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Introduction

The discovery of the accelerated expansion of the universe has led to renewed interest in the
cosmological constant. This is due to the fact that a positive cosmological constant is a possible
cause for such an expansion. Much of this newfound interest extends to de Sitter space. The
reason for this is twofold: First, de Sitter space is the most prominent solution of Einstein’s
equation with a positive cosmological constant. Second, according to the cosmic no-hair con-
jecture, every ever-expanding universe with a positive cosmological constant will asymptotically
approach de Sitter space.

Spacetimes that asymptotically approach de Sitter space are called asymptotically de Sitter.
A noteworthy example of such a spacetime might be our universe: If its expansion is caused by
a cosmological constant, it might comply with the cosmic no-hair conjecture. In this thesis, we
will have a close look at asymptotically de Sitter spaces. We will try to find conserved quantities
for these spacetimes.

Conserved quantities play a major role in all physical theories. They correspond, for instance,
to notions of mass and angular momentum. Different methods have been employed to construct
such quantities in asymptotically de Sitter spacetimes [1, 2, 3]. But so far, no attempt has been
made to approach the construction within a Hamiltonian framework. In this thesis, we will
construct conserved quantities for asymptotically de Sitter spacetimes by using the covariant
phase space formalism of Wald et al. [4]. It is a Hamiltonian formalism that exploits the fact that
Hamiltonians are conserved under certain conditions. This will give us a formula for conserved
quantities that is in no obvious way related to any other such formula that has been derived
before.

This thesis is structured as follows: In the first chapter, we will briefly recapitulate some
definitions and concepts that we will need throughout this thesis. The purpose of chapter 2 is to
introduce the term asymptotically de Sitter. To that end, we will review the definitions of certain
other classes of spacetimes, we will give the definition of the term asymptotically de Sitter, and
we will discuss a few examples of such spacetimes. In the third chapter, we will describe the
Hamiltonian framework and Wald’s covariant phase space formalism. How these tools can be
applied to asymptotically de Sitter spacetimes will be discussed in the second part of chapter
3. In chapter 4, we will present our conserved quantities. We will show how and that they are
conserved and we will derive them within the framework of chapter 3. At this point, we will also
return to the sample spacetimes that we introduced in chapter 2: We will compute conserved
quantities for these spacetimes, which we will then discuss. The last point that we will address
in this chapter is the possible existence of positive conserved quantities. These could pave the
way to a notion of mass of a spacetime. We will conclude this thesis with a perturbation analysis
of de Sitter space. Its purpose is to shed some light on the question of how large the class of
asymptotically de Sitter spacetimes is.
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Notations and conventions

In general, we will use the symbol M to represent the spacetime manifold. We will assume
throughout this thesis that it is smooth, connected, paracompact, orientable, and d-dimensional,
where d ≥ 4. A spacetime is not only comprised of a manifold but of a manifold with a Lorentzian
metric. We will denote such a spacetime as (M, gab). It will be required to be time orientable.
The metric gab, which is assumed to be smooth, has the signature (−+ + + . . . ). The inverse of
the metric is denoted as gab.

Latin indices a, b, c, . . . on tensor fields are abstract indices (see e.g. [5]). A (2, 1)-tensor field,
for instance, might be written as T abc. Chapter 3 is an exception to this rule: For the sake of
clarity and readability, we will suppress all indices there. Other indices than lower Latin letters
from the beginning of the alphabet will denote tensor components. This will in particular be
used in chapter 5. Abstract indices on tensor fields will be raised and lowered in the usual way,
namely with the metric and its inverse. For example, we have Tacgcb = T b

a and T c
a gcb = Tab.

All the derivative operators that we will consider in thesis are torsion-free and associated with
a spacetime metric (∇agab = 0). The Riemann tensor can be defined in terms of derivative
operators. We will use the convention R d

abc kd := 2∇[a∇b]kc, where the brackets represent anti-
symmetrization. To denote symmetrization, we will use parantheses. The Ricci tensor is given
by Rab := R c

acb .

An unphysical spacetime manifold that arises from M will be denoted by M̃ and its metric will
accordingly be denoted by g̃ab = Ω2gab, where Ω is a conformal factor. Again, the inverse will
be written as g̃ab. Indices on tilde tensor fields will be raised and lowered with the unphysical
metric instead of the physical one. In case M̃ is a manifold with boundary, we denote its interior
by int(M̃) and its boundary by ∂M̃ := M̃ − int(M̃).

Throughout this thesis, we will work extensively with variations of various quantities. The
variation δg0 of a metric g0 is to be understood as follows: Let gλ be a smooth one-parameter
family of metrics. Then we denote dgλ/dλ|λ=0 by δg0. Similarly, the variation of an arbitrary
functional S[gλ] is given by δS[g0] = dS[gλ]/dλ|λ=0.

Further note that c = 1 in this thesis. For a table of symbols see page 81.
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1 Preliminaries

In this chapter, we will shortly introduce some important concepts that we will use in this thesis.
The following sections are not to be understood as thorough introductions but rather as short
reminders, which emphasize the points that are important for us.

1.1 Isometries and conformal transformations

In general relativity, spacetime is a manifold M with a Lorentzian metric gab. The metric
is a symmetric and non-degenerate (0, 2)-tensor field on M , which contains all the relevant
information about the spacetime.

