8]

C
(4)
2 =

1
2
MµνM

µν −KµP
µ − 4iD −D2 (2.75)

C
(4)
3 =− 1

4
(WµK

µ +KµW
µ)− 1

8
εµνρτM

µνMρτ (2.76)

C
(4)
4 =

1
4
{KµK

µPνP
ν − 4KµM

µνMνρP
ρ − 4KµM

µνPν(D + 6i)

+
3
4

(MµνM
µν)2 +

1
16

(εµνρτMµνMρτ )2 +MµνM
µν(D2 + 8iD − C(4)

2 − 22)

−D4 − 16iD3 + 80D2 + 128iD + 36C(4)
2 − 16iC(4)

2 D − 2C(4)
2 D2} (2.77)

whereWµ = 1
2εµνρτP

νMρτ is the Pauli-Lubanski vector. One can calculate their value for any
field representation, but we will only need the so-called symmetric tensor representations.
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We set the "angular momentum" quantum numbers j1 = j2 = l
2 and because of the unitary

bounds and the fact, that the scaling dimension will be an integer in globally conformal
invariant QFT, the scaling dimension is conveniently parametrized as

d = 2k + l, (2.78)

where l is called the "spin" and 2k the "twist". Obviously k must be positive. In terms of
these quantities, the Casimir values become

C4
2 = (2k + l)(2k + l − 4) + l(l + 2) (2.79)

C4
3 = 0 (2.80)

C4
4 = −(2k + l − 2)2

[
−3

4
− l(l + 2)

2

]
+

1
4
l2(l + 2)2 (2.81)

Character formulae for higherdimensional conformal groups were obtained e.g. by [1] and
[7]. We will only need the D = 4 case. Low values of the scaling dimension, which are in
principle allowed by unitarity, have to be treated separately 3. These are called "short repre-
sentations" in [1], the "normal" cases are called "long representations".

• Long representations with j1 6= 0, j2 6= 0, d > j1 + j2 + 2

A[d,j1,j2](s, x, y) = sdχj1(x)χj2(y)P (s, x, y), (2.82)

• Short representations with j1 6= 0, j2 6= 0, d = j1 + j2 + 2

D[j1+j2+2,j1,j2](s, x, y) = sj1+j2+2
(
χj1(x)χj2(y)− sχj1− 1

2
(x)χj2− 1

2
(y)
)
P (s, x, y),

(2.83)

• Short representations with j1 6= 0, j2 = 0, d = j1 + 1

D[j1+1,j1]+(s, x, y) = sj1+1
(
χj1(x)− sχj1− 1

2
(x)χ 1

2
(y) + s2χj1−1(x)

)
P (s, x, y), (2.84)

• Short representations with j1 = 0, j2 6= 0, d = j2 + 1

D[j2+1,j2]−(s, x, y) = sj2+1
(
χj2(y)− sχj2− 1

2
(y)χ 1

2
(x) + s2χj2−1(y)

)
P (s, x, y) (2.85)

with the su(2) character

χj(x) =
j∑

n=−j
enx =

sinh((j + 1/2)x)
sinh(x/2)

(2.86)

and the function

P (s, x, y) =
[
(1− s

√
xy

)(1− s√xy)(1− s
√
x

y
)(1− s

√
y

x
)
]−1

. (2.87)

Since the lowest weight of symmetric tensor representations is of the form (d = 2k+l, l/2, l/2),
we are only interested in the long representations, equation (2.82), and the short representa-
tions of the first type, equation (2.83).

3This corresponds to certain conservation laws for twist 2 fields, see next section.
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2.3 Correlations, operator product expansion and partial wave
expansions

We mentioned in the first section, that the problem of constructing a non-trivial quantum
field theory can be addressed by finding a recipe to calculate (at least in principle) all of its
correlation functions

Wn(x1, .., xn) = 〈Ω, φ1(x1)..φn(xn)Ω〉. (2.88)

We give an overview about the strategies in this direction, that have been employed in con-
formal field theory.
The effect of requiring conformal invariance of a theory on its correlation functions is more
restricting than in the case of a Poincaré invariant QFT. The two- and three-point functions
are fixed up to normalization. For scalar fields φi with scaling dimensions di (i = 1, 2, 3) we
have

〈Ω, φ1(x1)φ2(x2)Ω〉 =

{
C12

x2d
12

d1 = d2 ≡ d

0 d1 6= d2

(2.89)

and
〈Ω, φ1(x1)φ2(x2)φ3(x3)Ω〉 =

C123

xd1+d2−d3
12 xd1+d3−d2

13 xd2+d3−d1
23

(2.90)

C12 and C123 are constants of normalization and

1
xn

=
(

−1
(x0 − iε)2 − ~x2

)n/2
. (2.91)

The argument, that (2.89) and (2.90) must have this form, uses invariance under all conformal
transformations (see e.g. [3]).
The general n-point correlation function (n ≥ 4) of scalar fields φi with scaling dimensions
di is not that determined, but one can show, that it must have the form

〈Ω, φ1(x1)..φn(xn)Ω〉 =
∏
i,j

ρ
µij
ij f(s1, .., smn) (2.92)

where ρij = (xi−xj)2 and f is an arbitrary function, that depends on the points only through
the mn = n(n − 3)/2 conformally invariant cross ratios. A cross-ratio involves four-points
xi, xj , xk, xl in the form

ρijρkl
ρikρjl

(2.93)

and one can check, that such a ratio indeed remains invariant under any conformal trans-
formation. Therefore also f remains invariant under any conformal transformation. The
number mn emerges from the combinatorics of finding the number of independent ratios of
this type. The exponents µij have to fulfil the homogeneity relation

∑
j(µij + µji) = −di for

every fixed i. This expresses the fact, that under scaling, a field behaves as

φ(λx)→ 1
λd
φ(x). (2.94)

Since the distance squares transform as

ρij → (λxi − λxj)2 = λ2ρij , (2.95)
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the homogeneity relation ensures, that both sides of (2.92) transform in the same way.

A useful tool in the analysis of correlation functions in conformal field theory is the so-called
partial wave expansion (PWE). This notion arose in non-relativistic scattering theory, where
for central potentials one has common eigenstates of the Hamiltonian H and the angular
momentum operators Lz and L2. Then the wave functions are expanded in terms of them.
Also in relativistic scattering PWEs were used, where it amounts to the tensor product ex-
pansion of two irreducible positive energy representations of the Poincaré group.
In conformal field theories PWEs of four-point-functions were employed for various space-
time dimensions as well as in Euclidean and Minkowskian setting. Here it amounts corre-
spondingly to the tensor product expansion of two irreducible positive energy representa-
tions of the conformal group. For the Minkowskian case these representations were men-
tioned in section 2.2.

PWEs can be combined very well with the operator product expansion. This notion has
been introduced by Wilson [35] and was employed in CFT as well as in ordinary QFT or
even on curved spacetimes. One makes the assumption, that the product of two local fields
A(x) and B(y) can for x inside a certain radius of convergence around y be written as

A(x)B(y) ∼
∑
i

CABi (x− y)Φi(y), (2.96)

for some local fields Φi. The ∼ should indicate, that the expression is meant to be exact
inside a correlation function. One might hope, that if one finds a consistent way to carry
this out, one can reduce any conformal n-point function successively down to the known
three-point function. In practise however this turns out to be very cumbersome and has
only been accomplished in CFT for the case, where just one of these steps is needed, i.e. for
the four-point function of fields φi(x) (i=1,2,3,4).

Partial wave expansion and positivity in twodimensional CFT

We first consider the twodimensional case, which was investigated in [27] to study posi-
tivity for general scalar fields in 2D conformal field theory, trying to generalize previously
obtained results for the energy-momentum field [9].
A problem with local conformal fields φdd(x

+, x−) (with x± = x0 ± x1 the light-cone coor-
dinates and d and d the light-cone scaling dimensions) is, that they cannot transform irre-
ducibly, if one requires Einstein causality. It was found however, that one can decompose
the fields as

φdd(x
+, x−) =

∑
ξξ

φξξ
dd

(x+, x−) (2.97)

into non-local fields φξξ
dd

(x+, x−) with ξ non-integer real numbers, which do so, e.g.

U(λ)φξξ
dd

(x+, x−)U(λ)−1 = λdφξξ
dd

(λx+, x−), (2.98)

where U(λ) is the unitary operator representing a scale transformation.
The decomposition (2.97) takes place with respect to central elements Z and Z of the univer-
sal covering of the conformal group, such that

Zφξξ
dd

(x+, x−)Z−1 = e−2πi(d−ξ)φξξ
dd

(x+, x−) (2.99)
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and
Zφξξ

dd
(x+, x−)Z−1 = e2πi(d−ξ)φξξ

dd
(x+, x−). (2.100)

There are global operator product expansions for the non-local fields [28], which involve
integration over the whole light cone and take the form

φξξ
d1d1

(x+
1 , x

−
1 )φd2d2(x+

2 , x
−
2 )Ω〉 =

∑
d3,d3

2eiπ(d3−d3)c123

∫
d2x3 K(di, di, x+

i , x
−
i ) ·φd3d3(x+

3 , x
−
3 )Ω〉

(2.101)
with i = 1, 2, 3. The expansion of local fields is then obtained from this by summation over
ξ and ξ (cf. (2.97)). The integral kernel in the expression factorizes as

K(di, di, x+
i , x

−
i ) = K(di, x+

i ) ·K(di, x−i ) (2.102)

with

K(di, x+
i ) =

(2π)−1Γ(2d3)Γ(λ3)Γ(1− λ2)−1

(x+
1 − x

+
2 − iε)λ1(x+

1 − x
+
3 + iε)λ2−1+2d3(x+

1 − x
+
3 − iε)1−2d3(x+

2 − x
+
3 + iε)λ3

(2.103)
and the corresponding expression for K(di, x−i ).
If one orthonormalizes the fields with respect to their two-point function, the c123 are equal
to the constants C123 in the three-point function.

To obtain the partial wave expansion of the four-point function, we multiply the local coun-
terpart of equation (2.101) from the left with a "bra"-vector of the form 〈φ2(x2)φ1(x1)Ω. Then
within the integral there appears the three-point-function, whose form up to normalisation
is known. If one plugs in the expression, it turns out, that one can perform the integrations
to yield the general form of the four-point function as

〈Ω, φ1(x1)φ2(x2)φ3(x3)φ4(x4)Ω〉 = g(x+
i , di) · g(x−i , di) ·

∑
h0,h0

eiπ(h0−h0) b
prim
120 b

prim
034 Fh0(u)Fh0

(v)

(2.104)

with the function

g(x+
i , di) =

(
x+
2 −x

+
4

x+
1 −x

+
4

)d1−d2 (x+
1 −x

+
3

x+
1 −x

+
4

)d4−d3
(x+

1 − x
+
2 )d1+d2(x+

3 − x
+
4 )d3+d4

, (2.105)

the conformal blocks

Fh0(u) = uh0

∞∑
n0=0

N120(n1.n2, n0)N034(n0, n3, n4) · (−u)n0 ·F (d2−d1 +d0, d3−d4 +d0; 2d0;u)

(2.106)
and the cross ratio

u =
(x+

1 − x
+
2 )(x+

3 − x
+
4 )

(x+
1 − x

+
3 )(x+

2 − x
+
4 )
. (2.107)

For F(v), g(x−i , di) and v corresponding expressions hold. The F (a, b; c;x) are the so-called
hypergeometric functions, whose definition and basic properties are listed in appendix 3.
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We note, that in the case of four fields with identical scaling dimension, the terms appearing
in (2.104) have up to prefactors the form

Bnm(s, t) := Gn(u) ·Gm(v) := unF (n, n; 2n;u) · vmF (m;m; 2m; v). (2.108)

In the expansion and the conformal blocks there appeared new coefficients Nijk and b
prim
ijk .

We clarify their meaning now. The chiral components T (x+) and T (x−) of the (traceless,
conserved) energy-momentum tensor act independently on the fields within a conformal
family {φh+n(x+, x−)}n=0,1,2,... Hence the amplitudes factorize into a family dependent part
and two parts depending on the chiral actions, which also include the distinction between
fields of different level (the descendants) within a family:

c312 = b
prim
312 ·N312(n1, n2, n3) ·N312(n1, n2, n3) (2.109)

For scalar fields all three coefficient parts are real numbers. One further has the symmetry

Nkji = (−1)ni+nj+nkNijk (2.110)

How is all this used now to study positivity? Let us assume, that a field in the expansion
(2.101) creates a negative norm state, when applied to the vacuum. Then the sign of the
three-point function changes, which is an undesirable feature. We could now introduce a
minus sign in the expansion (2.101) for every field of this type to circumvent this, in other
words a sign factor sd3d3 = ±1. This sign factor can be interpreted as a metric in a certain Rp,
where p is the number of different fields in the expansion.
If one takes for example two of the fields to be the energy-momentum tensor, one can use
this metric to define a (in general non-definite) "scalar product" on the space of the coeffi-
cients [27]. For positivity (i.e. no appearance of negative-norm states) it should be a true
scalar product, i.e. positive definite.
If one studies the implications of this requirement, one can recover the Friedan-Qiu-Shenker
quantization of scaling dimensions [9] for the minimal models with central charge c < 1.

Partial wave expansion in four dimensions

We now come to the fourdimensional case. In [5] the partial waves were obtained using
the operator product expansion as well. The contribution of a spin l operator of scaling
dimension d = 2k+ l to the operator product expansion of two fields φ1 and φ2 with scaling
dimensions d1 and d2 can be written as

φ1(x1)φ2(x2) ∼ B(φ1, φ2, O
2k+l)

1

ρ
(d1+d2−d)/2
12

Kµ1...µl
k (x12, ∂x2)O2k+l

µ1...µl
(2.111)

The derivative operator Kµ1...µl
k (x12, ∂x2) is rather complicated and can be found e.g. in [23].

It is determined by the form of the associated two- and three-point-functions.
If the form (2.111) of the OPE is applied to the four-point function, one gets the contribution

〈Ω, φ1(x1)φ2(x2)φ3(x3)φ4(x4)Ω〉 ∼ 1

ρ
(d1+d2)/2
12 ρ

(d3+d4)/2
34

·
(
ρ24

ρ14

)(d1−d2)/2

·
(
ρ14

ρ13

)(d3−d4)/2

×B(φ1, φ2, O
2k+l)B(φ3, φ4, O

2k+l)skH l(s, t) (2.112)
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with the cross ratios
s =

ρ12ρ34

ρ13ρ24
, t =

ρ14ρ23

ρ13ρ24
. (2.113)

The H l(s, t) depend on the scaling dimensions di and spins via the parameters a = k− (d1−
d2)/2, b = k + (d3 + d4)/2 and c = 2k + l. They are determined by an equation involving the
differential operator Kµ1...µl

k . One can then derive a recurrence relation for the H l, which can
be explicitly solved in D = 2 and D = 4. In the former case one gets a symmetrized version
of (2.108), the result of the latter is the same as in an alternative method, which we sketch
now.

In [6] the partial wave expansion of four-point functions was approached by solving an
eigenvalue equation for the Casimir operator of O(D, 2) with certain boundary conditions.
This reproduced the results for the conformal partial wave representing the contribution of
a field of scaling dimension d and spin l in D = 2 and D = 4, but also made it possible to get
them for D = 6 (which will however be of no interest in this work).
We will sketch the procedure here, because this will be the method we use later to perform
the partial wave expansion of six-point functions. Again we consider four scalar conformal
fields φi(x) with scaling dimensions di. We choose a form for their four-point function, in
which the prefactor matches the one of the contribution (2.111) from above:

〈Ω, φ1(x1)φ2(x2)φ3(x3)φ4(x4)Ω〉 =
1

ρ
d1+d2

2
12 ρ

d3+d4
2

34

·
(
ρ24

ρ14

) d1−d2
2

·
(
ρ14

ρ13

) d3−d4
2

· f(s, t) (2.114)

The cross ratios s and t are the same as before.
We insert now a projector onto a symmetric tensor representation Πd,l ≡ Π(d=2k+l,l/2,l/2) of
the conformal group between the field φ2 and φ3 and define the function

Gld = 〈φ1(x1)φ2(x2) ·Πd,l · φ3(x3)φ4(x4)〉 (2.115)

Then we put the quadratic Casimir operator C(D)
2 = 1

2JabJ
ab, which in terms of the physical

generators was displayed in (2.75), just before this projector. On the one hand it can be
applied on the projector to yield the Casimir value

CD2 = d(d−D) + l(l +D − 2), (2.116)

where D is the space-time dimension (cf. the special case (2.79)). On the other hand one can
commute the generators, that make up the Casimir operator, past the fields using the field
representations and then express the emerging differential operator in terms of the cross-
ratios only.
This results in a differential eigenvalue equation for the Gld. Employing formally the factor-
ization

s = uv and t = (1− u)(1− v) (2.117)

known from two dimensions also for general D, this eigenvalue equation can be rewritten
as follows:

DεGld =
1
2
CD2 Gld (2.118)

26



with the differential operator

Dε =u2(1− u)∂2
u + v2(1− v)∂2

v + c(u∂u + v∂v)− (a+ b+ 1)(u2∂u + v2∂v)− ab(u+ v)

+ ε
uv

u− v
((1− u)∂u − (1− v)∂v). (2.119)

The parameters take the values

a = −1
2

(d1 − d2) , b =
1
2

(d3 − d4) , c = 0 , ε = D − 2 (2.120)

so ε = 0 corresponds to D = 2 and ε = 2 to D = 4. The solutions should be symmetric in u
and v and behave at u, v → 0 as

Fnm(u, v) ∼ unvm (2.121)

for u, v → 0, where n−m ∈ N0 and the limit with respect to v is taken first. This requirement
can be explained, if one also considers the quartic Casimir operator C(D)

4 . Further consider-
ation of the behaviour for u→ 0 (see [6]) enforces

n =
1
2

(d+ l) = k + l and m =
1
2

(d− l) = k, (2.122)

where 2k is the twist and l the spin of the projector in (2.115) and d = 2k + l.

Solution in two dimensions:
(2.118) is solved by

uk+lvkF (k + l + a, k + l + b; 2k + 2l + c;u)F (k + a, k + b; 2k + c; v) + (u↔ v). (2.123)

For four fields of equal scaling dimension (a = b = 0) the eigenvalue equation becomes

(u2(1− u)∂2
u + v2(1− v)∂2

v)− u2∂u − v2∂v)Gld =
1
2

(d(d− 2) + l2)Gld (2.124)

and the solution

uk+lvkF (k + l, k + l; 2k + 2l;u)F (k, k; 2k; v) + ukvk+lF (k, k; 2k;u)F (k + l, k + l; 2k + 2l; v)
= Gk+l(u)Gk−1(v) +Gk+l(v)Gk−1(u).

(2.125)

This is indeed the structure (2.108) in a symmetrized form.