Should there exist a diffeomorphism between two spacetime manifolds that maps their re-
spective metrics onto each other, both these spacetimes are identical from a physical point of
view.

Definition 1. Let M be a manifold with metric gab and N be a manifold with metric hab. A
diffeomorphism f : M → N is called an isometry if

gab = (f∗h)ab, (1.1)

where (f∗h)ab is the pullback of the metric hab by f .

Of course, isometries do in general not exist for two arbitrary manifolds. Those that are related
via an isometry are called isometric.

Definition 2. Two manifolds M and N with metrics gab and hab are called isometric if there
exists an isometry f : M → N .

This concept can be easily transferred to a local level:

Definition 3. A manifold M with metric gab is called locally isometric to a manifold N with
metric hab if there exists an open neighborhood U for every point p ∈ M , such that (U, gab) is
isometric to (V, hab), where V is an open subset of N .

Consider the following example: Globally, a cylinder clearly differs from Rn (with their natural
metrics). These two spaces are neither isometric nor isomorphic to each other. However, the
cylinder is locally isometric to Rn. In this particular example, this means, for instance that the
Ricci scalar of the cylinder must vanish everywhere, because it vanishes in Rn.

We mentioned in the beginning that spacetime is a Lorentzian manifold (M, gab) (with metric
signature −+ + · · ·+) in general relativity. On such manifolds, a vector va is said to be timelike
if its norm is negative, i.e. gabvavb < 0, null if gabvavb = 0, or spacelike if gabvavb > 0. This
concept can easily be carried over to curves on manifolds: A curve is timelike, spacelike or null
if the norm of its tangent is everywhere timelike, spacelike or null.
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1 Preliminaries

Clearly, isometries preserve this so-called causal structure: If va is a timelike, spacelike or null
vector, (f∗v)a is correspondingly also timelike, spacelike or null. Conformal isometries share this
property with isometries.1

Definition 4. A diffeomorphism f : M → N between two manifolds M and N with metrics gab
and hab is called a conformal isometry if

gab = Ω2(f∗h)ab, (1.3)

where Ω is a smooth non-vanishing function on M .

A conformal isometry is also an angle preserving map, in the sense that

1√
|vcvcwdwd|

gabv
awb =

1√
|v′cv′cw′dw′d|

habv
′aw′b, (1.4)

where va, wa are not null and v′a = (f∗v)a, w′a = (f∗w)a.
Closely related to conformal isometries are conformal transformations.

Definition 5. Let gab be a metric on M and let Ω be a smooth, positive, and non-vanishing
function on M . Then the metric

g̃ab = Ω2gab (1.5)

is said to arise from gab via a conformal transformation.

Clearly, conformal transformations also preserve angles and the causal structure of a given
Lorentz manifold. Some useful relations regarding quantities of conformally tranformed metrics
can be found in appendix A.1.

1.2 The Weyl tensor

The Weyl tensor is the tracefree part of the Riemann tensor R d
abc . It can be written as

Cabcd = Rabcd − 2
d− 2

(ga[cRd]b − gb[cRd]a) +
2

(d− 1)(d− 2)
Rga[cgd]b, (1.6)

where Rab and R are the Ricci tensor and scalar, respectively. The Weyl tensor is a conformally
invariant quantity in the following sense: If we denote the Weyl tensor which is associated with
a conformally transformed metric g̃ab = Ω2gab as C̃ d

abc , the relation

C̃ d
abc = C d

abc (1.7)

holds.
1See definition 4.

gabv
avb = Ω2hab(f∗v)

a(f∗v)
b (1.2)

is satisfied for an arbitrary vector va on M . Thus, va is timelike if and only if (f∗v)a is timelike, va is null if
and only if (f∗v)a is null and va is spacelike if and only if (f∗v)a is spacelike.
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1.3 Gaussian normal coordinates

Equation (1.6) implies that the Weyl tensor inherits some of the symmetries of the Riemann
tensor. First, it is antisymmetric with respect to commutation of the first pair of indices as well
as to commutation of the second pair of indices:

Cabcd = −Cabdc (1.8)
Cabcd = −Cbacd (1.9)

Second, the antisymmetrization of the Weyl tensor over its first three indices vanishes:

C[abc]d = 0 (1.10)

From these relations follows that Cabcd is symmetric under commutation of the first pair of indices
with the second one.

Cabcd = Ccdab (1.11)

1.3 Gaussian normal coordinates

First, take notice of the following definition:

Definition 6. LetM be a d-dimensional manifold. An embedded (d−1)-dimensional submanifold
of M is called a hypersurface.