Solution in four dimensions:
We can use the fact, that

D2
1

u− v
=

1
u− v

(D0(a→ a− 1, b→ b− 1, c→ c− 2)− c+ 2) , (2.126)

where the arrows indicate, how the parameters in the operator D0 have to be changed. Be-
cause of this identity, we can put in the two-dimensional solution to get

1
u− v

(
uk+l+1vkF (k + l + a, k + l + b; 2k + 2l;u)F (k + a− 1, k + b− 1; 2k − 2; v)− (u↔ v)

)
(2.127)
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These partial waves coincide with the ones, that were obtained by solving the recurrence
relation for the H l in the first method.
If the four fields are of equal scaling dimension (a = b = 0), we get

βkl(s, t) =
uv

u− v

(
uk+lvk−1F (k + l, k + l; 2k + 2l;u)F (k − 1, k − 1; 2k − 2; v)− (u↔ v)

)
=

uv

u− v
(Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u)) . (2.128)

Partial wave expansion for higher n-point function

Considering the proceeding one could wonder, why no projectors were inserted between the
first and second as well as the third and forth field resulting in a system of three eigenvalue
equations. The answer is quite simple: if we do this for the latter and apply the Casimir
operator on the vector φ4(x)Ω it would just force the projector in front of φ4 to take the
values of the representation of φ4. This trivial equation contains no relevant information
and so the indices corresponding to it are dropped.
For higher n-point functions it is not sufficient to expand just in symmetric tensor fields. One
has to insert all three Casimir operators and gets a system of 3(n − 3) eigenvalue equations
with a greater number of conformal cross ratios, which rapidly increases the complexity
of the problem. In two dimensions, the situation simplifies a little, because the problem
factorizes into two onedimensional ones and also the number of cross ratios is reduced from
n(n−3)

2 to n− 3. We will employ these facts in section 5.
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2.4 Globally conformally invariant QFT

We had listed the conformal transformations of Minkowski space in (2.22)-(2.25). They all
have an immediate physical interpretation, except for the special conformal transformations

xµ → xµ − bµx2

1− 2b · x+ b2 + x2
. (2.129)

A very apparent problem of them is, that points on the surface 1−2b·x+b2x2 = 0 are mapped
to infinity. Compactification of Minkowski space leads to the space with closed timelike
curves and therefore no global causal ordering. It was suggested in [18] to consider invari-
ance of the Euclidean correlation functions under the Euclidean conformal group SOe(5, 1) 4,
which however only implies invariance under infinitesimal conformal transformations back
on the Minkowski side, a rather weak notion. Then by going over to the (infinite-sheeted)
covering space M̃4 one receives a space, that admits a global causal ordering. In this case
one has to deal with projective representations of the conformal group.
In 2000, Todorov et al. started to investigate quantum field theories with so-called global
conformal invariance (GCI) [21]. One works in the framework of axiomatic quantum field
theory on the compactified complexified Minkowski space M4,C. This space is endowed
with a true representation of SOe(4, 2)/Z2. The closed timelike curves (periodicity of time)
are a feature of these theories, that has to be accepted.
The complex compactification of Minkowski spaceM4,C yields the so-called z-picture.M4,C
can be parametrized the following way:

M4,C = {z = (z1, z2, z3, z4) ∈ C4 | z =
z

z2
} (2.130)

and the (dense) embedding ofM4 intoM4,C is the complex conformal transformation

zi =
xi
ω(x)

, z4 =
1− x2

2ω(x)
, ω(x) =

1 + x2 + 2ix0

2
, x2 = −(x0)2 +(x1)2 +(x2)2 +(x3)2 (2.131)

for i = 1, 2, 3. The correlation functions look essentially the same in this picture as they do in
the x-picture on Minkowski space and the description is equivalent to the usual Wightma-
nian one.
We define now the precise notion of GCI used in this approach.

Definition 2.1: A QFT (obeying Wightman axioms) satisfies global conformal
invariance, if the n-point functions Wn(z1, .., zn) remain invariant for any con-
formal transformation g, such that the image (gz1, .., gzn) of the points zi lies in
Minkowski space.

4In this section, we will restrict to the case D = 4.
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2.4.1 Properties of GCI QFT

The local commutativity condition in the Wightman axioms and GCI imply the Huygens
principle:

Theorem 2.2 (based on Lemma 3.2 from [21]): Local GCI fields φ(z1) and ψ(z2)
commute, whenever the distance x1 − x2 is not lightlike:

[φ(z1), ψ(z2)] = 0 for (z1 − z2)2 6= 0 (2.132)

This seems very much like a free theory, since one expects causal propagation of signals
within the light cones. Indeed we noted, that a quantum field theory does not describe
particles. Whenever we speak of a non-trivial theory in the following, we mean a theory, in
which the correlation functions are not those of a sum of Wick products.
The previous theorem has its roots within the possibility to map any pair of points into any
other pair by a conformal transformation. It is equivalent to strong locality,

((z1 − z2)2)N [φ(z1), φ(z2)] = 0 (2.133)

for N sufficiently high, a property well known from the theory of twodimensional vertex
algebras [16]. Together with energy positivity, this implies rationality of all Wightman func-
tions

Wn(z1, .., zn) = 〈Ω, φ1(z1)..φn(zn)Ω〉 (2.134)

of a GCI theory:

Theorem 2.3 (3.1 from [21]): The tempered distribution Wn(z1, .., zn) satisfies
GCI, locality, translation invariance and the spectral condition (positivity), if and
only if it can be expressed in terms of a rational function of the following type:

Wn(z1, .., zn) = Pn(z1, .., zn)
∏

1≤j<k≤n
ρ
−µnjk
jk , (2.135)

where ρjk = z2
jk+ i0z0

jk, µnjk are positive integers and Pn(z1, .., zn) is a polynomial
with values in an n-fold product of a certain complex vector space.

The i0z0
jk prescription has been added to fulfil the spectrum condition and is only necessary,

if the corresponding ρjk appears in the denominator (see [29]). The spin-tensor structure of
the fields is taken into account by the vector-valuedness of the polynomial Pn. The scaling
dimensions of GCI bose fields can only be integer.
Furthermore, Wightman positivity sets constraints on the possible pole degrees of the n-
point functions.

Theorem 2.4 [21]: The poles of the rational Wightman functions Wn(z1, .., zn)
are uniformly bounded, which means the exponents µnjk can be chosen inde-
pedent of n. Let ϕ(x) and ψ(y) be two fields in a system of fields in D = 4,
which transform under the elementary induced representation of the conformal
group of weights (d, j1, j2) and (d′, j′1, j

′
2) , respectively. Then the pole degree µ

of ((x − y)2 + i0(x0 − y0))−µ in any Wightman function 〈..ϕ(x)..ψ(y)..〉 has the
upper limit

µ ≤ [[
d+ j1 + j2 + d′ + j′1 + j′2

2
−

1− δj1j′2δj2j′1δdd′
2

]] (2.136)

where [[m]] stands for the integer part of m.
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If in particular ϕ = ψ∗, then
µ ≤ d+ j1 + j2 − 1 (2.137)

This result enables one to label the correlators by a finite number of parameters, since only a
finite number of pole structure is admissible for every correlation function.

2.4.2 Partial wave expansion and positivity in GCI models

In the following, models containing scalar fields of scaling dimensions d ≥ 2 (the case d = 1
corresponds to a free massless scalar field) were considered. d = 2 also corresponds to the
free case [22].
We discuss now, how the partial wave expansions from the previous section were used in
GCI to study the implications of positivity for a hermitean scalar field ϕ of scaling dimension
4. Its general four point function is

〈1234〉 := 〈Ω, ϕ(z1)ϕ(z2)ϕ(z3)ϕ(z4)Ω〉

= 〈12〉〈34〉+ 〈13〉〈24〉+ 〈14〉〈23〉+
B2
ϕ(z2

13z
2
24)2

(z2
12z

2
23z

2
34z

2
14)3

P (s, t)

= 〈12〉〈34〉
[
1 + s4 + s4t−4 + st−3P (s, t)

]
(2.138)

where 〈ij〉 = 〈Ω, ϕ(zi)ϕ(zj)Ω〉 = Bϕ(z2
ij)
−4 and s and t are the conformal cross ratios. In

the second line we see, that the correlator is of the form "free Wick part" plus something
else. Using the concrete form of the two-point functions and of the cross ratios this can be
transformed into the expression in the third line. The crossing symmetric polynomial P (s, t)
is given by

P (s, t) = a0J0(s, t) + a1J1(s, t) + a2J2(s, t) + st[bD(s, t) + b′Q(s, t)] (2.139)

with the structure functions

J0(s, t) =(t2 + t3) + s2(1 + t3) + s3(1 + t2) (2.140)

J1(s, t) =(t+ t4)− (t2 + t3) + s(1 + t4)− 2s(t+ t3)−
− s2(1 + t3)− s3(1 + t2)− 2s3t+ s4(1 + t) (2.141)

J2(s, t) =(1 + t5)− 2(t+ t4) + (t2 + t3)− 2s(1 + t4)

+ s(t+ t3) + s2(1 + t3) + s3(1 + t2) + s3t− 2s4(1 + 5) + s5 (2.142)

D(s, t) =1− 2t+ t2 − 2s(1 + t) (2.143)
Q(s, t) =t+ s(1 + t) (2.144)

The Jν , ν = 0, 1, 2, emerge from symmetrized contributions of four point functions of twist
2 bifields (see below) to the total four point function. D and Q contribute to twist 4 partial-
waves.
We do partial wave expansion in symmetric traceless tensor fields now by inserting projec-
tors Πkl onto the corresponding positive energy representation of the (universal covering of
the) fourdimensional conformal group SU(2, 2) with highest weight (2k+l, l/2, l/2) between
the second and third field and then sum over all k and l:

〈1234〉 =
∑
k,l≥0

〈1234〉kl ≡
∑
k,l≥0

〈Ω, ϕ(z1)ϕ(z2)Πklϕ(z3)ϕ(z4)Ω〉 (2.145)
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A single partial wave then reads

〈1234〉kl = 〈12〉〈34〉Bklβkl(s, t) (2.146)

where the βkl are the universal partial waves

βκl(s, t) =
uv

u− v
(Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u)) , (2.147)

obtained in the previous section. Since they are fixed by the representation theory, the only
model specific information is contained in the coefficients Bkl.
We equate (2.138) and (2.145). Since the contribution β00 of the identity operator is 1, the
leading term in (2.138) corresponds to B00 = 1 and we end up with

s4 + s4t−4 + st−3P (s, t) =
∑
k,l>0

Bklβkl(s, t). (2.148)

In [24] an expansion formula for monomials in terms of hypergeometric functions was used
to obtain closed formulae for the Bkl in terms of the parameters aν , b and b′.
Wightman positivity forces all of the Bkl to be positive, which makes it possible to derive
certain bounds for the parameters. Free field constructions are within these bounds, but
there also room left for other, possibly nontrivial, fields.

2.4.3 Bifields and pole structures

We are dealing with a single hermitean, scalar field φ(z) of general scaling dimension d.
We consider the operator product expansion of φ with itself and it will turn out, that the
singular part of the OPE of φ(z) with itself can be written as the two-point function plus d-1
conformal bifields Vk(z1, z2) of dimension (k, k):

φ(z1)φ(z2) = Bφ(z2
12)−d +Bφ(z2

12)−d
d−1∑
k=1

(z2
12)kVk(z1, z2)+ : φ(z1)φ(z2) :, (2.149)

where : φ(z1)φ(z2) : is defined to be the regular part

Bφ

∞∑
k=0

(z2
12)kVk+d(z1, z2) (2.150)

of the expansion and Bφ is a normalization constant.

The fields Vk(z1, z2) arise as follows: the bifield

U(z1, z2) = (ρ12)d−1 [φ(z1)φ(z2)− 〈Ω, φ(z1)φ(z2)Ω〉] (2.151)

is Taylor expanded in the difference z12 = z1 − z2:

U(z1, z2) =
∞∑
n=0

∞∑
µ1,..,µn=0

zµ1
12 ..z

µn
12 X

n
µ1..µn(z2) (2.152)
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Here the Xn
µ1..µn(z2) are (Huygens) local fields of scaling dimension n + 2, which are in

general not quasi-primary (i.e. they do not transform irreducibly under conformal transfor-
mations).
One can subtract certain lower dimensional fields from theXn

µ1..µn(z2) to obtain quasi-primary
fields Okµ1..µl

(z2). They are symmetric traceless tensor fields of scaling dimension d and ten-
sor rank l. The difference d − l is the twist 2k and the Taylor expansion can be rewritten
as

U(x1, x2) =
∞∑
k=1

(ρ12)k−1Vk(z1, z2), (2.153)

where the Vk(z1, z2) are regular at z1 = z2 and correspond to all twist 2k contributions:

Vk(z1, z2) =
∞∑
l=0

Kµ1..µl
k (z12, ∂z2)O2k+l

µ1..µl
(z2). (2.154)

The differential operator Kµ1..µl
k is the same here as in the contribution (2.111) of a (2k +

l, l/2, l/2) operator to the OPE. It should be noted, that it is not clear, whether these series
converge and if they do, whether they are bilocal. We will see that one can find conditions
for k = 1, such that this is the case (see theorem 2.9).
We note in advance, that for d = 2 these conditions are always fulfilled and the OPE reads

φ(z1)φ(z2) = Bφ(z2
12)−2 +Bφ(z2

12)−1V1(z1, z2)+ : φ1(z1)φ(z2) : . (2.155)

The higher twist contribution are all regular. With V1 bilocal one can show, that it can be
expressed as a sum of normal products of free massless fields and hence the correlators in
such a theory always equal sums of Wick products. In fact, not only one, but any (countable)
system of real GCI scalar fields of dimension 2 can equivalently be realized as a sum of nor-
mal products of free massless fields [26].
Coming back to arbitrary d, the twist 2 contribution is always biharmonic (i.e. it fulfils
d’Alembert’s equation in both arguments):

�1V1(z1, z2) = �2V1(z1, z2) = 0, (2.156)

where �i = ∂zi∂zi . This is equivalent to the conservedness of the twist 2 fields:

Theorem 2.5: Biharmonicity of the field V1 is equivalent to the fact, that all the
symmetric tensor fields in its expansion (2.154) are conserved:

∂zµ1
Ol+2
µ1..µl

(z) = 0 (2.157)

for l ∈ N.

The proof involves the conformal invariance of the two-point-function, the Reeh-Schlieder
theorem and the explicit knowledge of the Kµ1..µl

k .
To exploit the biharmonicity, we introduce the so-called harmonic decomposition of a power
series:

Lemma 2.6: Let u(z) be a formal power series in z ∈ C4 with coefficients in a
vector space V . Then there exist unique formal power series v(z) and ũ(z), such
that

u(z) = v(z) + z2ũ(z), (2.158)

with v(z) harmonic. This is called the harmonic decomposition of u(z) and v(z)
is the harmonic part of u(z).
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Now we single out the twist 2 contribution in the expansion (2.153) by writing

U(z1, z2) = V1(z1, z2) + ρ12Ũ(z1, z2) (2.159)

and consider, what happens, if U(z1, z2) appears in a correlation function:

〈...U(z1, z2)...〉 = 〈...V1(z1, z2)...〉+ ρ12〈...Ũ(z1, z2)...〉. (2.160)

Then all these correlators are power series

F (z1, z2, ..) = H(z1, z2, ..) + ρ12F̃ (z1, z2, ..), (2.161)

just like in the lemma, where the ... stand for the other points in the correlator. Because of
the biharmonicity of V1, H(z1, z2, ..) can be interpreted as the harmonic part of F (z1, z2, ..)
both with respect to z1 and to z2. We suppress from now on the other arguments and write
e.g. F (z1, z2) ≡ F (z1, z2, ..).

The bilocality of V1(z1, z2) can be achieved by finding a criterion for the rationality ofH(z1, z2)
(by theorem 2.3). In other words, we want to find a condition on the bilocal field U(z1, z2),
such that any correlation function involving it has a rational harmonic decomposition.
First we use the fact, that there are two harmonic decompositions (one with respect to z1 and
the other with respect to z2), which should coincide. This can be used to derive a third order
partial differential equation for the leading part of F . We write F as

F (z1, z2) =
M∑
p=0

(ρ12)pFp(z1, z2), (2.162)

where the Fp(z1, z2) depend on the points in the correlation function only through all the
distance squares ρij (except for ρ12).
If H is the harmonic part of F , then the leading part F0 is also the leading part of H (since
everything else is of O(ρ12)). Demanding coinciding harmonic decomposition has the fol-
lowing consequence:

Theorem 2.7: [26] Let F0(z1, z2) be as above. Then H(z1, z2) is its harmonic
part both with respect to z1 and to z2, if and only if F0 satisfies the differential
equation

(E1D2 − E2D1)F0 = 0, (2.163)

where E1 =
∑n

i=3 ρ2i∂1i and D1 =
∑

3≤j<k≤n ρjk∂1j∂1k and E2 and D2 corre-
spondingly with 1↔ 2 (∂jk = ∂kj = ∂

∂ρjk
).

This differential equation implies two things:

• F0 cannot have triple poles of the form

(ρ1i)µ1i(ρ1j)µ1j (ρ1k)µ1k

with µ1i, µ1j , µ1k < 0 (and the same for z2).
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• If F0 has a double pole
(ρ1i)µ1i(ρ1j)µ1j

with µ1i, µ1j < 0, then the coefficient of the corresponding term must be regular in
distance squares ρ2k for k 6= i, j (and vice versa for 1↔ 2).

Aiming towards the characterizing of bilocality of V1, we introduce the so-called "single-pole
property":

Definition 2.8: [26] Let f(z1, .., zn) be a Laurent polynomial in the variables ρij ,
i.e. regarded as a function of z1 only, it is a finite linear combination of functions
of the form ∏

j≥2

ρ
µ1j

1j =
∏
j≥2

(z1 − zj)2µ1j (2.164)

Then f is said to satisfy the single pole property with respect to z1, if it contains
no terms for which there are j 6= k (j, k ≥ 2), such that µ1j and µ1k are negative.

This is just a formal phrasing of what the name suggests, no two or more distance squares
involving the same point appear in the denominator of the expression (2.164).
The goal of introducing this notion was to determine, whether harmonic bilocal fields exists,
which do not stem from free field realizations like

: φ(z1)φ(z2) : , (2.165)

: ψ(z1)γµ(z1 − z2)µψ(z2) : (2.166)
or (z1 − z2)µ(z1 − z2)ν : Fµσ(z1)F σν (z2) : (2.167)

where φ is a scalar field, ψ a Dirac field, Fµν the Maxwell field and : .. : denotes normal
ordering. These constructions only have single-poles and therefore are always bilocal (see
theorem 2.9).
We now formulate the criterion for a correlator involving the twist 2 contribution V1(x1, x2)
to be a rational function, which implies by theorem 2.3, that it is convergent to a bilocal field.

Theorem 2.9: The field V1(z1, z2) weakly converges on bounded energy states
to a Huygens local field, which is conformal of weight (1, 1)⇐⇒ the leading parts
F0 of the Laurent polynomial F satisfy the single pole property with respect to
both z1 and z2. In this case, the formal seriesH converges to Laurent polynomials
in (zi − zj)2 subject to the same pole bounds as F .

The fourpoint function of the higher twist contributions are not rational [23], so they cer-
tainly do not converge to Huygens bilocal fields.
The leading contribution to a six-point function involving d = 4 hermitean scalar field vio-
lating the SPP was displayed in [26]. One needs two fields L1(z1) and L2(z2), such that the
bilocal field U(z1, z2) in its operator product expansion has a skew-symmetric part. Then the
contribution to 〈Ω, U(z1, z2)L(z3)L(z4)U(z5, z6)Ω〉 with L any linear combination of L1 and
L2 is

F0(z1, z2) = A12A56

[
ρ15ρ26ρ34 − 2ρ15ρ23ρ46 − 2ρ15ρ24ρ36

ρ13ρ14ρ23ρ24ρ34ρ35ρ45ρ36ρ46

]
, (2.168)
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where Aij denotes antisymmetrization with respect to xi and xj . It is admissible, because it
satisfies all pole bounds and fulfils the differential equation (2.163).
It would be desirable to be able to perform partial wave expansions of this correlator to see,
whether the property of having double poles is compatible with Wightman positivity. Since
this is a very difficult task in four dimensions, we will later try to obtain partial waves for
the six-point function in two dimensions and restrict this correlation function to the twodi-
mensional z2 = z3 = 0 plane, to see, if any obstructions for the fourdimensional case arise
from this.
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3 Twodimensional conformal orbits in M4

3.1 Chiral action on space time functions

We noted in the introduction, that in two dimensions the conformal group factorises into two
copies of SL(2,R), which act on the light-cone coordinates x± = x0 ± x1 of twodimensional
Minkowski space M2 as fractional Möbius transformations. If we want to restrict general
fourdimensional objects, like correlation functions, to a twodimensional submanifold in or-
der to use this factorization property, we have to consider, in which ways this is possible.
This problem is related to the question, in which ways the twodimensional conformal al-
gebra so(2, 2) can be embedded into the fourdimensional so(4, 2). This can be done in two
inequivalent ways, namely the "block" type

0 0
so(2, 2) 0 0

0 0
0 0

0 0 0 0 0 0
0 0 0 0 0 0


with metric η′ab = diag(+,+,−,−,−,−) and the direct "diagonal" type

0 0 0
so(1, 2) 0 0 0

0 0 0
0 0 0
0 0 0 so(1, 2)
0 0 0


with metric ηab = diag(+,−,−,−,−,+), which uses the splitting of so(2, 2).
For the block embedding, we chose a different order of the signs to emphasize, why this
type is called block embedding. With the common ηab, the algebra is embedded in such a
way, that the associated twodimensional group (pseudo-)rotates the ξ0, ξ1, ξ4 and ξ5 com-
ponents of a vector in the Dirac cone, while it leaves ξ2 and ξ3 fixed. Therefore in this case
the restriction amounts to simply setting x2 = x3 = 0, which is obviously a twodimensional
submanifold. Then one has the usual chiral action of the group SO(2, 2) on the light-cone
coordinates x+ and x−.