Now consider a manifold M with metric gab. Let Σ ⊂ M be (a portion of) a spacelike
hypersurface with metric (hab)0 and unit future directed normal field na. Then construct the
unique geodesics through Σ with tangents na. We get a coordinate system in a neighborhood of
Σ by choosing coordinates on Σ and by labeling the points in a neighborhood of Σ by the affine
parameter t of the geodesics on which they lie and the coordinates of the points of Σ from which
the geodesics emanated (t = 0 on Σ). In this coordinate system and neighborhood, the metric
takes the form

gab = −∇at∇bt+ hab(t), (1.12)

where hab(0) = (hab)0. hab(t) is the metric on surfaces of constant t. It satisfies hab(t)∇at = 0,
which means that the geodesics remain orthogonal to the hypersurfaces of constant t.2 By
construction, na ≡ ∇at is a geodesic tangent field, i.e. we have (recall that t is an affine parameter)

na∇an
b = 0. (1.13)

Conversely, if we are given a metric of the form (1.12), where hab(t)∇at = 0, the vector field
na = ∇at must be a geodesic tangent field: Its norm clearly satisfies

nana = −1, (1.14)

which implies
∇a(nbnb) = 0. (1.15)

Now recall that ∇a is torsion-free3, i.e. ∇a∇bt = ∇b∇at. Therefore, we must have

0 =
1
2
∇b(nana) = na∇bna = na∇anb, (1.16)

which proves that na is indeed the tangent to a geodesic.
2Let Xa be a coordinate basis field of the coordinates on the hypersurfaces of constant t and ta = (∂/∂t)a. Xa

satisfies tb∇b(taX
a) = tat

b∇bX
a = taX

b∇bt
a = 1

2
Xb∇b(t

ata) = 0, where the first equality follows from (1.13),
the second one from the fact that coordinate basis fields commute, and the last from the norm of ta being unit.

3See chapter “Notations and conventions” on page 6.
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2 Asymptotically de Sitter spacetimes

In this chapter, we will give our definition of the term asymptotically de Sitter. But before we
do so, we will introduce some concepts which we will need to understand our definition. More
precisely, we will discuss the definitions and properties of asymptotically flat and asymptoti-
cally anti de Sitter spacetimes. Having introduced the necessary notions, we will then establish
the term asymptotically de Sitter. We will conclude this chapter with a few examples of such
spacetimes.

2.1 Asymptotically flat spacetimes

Heuristically, asymptotically flat spacetimes are spacetimes that approach Minkowski space at
“large distances” from some spacetime region. Now one might be tempted to simply define
asymptotically flat spacetimes as manifolds with metrics whose metric can be written as

gµν
∂

∂xµ
∂

∂xν
= ηµν

∂

∂xµ
∂

∂xν
+O(1/r) (2.1)

in some coordinate system. Here, r = [(x1)2 + (x2)2 + . . . ]1/2 and ηµν = diag(−1, 1, 1, . . . ).
However, a big drawback of this condition is that it is given in terms of coordinates. For instance,
it might be of interest to calculate a quantity at “infinity” in an asymptotically flat spacetime.
In a coordinate dependent description, it would be necessary to specify exactly how this is to be
done, i.e. how limits (r →∞) are to be taken.

To evade this and other difficulties, one defines asymptotically flatness in a coordinate inde-
pendent manner. Roughly speaking, a spacetime is asymptotically flat if a boundary can be
attached to the spacetime manifold in a suitable way. This boundary then represents “infinity”.

Before we give a precise definition of asymptotic flatness, let us illustrate this concept by
constructing such a boundary for d-dimensional Minkowski space. In spherical coordinates, the
Minkowski metric can be written as

ds2 = −dt2 + dr2 + r2dσ2
d−2, (2.2)

where dσ2
d−2 is the metric of a (d − 2)-dimensional sphere. A coordinate transformation to

advanced and retarded null coordinates, which are given by

v = t+ r, (2.3)
u = t− r, (2.4)

casts the metric into the following form:

ds2 = −dudv +
1
4
(v − u)2dσ2

d−2 (2.5)

Now let us construct a so-called unphysical metric

ds̃2 = Ω2ds2 (2.6)
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2 Asymptotically de Sitter spacetimes

via a conformal transformation (see section 1.1). In our case, an appropriate choice for the
conformal factor is

Ω2 =
4

(1 + v2)(1 + u2)
. (2.7)

If we now attach points with Ω = 0 to the spacetime manifold (representing “infinity”), we get a
so-called unphysical manifold. Together, this manifold and the unphysical metric are called the
unphysical spacetime. Accordingly, the spacetime manifold with its metric is called the physical
spacetime. If we make another coordinate transformation

T = tan−1 v − tan−1 u, (2.8)

R = tan−1 v − tan−1 u, (2.9)

we find that the unphysical Minkowski metric can be written as

ds̃2 = −dT 2 + dR2 + sin2R dσ2
d−2. (2.10)

The ranges of the coordinates that correspond to finite values of t and r, i.e. points of the physical
spacetime manifold, are given by

−π < T +R < π, (2.11)
−π < T −R < π, (2.12)

0 ≤ R. (2.13)

Points with T + R = ±π and/or T − R = ±π correspond to points of the boundary of the
unphysical manifold. Equation (2.10) is the metric of the Einstein static universe, which is
the manifold R × Sd−1 with its natural Lorentzian metric. Thus, there must exist a conformal
isometry that embeds Minkowski spacetime into a finite region of the Einstein static universe.1

If we suppress the spherical coordinates of dσ2
d−2, we can depict Minkowski space in a conformal

(also Penrose or Penrose-Carter) diagram (see figure 2.1). In this diagram, the sets I + and I −

as well as the points i0, i+, and i− correspond to the boundary that we have just constructed.
They do not belong to the Minkowski spacetime itself. I + and I − are null hypersurfaces
and are called future and past null infinity. Every null geodesic terminates at the former and
emanates at the latter set. The point i0 is called spatial infinity. It is spacelike related to every
point of the interior of the unphysical manifold (i.e. the physical spacetime manifold). Moreover,
all the spacelike geodesics of Minkowski space start and end there. The remaining points i+

and i− are called future and past timelike infinity, respectively. All the timelike geodesics of the
spacetime begin at i− and end at i+. Additionally, i+ and i− are timelike related to every point
of the interior of the unphysical manifold.