We now want to determine, whether the diagonal embedding also corresponds to a cer-
tain submanifold, which can be parametrized by two spacetimes functions u(xµ) and v(xµ)
and on which SO(1, 2)× SO(1, 2) acts chirally.
We begin by recalling the Dirac pseudo-cone for D = 4

K4/R∗ =
{
ξ ∈ R6 | (ξ0)2 − (ξ1)2 − (ξ2)2 − (ξ3)2 − (ξ4)2 + (ξ5)2 = 0

}
/R∗. (3.1)
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We will let the two SO(1, 2) blocks act on the six-dimensional ξ-space independently. The
upper acts on ξ0, ξ1 and ξ2 and the lower on ξ3, ξ4 and ξ5.
From this we will calculate the effect, that these actions have on the associated Minkowski
coordinates

xµ =
ξµ

ξ4 + ξ5
. (3.2)

The actions will be denoted by

xµ → (Ati(x))µ and xµ → (Bt
i(x))µ (3.3)

for the upper and lower part, respectively (i = 1, 2, 3). t here denotes parameter of the gen-
erated subgroup.
In two dimensions the conformal transformations act on just one light-cone coordinate,
while leaving the other one invariant. We will now demand, that there exists a "chiral"
space-time function u(x), such that the effects of the upper SO(1, 2) on the x combine in
such a way, that precisely this transformation behaviour arises:

u(At1(x)) = e−tu (3.4)
u(At2(x)) = u+ t (3.5)

u(At3(x)) =
u

1 + tu
(3.6)

u(Bt
1(x)) = u (3.7)

u(Bt
2(x)) = u (3.8)

u(Bt
3(x)) = u (3.9)

Then we will demand the analogous relation for the action of the lower SO(1, 2) on another
spacetime function v(x). The two systems of equations will be solved by differentiating at
t = 0, giving a system of partial differential equation for u and v, respectively.

3.2 Action on the ξa and xµ

The upper SO(1, 2) with metric (+,−,−) acts on the triple (ξ0, ξ1, ξ2), while leaving (ξ3, ξ4, ξ5)
invariant: 

0 0 0
SO(1, 2) 0 0 0

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


On the Lie algebra side there would be zeros on the lower half of the diagonal. We leave out
the trivial part of the matrix and just consider the upper left 3x3 block.
A simple basis of the matrix realization of so(1, 2) is given by

m1 =

 0 1 0
1 0 0
0 0 0

m2 =

 0 0 1
0 0 0
1 0 0

m3 =

 0 0 0
0 0 −1
0 1 0

 . (3.10)
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We switch to the linear combinations a1 = m1, a2 = m2 +m3 and a3 = m2−m3, which fulfil
the sl(2,R) commutation relations

[a1, a3] = a3 , [a1, a2] = −a2 , [a3, a2] = 2a1 (3.11)

We exponentiate them to the finite transformations (the one-parameter subgroups genera-
tored by the ai):

A1 = exp(ta1) =

 cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 1

 (3.12)

A2 = exp(ta2) =

 1 + t2

2
t2

2 0
− t2

2 1− t2

2 −t
t t 1

 (3.13)

A3 = exp(ta3) =

 1 + t2

2 − t2

2 t
t2

2 1− t2

2 t
t −t 1

 (3.14)

Here the exponential of a square matrix M is defined the usual way as

exp(M) =
∞∑
n=0

Mn

n!
. (3.15)

The following effect on the xµ results:

(At1(x))0 = cosh(t)x0 + sinh(t)x1 (3.16)

(At1(x))1 = sinh(t)x0 + cosh(t)x1 (3.17)

(At1(x))2 = x2 (3.18)

(At1(x))3 = x3 (3.19)

(At2(x))0 = (1 +
t2

2
) · x0 +

t2

2
· x1 + t · x2 (3.20)

(At2(x))1 = − t
2

2
· x0 + (1− t2

2
) · x1 − t · x2 (3.21)

(At2(x))2 = x2 + t(x0 + x1) (3.22)

(At2(x))3 = x3 (3.23)

(At3(x))0 = (1 +
t2

2
) · x0 − t2

2
· x1 + t · x2 (3.24)

(At3(x))1 = +
t2

2
· x0 + (1− t2

2
) · x1 + t · x2 (3.25)

(At3(x))2 = x2 + t(x0 − x1) (3.26)

(At3(x))3 = x3 (3.27)

For the lower part acting on (ξ3, ξ4, ξ5) we have to take into account, that the metric has the
opposite order (−,−,+). We have the corresponding generators

n1 =

 0 1 0
−1 0 0
0 0 0

n2 =

 0 0 1
0 0 0
1 0 0

n3 =

 0 0 0
0 0 1
0 1 0

 , (3.28)

39



we analogously set b1 = n3, b2 = n1 + n2 and b3 = n2 − n1 and the actions of B1 = exp(tb1),
B2 = exp(tb2) and B3 = exp(tb1) on the xµ in this case are

(Bt
1(x))0 = e−tx0 (3.29)

(Bt
1(x))1 = e−tx1 (3.30)

(Bt
1(x))2 = e−tx2 (3.31)

(Bt
1(x))3 = e−tx3 (3.32)

(Bt
2(x))0 = x0 (3.33)

(Bt
2(x))1 = x1 (3.34)

(Bt
2(x))2 = x2 (3.35)

(Bt
2(x))3 = x3 + t (3.36)

(Bt
3(x))0 =

x0

1 + 2tx3 − t2xµxµ
(3.37)

(Bt
3(x))1 =

x1

1 + 2tx3 − t2xµxµ
(3.38)

(Bt
3(x))2 =

x2

1 + 2tx3 − t2xµxµ
(3.39)

(Bt
3(x))3 =

x3 − txµxµ

1 + 2tx3 − t2xµxµ
(3.40)

3.3 Calculation of u(xµ)

Now that we have the action on the Minkowski coordinates, we can derive the partial dif-
ferential equation system by differentiating the expressions (3.4)-(3.9) at t = 0.
The result is

x1 · ∂0u+ x0 · ∂1u = −u (3.41)

x2 · ∂0u− x2 · ∂1u+ (x0 + x1) · ∂2u = 1 (3.42)

x2 · ∂0u+ x2 · ∂1u+ (x0 − x1) · ∂2u = −u2 (3.43)

−x0∂0u− x1 · ∂1u− x2 · ∂2u− x3 · ∂3u = 0 (3.44)
∂3u = 0 (3.45)

−2x0x3 · ∂0u− 2x1x3 · ∂1u− 2x2x3 · ∂2u− (xµxµ + 2x3x3) · ∂3u = 0 (3.46)

From (3.45) it is clear, that there is no x3 dependence, which implies the equivalence of the
(3.44) and (3.46). We add and subtract (3.42) and (3.43) from one another

2∂0u · x2 + 2∂2u · x0 = 1− u2 (3.47)

2∂1u · x2 − 2∂2u · x1 = −u2 − 1 (3.48)

We can eliminate the derivatives by taking 2x2 · (3.41)− x1 · (3.47)− x0 · (3.48):

0 = −2x2u− x1 + x1u2 + x0u2 + x0 ⇐⇒ u2 − 2
x2

x0 + x1
u+

x0 − x1

x0 + x1
= 0

=⇒ u± = u±(xµ) =
1

x0 + x1

[
x2 ±

√
−(x0)2 + (x1)2 + (x2)2

]
. (3.49)
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This is compatible with (3.44) as well.

3.4 Calculation of v(xµ)

Now we turn to the lower part. The PDEs are similar, only the first three and the last three
right-hand sides are exchanged.

x1 · ∂0v + x0 · ∂1v = 0 (3.50)

x2 · ∂0v − x2 · ∂1v + (x0 + x1) · ∂2v = 0 (3.51)

x2 · ∂0v + x2 · ∂1v + (x0 − x1) · ∂2v = 0 (3.52)

−x0 · ∂0v − x1 · ∂1v − x2 · ∂2v − x3 · ∂3v = −v (3.53)
∂3v = 1 (3.54)

−2x0x3 · ∂0v − 2x1x3 · ∂1v − 2x2x3 · ∂2v − (xµxµ + 2x3x3) · ∂3v = −v2 (3.55)

Addition and subtraction of (3.51) and (3.52) and insertion of (3.54) into (3.53) and (3.55)
yields

x2 · ∂0v + x0 · ∂2v = 0 (3.56)

x2 · ∂1v − x1 · ∂2v = 0 (3.57)

x0∂0v + x1 · ∂1v + x2 · ∂2v + x3 = v (3.58)

−2x0x3 · ∂0v − 2x1x3 · ∂1v − 2x2x3 · ∂2v − (xµxµ + 2x3x3) = −v2 (3.59)

We multiply (3.58) by 2x3 and plug it into (3.59) to get

−2vx3 − ((x0)2 − (x1)2 − (x2)2 − (x3)2) = −v2 (3.60)

which has the solution

v±(xµ) = x3 ±
√

(x0)2 − (x1)2 − (x2)2 (3.61)

These functions also fulfil the equations (3.50), (3.56) and (3.57) not used in the derivation. It
can be checked that these u and v indeed transform covariantly under the induced transfor-
mations.

3.5 The hypersurface parametrized by u and v

We want to find a twodimensional hypersurface, defined by two equations

f1(xµ) = 0 (3.62)
f2(xµ) = 0, (3.63)

that is left invariant under the transformationsAti andBt
i (i = 1, 2, 3) induced by the SO(1, 2)×

SO(1, 2) action.
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It is sufficient to do this for the infinitesimal transformations ζµAi = ε · ∂t(Ati)
µ
t=0 and ζµBi =

ε · ∂t(Bt
i)
µ
t=0, i.e. we require

f1(xµ + ζµAi) = ζνAi∂νf1(xµ) = 0 (3.64)

f2(xµ + ζµAi) = ζνAi∂νf2(xµ) = 0 (3.65)

and the analogous equations for ζµBi .
The chiral variables have to be real, which is only fulfilled on the threedimensional subman-
ifold defined by

(x0)2 − (x1)2 − (x2)2 = 0. (3.66)

Therefore this has to be one of the equations, say f1(xµ) = 0. For this equation we can even
for finite transformations check easily, that they preserve the submanifold:

At1 : f1 7→[cosh(t)x0 + sinh(t)x1]2 − [sinh(t)x0 + cosh(t)x1]2 − [x2]2

= (x0)2 − (x1)2 − (x2)2 = f1 = 0 (3.67)

At2 : f1 7→[(1 +
t2

2
)x0 +

t2

2
x1 + tx2]2 − [− t

2

2
x0 + (1− t2

2
)x1 − tx2]2 − [x2 + t(x0 + x1)]2

= (x0)2 − (x1)2 − (x2)2 = 0 (3.68)

At3 : f1 7→[(1 +
t2

2
)x0 − t2

2
x1 + tx2]2 − [

t2

2
x0 + (1− t2

2
)x1 + tx2]2 − [x2 + t(x0 − x1)]2

= (x0)2 − (x1)2 − (x2)2 = 0 (3.69)

Bt
1 : f1 7→[e−tx0]2 − [e−tx1]2 − [e−tx2]2 = e−2tf1 = 0 (3.70)

Bt
2 : f1 7→[x0]2 − [x1]2 − [x2]2 = f1 = 0 (3.71)

Bt
3 : f1 7→

1
(1 + 2tx2 − t2xµxµ)2

(
[x0]2 − [x1]2 − [x2]2

)
=

1
(1 + 2tx2 − t2xµxµ)2

f1 = 0 (3.72)

For f2(xµ) = 0 we determine the consequences of requiring conservation under the infinites-
imal transformation ζµAi and ζµBi . How a general spacetime dependent function behaves un-
der such a transformation, was already reflected in the systems of partial differential equa-
tions. The case at hand just differs in that all the equations have zero on the right hand
side:

x1 · ∂0f2 + x0 · ∂1f2 = 0 (3.73)

x2 · ∂0f2 − x2 · ∂1f2 + (x0 + x1) · ∂2f2 = 0 (3.74)

x2 · ∂0f2 + x2 · ∂1f2 + (x0 − x1) · ∂2f2 = 0 (3.75)

−x0 · ∂0f2 − x1 · ∂1f2 − x2 · ∂2f2 − x3 · ∂3f2 = 0 (3.76)
∂3f2 = 0 (3.77)

−2x0x3 · ∂0f2 − 2x1x3 · ∂1f2 − 2x2x3 · ∂2f2 − (xµxµ + 2x3x3) · ∂3f2 = 0 (3.78)

We add and subtract (3.74) and (3.75) from one another and put (3.77) into (3.76) and (3.78)
(which are therefore equivalent) to get the system

x1 · ∂0f2 + x0 · ∂1f2 = 0 (3.79)

x2 · ∂0f2 + x0 · ∂2f2 = 0 (3.80)

x2 · ∂1f2 − x1 · ∂2f2 = 0 (3.81)

x0 · ∂0f2 + x1 · ∂1f2 + x2 · ∂2f2 = 0 (3.82)
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Using (3.81) to eliminate ∂2f2, (3.79) and (3.80) become equivalent. We multiply (3.79) by x0

to get

x0x1 · ∂0f2 + (x0)2 · ∂1f2 = 0 (3.83)

x0x1 · ∂0f2 + (x1)2 · ∂1f2 + (x2)2 · ∂1f2 = 0. (3.84)

This system of linear equations in two variables has rank one (if f1 = 0 holds), so the solution
space is onedimensional. We take the special solution ∂0f2 = x0 and ∂1f2 = −x2 as a basis
vector, then any other solution has the form (∂0f2, ∂1f2) = (γx0,−γx1) with γ ∈ R. By (3.81),
we have ∂2f2 = −γx2 and with (3.77) we find, that any solution of the whole system has the
form

∂µf2 = γ(x0,−x1,−x2, 0), (3.85)

that is to say, it is proportional to the gradient ∂µf1. Hence f2 is a function of f1,

f2 = f2(f1), (3.86)

so there is no independent second equation and no twodimensional submanifold, that is
parametrized by u and v and that is invariant under the diagonally embedded conformal
transformations.
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4 Partial wave expansions in D=2 and
D=4

4.1 Decomposition of the partial waves

We considered conformal partial wave expansions of four-point functions of hermitean scalar
fields in two spacetime dimensions in the introduction. We saw, that the partial waves fac-
torize as

Bmn(u, v) = Gm(u)Gn(v) (4.1)

with
Gm(u) = um · F (m,m; 2m;u). (4.2)

They involve the chiral cross ratios u and v, the hypergeometric function F (a, b; c;x) and
they are labelled by two numbers (m,n), which correspond to a representation of SO(2, 2).
If one performs the PWE in four dimensions for a correlation function with four fields of
equal scaling dimensions, the different contributions

βkl(u, v) =
uv

u− v
[Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u)] . (4.3)

are also labelled by two quantum numbers, the twist 2k and the spin l. Here they corre-
spond to (unitary, positive energy) symmetric tensor representations of the universal cover-
ing group SU(2, 2) of the fourdimensional conformal group with lowest weight

λ = (2k + l, l/2, l/2). (4.4)

The chiral variables u and v are introduced here implicitly by

s = uv , t = (1− u)(1− v) (4.5)

in formal analogy to the two-dimensional case (s and t are the ordinary conformally invari-
ant cross-ratios). If one restricts the correlator and therefore s and t to the x2 = x3 = 0 plane,
u and v coincide with the two-dimensional chiral cross-ratios.
To achieve a better understanding of the "almost-factorization" property of (4.3), it is of in-
terest to investigate the following problem

How can a given 4D partial wave be expanded in terms of theBmn(u, v) (with u
and v being just formal variables) and which representations of the 2D conformal
group appear in this expansion, if one interprets the Bmn(u, v) by restriction to
the x2 = x3 = 0 plane as two-dimensional partial waves?

We derive the expansion in this section and compare it in the next one to the branching of
the representations of so(4, 2) into representations of its subalgebra so(2, 2).
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Generically the stated problem could be posed as finding the coefficients Cnm in the ex-
pansion

βkl(u, v) =
∑
n,m

Cnm(k, l)Gn(u)Gm(v). (4.6)

We choose a way to obtain this decomposition, that relies on the use of identities of hyper-
geometric functions, beginning with the simplest case l = 0. The results obtained there will
be used, when we go over to the general case. The l = 0 partial waves are

βk(u, v) ≡ βk0(u, v) =
uv

u− v
(Gk(u)Gk−1(v)−Gk(v)Gk−1(u)) , (4.7)

Their decomposition can be obtained from the following

Lemma 4.1: The partial waves βk can be written as

βk(u, v) = Gk(u)Gk(v) + c1(k)βk+1(u, v) (4.8)

with the coefficient

cn(k) =
1
4n

Πn
i=1

(k + i− 1)2

(2k + 2i− 3)(2k + 2i− 1)
=

(k)2
n

16n(k − 1
2)n(k + 1

2)n
. (4.9)

We write c(k) ≡ c1(k).

Proof: We introduce the shortcut Fk(x) := F (k, k; 2k;x) and state the identity

Fk−1(x) + c(k)x2Fk+1(x)− (1− x

2
)Fk(x) = 0. (4.10)

which can be checked by comparing the coefficients of the power series:

xn :
(k − 1)2

n

(2k − 2)nn!
+

k2

4(4k2 − 1)
(k + 1)2

n−2

(2k + 2)n−2(n− 2)!
− (k)2

n

(2k)nn!
+

1
2

(k)2
n−1

(2k)n−1(n− 1)!
= 0

⇐⇒ (k − 1)(2k + n− 1)(2k + n− 2) + kn(n− 1)

− 2(k + n− 1)2(2k − 1)− (2k + n− 1)n(2k − 1) = 0 (4.11)

which is fulfilled. Next we multiply (4.10) by xk to get

Jk(x) := x (Gk−1(x) + c(k)Gk+1(x))− (1− x

2
)Gk(x) = 0. (4.12)

and consider

0 =vGk(v)Jk(u)− uGk(u)Jk(v) = (u− v)Gk(u)Gk(v)
+ uv [Gk−1(u)Gk(v)−Gk(u)Gk−1(v) + c(k)(Gk+1(u)Gk(v)−Gk(u)Gk+1(v))]

(4.13)

This can be rearranged as

uv

u− v
[Gk(u)Gk−1(v)−Gk−1(u)Gk(v)]

=Gk(u)Gk(v) + c1(k)
uv

u− v
[Gk+1(u)Gk(v)−Gk(u)Gk+1(v))] , (4.14)
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which is equation (4.8). �

We note, that shifting the product index in the coefficient cn(k+ 1) and multiplying by c1(k)
gives the identity

cn+1(k) = c1(k)cn(k + 1). (4.15)

If we plug in the higher twist partial waves recursively, we can use (4.15) to rewrite (4.8) as

βk(u, v) = Gk(u)Gk(v) + c1(k)[Gk+1(u)Gk+1(v) + c1(k + 1)βk+2(u, v)]
= Gk(u)Gk(v) + c1(k)Gk+1(u)Gk+1(v) + c2(k)βk+2(u, v)

= .. =
∞∑
n=0

cn(k)Gk+n(u)Gk+n(v) (4.16)

So in this case the appearing 2D partial waves correspond to representations of the two-
dimensional conformal group with lowest weight

(k + n, k + n) (4.17)

n ∈ N. In terms of the alternative quantum numbers scaling dimension and spin the repre-
sentations labelled by

(2k + 2n, 0) (4.18)

appear.

Closer investigation of low l cases motivates the following ansatz for general l:

βkl(u, v)−
∑

n+m=l

Gk+n(u)Gk+m(v)︸ ︷︷ ︸
=:S(k,l)

= c(k + l)βk+1,l(u, v) +X(k, l). (4.19)

The X(k, l) stands for possible extra 4D partial waves. They do not appear for l = 0 and
l = 1, but we will see, that such terms occur for higher l. We rewrite (4.19) as

(u− v)S(k, l) =(u− v) [βkl(u, v)− c(k + l)βk+1,l(u, v)−X(k, l)]

=⇒ (u− v)
∑

n+m=l

Gk+n(u)Gk+m(v) =uv [Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u)]− (u− v)X(k, l)

− c(k + l)uv [Gk+l+1(u)Gk(v)−Gk(u)Gk+l+1(v)]
(4.20)

The c(k + l) can be eliminated using the identity (4.12):

(u− v)S(k, l) =uv [Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u)]− vGk(v)[(1− u

2
)Gk+l(u)

− uGk+l−1(u)] + uGk(u)[(1− v

2
)Gk+l(v)− vGk+l−1(v)]− (u− v)X(k, l)

(4.21)

We subtract now S(k + 1, l − 2) from S(k, l) to cancel out the middle of the summation:

(u− v)[S(k, l)− S(k + 1, l − 2)] = (u− v)[Gk+l(u)Gk(v) +Gk(u)Gk+l(v)]. (4.22)

47



If we also perform this with the corresponding expressions (4.21) for S(k, l) and (4.20) for
S(k + 1, l − 2), we get

(u− v)[S(k, l)− S(k + 1, l − 2)] =uv(Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u))−

− vGk(v)[(1− u

2
)Gk+l(u)− uGk+l−1(u)]

+ uGk(u)[(1− v

2
)Gk+l(v)− vGk+l−1(v)]− (u− v)X(k, l)

− uv(Gk+l−1(u)Gk(v)−Gk+l−1(v)Gk(u))
+ vGk+1(v)c(k + l − 1)uGk+l(u)
− uGk+1(u)c(k + l − 1)vGk+l(v) + (u− v)X(k + 1, l − 2)

(4.23)

The Gk(u/v)Gk+l−1(v/u) terms cancel out here.
We equate the two expressions (4.22) and (4.23) and collect the terms involvingGk(u)Gk+l(v).
Their coefficients can be summed up as u− uv

2 −u+v = v(1− u
2 ) and analogously for (u↔ v),

so we have

0 =uv(Gk+l(u)Gk−1(v)−Gk+l(v)Gk−1(u))− u(1− v

2
)Gk(v)Gk+l(u)

+ v(1− u

2
)Gk(u)Gk+l(v)− (u− v)X(k, l) + vGk+1(v)c(k + l − 1)uGk+l(u)

− uGk+1(u)c(k + l − 1)vGk+l(v) + (u− v)X(k + 1, l − 2) (4.24)

We can now summarize terms by using the identity (4.12) again:

0 = −c(k)uv(Gk+l(u)Gk+1(v)−Gk+1(u)Gk+l(v))− (u− v)X(k, l)
+c(k + l − 1)uvGk+1(v)Gk+l(u)− c(k + l − 1)uvGk+1(u)Gk+l(v) + (u− v)X(k + 1, l − 2)

(4.25)

Dividing by (u− v) finally gives a recurrence relation for the X(k, l)

X(k, l)−X(k + 1, l − 2) = [c(k + l − 1)− c(k)]βk+2,l−2(u, v), (4.26)

which is solved by

X(k, l) =
2i<l∑
i=0

[c(k + l − i− 1)− c(k + i)]βk+2+i,l−2i−2(u, v). (4.27)

Plugging this into the original ansatz (4.19) results in

βkl(u, v) =
l∑

n=0

Gk+n(u)Gk+l−n(v) + c(k + l)βk+1,l(u, v)

+
2i<l∑
i=0

[c(k + l − i− 1)− c(k + i)]βk+2+i,l−2i−2(u, v). (4.28)
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Inserting the terms βk+1,l, βk+2,l, .. in the first line, we can use the coefficent identity (4.15)
to rewrite this as

βkl(u, v) =
∞∑
m=0

cm(k + l)[
l∑

n=0

Gk+m+n(u)Gk+m+l−n(v)

+
2i<l∑
i=0

(c(k +m+ l − i− 1)− c(k +m+ i))βk+m+2+i,l−2−2i(u, v)]

(4.29)

where the prefactor cm is the one from Lemma 4.1.
In this formula there are only terms, why can be interpreted as 2D partial waves, and terms
with 4D partial waves of lower spins. This means, that by inserting the l − 2, l − 4, .. partial
waves in the second line of this formula we can express any given βkl(u, v) entirely in terms
of 2D partial waves.
We formulate the result of doing so:

Theorem 4.2: A 4D partial wave βkl(u, v) corresponding to a (2k + l, l/2, l/2)
symmetric tensor representation of SU(2, 2) can be decomposed as a series in
2D partial waves Bmn(u, v) = Gm(u)Gn(v), which correspond to the following
representations of SO(2, 2):

• (k +m+ n, k +m+ l − n) for m ∈ N and n = 0, .., l,
• (k +m+ n, k +m+ l − 2− n) for m ∈ N and n = 0, 1, .., l − 2

•
...
• (k +m, k +m) for l even - or - (k +m+ n, k +m+ 1− n) with n = 0, 1 for l

odd (in both cases, m ∈ N).

In terms of the quantum numbers scaling dimension and spin, the list reads

• (2k + 2m+ l, l − 2n), n = 0, 1, .., l
• (2k + 2m+ l − 2, (l − 2)− 2n), n = 0, 1, .., l − 2

•
...
• (2k + 2m+ 2, 2− 2n), n = 0, 1, 2
• (2k + 2m, 0)

for l even and

• (2k + 2m+ l, l − 2n), n = 0, 1, .., l
• (2k + 2m+ l − 2, (l − 2)− 2n), n = 0, 1, .., l − 2

•
...
• (2k + 2m+ 3, 3− 2n), n = 0, 1, 2, 3
• (2k + 2m+ 1, 1− 2n), n = 0, 1

for l odd.

No statements are possible about multiplicities, which would be interesting in the light of the
next section, where we will compare this decomposition to the decomposition of a unitary
positive energy representation of so(4, 2) into representations of so(2, 2).
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4.2 Character decomposition

In this section we want to see, into which representations of the twodimensional conformal
algebra a representation of the fourdimensional one decomposes. Then we will compare
this to the decomposition of the partial waves in the previous section. Since no multiplic-
ity statements could be made there, we will only compare, which representations appear in
both cases.
For the classical Lie algebras the problem of decomposing a representation into represen-
tation of a subalgebra is addressed using the so-called branching rules. There is a well de-
veloped theory for them and there exist tables and efficient computer programs, that facil-
itate their calculation. In the present case the matter is more complicated due to the non-
compactness of both of the involved groups.
In any case, it is important to specify the way, in which the subalgebra is embedded. We had
seen before, that the twodimensional conformal algebra can be embedded in two inequiva-
lent ways into the fourdimensional algebra. We had called them the diagonal and the block
embedding.
Our analysis of the branching of representations will make use of character formulae. They
summarize in a compact way informations about the weight system of a representation.
With suitable restrictions, one can also count the weights of a subrepresentation. For the
unitary irreducible positive energy representations of so(4, 2) the characters were listed in
section 2.2.
We start with the block type embedding. Since the Cartan elements used in the paper [7]
are certain linear combinations of the ones, that one receives in the spltting of so(4) into
so(3)⊕ so(3), to achieve a decomposition of this character in terms of so(1, 2) characters

χ̃n(x) =
xn

1− x
(4.30)

we have to set x = y in (2.82) and (2.83).
For a long symmetric tensor representations with highest weight (d = 2k + l, l/2, l/2) the
formula for the long representations becomes

A[2k+l,l/2,l/2](s, x, x) = s2k+lχl/2(x)2 1
(1− s

x)(1− sx)(1− s)2
. (4.31)

We redefine the formal variables as

sx = p and
s

x
= q, (4.32)

and get

(1− p)(1− q)·A[2k+l,l/2,l/2](s, x, x) =
√
pq2k+lχl/2(

√
p

q
)2 1

(1−√pq)2

= (pq)k+l/2

[
(
p

q
)−l/4 + (

p

q
)−l/4+1/2 + ..+ (

p

q
)l/4
]2 ∞∑

n=0

(n+ 1)(pq)n/2

= (pq)k
[
pl/2 + pl/2−1/2q1/2 + ..+ ql/2

]2
∞∑
n=0

(n+ 1)(pq)n/2. (4.33)
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Then we can write the character as a sum of products of characters of so(1, 2):

A[2k+l,l/2,l/2](s, x, x) =
∞∑
n=0

l∑
i,j=0

(n+ 1)
pk+n/2+l−(i+j)/2

1− p
qk+n/2+(i+j)/2

1− q
. (4.34)

We can now list the appearing representations.

Theorem 4.3: The long symmetric tensor representation of so(4, 2) with lowest
weight (2k+l, l/2, l/2) decomposes for the block embedding into representations
of so(2, 2) of scaling dimensions 2k + n+ l and spins l′ = l − i− j for n ∈ N and
0 ≤ i, j ≤ l. For fixed n every spin l’ appears (n+ 1) · (l + 1− |l′|) times.

For the first short (or twist 2) representation we have the character

D[l+2,l/2,l/2](s, x, y) = sl+2
(
χl/2(x)χl/2(y)− sχl/2− 1

2
(x)χl/2− 1

2
(y)
)
P (s, x, y), (4.35)

which for x = y using our previous result is equal to

∞∑
n=0

(n+ 1)

 l∑
i,j=0

p1+n/2+l−(i+j)/2q1+n/2+(i+j)/2 −
l−1∑
i,j=0

p2+n/2+(l−1)−(i+j)/2q2+n/2+(i+j)/2

(4.36)

We see, that we have the subrepresentations with scaling dimensions (2 + n + l) and spins
(l− i−j) (i, j = 0, .., l) as before, but certain representations are subtracted. Careful counting
yields the surviving representations.

Theorem 4.4: The short symmetric tensor representation of so(4, 2) with lowest
weight (2 + l, l/2, l/2) decomposes for the block embedding into the following
representations of so(2, 2):

• the "wingers" (2 + n+ l,±l) with multiplicity (n+ 1) (since the subtraction
does not reach them)

• the "insiders" (2+n+ l, l′ = l− i−j) (i, j = 0..l−1, n ≥ 1) with multiplicities
n+l+1−|l′| (since less representations are subtracted then there were before)

• the (2 + l, l′ = l − i − j) (i, j = 0..l) from the n = 0-term with multiplicities
l + 1− |l′| (since they are not reached by the subtraction either).

We compare our results to the analytic decomposition formula in the last section now. Start-
ing with the long representations, we see, that for the scaling dimension as well as for the
spin, in the analytic formula the index labelling the representations increases in steps of two,
while in the character decomposition it increases in steps of one. If one interprets the terms
in (4.29) by restriction as twodimensional partial waves, half of the representations do not
contribute. Apparently the fields, that carry the corresponding quantum numbers of the
partial waves, do not couple to two scalar fields of equal dimension (i.e. their three point
function with them vanishes).
Also for the short representation this pattern of a double step width appears.

We note, that our restriction of the fourdimensional correlation functions of fields of equal
scaling dimension could be interpreted as taking only the leading term φ00 of the fields in a
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Taylor expansion of φ(xµ) with scaling dimension d in some region around the x2 = x3 = 0-
plane:

φ(xµ) =
∞∑

n,m=0

(x2)n

n!
(x3)m

m!
φmn(x0, x1). (4.37)

A priori, the twodimensional fields

φmn(x0, x1) =
∂2φ

∂x2∂x3 (x2=x3=0)
, (4.38)

that appear as transverse derivatives, need not be conformally covariantly transforming
fields anymore. But we can check that a field differentiated in the x2 or x3 direction under
commutation with the twodimensional generators P0, P1,K0,K1, D,M01 does in fact behave
covariantly for x2 = x3 = 0. This implies the covariance of higher and mixed derivatives.
The action of the generators on fields was stated in section 2.2.
For the transformation under the P0/1 this is obvious, since partial derivatives commute. The
other cases need a little computation:

[M01, ∂2|3φ] = ∂2|3[(x0∂1 − x1∂0)φ] = (x0∂1 − x1∂0)∂2|3φ (4.39)

[D, ∂2|3φ] = d∂2|3φ+ xν∂ν∂2|3φ+ δν2|3∂νφ = (d+ 1)∂2|3φ+ xν∂ν∂2|3φ (4.40)

[K0/1, ∂2/3φ] = ∂2/3[(x2∂0/1 − 2x0/1x
ν∂ν − 2x0/1d)φ]

= (x2∂0/1 − 2x0/1x
ν∂ν − 2x0/1d)∂2/3φ+ (2xx/3∂0/1δ

ν
2/3∂ν)φ

= (x2∂0/1 − 2x0/1x
ν∂ν − 2x0/1(d+ 1))φ (4.41)

This also shows, that differentiating x2 or x3 direction raises the scaling dimension by one,
so φmn(t, x) has scaling dimension d+m+ n.
A next step would be to generalize our analytic decomposition formula to the case of four
fields of different scaling dimensions. This would open the possibility to take also higher
Taylor terms into account, to which the fields corresponding to the missing partial waves
are expected to couple.
If all fields in a four-point function are Taylor expanded we then get

〈Ω, φ(x1)φ(x2)φ(x3)φ(x4)Ω〉

=
∑
ni,mi

(x2
1)n1(x3

1)m1

n1!m1!
...

(x2
4)n4(x3

4)m4

n4!m4!
〈φm1,n1(x0

1, x
1
1)φm2,n2(x0

2, x
1
2)φm3,n3(x0

3, x
1
3)φm4,n4(x0

4, x
1
4)〉.

(4.42)

and expect, that if we first partial wave expand the fourdimensional four-point function and
then decompose the partial waves, the result should be the same, as if we first Taylor expand
and then partial wave expand the twodimensional four-point functions.
At last, we comment briefly on the diagonal embedding. In this case it turns out, that one
has to set the formal variable s in the character formulae equal to one. Then we get for the
long representations

A[2k+l,l/2,l/2](x, y) = χl/2(x)χl/2(y)
[
(1− 1

√
xy

)(1−√xy)(1−
√
x

y
)(1−

√
y

x
)
]−1

(4.43)
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We see, that we cannot transform this into geometric series as before, because this would
require |√xy| < 1 and | 1√

xy | < 1. This is also the case for the short representation. We will
take a different approach to investigate this embedding in the next section.
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4.3 A closer look at the diagonal embedding

In the previous section the decomposition of the representation could not be obtained, if the
subalgebra is embedded diagonally. Here we will use a different approach to check for the
scalar representation of so(4, 2) with lowest weight

(h, 0, 0),

what type of spectrum of representations of so(2, 2) it contains.
We had noticed, that the Casimir operator of a Lie algebra can be used to characterize its
representations. We will use this fact and express the Casimir operators of the two diagonally
embedded onedimensional conformal algebras so(1, 2) through ladder operators and Cartan
elements of the fourdimensional one. Then we try to find eigenvectors of those operators
within the representation (h, 0, 0). The corresponding eigenvalues λ are then for positive
energy representations related to scaling dimensions a of representations of the subalgebra
via the expression λ = a(a− 1) (cf. 2.65).
First we recall, that the so(4, 2) commutation relations can be summarized as

[Jab, Jcd] = i(ηacJbd + ηbdJac − ηbcJad − ηadJbc) (4.44)

with Jab = −Jba, ηab = diag(+,−,−,−,−,+) and a, b, .. = 0, 1, .., 5. so(4, 2) is a rank three
Lie algebra, so we can pick three independent commuting operators and we choose

h1 = J12 , h2 = J34 , h3 = J05. (4.45)

and list the root system with respect to this Cartan subalgebra, i.e. twelve linear combina-
tions eα of generators, such that [hi, eα] = αie

α.

Linear combination [h1, .] [h2, .] [h3, .]
A+
l = 1

2(J01 + iJ02 − iJ15 + J25) −A+
l 0 A+

l

A+
r = 1

2(J01 − iJ02 − iJ15 − J25) A+
r 0 A+

r

A+
d = 1

2(J03 + iJ04 − iJ35 + J45) 0 −A+
d A+

d

A+
u = 1

2(J03 − iJ04 − iJ35 − J45) 0 A+
u A+

u

A−l = 1
2(J01 + iJ02 + iJ15 − J25) −A−l 0 −A−l

A−r = 1
2(J01 − iJ02 + iJ15 + J25) A−r 0 −A−r

A−d = 1
2(J03 + iJ04 + iJ35 − J45) 0 −A−d −A−d

A−u = 1
2(J03 − iJ04 + iJ35 + J45) 0 A−u −A−u

Ald = [A+
d , A

−
l ] = i

2(−J13 − iJ14 − iJ23 + J24) −Ald −Ald 0
Ard = [A+

d , A
−
r ] = i

2(−J13 − iJ14 + iJ23 − J24) Ard −Ard 0
Alu = [A+

u , A
−
l ] = i

2(−J13 + iJ14 − iJ23 − J24) −Alu Alu 0
Aru = [A+

u , A
−
r ] = i

2(−J13 + iJ14 + iJ23 + J24) Aru Aru 0

The indices emphasize, which weight the operator raises or lowers, namely +,− for the h3

weight, l(eft),r(ight) for the h1 weight and u(p),d(own) for the h3 weight.
We recall, that the so(1, 2) algebra with metric (+,−,−) consists of three operators {L01, L02, L12}
with commutation relations

[L01, L02] = iL12 , [L01, L12] = iL02 , [L02, L12] = −iL01 (4.46)
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We introduce the ladder operators

L± = L01 ± iL02, (4.47)

which leads to the commutation relations

[L+, L0] = L+ , [L−, L0] = −L− , [L+, L−] = 2L0 (4.48)

where we set L0 := L12.
The diagonal embedding so(1, 2)⊕ so(1, 2) ↪→ so(2, 4) had the form

0 0 0
so(1, 2) 0 0 0

0 0 0
0 0 0
0 0 0 so(1, 2)
0 0 0

 , (4.49)

from which we can see, that the sets {J01, J02, J12} and {J34, J35, J45} form two so(1, 2) subal-
gebras. For the lower block one has to keep in mind, that the metric there is (−,−,+) instead
of (+,−,−). The Cartan operators J12 and J34 are obviously equal to h1 and h2, respectively,
and with the help of the table, we express the ladder operators through ladder operators of
the ambient algebra:

J01 − iJ02 = (A+
r +A−r ) =: Ar (4.50)

J01 + iJ02 = (A+
l +A−l ) =: Al (4.51)

J35 − iJ45 =
1
i
(A−u −A+

u ) =: Bu (4.52)

J35 + iJ45 =
1
i
(A−d −A

+
d ) =: Bd. (4.53)

Inverting these relations, we obtain the Casimir operators in the form we wanted

C(1)
a = −J2

01 − J2
02 + J2

12 = J2
12 −

1
4
[
(Al +Ar)2 − (Al −Ar)2

]
= J2

12 −
1
2

[AlAr +ArAl]

= h1(h1 + 1)−AlAr = h1(h1 − 1)−ArAl (4.54)

C
(1)
b = −J2

35 − J2
45 + J2

34 = h2(h2 + 1)−BdBu = h2(h2 − 1)−BuBd (4.55)

Because of the symmetry of the situation, we just consider, what the spectrum of C(1)
a is. The

one of C(1)
b will be the same and the total spectrum of twodimensional representations will

be the one of a tensor product.