Since we suppressed the spherical coordinates in figure 2.1, every point of this diagram repre-
sents a (d− 2)-sphere. Exceptions are the points i+, i−, i0, and points on the leftmost line with
r = 0. These points do not represent a higher dimensional space. They just correspond to points
of the unphysical spacetime manifold.

In the literature, there exist different, inequivalent, notions of asymptotic flatness. Spacetimes
can be asymptotically flat at null infinity (I = I +∪I −), at spatial infinity (i0) or at spatial as
well as null infinity. Ultimately, we want to define what asymptotically de Sitter spacetimes are.

1Equivalently: There exists a conformal factor, such that the unphysical metric is isometric (equal) to that of
the Einstein static universe.
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2.1 Asymptotically flat spacetimes

r = 0

I −

I +

t = constant

r = constant

i+

i−

r = ∞i0

Figure 2.1: Conformal diagram of the Minkowski spacetime. Here, the boundary consists of i+,
i−, i0 as well as the hypersurfaces I + and I −.

Such spacetimes, or more precisely their corresponding unphysical spacetimes, cannot possess
anything similar to spacelike infinity (or timelike infinity for that matter). There does not exist
a point or a set that is spacelike related to every point of the physical manifold. Therefore, we
will disregard the notion of asymptotic flatness at spatial infinity. We will only give a definition
of asymptotic flatness at null infinity. The definition will be similar to the ones given in [6] and
[7] except that we restrict ourselves to vacuum spacetimes. Definitions of asymptotic flatness at
null as well as spatial infinity can be found in [8, 5].

Definition 7. Let (M, gab) be a spacetime. (M, gab) is called asymptotically flat at null infinity
if2

(i) gab satisfies Einstein’s vacuum equation

Rab − 1
2
Rgab = 0. (2.14)

(ii) One can attach a boundary I = I + ∪ I + to M with I +, I − ∼= Sd−2 × R, such that
M̃ = M ∪I is a manifold with boundary.

2Equivalently, definition 7 can be formulated in terms of conformal isometries instead of conformal transforma-
tions. Then it would read:
(M, gab) is called asymptotically flat at null infinity if it satisfies Einstein’s vacuum equation and if there exists
a manifold with boundary M̃ , a smooth metric g̃ab on M̃ and a conformal isometry ψ : M → ψ(M) ⊂ M̃ with
conformal factor Ω which satisfy the following conditions:

(i) g̃ab = Ω2(ψ−1)∗gab in ψ(M) and M̃ = ψ(M) ∪I

(ii) On I = I + ∪I− we have Ω = 0 and ∇̃aΩ 6= 0

(iii) I + and I − have topology Sd−2 × R
(iv) For a smooth function ω on M̃ with ω > 0 which satisfies ∇̃a(ω4∇̃aΩ) = 0 on I + ∪ I +, the vector field

ω−1∇̃aΩ is complete on I + ∪I−

13



2 Asymptotically de Sitter spacetimes

(iii) On M̃ there is a smooth metric g̃ab and smooth function Ω, such that gab = Ω−2g̃ab and
such that Ω = 0 and ña = ∇̃aΩ 6= 0 at points of I .

(iv) For a smooth function ω on M̃ with ω > 0 which satisfies ∇̃a(ω4∇̃aΩ) = 0 on I + ∪I +,
the vector field ω−1∇̃aΩ is complete on I + ∪I −.

Remark 1. If a given spacetime is asymptotically flat, there is not just one unphysical spacetime
(M̃, g̃ab) that satisfies the conditions of definition 7. Let Ω be a conformal factor and let Ω′ :=
ωΩ, where ω is a smooth and non-vanishing function. In that case, the spacetime (M̃ ′, g̃′ab) =
(M̃, ω2g̃ab) also satisfies (ii), (iii), and (iv) of the above definition. Hence, there is considerable
freedom in the choice of the unphysical spacetime.

The first condition of the definition states that asymptotically flat spacetimes are always
solutions of Einstein’s vacuum equation. The second and the third condition specify how I
must look like and that it really represents “infinity”. The last condition states that “all of I ”
must be present in the unphysical spacetime and that I has the global asymptotic structure of
Minkowski space (see [7] for details). This means in particular that I is complete.

Definition 8. I of an unphysical spacetime manifold M̃ is complete if we cannot find another
unphysical spacetime manifold M̃ ′ that satisfies (ii), (iii), and (iv) of the above definition as well,
such that M̃ ( M̃ ′

Without this fourth condition, it would, for instance, not be possible to apply the usual criteria
(see e.g. [5]) for spacetimes containing black holes to asymptotically flat spaces.