4.3.1 Generating the representation

First we want to convince ourselves, that the operators with a plus sign span the whole
representation.
We consider the vectors obtained by multiple application of the "plus" operators (which raise
the scaling dimension by one and change one of the other weights) on the lowest weight
vector

|h〉 ≡ |h, 0, 0〉 (4.56)
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and introduce the shortcut

|pqrs〉 := (A+
r )p(A+

l )q(A+
u )r(A+

d )s|h〉. (4.57)

Then the claim is

Lemma 4.6: The |pqrs〉 span the whole scalar representation.

First, we list the eigenvalues of a vector |pqrs〉 under application of the Cartan elements.

h1(A+
r )p(A+

l )q(A+
u )r(A+

d )s|h〉 = (p− q)|pqrs〉 (4.58)
h2(A+

r )p(A+
l )q(A+

u )r(A+
d )s|h〉 = (r − s)|pqrs〉 (4.59)

h3(A+
r )p(A+

l )q(A+
u )r(A+

d )s|h〉 = (h+ p+ q + r + s)|pqrs〉 (4.60)

Also the eigenvalues of the operators E± = h3 ± h1 will be useful.

E+|pqrs〉 = (h+ p+ q + r + s+ p− q)|pqrs〉 = (h+ 2p+ r + s)|pqrs〉 (4.61)
E−|pqrs〉 = (h+ p+ q + r + s− p+ q)|pqrs〉 = (h+ 2q + r + s)|pqrs〉 (4.62)

Both are calculated by commuting the operator to the lowest weight vector |h〉, on which
their value is known. In our convention of positive and negative roots, operators with a
minus sign as well asAld,Ard,Alu andAru annihilate |h〉, so if they are involved, our strategy
will be to commute them to the end as well.
We will prove the lemma by checking, that the application of any ladder operator on |pqrs〉
is again a linear combination of vectors of this type (with other pqrs).
For A+

i (i=r,l,u,d) this is obvious, since the operators with a + commute with each other1, so
just one of the numbers is raised by one.
So at first we consider the lowering operators with respect to the scaling dimensions, e.g.
A−r :

A−r |pqrs〉 =(A+
r )pA−r (A+

l )q(A+
u )r(A+

d )s|h〉
=(A+

r )p(A+
l A
−
r + E−)(A+

l )q−1(A+
u )r(A+

d )s|h〉
=(A+

r )p(A+
l A
−
r + (h+ 2(q − 1) + r + s)(A+

l )q−1(A+
u )r(A+

d )s|h〉
=(A+

r )p((A+
l )2A−r (A+

l )q−2 + (h+ 2(q − 2) + r + s)(A+
l )q−1)(A+

u )r(A+
d )s|h〉

+ (h+ 2(q − 1) + r + s)|p, q − 1, rs〉

= .. = (A+
r )p(A+

l )qA−r (A+
u )r(A+

d )s|h〉+
q∑
i=1

(h+ 2(q − i) + r + s)|p, q − 1, rs〉

(4.63)

We used the commutation relation [A−r , A
+
l ] = E− and the eigenvalue (4.61) of E−. The sum

can be performed easily and we continue to commute using [A−r , A
+
u ] = −Aru:

A−r |pqrs〉 =(A+
r )p(A+

l )q(A+
uA
−
r −Aru)(A+

u )r−1(A+
d )s|h〉+ q(h+ q + r + s− 1)|p, q − 1, rs〉

= .. = (A+
r )p(A+

l )q(A+
u )rA−r (A+

d )s|h〉︸ ︷︷ ︸
(1)

− r(A+
r )p(A+

l )q(A+
u )r−1Aru(A+

d )s|h〉︸ ︷︷ ︸
(2)

+ q(h+ q + r + s− 1)|p, q − 1, rs〉 (4.64)
1In fact any two operators with one coinciding index commute.
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For the first term, commuting A−r past the A+
d produces Ard:

(1) = (A+
r )p(A+

l )q(A+
u )r(A+

d A
−
r −Ard)(A+

d )s−1|h〉, (4.65)

until at last A−r hits the lowest weight vector |h〉. But since [Ard, A+
d ] = 0, also the second

term is annihilated, so (1) = 0.
Now we consider term (2) with [Aru, A+

d ] = A+
r :

(2) = r(A+
r )p(A+

l )q(A+
u )r−1(A+

d Aru +A+
r )(A+

d )s−1|h〉
= r(A+

r )p(A+
l )q(A+

u )r−1(A+
d Aru +A+

r )(A+
d )s−1|h〉 (4.66)

Further commutation produces s identical terms with only "+"-operators. The first term
takes the form ...Aru|h〉 = 0 and it remains, that

(2) = rs(A+
r )p(A+

l )q(A+
u )r−1A+

r (A+
d )s−1|h〉 = rs|p+ 1, q, r − 1, s− 1〉 (4.67)

Therefore the result of the application of the A−r operator is a vector, which is a linear com-
bination of vectors solely obtained by application of ladder operators with a plus sign:

A−r |pqrs〉 = −rs|p+ 1, q, r − 1, s− 1〉+ q(h+ q + r + s− 1)|p, q − 1, rs〉 (4.68)

Analogously the application of the other "minus" operators yields

A−l |pqrs〉 = −rs|p, q + 1, r − 1, s− 1〉+ p(h+ p+ r + s− 1)|p− 1, q, rs〉 (4.69)
A−d |pqrs〉 = −pq|p− 1, q − 1, r, s+ 1〉+ r(h+ r + p+ q − 1)|pq, r − 1, s〉 (4.70)
A−u |pqrs〉 = −pq|p− 1, q − 1, r + 1, s〉+ s(h+ s+ p+ q − 1)|pq, r, s− 1〉 (4.71)

Now we check, that the operators with two lower indices produce a linear combination of
|pqrs〉-type vectors, where we exemplify the procedure with Ald. We use the commutators
[Ald, A+

r ] = −A+
d and [Ald, A+

u ] = −A+
l to get

Ald|pqrs〉 = (A+
l )q(A+

d )sAld(A+
r )p(A+

u )r|h〉
= (A+

l )q(A+
d )s(A+

r Ald −A+
d )(A+

r )p−1(A+
u )r|h〉

= .. = (A+
l )q(A+

d )s((A+
r )pAld − pA+

d (A+
r )p−1)(A+

u )r|h〉
= −p|p− 1, q, r, s+ 1〉+ (A+

r )p(A+
l )q(A+

d )sAld(A+
u )r|h〉

= −p|p− 1, q, r, s+ 1〉+ (A+
r )p(A+

l )q(A+
d )s(A+

uAld −A+
l )(A+

u )r−1|h〉
= .. = −p|p− 1, q, r, s+ 1〉 − r|p, q + 1, r − 1, s〉 (4.72)

This proves, that the |pqrs〉 indeed span the whole representation. �

Finally, we address the question of eigenvalue degeneracies. Suppose, that we are given
a Casimir eigenvalue triple

(p− q, r − s, h+ p+ q + r + s) =: (k1, k2, h+ 2q + 2s+ k1 + k2) =: (k1, k2, h+ k3), (4.73)

where the first equality defines k1 and k2 and the second k3. To determine its degeneracies,
we count the numbers of different ways to to build the three given numbers k1, k2, k3 out of
p, q, r, s. For fixed k1, k2, the different combinations of q and s, that yield a given k3, is

#(k1, k2, h+ k3) =
k3 − k2 − k1

2
+ 1 = q + s+ 1, (4.74)

which corresponds to the numbers of combinations (q, s), whose sum 2q + 2s yields a fixed
given number.
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4.3.2 Casimir spectrum

The action of the operators C(1)
a and C

(1)
b on a state |pqrs〉 yields after diagonalization the

spectrum of the Casimir operator of the twodimensional conformal algebra within a repre-
sentation of the fourdimensional one.
To find their eigenvectors, we first have to determine the result of their application on |pqrs〉.
The result of the "Cartan element part" of the Casimir C(1)

a is

h1(h1 + 1)|pqrs〉 = (p− q)(p− q + 1)|pqrs〉 (4.75)

We calculate now the application of the second part.

AlAr|pqrs〉 = [A+
l A

+
r (A+

r )p(A+
l )q(A+

u )r(A+
d )s|h〉︸ ︷︷ ︸

(a)

+A−l A
+
r (A+

r )p(A+
l )q(A+

u )r(A+
d )s|h〉︸ ︷︷ ︸

(b)

+A+
l A
−
r (A+

r )p(A+
l )q(A+

u )r(A+
d )s|h〉︸ ︷︷ ︸

(c)

+A−l A
−
r (A+

r )p(A+
l )q(A+

u )r(A+
d )s|h〉︸ ︷︷ ︸

(d)

] (4.76)

(a) equals |p + 1, q + 1, rs〉, for the others we can use the equations (4.68)-(4.71). Then the
second term is

(b) = −rs|p+ 1, q + 1, r − 1, s− 1〉+ (p+ 1)(h+ p+ 1 + r + s− 1)|pqrs〉, (4.77)

the third

(c) = −rs|p+ 1, q + 1, r − 1, s− 1〉+ q(h+ q + r + s− 1)|pqrs〉 (4.78)

and the fourth

(d) =A−l [−rs|p+ 1, q, r − 1, s− 1〉+ q(h+ q + r + s− 1)|p, q − 1, rs〉]
=− rs [−(r − 1)(s− 1)|p+ 1, q + 1, r − 2, r − 2〉+ (p+ 1)(h+ p+ q + r + s− 2)|pq, r − 1, s− 1〉]

+ q(h+ q + r + s− 1) [−rs|pq, r − 1, s− 1〉+ p(h+ p+ r + s− 1)|p− 1, q − 1, rs〉] .
(4.79)

Altogether this becomes

AlAr|pqrs〉 = |p+ 1, q + 1, r, s〉+ (q(h+ q + r + s− 1) + (p+ 1)(h+ p+ r + s))|pqrs〉
−2rs|p+ 1, q + 1, r − 1, s− 1〉 − rs(q(h+ q + r + s− 1) + (p+ 1)(h+ p+ r + s− 2))|p, q, r − 1, s− 1〉
+p(h+ p− 1 + r + s)q(h+ q + r + s− 1)|p− 1, q − 1, r, s〉+ rs(r − 1)(s− 1)|p+ 1, q + 1, r − 2, s− 2〉.

(4.80)

The application of ArAl is obtained by exchanging p ↔ q and as a check, we calculate the
application of the commutator:

[AlAr −ArAl]|pqrs〉 = [q(h+ q + r + s− 1) + (p+ 1)(h+ p+ r + s)− p(h+ p+ r + s− 1)
−(q + 1)(h+ q + r + s)]|pqrs〉 − rs[q(h+ q + r + s− 1) + (p+ 1)(h+ p+ r + s− 2)

−p(h+ p+ r + s− 1)− (q + 1)(h+ q + r + s− 2)]|p, q, r − 1, s− 1〉
= [−q + (h+ p+ r + s) + p− (h+ q + r + s)]|pqrs〉 − rs[(h+ p+ r + s− 1)− (p+ 1)

−(h+ q + r + s− 1) + (q + 1)]|p, q, r − 1, s− 1〉 = (2p− 2q)|pqrs〉 = 2h1|pqrs〉
(4.81)
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The application of the full Casimir operator then yields

C(1)
a |pqrs〉 =− |p+ 1, q + 1, r, s〉+ [(p− q)(p− q + 1)− q(h+ q + r + s− 1)

− (p+ 1)(h+ p+ r + s)]|pqrs〉+ 2rs|p+ 1, q + 1, r − 1, s− 1〉
+ rs[q(h+ q + r + s− 1) + (p+ 1)(h+ p+ r + s− 2)]|p, q, r − 1, s− 1〉
− p(h+ p− 1 + r + s)q(h+ q + r + s− 1)|p− 1, q − 1, r, s〉
− rs(r − 1)(s− 1)|p+ 1, q + 1, r − 2, s− 2〉 (4.82)

4.3.3 Spectrum of representations on a subspace

Since the general diagonalization problem of finding linear combinations of states |pqrs〉,
which are eigenvectors under the action (4.82) of the Casimir operators, is very complicated,
we consider this problem on an invariant subspace of the whole space.
Let |h〉 again be a lowest weight vector of a scalar representation with scaling dimension h,
then application of A+

l A
+
r = A+

r A
+
l leads to a state with a h3 weight h+ 2 and the h1 and h2

weights are still zero. We set

|n〉 = (A+
l A

+
r )n|h〉 = (A+

r A
+
l )n|h〉 (4.83)

as the n-fold repetition of this operation. Then the h3 weight of |n〉 is h+ 2n for n ∈ N.
We consider the expression (4.82) with p = q = n and r = s = 0:

C(1)
a |n〉 = −|n+ 1〉 − [n(h+ n− 1) + (n+ 1)(h+ n)]|n〉 − n2(h+ n− 1)2|n− 1〉

= −|n+ 1〉 − (2n2 + 2nh+ h)|n〉 − n2(h+ n− 1)2|n− 1〉 (4.84)

We rewrite this equation in terms of normalized vectors ψn = 1
‖|n〉‖ |n〉. The norm of a vector

|n〉 is

‖|n〉‖ =
n!(n+ h− 1)!

(h− 1)!
(4.85)

Dividing by ‖|n〉‖we get the previous equation in terms of the normalized vectors

C(1)
a ψn = −(n+ 1)(n+ h)ψn+1 − (2n2 + 2nh+ h)ψn − n(n+ h− 1)ψn−1. (4.86)

Let us now suppose, that

ψ =
∞∑
n=0

fnψn (4.87)

is an eigenvector of C(1)
a with eigenvalue −λ. We map the eigenvector to a function

f(x) =
∞∑
n=0

fnx
n (4.88)

with the same coefficients fn, which we require to be square summable:

(fn)n∈N ∈ l2 = {(an)n∈N |
∑
n

|an|2 <∞}. (4.89)
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The eigenvalue equation for ψ is then equivalent to the differential equation[
x(1 + x)2∂2

x +
(
2x(1 + x) + h(1 + x)2

)
∂x + h(1 + x)

]
f(x) = λf(x) (4.90)

for f(x), which can be seen by applying (−1) times the differential operator on a monomial
xn, which produces equation (4.86) with xn replacing ψn.
For computational convenience we set

z = −x, (4.91)

and consider the subspace of the solution space spanned by

f(z) = (1− z)−a · F (h− a, 1− a;h; z) (4.92)

with a = 1
2 + 1

2

√
1− 4λ. We put in series representations of both factors. Then the Cauchy

product formula yields

f(z) =

( ∞∑
n=0

(1− a)n · (h− a)n
(h)n · n!

· zn
)
·

( ∞∑
k=0

(a)k
k!

zk

)

=
∞∑
n=0

zn ·
n∑
k=0

(1− a)k · (h− a)k · (a)n−k
(h)k · k! · (n− k)!

=
∞∑
n=0

zn · (a)n·
n!

F (−n, 1− a, h− a;h, 1− a− n; 1), (4.93)

where (x)n = Γ(x+n)
Γ(x) is the Pochhammer symbol. F (a, b, c; d, e;x) is a generalized hypergeo-

metric function of type (3, 2) and for n integer it fulfils the identity

F (−n, b, c; d, e; 1) =
(d− b)n

(d)n
F (−n, b, e− c; e, b− d− n+ 1; 1), (4.94)

where in our case b = 1− a, c = a, d = 1 and e = h. With this relation the solution, again as
a function of x, takes the form

f(x) =
∞∑
n=0

(−1)n · F (−n, 1− a, a; 1, h; 1) · xn =:
∞∑
n=0

fn · xn (4.95)

We note, that for the second solution of the differential equation, at this point we would have

g(x) = x1−h
∞∑
n=0

(−1)n · F (−n, 1− a, a; 1, 2− h; 1) · xn. (4.96)

Since there seem to be no true eigenvectors f(x) with square summable coefficients, we try
to determine the spectrum of the Casimir operator C(1)

a using the concept of generalized
eigenvalues [12]. We consider the partial sum

fN =
N∑
n=0

fnψn (4.97)
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with the fn we just found. The norm of fN is defined as

‖fN‖ =
N∑
n=0

|fn|2. (4.98)

Then λ is said to be a generalized eigenvalue of C(1)
a , if the quantity∥∥∥(C(1)

a − λ)fN
∥∥∥

‖fN‖
(4.99)

goes to zero for N →∞.
We use the action (4.86) of the Casimir operator on the normalized vectors ψn to get

‖(C(1)
a − λ)fN‖
‖fN‖

=
‖(C(1)

a − λ)
∑N

n=0 fnψn‖
‖
∑N

n=0 fnψn‖

=
1

‖
∑N

n=0 fnψn‖
· ‖

N∑
n=0

fn[−(n+ 1)(n+ h)ψn+1 − (2n2 + 2nh+ h+ λ)ψn

− n(n+ h− 1)ψn−1]‖ (4.100)

We shift now the index of summation, so that every sum includes ψn and we can use the
formula for the norm. The zeroth and theN th term are treated separately and there appears a
(N+1)th term, so we have to study the convergence behaviour forN →∞ of the expression

‖(C(1)
a − λ)fN‖
‖fN‖

=

[
N∑
n=0

|fn|2
]−1

{|(λ+ h) +
(λ− h
h

· 2(h+ 1)|2

+ [
N−1∑
n=1

|fn−1 · n(n+ h− 1) + fn · (λ+ 2n2 + 2nh+ h)

+ fn+1 · (n+ 1)(n+ h)|2] + |fN−1 ·N(N + h− 1)

+ fN · (λ+ 2N2 + 2Nh+ h)|2 + |fN+1(N + 2)(N + h+ 1)|2} (4.101)

From the introductory considerations about positive energy representations of so(1, 2), we
expect the eigenvalues λi2 be related to lowest weights ki of representations via

λi = ki(1− ki) (4.102)

with ki > 0. It is also conceivable, that there appear "negative energy representations" with
highest weight ki < 0 and weights of the form ki − n for n ∈ N. We see from (4.102), that for
those cases λ ≤ 1

4 .
The trivial representation given by k0 = 0 never appears, since this would require λ = 0 to
be a generalized eigenvalue, which would imply fn = (−1)n, for which (4.99) does not go to
zero.
A numerical treatment shows, that for λ ≤ 1

4 the expression does not converge either, hence
there are no positive (or negative) energy representations within our subspace of the scalar

2With i out of some appropiate index set I, e.g. I ⊆ N (discrete spectrum) or I ⊆ R (continuous spectrum).
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representation of the fourdimensional algebra.
For λ > 1

4 there are indications, that there might be continous spectrum of generalized eigen-
values, which however would make ki in (4.102) complex. These values correspond to repre-
sentations of so(1, 2) with a spectrum, which is neither bounded from below nor from above.
They are of no interest in Wightman QFT, where energy boundedness in one direction is a
fundamental requirement.
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5 Six-point restricted partial wave
expansion

5.1 Strategy and conventions

Since partial wave expansions were such a useful tool to study implications of Wightman
positivity for four-point functions of GCI scalar fields in D = 4 dimensional Minkowski
space, it is desirable to be able to perform them also for higher n-point functions.
Unfortunately the procedure quickly gets very involved. We could write the four-point func-
tion as a sum of contributions of symmetric tensor field, because we only needed one OPE,
which only involves fields of this type for scalar fields. Therefore it sufficed to insert just
one of the three Casimir operators of the fourdimensional conformal group. If we need to
do more OPEs, this nice property does not hold anymore and we have to insert all three
Casimirs. Considering their concrete form (2.75)-(2.77) makes it not difficult to see, that this
procedure will be very complicated. For the six-point function the non-trivial part (i.e. the
one not just fixing the quantum numbers of the corresponding projector to certain values)
consists of inserting C(4)

2 , C(4)
3 and C

(4)
4 into three spots, which would yield system of nine

partial differential equations in nine variables (the cross ratios).

We will take a simpler step in this section. We take the general form of a conformal six-
point function, restrict it to the two dimensional surface x2 = x3 = 0 and then use the fact,
that there the cross ratios factorize and the twodimensional Casimir operator C(2) is a sum
of two onedimensional chiral Casimir operators C(1)

± . Then we can treat the problem as two
separate, identical ones. After we have obtained the partial waves, we want to study the im-
plications, that Wightman positivity has for a correlator violating the single-pole property
(see section 2.4.3).
As mentioned in the introduction, every n-point function in a conformally invariant QFT
can be written in the form

〈Ω, φ1(x1)..φn(xn)Ω〉 =
∏
i,j

ρ
µij
ij f(s1, .., smn) (5.1)

where ρij = x2
ij = (xi − xj)2 and f is an arbitrary function of the cross ratios s1, .., smn .

The following arguments shows, that the number of independent cross ratios, that can be
formed out n points, in two dimensions is reduced to n − 3. First we note, that the Lorentz
squares factorize into

ρij = (xi − xj)2 = (x0
i − x0

j )
2 − (x1

i − x1
j )

2

= ((x0
i + x1

i )− (x0
j + x1

j )) · ((x0
i − x1

i )− (x0
j − x1

j )) =: (x+
i − x

+
j ) · (x−i − x

−
j ) (5.2)
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and that this immediately implies that so do the cross ratios

s =
(xi − xj)2 · (xk − xl)2

(xi − xk)2 · (xj − xl)2
=
x+
ijx

+
kl

x+
ikx

+
jl

·
x−ijx

−
kl

x−ikx
−
jl

=: s+ · s−. (5.3)

with x±ij = x±i − x
±
j . In higher dimensions one has two independent cross-ratios involving

the same four points xi, xj , xk, xl, which for example can be taken as

sijkl =
ρijρkl
ρikρjl

and tijkl =
ρilρjk
ρikρjl

(5.4)

We saw, that in two dimensions any cross ratio is a product of onedimensional ones. In one
dimensions in turn we can see, that there is just one independent chiral cross-ratio for four
given points, because one of the two can be expressed through the other:

t±ijkl =
x±ilx

±
jk

x±ikx
±
jl

=
(x±ikx

±
jl − x

±
ijx
±
kl)

x±ikx
±
jl

= 1− s±ijkl (5.5)

To see, that the total number of independent chiral cross-ratios for an n-point function is
n− 3, we consider now the cross ratios (leaving out the ±)

sn =
x12x3n

x13x2n
. (5.6)

They are obviously independent of each other, because they contain different points. The
three points x1, x2, x3 take a somewhat distinguished role among the points, which however
poses no loss of generality. We have to show now, that any cross-ratio with only two, one
and zero of these points can be reduced to a function of certain sn. By the considerations
above, we are done, if we have expressed them through any cross ratios involving x1, x2 and
x3, i.e. they need not have the precise form (5.6). We consider

tpq =
x12xpq
x1px2q

= 1− x1qx2p

x1px2q

= 1− x1qx23

x13x2q
· x13x2p

x1px23
, (5.7)

next

tpqr =
x1pxqr
x1qxpr

=
1− x1qx2r

x1rx2q

x1qx2p

x1px2q
− x1qx2r

x1rx2q

(5.8)

and finally

tpqrs =
xpqxrs
xprxqs

=
x1rxpq
x1qxpr

· x1qxrs
x1rxqs

. (5.9)

This proofs the proposition.

For the six point function the number of independent cross ratios after the restriction is
reduced three and we choose

s =
x14x56

x15x46
, t =

x24x56

x25x46
, u =

x34x56

x35x46
. (5.10)
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For the prefactor of distance squares, the simplest and most symmetric choice in the six-point
case seems to be the product of two three-point-function type (cf. (2.90)) structures:

〈Ω, φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ5(x5)φ6(x6)Ω〉

=
1

ρl1+l2−l3
12 ρl1+l3−l2

13 ρl2+l3−l1
23 ρl4+l5−l6

45 ρl4+l6−l5
46 ρl5+l6−l4

56

f(s, t, u). (5.11)

The li are the scaling dimensions of the fields φi (i = 1, .., 6). The prefactor obviously fulfils
the homogeneity requirement.
We perform now the partial wave expansion by inserting projectors Πn,m on representa-
tions with lowest weight (n,m) of the twodimensional conformal group SO(2, 2) between
all fields.
If we insert the quadratic Casimir operator C(2)

2 in front of a projector and commute it to
the vacuum Ω, we obtain a differential operator D(2)

2 , that is the sum of two identical dif-
ferential operators, that act on the light-cone coordinates x±i and involve the chiral scaling
dimensions l±i :

D(2)
2 = D(1)

+ +D(1)
− , (5.12)

because
C

(2)
2 = C

(1)
+ + C

(1)
− . (5.13)

Therefore we can make a product ansatz

f(s, t, u) = f+(s+, t+, u+)f−(s−, t−, u−). (5.14)

Then the problem splits into two simpler (and identical) onedimensional problems, so it
suffices to do one of them and take the product of the partial solutions in the end. To relax
notation, we leave out the +/− in the following. We have

〈Ω, φ1(x1)Πaφ2(x2)Πbφ3(x3)Πcφ4(x4)Πdφ5(x5)Πeφ6(x6)Ω〉

=
1

ρl1+l2−l3
12 ρl1+l3−l2

13 ρl2+l3−l1
23 ρl4+l5−l6

45 ρl4+l6−l5
46 ρl5+l6−l4

56

fabcde(s, t, u) =: A(1, .., 6)fabcde(s, t, u)

(5.15)

and now we insert into every spot a Casimir operator C(1). On the one hand, we apply it
on the projector Πα to yield the Casimir value α(α− 1) of the corresponding representation,
on the other hand we commute the Casimir past the fields, until it hits the vacuum, using
the following list of commutators. It takes into account, how the generators have to be
commuted past the non-conformally covariant fields, which appear in the process.

[P,ϕ(x)] = −i∂xϕ (5.16)

[K,ϕ(x)] = −i(x2∂x + 2lx)ϕ (5.17)
[D,ϕ(x)] = −i(l + x∂x)ϕ (5.18)

[P, x2∂xϕ(x)] = −ix2∂2
xϕ (5.19)

[P, xϕ(x)] = −ix∂xϕ (5.20)

[D,x∂xϕ(x)] = −i(x(l + 1)∂x + x2∂2
x)ϕ (5.21)
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5.2 Calculation

Commuting past one scalar field φ(x) with scaling dimension l applied on the vacuum yields
not a differential operator, but just the value l(l − 1), so the differential equation for the first
and the last insertion are rather trivial, namely

a(a− 1) = l1(l1 − 1) and e(e− 1) = l6(l6 − 1). (5.22)

We drop these indices in the remainder (fbcd ≡ fabcde). For more fields, we have the following

Theorem 5.1: The differential operator, that one obtains by commuting the
Casimir operator C(1) past a string of n fields φ1(x1)..φn(xn) with scaling dimen-
sions li, that is applied on the vacuum Ω, is

Dn =
n∑
i=1

li(li − 1) +
∑
i<j

[
2lilj − (xi − xj)2∂i∂j

]

+ 2

(
n∑
i=1

li

) n∑
j=1

xj∂j

− 2

(
n∑
i=1

lixi

) n∑
j=1

∂j

 (5.23)

Proof: (by induction) For n = 1 the expression is l1(l1 − 1), so we consider

Cφ1..φn+1Ω = φ1Cφ2..φn+1Ω− ∂1

n+1∑
i=2

(x2
i ∂i + 2lixi)− (x2

1∂1 + 2l1x1)
n+1∑
i=2

∂i

−(x2
1∂

2
1 + 2l1x1∂1)− (l1 + x1∂1) + 2(l1 + x1∂1)

n+1∑
i=2

(li + xi∂i) + l1(l1 + x1∂1)

+(l1 + 1)x1∂1 + x2
1∂

2
1

We insert the hypothesis of induction and group the terms together to form the
corresponding n+ 1 form of (5.23)

... =
n+1∑
i=2︸︷︷︸
(I)

li(li − 1) +
2≤i,j≤n+1∑

i<j

[
2lilj − (xi − xj)2∂i∂j

]
+ 2

(
n+1∑
i=2

li

)n+1∑
j=2

xj∂j



− 2

(
n+1∑
i=2

lixi

)n+1∑
j=2

∂j

− ∂1

n+1∑
i=2

(
x2
i + 2lixi

)
−
(
x2

1∂1 + 2l1x1

) n+1∑
j=2

∂i

−
(
x2

1∂
2
1 + 2l1x1∂1

)
− (l1 + x1∂1) + 2 (l1 + x1∂1)

n+1∑
i=2

(li + xi∂i)

+ l1(l1 + x1∂1) + (l1 + 1)x1∂1 + x2
1∂

2
1

=
n+1∑
i=1

li(li − 1) +
1≤i,j≤n+1∑

i<j

[
2lilj − (xi − xj)2∂i∂j

]

+ 2

(
n+1∑
i=1

li

)n+1∑
j=1

xj∂j

− 2

(
n+1∑
i=1

lixi

)n+1∑
j=1

∂j

 . �

66



One can actually derive an expression for the application of the quadratic Casimir operator
C

(D)
2 on n conformal fields in D dimensions (cf. [31]).

We only need the operators, which appear after commuting the Casimir past two and three
fields respectively. We choose to commute to the beginning for

〈Ω, φ1φ2 · C(1) ·Πbφ3Πcφ4Πdφ5φ6Ω〉 = b(b− 1)A(1, .., 6)fbcd(s, t, u). (5.24)

and to the end for

〈Ω, φ1φ2Πbφ3 · C(1) ·Πcφ4Πdφ5φ6Ω〉 = c(c− 1)A(1, .., 6)fbcd(s, t, u) (5.25)

and
〈Ω, φ1φ2Πbφ3Πcφ4 · C(1) ·Πdφ5φ6Ω〉 = d(d− 1)A(1, .., 6)fbcd(s, t, u). (5.26)

We apply the corresponding differential operators on the right hand side of equation (5.15).
This yields three new different equations of the type

D̃αfbcd = α(α− 1)A(1, .., 6)fbcd(s, t, u) (5.27)

We multiply by the homogeneity prefactor from the right side and remain with a differential
equation for fbcd, which has to be put together to be purely in terms of the cross ratios s, t
and u. Some details on this lengthy procedure are given in appendix .4.
The result is the following system of partial differential equations. For insertion between the
second and the third field we get

l3(l3 − 1)fbcd + (s− t)2∂s∂tfbcd − (l1 + l3 − l2)
(s− t)(t− u)

s− u
∂tfbcd

−(l1 − l2 − l3)
(s− t)(u− s)

u− t
∂sfbcd = b(b− 1)fbcd, (5.28)

between the third and the fourth field

−(l4 + l5+6)(l4 + l5 + l6 − 1)fbcd + (s− t)2∂s∂tfbcd + (t− u)2∂t∂ufbcd

+(s− u)2∂s∂ufbcd = c(c− 1)fbcd, (5.29)

and between the fourth and fifth field

l4(l4 − 1)fbcd + (1− s)s2∂2
sfbcd + (1− t)t2∂2

t fbcd + (1− u)u2∂2
ufbcd + (2− s− t)st∂s∂tfbcd

+(2− t− u)tu∂t∂ufbcd + (2− s− u)su∂s∂ufbcd + (2l4 − (l4 − l5 + l6 + 1)s)s∂sfbcd
+(2l4 − (l4 − l5 + l6 + 1)t)t∂tfbcd + (2l4 − (l4 − l5 + l6 + 1)u)u∂ufbcd = d(d− 1)fbcd.

(5.30)

Unfortunately even under these extremely simplifying assumptions, we still get a very com-
plicated system of equations, for which it seems very difficult to find a solution.
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6 Summary and Outlook

We have investigated several relations between twodimensional and fourdimensional con-
formal field theory. We considered the two different ways, in which the twodimensional
conformal algebra can be embedded into the fourdimensional one. One of our main results
is, that the diagonal embedding has not proven to be of much interest. It does not lead to
a chiral action on a twodimensional submanifold like the block embedding. Furthermore,
representations of the fourdimensional conformal algebra do not decompose into positive
energy representations of the diagonally embedded twodimensional one.
These results were important for our next step: when we interpreted terms in the decom-
position of a 4D partial wave as 2D partial waves and performed the restricted partial wave
expansion, we only needed to do one restriction, namely to the submanifold corresponding
to the block embedding.
Our results can be seen as some first steps towards an understanding of the relation between
partial wave expansions in 2D and 4D. We conjectured the reason for the discrepancies be-
tween the analytic and the character decomposition and indicated, how our procedure has
to be expanded to resolve them.
In investigating the relation between analytic and group theoretic decompositions, more
sophisticated application of the connections between Lie theory and the theory of special
functions might be of help.
Our attempt to simplify the six-point partial wave expansion by restriction to two dimen-
sions has unfortunately not led to an easily solvable system of differential equations. If their
solutions (the partial waves) are found, the six-point function will have to be expanded in
terms of them, which will presumably again be a tremendous task. This seems to show, that
this "brute force" approach is not very promising, also having in mind, that the presented
six-point function is just an example and that the final goal should be to facilitate a system-
atic study of all n-point functions. Therefore, other methods need to be found to study the
double-pole property and its compatibility with positivity in particular and GCI QFT in gen-
eral.
It might be hoped, that certain indications for infinitedimensional (Lie and associative) alge-
bra structures lead the way.
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7 Appendices

.1 Representation theory of Lie algebras

Here we give a short account of the representation theory of finitedimensional Lie algebras
to the extent, in which it is used in the text. Proofs will generally be omitted, we refer for
them to [10], [13], [14] and [25]. We assume familiarity with linear algebra and basic manifold
theory.
We list some of the notations used in this appendix.

g Lie algebra
V vector space
GL(V ) general linear group of V
gl(V ) the Lie algebra of GL(V )
(ρ, V ) representation ρ of a Lie algebra on V
h Cartan subalgebra of g

g∗/h∗ dual space of g/h

i ideal of g

adh(.) = [h, .] adjoint map of h
fijk structure constants of g

µ weight
x, y, xi, .. elements of g

α, β, .. roots
h, hi, .. elements of h

hα element of h associated with a root α
G Lie group
G̃ universal covering group of G
C(n) n-th order Casimir operator
U(g) universal enveloping algebra of g

χρ character of a representation ρ
sl(r) special linear algebra of rank r
so(r) special orthogonal algebra of rank r
sp(r) sympletic algebra of rank r
su(r) special unitary algebra of rank r
θ Cartan involution on g

Θ Cartan involution on G
g = k + p Cartan decomposition of g

g = k + a + n± Iwasawa decomposition of g

G = KAN± Iwasawa decomposition of G
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.1.1 Lie algebras and representations

Lie algebras are ubiquitous in physics. Generators of symmetry transformations in most
cases fulfil Lie algebra type commutation relations. In high energy physics different species
of particles can be put into multiplets of certain algebras. Furthermore they are used in the
calculation of atomic, molecular and nuclear spectra and in gauge theories. Many other
algebraic structures in modern mathematics and physics possess close connections to Lie
algebras.
We first define, with what we are dealing:

Definition: A Lie algebra g is a vector space endowed with a bilinear map
[·, ·] : g× g→ g (also called the commutator or Lie bracket), that fulfils

• Antisymmetry: [x, y] = −[y, x]

• Jacobi-identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g.

Familiar examples in physics are the Poisson bracket in classical Hamiltonian mechanics or
the commutator in quantum mechanics.
The dimension n of a Lie algebra is equal to its dimension as a vector space and we assume
n <∞. We mostly consider complex g, since the theory is best developed for this case. Some
results are not available (or at least need more effort) for real Lie algebras, which makes their
study considerably harder.
We note, that one can complexify a real Lie algebra g by taking complex linear combinations
of their basis elements, which can be written as gc = g + ig.
The commutator of two elements of g must be a linear combination of other elements of g,
which can be expressed as

[xi, xj ] =
n∑
k=1

fijkxk. (.1)

The fijk are called the structure-constants of g and antisymmetry and the Jacobi-identity
impose certain restrictions on them.
For two subspaces A,B ⊆ g let [A,B] denote the set {[a, b] | a ∈ A, b ∈ B}. A subalgebra h of
g is a subspace, such that [h, h] ⊆ h, an ideal i of g a subspace, such that [g, i] ⊆ i.
One distinguishes between different types of Lie algebras:

• Abelian: [x, y] = 0 for all x, y ∈ g

• Nilpotent: the derived series g{i} = [g{i−1}, g{i−1}] (g{0} = g) of g ends up with {0} for
some i ∈ N.

• Solvable: the lower central series g{i} = [g, g{i−1}] (g{0} = g) of g ends up with {0} for
some i ∈ N.

• Simple: g has no proper ideals and is not abelian.

• Semi-simple: g is a direct sum of simple Lie algebras.

The solvable and nilpotent cases are not of too much interest from a physical point of view,
but we will need them in the section on Lie algebras of non-compact type.
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For simple Lie algebras there is a complete classification available. There are four infinite
series Ar ' sl(r + 1) (r ≥ 1), Br ' so(2r + 1) (r ≥ 3), Cr ' sp(r) (r ≥ 2) and Dr ' so(2r)
(r ≥ 4) as well as five isolated cases, which were named E6, E7, E8, G2 and F4. The index
indicates the rank of the Lie algebra (see below).
From now on we will only consider semisimple g (which of course includes the simple case).
An important example for a simple Lie algebra is A1 ' sl(2), which is spanned by three
generators {h, x, y}with commutation relations

[x, y] = h , [h, x] = 2x , [h, y] = −2y. (.2)

We recognize the angular-momentum algebra su(2) in the J3, J
+, J− form (up to renormal-

ization of the generators).
A system in quantum mechanics is described by a maximal set of commuting (and therefore
simultaneously diagonalizable) observables. With this in mind we introduce the following
notion:

Definition: A Cartan subalgebra h of a Lie algebra g is a subspace, such that

• [h1, h2] = 0 for all h1, h2 ∈ h.

• If for some x ∈ g, [h, x] = 0 for all h ∈ h, then x ∈ h.

• For all h ∈ h, adh(.) ≡ [h, .] is diagonalizable (i.e. there’s a basis {xi} of g,
such that adh(xi) ∼ xi for all i ).

The first property states, that h is a commuting subspace, the second that it is maximal and
the third, that it consists entirely of so-called semisimple elements. There can be several
choices of h for a given g, but they are all related by automorphisms of g, so taking any
convenient choice does not lead to an arbitrariness in the description of the Lie algebra. This
also shows, that the dimension r of a Cartan subalgebra h is a property of g itself, which is
called the rank of g.
The fact, that all adh are simultaneously diagonalizable, motivates the introduction of an
own name for a simultaneous eigenvector:

Definition: A root of g is a nonzero map α : h → C (in other words α ∈ h∗),
such that there is an 0 6= x ∈ g fulfilling

adh(x) ≡ [h, x] = α(h)x (.3)

for all h ∈ h.