As we have seen, I + and I − are null surfaces in Minkowski space. Definition 7 implies
that this is true for every asymptotically flat spacetime. This can be seen by writing Einstein’s
equation (2.14) in terms of conformal curvature quantities (see appendix A). For a metric
gab = Ω−2g̃ab, Einstein’s equation takes the form

S̃ab + 2Ω−1∇̃a∇̃bΩ− Ω−2g̃ab∇̃cΩ∇̃cΩ = 0, (2.15)

where S̃ab = 2(d − 2)−1R̃ab − [(d − 1)(d − 2)]−1R̃g̃ab. Here, R̃ab and R̃ are the Ricci tensor and
scalar of the unphysical metric. Noting that S̃ab and ∇̃a∇̃bΩ are smooth on I (since g̃ab and Ω
are smooth there) and using the fact that Ω = 0 on I gives

∇̃cΩ∇̃cΩ ¹ I = 0. (2.16)

Hence, ∇̃aΩ is null on I , which implies that I + and I − are null surfaces.

2.2 Asymptotically anti de Sitter spacetimes

Anti de Sitter space is the maximally symmetric solution of Einstein’s equation with a negative
cosmological constant. The anti de Sitter metric can be written as

ds2 = −
(

1 +
r2

`′2

)
dt2 +

(
1 +

r2

`′2

)−1

dr2 + r2dσ2
d−2, (2.17)

where `′ > 0 is the anti de Sitter radius and where dσ2
d−2 is the natural metric of Sd−2. By

choosing a suitable conformal factor, it can be shown that (the complete) I of anti de Sitter is
conformally isometric to R× Sd−2. Furthermore, if we make use of Einstein’s equation in a way
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2.3 Asymptotically de Sitter spacetimes

similar to (2.15), we can show that I of an anti de Sitter spacetime is timelike. An immediate
consequence of this is that anti de Sitter spacetimes do not admit Cauchy surfaces.

These are fundamental deviations from the properties of asymptotically flat spacetimes. How-
ever, the definition of the term asymptotically anti de Sitter is quite similar to definition 7 [9]:

Definition 9. Let (M, gab) be a spacetime. (M, gab) is called asymptotically anti de Sitter if

(i) gab satisfies Einstein’s vacuum equation with a negative cosmological constant Λ

Rab − 1
2
Rgab + Λgab = 0. (2.18)

(ii) One can attach a boundary, I ∼= R × Sd−2 to M , such that M̃ = M ∪ I is a manifold
with boundary.

(iii) On M̃ there is a smooth metric g̃ab and smooth function Ω such that gab = Ω−2g̃ab and
such that Ω = 0 and ña = ∇̃aΩ 6= 0 at points of I .

(iv) The metric h̃ab on I induced by g̃ab is in the conformal class of the Einstein static universe

h̃ab = eω[−(dt)a(dt)b + σab], (2.19)

where σab is the metric of a (d− 2)-sphere and ω is some smooth function.3

The third point completely agrees with the corresponding one of definition 7 and the first one
differs only in that the spacetime has to be a solution to Einstein’s equation with a negative
cosmological constant. The differences in condition (ii) stem from the fact that (the complete)
I of anti de Sitter space consists of only one hypersurface with topology R×Sd−2, whereas I of
Minkowski space is comprised of two hypersurfaces. Only the fourth conditions do not resemble
each other at all. This is mainly because definitions 7 and 9 were made with different purposes in
mind. As we have already said in section 2.1, the fourth condition in the definition of asymptotic
flatness ensures that I is complete and has the global asymptotic structure of Minkowski space.
This enables us to give definitions of asymptotically flat spacetimes containing black holes and
tells us, whether a spacetime really resembles Minkowski space everywhere in the asymptotic
region. Definition 9, on the other hand, was solely designed to fulfill the needs which arose in the
construction of conserved quantities in asymptotically anti de Sitter spacetimes. Ultimately, this
fourth condition makes the construction of conserved charges in asymptotically anti de Sitter
spacetimes possible [9].

2.3 Asymptotically de Sitter spacetimes

De Sitter space is the maximally symmetric solution of Einstein’s equation with a positive cos-
mological constant. Its metric can be written as

ds2 = −dτ2 + a2(τ)dσ2
d−1, (2.20)

where dσ2
d−1 is the natural metric of the (d − 1)-sphere and where the function a is given by

a(τ) = ` cosh(τ/`) with ` > 0 being the de Sitter radius. It can be shown that the complete
3Equivalently, we could have demanded here that there exists an unphysical spacetime with boundary I whose

metric is exactly that of the Einstein static universe.
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2 Asymptotically de Sitter spacetimes

I of de Sitter space consists of two separate parts I + and I −, each of which is conformally
isometric to Sd−1 with its natural metric. Contrary to Minkowski and anti de Sitter space, I of
de Sitter space is spacelike as can be seen as follows: In terms of conformal quantities, Einstein’s
equation with a positive cosmological constant can be written as

S̃ab + 2Ω−1∇̃a∇̃bΩ− Ω−2g̃ab(∇̃cΩ∇̃cΩ + `2) = 0, (2.21)

where S̃ab is as in (2.15). From this we can immediately deduce that I of de Sitter space is
spacelike (see below (2.15)).

In this thesis, we will focus on the construction of conserved quantities in asymptotically de
Sitter spacetimes. The approach that we will pursue in order to achieve that goal is very similar to
the approach of Hollands, Marolf, and Ishibashi [9] to conserved charges in asymptotically anti de
Sitter spacetimes. Thus, we would expect a useful definition of the term asymptotically de Sitter
to resemble the definition of the term asymptotically anti de Sitter (definition 9). Considering
the differences between the definitions of the previous sections, we should have to alter definition
9 only minimally. And indeed, apart from one major change in condition (iv), our definition of
the notion of asymptotically de Sitter spacetimes is very similar to definition 9.

As already mentioned, (the complete) I of the de Sitter spacetime is comprised of two separate
parts I + and I −, each of which has topology Sd−1 and is conformally isometric to Sd−1 with
its natural metric. Looking at the topological difference between the boundaries of unphysical
spacetimes of asymptotically flat and asymptotically anti de Sitter spaces and their respective
definitions, one might be tempted to require I + and I − of an unphysical asymptotically de
Sitter spacetime to have topology Sd−1. Unfortunately, this will turn out to be too restrictive.
The Schwarzschild de Sitter spacetime, for example, would not be asymptotically de Sitter if
we clung to this condition. Therefore, we will not require for a spacetime to be asymptotically
de Sitter that it possesses an unphysical spacetime whose I ± has a particular topology. An
appropriate unphysical spacetime only needs to have a I with induced metric (hab)0, such that
(I ±, eω(h̃ab)0) is locally isometric to Sd−1 with its natural metric for an arbitrary but smooth
function ω.

Definition 10. Let (M, gab) be a spacetime. (M, gab) is called asymptotically de Sitter if

(i) gab satisfies Einstein’s vacuum equation with a positive cosmological constant4 Λ

Rab − 1
2
Rgab + Λgab = 0. (2.22)

(ii) There exists a manifold with boundary M̃ , such that M̃ = M ∪I and ∂M̃ = I open.

(iii) On M̃ there is a smooth metric g̃ab and smooth function Ω, such that gab = Ω−2g̃ab and
such that Ω = 0 and ña = ∇̃aΩ 6= 0 at points of I .

(iv) Let (h̃ab)0 be the induced metric on I + and I −, respectively. Then (I ±, eω(h̃ab)0) is
locally isometric to (Sd−1, σab), where σab is the natural metric of Sd−1 and ω is some
smooth function.

(v) I ± satisfies J±(I ±) = I ±, i.e. the causal future of I + is I + itself and the causal past
of I − is I − itself.

4Einstein’s equation with a positive cosmological constant can also be written as Rab = gab(d− 1)/`2, where ` is
given by (2.25).
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2.3 Asymptotically de Sitter spacetimes

Note that this definition can easily be weakened: Instead of demanding all the properties to
hold for both I + and I −, we can define a spacetime to be asymptotically de Sitter at I + or
I − if the above definition is satisfied for merely one of these sets.

Definition 11. Let (M, gab) be a spacetime. (M, gab) is called future asymptotically de Sitter if

(i) gab satisfies Einstein’s vacuum equation with a positive cosmological constant Λ

Rab − 1
2
Rgab + Λgab = 0. (2.23)

(ii) There exists a manifold with boundary M̃ , such that M̃ = M ∪I + and ∂M̃ = I + open.

(iii) On M̃ there is a smooth metric g̃ab and smooth function Ω such that gab = Ω−2g̃ab and
such that Ω = 0 and ña = ∇̃aΩ 6= 0 at points of I +.

(iv) Let (h̃ab)0 be the induced metric on I +. Then (I +, eω(h̃ab)0) is locally isometric to
(Sd−1, σab), where σab is the natural metric of Sd−1 and ω is some smooth function.

(v) I + satisfies J+(I +) = I +, i.e. the causal future of I + is I + itself.

We introduced the additional condition (v) in the above definitions to ensure that I + and/or
I − really correspond to future and/or past infinity, respectively. The main analysis of this thesis
will be carried out for future asymptotically de Sitter spacetimes. This is mainly for clarity and
notational convenience, but it is also somewhat more general: Future asymptotically de Sitter is
a weaker condition than asymptotically de Sitter.

Note that we will refer to the conditions (ii), (iii), (iv), and (v) of definition 11 as the asymptotic
conditions.

Furthermore, whenever we talk about an unphysical spacetime of a future asymptotically de
Sitter space, we will assume that it satisfies the asymptotic conditions.

Remark 2. Consider a future asymptotically de Sitter spacetime M . Definition 11 does not
require the boundary (i.e. I +) of an unphysical spacetime (M̃, g̃ab) to be “maximal” in the
following sense: There might exist other manifolds with boundariesN , such that int(M̃) = int(N)
but ∂M̃ ( ∂N . It does not even require I + to be equal to the “maximal” boundary on which
the unphysical metric is smooth (cf. definition 8). I + is just a set that satisfies conditions (ii),
(iii), and (iv) of definition 11.