Such an x is called a root vector and all x fulfilling (.3) for a fixed root α form the root space
gα.
The Lie algebra g is spanned by such x and so it decomposes as

g = h⊕
⊕
α 6=0

gα, (.4)

which is called the root space decomposition. The root spaces have the following properties

• For all α, β ∈ h∗, [gα, gβ] = gα+β .

• If α ∈ h∗, also −α ∈ h∗ and these are the only multiples of α, which are roots.
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• All gα are onedimensional.

• For all α, there are X ∈ gα, Yα ∈ g−α and hα ∈ h, that form a sl(2) subalgebra.

• There is a basis B = {hi} ∪ {eα} of g, where {hi} is a basis of h and the eα satisfy

[hi, eα] = α(hi)eα =: αieα. (.5)

The vector (αi)i=1,..,r in the last statement is also called a root, because for the given basis the
αi can be interpreted as the components of a vector in h∗. The eα are called ladder operators.
We will in the following need an inner product on the space of roots. Every inner product
induces an isomorphism between a vector space and its dual, so here between h∗ and h∗∗ = h.

Definition: The Cartan-Killing form is the bilinear and symmetric map g×g→
C defined by

κ(x, y) = tr(adx ◦ ady)1. (.6)

It fulfils the invariance property κ([x, y], z) = κ(x, [y, z]).

The Cartan-Killing form can be used to define semisimplicity of a Lie algebra g, which is
equivalent to κ being non-degenerate on g (i.e. if κ(x, y) = 0 for all y ∈ g, then x = 0).
One can show, that κ is a proper inner product on h as well. Therefore we associate in
the spirit of the Riesz representation theorem with any root α ∈ h∗ up to a normalization
constant cα an element hα ∈ h, such that α(h) = cακ(hα, h) for all h ∈ h. The inner product
of two roots α and β is then defined as

(α, β) := cαcβκ(hα, hβ) (.7)

and therefore by bilinearity on the space spanned by the roots.
The inner product on the roots provides a geometrical picture of them. One divides the root
space into half-spaces V ± by a hyperplane, which does not contain any of the roots. Then
one says quite arbitrarily, that α is a positive root, if it lies in V + and a negative root, if it lies
in V −. We also write α > 0 and α < 0 respectively.
A convenient basis for the set of positive roots are given by the following notion.

Definition: A simple root is a positive root α(i), that cannot be obtained as a
linear combination of other positive roots with positive coefficients.

There are r simple roots and any other positive root can be written as a linear combination
of simple roots with integral coefficients.
Also with every simple root one can associate an element in hα

(i) ∈ h, such that eα
(i)

, e−α
(i)

and hα
(i)

fulfil the sl(2) commutation relations, where eα
(i) ∈ gα(i) and e−α

(i) ∈ g−α(i) are the
elements in the fourth property of the root spaces. With a proper choice of the normaliza-
tion constant cα, namely 1

2(α, α), hα
(i)

coincides with the original Cartan generator hi. All
this will become important, when tracing the general finitedimensional representations of
semisimple Lie algebras back to the sl(2) case.

1The trace is well-defined since we assumed finite dim(g).
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We now define, what a representation is:

Definition: A representation ρ of a Lie algebra g on a vector space V is a homo-
morphism

ρ : g→ gl(V ), (.8)

such that ρ([x, y]) = [ρ(x), ρ(y)]. We will also denote it by (ρ, V ).

Representations establish the connection between the abstract algebras and concrete phys-
ical systems, which can often be described as vector spaces, e.g. the Rn or a Hilbert space
H. A representation is called faithful, if ρ is an injective map. We will in this section only be
interested in the case, that V is finitedimensional.
For a representation ρ on V , a subspace W of V is called invariant, if ρ(x)w ∈W for all x ∈ g

and w ∈W . A representation is called irreducible, if it has no non-trivial invariant subspaces.
One usually only classifies the irreducible representations, since e.g. any finitedimensional
representation of a semisimple Lie algebra is isomorphic to a direct sum of such representa-
tions.
We have

Schur’s Lemma: If (ρ, V ) is an irreducible representation and an element ρ(x0) ∈
gl(V ) commutes with all other elements ρ(x), then it must be a multiple of the
identity operator and therefore has constant value within the representation.

For every vector space V , ρ(x) = 1 ∈ gl(V ) for all x ∈ g defines a representation of g, which
is called the trivial representation.
We considered the map

ad : g→ gl(g) (.9)

defined by
adx(y) = [x, y], (.10)

before. It yields a representation, called the adjoint representation of g, where the vector
space V the Lie algebra g itself.
The following definition generalizes the notion of roots from the adjoint representation to
any representation ρ:

Definition: An element µ ∈ h is called a weight for (ρ, V ), if there is a vector
0 6= v ∈ V , such that

ρ(h)v = (µ, h)v (.11)

for all h ∈ h. Such a v is called a weight vector for the weight µ, all vectors
fulfilling this equation form the weight space with weight µ and the dimension of
this weight space is called the multiplicity of the weight µ.

Comparing this defintion with the previously introduced roots, we see, that they are the
weights of the adjoint representation. We adopted the scalar product notation for the roots
also for the weights, since we saw, that any element in h can be identified with one in h∗.
We can now also explain, why the eα are called ladder operators: if their representatives
ρ(eα) are applied to a weight vector with weight µ, one receives other weight vectors with
weights µ+ α.
Taking tensor products of vector spaces is a well-known construction, which is often used in
physics. Therefore we will also define the tensor product representations here.
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Definition: Let g be a Lie algebra and (ρ1, V1) and (ρ2, V2) representations of g,
then the tensor product of ρ1 and ρ2 acting on V1⊗V2 is defined as (ρ1⊗ρ2)(x) =
ρ1(x)⊗ 1 + 1⊗ ρ2(x).

The probably most familiar example is the tensor product of two sl(2) representations, which
e.g. is used in the description of spin-orbit-coupling.
Let us therefore consider the finitedimensional irreducible representations of sl(2) as an
example. From the commutation relations (.2), we see, that x(y) increases (decreases) the
weight of h by 2. Since the representation space V is finitedimensional, there must be a high-
est weight Λ with weight vector vΛ. All other weights then have the form Λ − 2n. For the
same reason, there must be a n0, such that the weight spaces of the weights Λ−2n for n > n0

are zerodimensional. It turns out, that this can only be the case, if Λ is a non-negative integer.
This in fact exhausts all finitedimensional irreducible representations of sl(2). The weights
of a representation with highest weight Λ are then of the form Λ,Λ − 2, .. − Λ + 2,−Λ and
each weight space is onedimensional.
If ρΛ1 and ρΛ2 are two representations of sl(2), then by the Clebsch-Gordan decomposition
their tensor product is isomorphic to the following direct sum of irreducible representations:

ρΛ1 ⊗ ρΛ2 = ρ|Λ1−Λ2| ⊕ ρ|Λ1−Λ2|+2 ⊕ ..⊕ ρΛ1+Λ2 . (.12)

We will see, that the theory of finding the finitedimensional representations of semisimple
Lie algebras is based on the idea to reduce the problem to the well established sl(2) case.
Here the sl(2) subalgebra associated with the simple roots will play a mayor role.
This idea will lead to the most important theorem in the theory of irreducible finitedimen-
sional representations (ρ, V ) of semisimple Lie algebras g, the theorem of the highest weight.
Let h be the Cartan subalgebra of g. We saw, that with every Cartan element hi ∈ h there is
associated a sl(2) subalgebra involving the ladder operators corresponding to a simple root
α(i). From the sl(2) representation theory it follows, that there is a basis of V on which the
Cartan subalgebra h of g acts diagonally. Then there is a decomposition of V into weight
spaces Vλ, such that

ρ(hi)vλ = λivλ (.13)

for all vλ ∈ Vλ and i = 1, .., r. If a representation of the Lie algebra should be finitedimen-
sional, then it must be finitedimensional with respect to the sl(2) subalgebras as well.
We had seen, that hα

(i)
= hi then has only integer eigenvalues, so all

λi =
2(α(i), λ)
(α(i), α(i))

(.14)

are integer. λ is hence a weight of a finitedimensional representation, if and only if it is a
integral linear combination

λ =
r∑
i=1

λiΛ(i) (.15)

of the fundamental weights Λ(i) (defined by 2 · (Λ(i), α
(j)) = δji · (α(j), α(j))) and the λi are

then called integral weights.
Since ρ should be finitedimensional, there must exists a maximal weight Λ, such that for a
weight vector vΛ ∈ VΛ

ρ(eα)vΛ = 0 (.16)
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for all α > 0. If this Λ is unique, it is called the highest weight of the representation. All
numbers Λi in Λ =

∑
i ΛiΛ(i) are non-negative and such Λi are called dominant integral

weights.
With these remarks we can state the central theorem, which we subdivide into three parts.

Theorem of the highest weight:

• Every irreducible representation of a semisimple Lie algebra has a highest
weight and two representations with the same highest weight are equiva-
lent.
• The highest weight of a irreducible representation is a dominant integral

element.
• Every dominant integral element occurs as the highest weight of an irre-

ducible representation.

Sometimes in physics one works with lowest instead of highest weight, especially when
some form of energy is involved, which is usually assumed to be bound from below. Then
one argues the same way, that their must be a minimal weight, whose weight vector is anni-
hilated by all negative roots.
The last part of the theorem is the hardest to prove. Given a dominant integral element Λ,
one needs to find a way to construct a representation, which has Λ as a highest weight. We
note, that this leads to the notion of Verma modules and refer to the literature for details.

.1.2 Lie algebras and Lie groups

Lie groups appear in physics as groups of symmetry transformations of a spacetime. Ex-
amples are the group in rotations in classical physics, the Lorentz group in special relativity
and the conformal group. To every Lie group there is an associated Lie algebra, which as
discussed in the previous section are linear spaces. This fact makes is easier to study proper-
ties of Lie groups on the Lie algebra side. Most informations about a Lie group are already
encoded in its Lie algebra and they can be transferred back to the group via the exponen-
tial mapping, which in a way allows to reconstruct a Lie group from a Lie algebra. In this
section, we will first make these statements more precise and then clarify the connection be-
tween representations of a Lie algebra and representations of associated Lie groups.
We first state, how a Lie group is defined:

Definition: A Lie groupG is a differentiable manifold, which has a group struc-
ture, such that the group operations

· : G×G→ G , (g1, g2) 7→ g1 · g2 and (.17)

(.)−1 : G→ G , g 7→ g−1 (.18)

are differentiable.

Many of the Lie groups used in physics are matrix Lie groups, i.e. closed subgroups of the
general linear groups GL(n,R) or GL(n,C).
Given a Lie group G, one can define its Lie algebra g as the set of left invariant vector fields
with the bracket being the commutator of two vector fields. We define the left translation
La : G→ G of an element g by a as

Lag = ag (.19)
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If x is a vector field on G, then x is said to be left-invariant, if

La∗x(g) = x(ag), (.20)

where (La∗x)[f ] = x[f ◦La] is the differential map induced by La (f ∈ F (M) = {h : G→ R}
is any scalar function).
Consider now an element v of the tangent space TeG at the identity element e ∈ G. Then for
all g ∈ G,

xv(g) = Lg∗v (.21)

is a left invariant vector. Conversely, a left invariant vector field x defines a unique vector
v = x(e) ∈ TeG. Hence TeG and the set of left invariant vector fields, which we denote by
g, are isomorphic as vector spaces. For general vector fields X,Y one defines the Lie bracket
[., .] as

[X,Y ]f = X[Y [f ]]− Y [X[f ]] (.22)

for f ∈ F (M). Then the set g of left invariant vector fields endowed with the Lie bracket
fulfils all the defining properties of a Lie algebra and is called the Lie algebra of the Lie group
G2.
Conversely, one can recover a Lie group (at least in the connected component of the iden-
tity element) from a Lie algebra via the so-called exponential mapping. We begin with the
following definition

Definition: A one-parameter subgroup of a Lie group G is a curve γ : R→ G,
that fulfils γ(t)γ(s) = γ(t+ s).

With every element x ∈ TeG there is associated a geodesic s(t) (a straightest possible line in
G), such that

s(0) = e and
ds

dt
(t = 0) = x. (.23)

Then one defines the exponential map exp : TeG→ G by

X 7→ exp(x) := s(1). (.24)

With this map one can relate vectors x ∈ TeG ' g with (local) one-parameter subgroups of
G via

t ∈ [−ε, ε] 7→ gxt = exp(tx). (.25)

The exponential fulfils basically the usual properties of exponentials, except exp(x) exp(y) =
exp(x + y), which is only true, if [x, y] = 0. The generalization of this relation is called the
Baker-Campbell-Hausdorff formula and in lowest orders it reads

exp(x) exp(y) = exp(x+ y +
1
2

[x, y] +
1
12

[x, [x, y]] +
1
12

[[x, y], y] + ..) (.26)

If G is a matrix Lie group, the exponential mapping is the usual power series

exp(tx) =
∞∑
n=0

tn

n!
xn (.27)

2The construction could of course also have been done with right translations and with TeG replaced by any
other tangent space TgG
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for x ∈ G. In a neighborhood U of the unit element, every element g ∈ U can be written as

g = exp(x) (.28)

for some suitable x ∈ g.
We will discuss compact and non-compact Lie groups later, but we note here the following
facts: If G is connected and compact, then U = G. If it is compact, but not connected, then
U = G0, where G0 is the connected component of the unit element e ∈ G. For non-compact
G it is not necessarily true anymore, that exponentiation yields the full group.

The exponential mapping is crucial in relating the representations of a matrix Lie group
with the representations of its Lie algebra. We define

Definition: A Lie group homomorphism Φ between two Lie groups G and H is
a continous group homomorphism. A Lie algebra homomorphism between two
Lie algebras g1 and g2 is a vector space homomorphism π : g1 → g2, that fulfils
π([x1, x2]) = [π(x1), π(x2)] for all x1, x2 ∈ g1.

Now we can say, what a representation of a Lie group is.

Definition: A representation ρ of a Lie group G on a (real or complex) vector
space V is a Lie group homomorphism

ρ : G→ GL(V ). (.29)

Let now Φ : G→ GL(V ) be such a representation and let g and gl(V ) denote the respectively
Lie algebras of G and GL(V ). Then we have the following special case of a theorem, that is
valid for all homomorphisms between two Lie groups:

Theorem: [13] There exists a unique real linear map φ : g→ gl(V ), such that

Φ(exp(x)) = exp(φ(x)) (.30)

for all x ∈ g. This φ is a Lie algebra homomorphism.

If in turn a Lie algebra homomorphism φ : g → gl(V ) is given and G is simply connected,
also the converse holds. Thus we have the

Theorem: Representations of a simply connected Lie groupG are in one-to-one
correspondence with the representations of its Lie algebra g.

For a connected Lie group G, a simply connected group G̃ is called its universal covering
group, if there is surjective map p : G̃→ G and if for each g ∈ G there is a connected open set
U ⊂ G containing g, such that p−1(U) is a disjoint union of open sets in G̃, each of which is
mapped homeomorphically onto U by p. G has then the same Lie algebra as G̃.
We note, that the last theorem therefore implies, that for a general Lie groupGwith Lie alge-
bra g, the representations of g are one-to-one to the representations of the universal covering
group G̃ of G.
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.1.3 Casimir operators

We construct an associative algebra T g associated with a Lie algebra g, which contains g as a
subalgebra and whose commutator reduces to the Lie bracket on g. Since g is a vector space,
we can take its n-fold tensor product

gn =
n⊗
j=1

g (.31)

and form the direct sum of all gn:

T g =
∞⊕
n=0

gn. (.32)

This so-called tensor algebra of g is endowed with the tensor product ⊗ : (x1, x2) 7→ x1 ⊗ x2.
Therefore the gn are graded:

gn ⊗ gm ⊆ gn+m. (.33)

In the light of the underlying Lie algebra g the two elements x1 ⊗ x2 − x2 ⊗ x1 ∈ g2 and
[x1, x2] ∈ g1 should be "the same". If one identifies them and also does the corresponding
identification for higher tensor products, one ends up with the so-called universal enveloping
algebra U(g) of g. If I is the smallest ideal, that contains all elements

x1 ⊗ x2 − x2 ⊗ x1 − [x1, x2] ∈ T g (.34)

with x1, x2 ∈ g, one can describe this construction as taking the quotient

U(g) = T g/I. (.35)

Let now {Ta} be a basis of generators of g. We define the quadratic Casimir operator

C(2) =
n∑

a,b=1

κabT
aT b, (.36)

where
κab =

1
Iad

κ(T a, T b) (.37)

and Iad is a normalization constant 3. Then C(2) commutes with all elements x ∈ U(g), so of
course also with all x ∈ g. By Schur’s Lemma it must therefore have a constant value within
a representation.
In the case of sl(2) the quadratic casimir operator is

C(2) =
1
4
h2 +

1
2

(xy + yx) (.38)

and its value within the Λ highest weight representation if 1
4Λ(Λ+2). In terms of the angular

momentum generators {J1, J2, J3} and the spin quantum number j = Λ/2 it reads

C(2) = ~J2 = J2
1 + J2

2 + J2
3 (.39)

3The index ad stands for the adjoint representation, on which we defined the Cartan-Killing form.
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and has the value j(j + 1) within a j multiplet.

There are also higher order Casimir operators of the form

C(n) =
∑

a1,..,an

da1,..,anT
a1 ..T an , (.40)

which also take constant values within a representation. da1,..,an are suitable "invariant ten-
sors" of the adjoint representation. There are r = rank(g) Casimir operators for a semisimple
Lie algebra g and they form a basis of the center Z(U(g)) of the universal enveloping alge-
bra.
Since a representation is also determined by r quantum numbers (the components of the
highest weight), a representation can equivalently be characterized by all the values of the
Casimir operators in it.

.1.4 Characters

Characters are a compact way of encoding the weight system of a representation (ρ, V ). The
first step in to introduce a generating function. Normally, if one wants to generate a certain
series fn, one introduces a Laurent series

f(x) =
∞∑

n=−∞
fnx

n, (.41)

which contains the same informations as the coefficients fn, which can be obtained as Taylor
coefficients of f(x).
For our purposes, we have to modify this slightly. We do not sum over the integer numbers,
but over the weights λ of a representation. We introduce a formal exponential eλ, that fulfils
eλe−λ = e−λeλ = 1 and eλ+µ = eλeµ for all weights λ and µ. Then we consider the generating
function

χρ(µ) =
∑
λ

multρ(λ) exp[(λ, µ)]. (.42)

The argument µ is an r component vector of formal variables. The weights λ are linear
functions on the Cartan subalgebra h, therefore so are eλ and χρ. As a function on h, χρ is
called the character of the representation (ρ, V ).
For our standard example, the Λ highest weight representation of sl(2), the weights are the
numbers λ = Λ,Λ− 2, ..,−Λ + 2,−Λ and the character is

χΛ(µ) =
∑
λ

exp[(λ, µ)] =
sinh(µ(Λ + 1)/2)

sinh(µ/2)
. (.43)

We mention two immediate properties

• For a representation (ρ, V ), which is a direct sum V =
⊕

i Vi of g-representations
(ρi, Vi),

χρ =
∑
i

χρi (.44)

• For the tensor product ρ1 ⊗ ρ2 of two g-representations (ρ1, V1) and (ρ2, V2),

χρ1⊗ρ2 = χρ1 · χρ1 . (.45)
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.1.5 Non-compact Lie algebras

Not all results from the representation theory of Lie algebras of g carry over to the case, when
the associated Lie group G is non-compact. This is quite unfortunate, since several groups
of physical interest, like the Poincaré group or the conformal groups are of this type.