For our purposes, this is a very appealing definition. Usually, however, one might rather want
to take I + to be the “maximal” boundary that satisfies (ii) and (iii) of the above definition. For
a spacetime to be future asymptotically de Sitter, this boundary would have to contain a subset
that satisfies condition (iv).5

Remark 3. Note that some future asymptotically de Sitter spacetimes exist (see below). It is,
however, not clear if a wide class of such spacetimes exists.6

5For our purposes, property (iv) of definition (11) is vital. By using our definition of I + rather than the “usual”
one, we avoid having to state constantly that an analysis does not hold for all of I + but only for subsets that
satisfy (iv).

6In chapter 5, we will show that definition 11 probably does allow for a large class of spacetimes.
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2 Asymptotically de Sitter spacetimes

2.4 Examples of asymptotically de Sitter spacetimes

Now let us have a look at a few asymptotically de Sitter spacetimes. We will encounter all of
them again in the following chapters. Of particular significance is the de Sitter spacetime. We
will refer to it on various occasions throughout this thesis.

2.4.1 De Sitter spacetime

As we have already mentioned, de Sitter space is the maximally symmetric solution of Einstein’s
equation with a positive cosmological constant. It is a space of constant positive scalar curvature
and its Weyl tensor (see section (1.2)) vanishes. Of course, de Sitter space is an asymptotically
de Sitter spacetime.

In the global chart, the de Sitter metric can be written as (cf. e.g. [10, 11])

ds2 = −dτ2 + a2(τ)dσ2
d−1. (2.24)

dσ2
d−1 is the natural metric of the (d− 1)-sphere, the function a is given by a(τ) = ` cosh(τ/`),

and ` is the de Sitter radius, which is defined as

` =

√
(d− 1)(d− 2)

2Λ
. (2.25)

Introducing the new coordinate [10]

t = 2 arctan(exp τ/`)− π/2 (2.26)

gives
ds2 = a2(τ)(−dt2 + dσ2

d−1). (2.27)

By choosing the conformal factor
Ω = 1/a, (2.28)

we find an unphysical metric
ds̃2 = −dt2 + dσ2

d−1, (2.29)

which gives an unphysical spacetime if we construct an unphysical manifold by adding points
to the spacetime manifold at which the (continuation of) the conformal factor vanishes. A
conformal diagram of the de Sitter spacetime is depicted in figure 2.2 [10]. Every hypersurface
of constant τ is a Cauchy surface and a (d− 1)-dimensional sphere. In particular, I + and I −

are (d− 1)-spheres.
If we choose the conformal factor Ω′ = 2 exp(−|τ |/`) instead of (2.28), we find that the un-

physical metric can be written as

ds̃′2 = `2
[
−dΩ′2 +

(
1 +

Ω′2

2
+

Ω′4

16

)
dσ2

d−1

]
. (2.30)

It should be noted, however, that (2.30) is not smooth on the τ = 0 hypersurface.

An interesting region of the de Sitter spacetime is the static region [11]. It consists of the
region that is denoted by I in figure 2.3. In this region, the metric can be written as

ds2 = −Ψdt2 + Ψ−1dr2 + r2dσ2
d−2, (2.31)
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2.4 Examples of asymptotically de Sitter spacetimes

I +, τ = ∞

χ = constant

τ = constant

χ
=

π
χ

=
0

I −, τ = −∞

Figure 2.2: Conformal diagram of de Sitter space. χ is a polar angle parametrizing the sphere.

where dσ2
d−2 is the natural metric of Sd−2 and

Ψ = 1− r2

`2
. (2.32)

An interesting feature of (2.31) is that it does not contain any functions of t. Hence, ∂/∂t is a
Killing vector field, which is obviously timelike in this region.

In the other regions, it is possible to write the metric in exactly the same way. The only
difference is that r > ` in region II and IV, which implies that Ψ becomes negative there. ∂/∂t
is again a Killing field in these regions, even though it is not necessarily timelike anymore: It is
spacelike in region II and IV.

Remark 4. From de Sitter space, we can construct other asymptotically de Sitter spaces in the
following way: Consider, for instance, a discrete subgroup of the symmetry group of de Sitter
space which maps surfaces of constant τ to itself. Another asymptotically de Sitter space is then
given by the quotient of de Sitter space by this group. In that case, I + is not a sphere anymore
but the quotient of a sphere. However, it is still locally isometric to a sphere.

Remark 5. At this stage, we should point out that there exist different, inequivalent, notions
of the term asymptotically de Sitter in the literature. In particular, one often encounters the
following definition: Let ḡab be the de Sitter metric. A spacetime is called asymptotically de
Sitter if its metric is of the form

gab = ḡab + kab, (2.33)

where kab vanishes at infinity. To see what is meant by “infinity” let us take a look at the
cosmological chart of de Sitter space (see figure 2.4). In this chart, the metric can be written as

ds2 = −dt2 + exp(2t/`)dx2
d−1, (2.34)

where dx2
d−1 = δµνdxµdxν is the (d − 1)-dimensional flat metric. Now, by “at infinity” usually

the limit r →∞ is meant, where r = [(x1)2 +(x2)2 + . . . ]1/2. This limit corresponds to the point
that we denoted by i0 in figure 2.4.7 Obviously, this definition of asymptotically de Sitter differs
drastically from ours.