We start with the observation, that the Killing form κ of g can be used to characterize com-
pact Lie groups:

Weyl’s Theorem: Let G be a Lie group with semisimple Lie algebra g. Then G
is compact, if and only if the Killing form on g is negative definite.

g is then said to be of compact type, otherwise of non-compact type. It should be noted as
quite remarkable, that the algebraic statement of definiteness of a bilinear form is equivalent
to the topological property of compactness.
Every complex semisimple Lie algebra has a so-called compact real form. The real forms of a
Lie algebra g are the real Lie algebras, which have g as their complexification. Among these
there is a unique one, on which the Killing form is negative definite, therefore it is called the
compact real form.
We aim now towards the Cartan decomposition, which is the decomposition of a Lie algebra
or Lie group into a compact and a non-compact part. For a matrix Lie algebra g, we define
the map θ(x) = −x†for x ∈ g4 . If g is real and semisimple and if the symmetric bilinear form
κθ(x, y) = −κ(x, θy) is positive definite, then θ is called a Cartan involution. Every such g

has essentially a unique θ (up to inner automorphisms), which yields a decomposition of g

into eigenspaces k and p corresponding to eigenvalues +1 and−1, the Cartan decomposition:

Theorem: g is a direct sum k⊕ p, where

• The restriction of the Killing form κ of g to k (p) is negative (positive) definite.

• [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k

Any other subalgebra k′ with κ(k′, k′) negative definite is related to a subalgebra
of k by an inner automorphism.

This theorem has an analogue on the group side:

Lemma: Let G be a connected Lie group with a finite center. If g = k⊕ p is the
Cartan decomposition of its Lie algebra g, then

G = PK, (.46)

where P is the image of p under the exponential mapping and K the compact
subgroup of G with Lie algebra k.

So every element g ∈ G can be written as a unique product of certain p ∈ P and k ∈ K.
We note, that the finiteness of the center is needed to ensure the compactness of K. For
semisimple Lie groups G it suffices to have discrete center.
We illustrate the Cartan decomposition in both forms with a simple matrix example: LetG =
SL(n,R) be the group of invertible unimodular real n×n matrices and K = SO(n,R) be the

4The † stands for the adjoint, i.e. the complex conjugated transposed matrix.
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orthogonal n×nmatrices with determinant +1. The Lie algebra g ofG are the traceless n×n
matrices. Because the groups are real, the Cartan involution becomes taking the negative
transpose, θ(x) = −xt. Then for x ∈ k, we get −xt = x, i.e. x is skewsymmetric, and for
x ∈ p, we get −xt = −x, i.e. x is symmetric. Therefore we can conclude, that g = k + p is the
separation into symmetric and antisymmetric matrices.
On the group level, one has a similar involution Θ and it is in this case Θ(g) = (g−1)t. We
have (g−1)t = g for g ∈ K, i.e. g is an orthogonal matrix. For g ∈ P , because of gt = g, g is
symmetric and since det(g) = +1, it can be joined to the identity (which is positive definite)
by a curve consisting of symmetric matrices, so g must be positive definite. Then G = PK is
the polar decomposition of a matrix as the product of a symmetric positive definite and an
orthogonal one.
Based on the Cartan decomposition, there is another type of decomposition of semisimple
Lie groups G of noncompact type, the so-called Iwasawa decomposition. It also needs a G
with a finite center, but in contrast to the Cartan decomposition (cf. section .1.2), here the
factors are closed subgroups (where P in general was not).
Let g = k + p be the Cartan decomposition of the Lie algebra g of G.
We consider a Cartan subalgebra a of p. The root space ∆ with respect to a can be splitted
into the set of positive roots ∆+ and negative roots ∆−. This can e.g. be done by taking a
fixed regular element A0 ∈ a 5 and saying, that all roots λ with λ(a0) > 0 are positive.
We denote by n+ and n− the subspaces of g spanned the root vectors belonging to the positive
and negative roots, respectively.
Then the following three statements involving n+ (and of course similar versions with n−)
hold:

• n+ is nilpotent.

• a + n+ is solvable.

• g = k + a + n+ (unique).

The group version of the last fact is the Iwasawa decomposition:

Theorem: Let K,A,N+ denote the connected subgroups of G belonging to the
subalgebras k, a and n+. Then

G = KAN+, (.47)

i.e. every element g ∈ G is g = kan+ with k ∈ K, a ∈ A and n+ ∈ N+.

Again we consider the example G = SL(n,R) and K = SO(n,R). a can be taken as the
Lie algebra of trace zero diagonal matrices. Since a is abelian, all ada, a = (aij) ∈ a can be
simultaneously diagonalized:

ada(x) = [a, x] = λ(a)x, (.48)

where x = (xij) ∈ g. We consider a with unequal diagonal elements6, which are ordered,
such that aii > ajj for i > j. Writing the component version of (.48) and using the diagonality
of a, we get the condition

aiixij − xijajj = λxij ⇐⇒ xij(λ− aii + ajj) = 0 (.49)
5A0 regular means, that the centralizer C(a0) = {B ∈ p | [B, A0] = 0} of A0 in p is a Cartan subalgebra.
6Then a is a regular element.
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We now additionally demand, that no two pairs of diagonal elements differ by the same
amount:

aii − ajj 6= akk − all (.50)

for (i, j) 6= (k, l). Then xij can be non-zero only for one pair (i, j) and because of the ordering
of the diagonal elements and the fact, that λ > 0, we have i > j. So the space n+ spanned by
these matrices are of the strictly lower triangular matrices. It is then easily seen, that AN+ is
the group of lower triangular matrices.
Therefore in this case the Iwasawa decomposition G = KAN+ is the classical statement
(sometimes called QL decomposition), that any non-singular matrix can be written as a
unique product of an orthogonal and a lower triangular matrix.
The advantage of such a decomposition into group factors is, that it makes it easier to use
the theory of induced representations.
We comment briefly on this topic. The notion describes the induction of a representation of
a whole Lie group G by a subgroup H . We state a fact, which is known as Weyl’s unitary
trick in the form, that will be relevant for us:

Theorem: Every semisimple Lie group G has a complexification GC, which is
a complex Lie group and has a maximal subgroup K. Then one can obtain the
finitedimensional representations of G from those of K.

A slight modification of this will be used in the next section, where G is an infinite-sheeted
covering of the conformal group C4 = SOe(4, 2)/Z2 and K = R× SU(2)× SU(2).
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.2 Unitary positive energy representations of SU(2, 2)

The unitary positive energy representations of the universal covering group G̃ of the matrix
group G = SU(2, 2)/Z4 have been obtained by Mack [19]. G is locally isomorphic to the
conformal group, i.e. they have the same Lie algebra g. The analysis relies on the theory
sketched in the previous appendix.
The groupG = SU(2, 2) is defined similarly to the pseudoorthogonal group. It is the follow-
ing set of complex 4x4 matrices

G = {m ∈Mat4(C) |m−1β = βm∗ , det(m) = 1} (.51)

for

β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (.52)

Its Lie algebra g is the set

g = {m ∈Mat4(C) | tr(m) = 0 , −mβ = βm∗}. (.53)

and it is real.

The Lie algebra

We consider the real Cartan subalgebra h of g consisting of all diagonal matrices and the
following basis of ih

h0 =
1
2

(
I 0
0 −I

)
, h1 =

1
2

(
σ3 0
0 0

)
, h2 =

1
2

(
0 0
0 σ3

)
(.54)

where I is the 2x2 unit matrix and σ3 = diag(+1,−1) the third Pauli matrix.
We have a Cartan decomposition g = k+p. The explicit form of the matrices inX ∈ p follows
from the requirement, that θ(X) = −X . With the definition on the Cartan involution and
(.53) we conclude, that Xβ = −βX and hence

X =
(

0 z
z∗ 0

)
(.55)

with a complex 2x2 matrix z. Analogously, the matrices X ∈ k fulfil = Xβ = βX . The
associated maximal compact subgroup of G is K = S(U(2)× U(2)) and consists of the pairs
of two U(2) matrices k1 and k2, such that det(k1) det(k2) = 1.
Let now gc and hc denote the complexifications of g and h.
If n± denotes the upper/lower triangular matrices in gc, we can then obviously write

gc = hc + n+ + n−, (.56)

because every matrix x ∈ gc can be decomposed into a sum of three matrices of the respective
types.
The Cartan decomposition in turn yields a splitting into a compact and non-compact part

gc = kc + pc, (.57)
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on which the Killing form is negative and positive definite respectively.
Forming the intersection of (.56) and (.57), we get

gc = hc + n+ ∩ kc + n− ∩ kc + pc ∩ n+ + pc ∩ n− (.58)

We sketch now, how a basis of gc, that suits this decomposition, can be found.
One quickly calculates, that the possible eigenvalues of adh1 and adh2 in pc ∩ n± are ±1/2,
which we use to introduce a basis X+

jk with j, k = ±1/2 of pc ∩ n+, and out of this a basis
X−jk = (X+

−j−k)
∗ of pc ∩ n−. If further we pick the basis X0

jk of (n+ + n−) ∩ kc, that fulfils

adh0(X0
jk) = 0 , adh1(X0

jk) = jX0
jk , adh2(X0

jk) = kX0
jk, (.59)

where either (j, k) = (0,±1) or (j, k) = (±1, 0), we end up with a basis of gc, that has commu-
tation relations in the Cartan normal form (with respect to the compact Cartan subalgebra
h).

The Lie group

The universal covering group G̃ ofG is an infinite sheeted covering. It consists of homotopic
equivalence classes of directed paths in G starting at the identity. Because of the chain of
isomorphisms

C4 ' SOe(4, 2)/Z2 ' G/Z4 ' G̃/Z2 × Z, (.60)

the center of G̃ is not finite, but we will assume that this poses no problem and the results
from the first appendix still hold.
The Iwasawa decomposition of G is then

G = KApNp, (.61)

where K is the maximal compact subgroup mentioned before.
Furthermore, Ap = AmA and Np = NmN , with Am and Nm come from the Iwasawa decom-
position

L = UAmNm (.62)

of the Lorentz group.
Explicitly, A and N are the dilatations and the special conformal transformations in an ap-
proppiate 4x4 matrix form, Am are the Lorentz boosts in z-direction and Nm is a twodimen-
sional abelian group of a lightlike vector pointing in z-direction. U = SU(2) is the maximal
compact subgroup of the Lorentz group.
Because ApNp is simply connected, any two paths with the same end points are homotopic
to each other and we can write G̃ as

G̃ = K̃ApNp, (.63)

where K̃ is the universal covering of K (which is not compact anymore and which we again
asuume to pose no problems.). Explicitly

K̃ = R× SU(2)× SU(2). (.64)

Since the center of G̃ is contained in K̃ it suffices to consider representations of K̃, because
it induces representations of G̃. We have hence, that the representations of G̃ can be labelled
by three numbers

λ = (d, j1, j2). (.65)
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Energy positivity

If H is a Hilbert space with a unitary representation U7 of G̃, the condition of energy posi-
tivity is imposed by requiring

〈ψ,U(H0)ψ〉 ≥ 0 (.66)

for all vectors ψ ∈ D ⊂ H, where D is the G̃ invariant domain of U(H0) (cf. section 2.1). H0

is the conformal Hamiltonian 1
2(P 0 + K0). Since K0 = Ir ◦ P0 ◦ Ir = Ir ◦ P 0 ◦ Ir, one can

equivalently demand
〈ψ,U(P 0)ψ〉 ≥ 0. (.67)

By the spectral theorem, the spectrum of U(H0) is discrete and by (.67), it is bounded from
below, let us say by d. The eigenvalues then take values d+m, m ∈ N0.

Lowest weight vectors

Let T be an irreducible representation of gc on a vector space V . We call Ω ∈ V a lowest
weight vector with lowest weight λ, if it is annihilated by all operators T (X) for X ∈ n− a
lower triangular matrix:

T (X)Ω = 0 (.68)

and
T (h)Ω = λ(h)Ω (.69)

for all Cartan elements h ∈ hc.
If V is finitedimensional, one can use the classical theorems, which state, that T is a lowest
weight representation, which restricts to a representation of kc. The lowest weight is then of
the form

(d,−j1,−j2) (.70)

and group and algebra representations are equivalent.
For V infinitedimensional, T need not have a lowest weight, but for unitary positive energy
representations U (assuming they exist) this will turn out to be the case.
Because of the discrete spectrum of U(H0), the Hilbert space decomposes into Hilbert spaces
V µ, which decompose into copies of one unitary irreducible representation of K̃ with lowest
weights µ of the form

(d+N,−J1,−J2). (.71)

Another result in representation theory says, that for finite center the V µ are finitedimen-
sional, when one decomposes with respect to the maximal compact subgroup. Here neither
the center of G̃ is finite, nor is K̃ compact, but we will again assume that the result remains
valid. Then the algebraic sum V of all the V µ is a vector space and a common dense domain
for all X ∈ g. So there is an irreducible representations of the Lie algebra by operators U(X)
on V associated to the unitary irreducible representation (UIR) U of the group on H. Con-
versely, any representation of g by skew-hermitean operators on V can be exponentiated to
a UIR of the group. This is the classical result of equivalence of representations of a simply
connected Lie group and its Lie algebra. If d is the lowest eigenvalue of U(H0), there must
be a weight λ = (d,−j1,−j2) with 2j1,2j2 non-negative integer and an associated weight

7We denote a general representation of G̃ by T and a unitary one by U .
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vector, which can be checked to be annihilated by allX ∈ n− 8, so it is a lowest weight vector
and we have the following result:

Theorem: A unitary irreducible representation of G̃ with positive energy has
a unique lowest weight. Any two representations with same lowest weight are
unitarily equivalent.

Here saying, that a representation of G̃ has a lowest weight, means, that the associated rep-
resentation of gc does.

Unitarity of the representation

Demanding unitarity of the representation imposes restrictions on the possible lowest weights,
more precisely on the scaling dimension. It is imposed via an algorithm for computing
norms of the V -spanning vectors

ψ{n} = T (X1)n1 ...T (X6)n6Ω (.72)

where the Xi are the basis vectors of n+ from above and ni ∈ N (i = 1, .., 6). The scalar
product of two vectors ψ{n} and ψ{n′} is computed by commuting operators to the vacuum
vector using the commutation relations mentioned above. This scalar product should induce
a positive definite norm on these vectors.
There appear five different cases depending on the quantum numbers, for which this re-
quirement has to be imposed separately. The resulting restriction on the possible d and the
Poincaré content (mass and spin/helicity) of the representation are listed in the following
table:

Spin quantum numbers Scaling dimensions Poincaré content [m, s]
j1j2 = 0 d = j1 + j2 + 1 [0, j1 − j2]
j1j2 = 0 d > j1 + j2 + 1 [m, j1 + j2]

j1 6= 0, j2 6= 0 d = j1 + j2 + 2 [m, j1 + j2]
j1 6= 0, j2 6= 0 d > j1 + j2 + 2 [m, |j1 − j2|, .., j1 + j2]

In addition, there is a onedimensional trivial representation d = j1 = j2 = 0.

8Here one uses the commutation relations of the chosen basis and the fact, that weights j in a SU(2)
representation j1 have to fulfil the equation |j| ≤ j1.
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.3 The hypergeometric functions pFq

We summarize the most important properties of the (generalized) hypergeometric function.
It is defined as

pFq(a1, .., ap; b1, .., bq;x) =
∞∑
n=0

(a1)n · .. · (ap)n
(b1)n · .. · (bq)n

xn

n!
, (.73)

where

(a)n = a(a+ 1)..(a+ n− 1) =
Γ(a+ n)

Γ(a)
(.74)

is the Pochhammer symbol. The definition of the (a)n makes clear, that if one of the ai is a
negative integer −m, pFq has just finitely many terms:

pFq(a1, ..,−m, .., ap; b1, .., bq;x) =
m−1∑
n=0

(a1)n · .. · (−m)n · .. · (ap)n
(b1)n · .. · (bq)n

xn

n!
(.75)

The most important of the pFq is Gauss’ hypergeometric functionF (a, b; c;x) ≡ 2F1(a, b; c;x).
It generalizes various special functions and solves the hypergeometric differential equation

x(1− x)
d2f

dx2
+ [c− (a+ b+ 1)x]

df

dx
− abf = 0. (.76)

The other solution to this second order equation is

xλ · F (a+ λ, b+ λ; c+ λ;x) (.77)

with λ = 1− c, which is essentially a hypergeometric series as well.
Beside other series representations than (.73), there are also integral representations of the
hypergeometric function like

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt
tb−1(1− t)c−b−1

(1− tz)a
. (.78)

Tables list relations between hypergeometric functions with different values ai, bi and also
with derivatives of the function. They are proven using the different representations.
The identity

F (k − 1, k − 1; 2k − 2;x) +
k2

4(2k − 1)(2k + 1)
· x2 · F (k + 1, k + 1; 2k + 2;x)

−(1− x

2
) · F (k, k; 2k;x) = 0

was proven in section 4.1.
There are also identities, which just hold for certain parameter or function values like

F (−n, b, c; d, e; 1) =
(d− b)n

(d)n
F (−n, b, e− c; e, b− d− n+ 1; 1) (.79)

for n ∈ N, which was used in 4.3.3.
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.4 Details of the restricted six-point function PWE

Here we display some details of the derivation of the system of three partial differential
equations, that determine the partial waves of the conformal six-point function (5.11) re-
stricted to two dimensions.
When the differential operatorsD2 andD3 hit the expression (5.15), both the distance squares
in front and the cross ratios within the function fbcd ≡ fabcde have to be differentiated using
the product and chain rule. Therefore the innocuously looking expression (5.27) is in fact
very long for the three cases. The calculation was done computer aided.
The first important step in putting the expression back together in terms of the cross ratios
was to note, that if

sijkl =
xijxkl
xikxjl

(.80)

is differentiated e.g. by xi, then

∂isijkl =
xkl
xikxjl

− xijxkl
x2
ikxjl

=
1
xij

sijkl −
1
xik

sijkl. (.81)

Appropiate adjustments of signs have to be made, depending on where the points appear in
a cross ratio, since obviously

∂ixij = −∂ixij . (.82)

For second derivatives we get terms like

∂l∂isijkl = ∂l

[
xkl
xikxjl

− xijxkl
x2
ikxjl

]
= − 1

xikxjl
+

xkl
xikx

2
jl

+
xij
x2
ikxjl

− xijxkl
x2
ikx

2
jl

= − 1
xijxkl

sijkl +
1

xijxjl
sijkl +

1
xklxik

sijkl −
1

xikxjl
sijkl (.83)

The factors in front of the sijkl must then be combined with other terms to expressions, that
only contain the cross ratios s, t, u.
If one does this correctly, the following three partial differential equations arise. For the
Casimir insertion between the second and the third field

l3(l3 − 1)fbcd + (s− t)2∂s∂tfbcd − (l1 + l3 − l2)
(s− t)(t− u)

s− u
∂tfbcd

−(l1 − l2 − l3)
(s− t)(u− s)

u− t
∂sfbcd = b(b− 1)fbcd, (.84)

between the third and the fourth field

−(l4 + l5+6)(l4 + l5 + l6 − 1)fbcd + (s− t)2∂s∂tfbcd + (t− u)2∂t∂ufbcd

+(s− u)2∂s∂ufbcd = c(c− 1)fbcd, (.85)

and between the fourth and fifth field

l4(l4 − 1)fbcd + (1− s)s2∂2
sfbcd + (1− t)t2∂2

t fbcd + (1− u)u2∂2
ufbcd + (2− s− t)st∂s∂tfbcd

+(2− t− u)tu∂t∂ufbcd + (2− s− u)su∂s∂ufbcd + (2l4 − (l4 − l5 + l6 + 1)s)s∂sfbcd
+(2l4 − (l4 − l5 + l6 + 1)t)t∂tfbcd + (2l4 − (l4 − l5 + l6 + 1)u)u∂ufbcd = d(d− 1)fbcd.

(.86)
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