7As in the asymptotically flat case, this point is called spatial infinity.
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2 Asymptotically de Sitter spacetimes

II

I

IV

III

r = constant

t = constant

r = ∞

Figure 2.3: Regions I, III and II, IV are symmetric with respect to surfaces of constant t, r. The
diagonal lines correspond to r = ` and are not included in the regions.

i0r increasing

t = constant

Figure 2.4: The cosmological chart of de Sitter space. It covers only half of de Sitter space. Here:
The upper left region.

2.4.2 Schwarzschild de Sitter spacetime

Another asymptotically de Sitter spacetime is the Schwarzschild de Sitter spacetime. It describes
the spherically symmetric solutions of Einstein’s vacuum equation with a positive cosmological
constant. As in the flat case, i.e. as in the usual Schwarzschild solution, this encompasses
spherically symmetric black hole solutions.

Let us have a look at the metric [2, 12]

ds2 = −Φdt2 + Φ−1dr2 + r2dσ2
d−2, (2.35)

where

Φ = 1− Cd
rd−3

− r2

`2
(2.36)

and where dσ2
d−2 is the natural metric of the (d−2)-sphere and Cd is some constant (the “mass”

parameter). This is the metric of the Schwarzschild de Sitter spacetime for values of r and t that
do not correspond to Φ = 0. The situation is very similar to the one we discussed in the context
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2.4 Examples of asymptotically de Sitter spacetimes

identify

r
=

r
1

r
=

r 1

t =
−∞t = −∞

t =∞

singularities

r
=

r 2

r = constant

I , r = ∞

r
=

r
2

t =
∞

Figure 2.5: Conformal diagram of the Schwarzschild de Sitter spacetime. r1 and r2 correspond
to the black hole and the cosmological horizon, respectively.

of the static region of de Sitter space: In all the depicted regions in figure 2.5, i.e. between the
horizons, it is possible to write the metric as in (2.35). Note that (2.35) does not contain any
functions of t. Hence, the vector fields (∂/∂t)a are Killing fields of the Schwarzschild de Sitter
spacetime. In particular, (∂/∂t)a is spacelike in a neighborhood of I .

The function Φ possesses up to two positive roots: The larger one corresponds to the position
of the cosmological horizon and the smaller one represents the position of the black hole event
horizon. This case is depicted in figure 2.5 [13]. If Φ has only one positive root (and Cd > 0), the
cosmological and the black hole horizon coincide. Conformal diagrams for this degenerate solution
can be found in [13, 14]. In case there are no positive roots, the spacetime possesses an initial
or final spacelike singularity and (an associated unphysical spacetime possess) correspondingly
only I + or I −, respectively.8 Charts that cover all these horizons can be found in [15].

For our purposes, it will be sufficient to stick to the metric (2.35) to investigate I . Introducing
χ = 2 arctan(exp t/`) and choosing the conformal factor Ω = sinχ/r gives rise to the unphysical
metric

ds̃2 = −
(

1
`2

+
Cd

sind−1 χ
Ωd−1 − 1

sin2 χ
Ω2

)−1

(dΩ− Ωcotχdχ)2

+
(

1 + `2
Cd

sind−1 χ
Ωd−1 − `2

sin2 χ
Ω2

)
dχ2 + sin2 χdσ2

d−2 (2.37)

for 0 < Ω < sinχ/ri, where ri denotes possible horizons. Attaching all the points to the spacetime
manifold to which the conformal factor and unphysical metric can be smoothly extended and
where then Ω = 0 gives an unphysical spacetime manifold. Note that the scalar

C̃abcdC̃
abcd = (d− 1)(d− 2)2(d− 3)C2

d · Ω2(d−3)(sinχ)−2(d−1) (2.38)

is not well defined at points with Ω = 0, χ = 0 and Ω = 0, χ = π if Cd 6= 0. Consequently, the
unphysical metric is not smooth there either. Hence, these points are not part of the unphysical
spacetime manifold.

8This prevents the spacetime from being asymptotically de Sitter. However, it could still be future asymptotically
de Sitter.
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2 Asymptotically de Sitter spacetimes

It follows from (2.37) that the induced metric dh̃2 on I + and I − is given by

dh̃2 = dχ2 + sin2 χdσ2
d−2 (2.39)

where χ ∈ (0, π). Therefore, for our choice of the conformal factor, (I +,dh̃2) as well as (I −, dh̃2)
are isometric to (Sd−1 \ {p, q}, dσ2

d−1), where p and q are antipodal points.9

2.4.3 Tolman-Bondi spacetime with a positive cosmological constant

The Tolman-Bondi spacetime [16] is a solution of Einstein’s equation with a stress-energy tensor
which describes an inhomogeneous spherically symmetric dust sphere. In four dimensions, its
metric can be written as

ds2 = −dt2 +X2(r, t)dr2 + Y 2(r, t)(dθ2 + sin2 θdφ2), (2.40)

where
(
∂Y

∂t

)2

= W 2 − 1 +
2m(r)
Y

+
Y 2

`2
, (2.41)

X =
∂Y

∂r
W−1(r). (2.42)

Here, W is an arbitrary function that corresponds to the binding energy and

m(r) = 4π
∫ r

0
ρWXY 2dr, (2.43)

where ρ is the energy density of the dust sphere.
According to our definition, this spacetime is not asymptotically de Sitter, since it possesses a

non-vanishing stress-energy tensor. However, its vacuum region can be considered as an asymp-
totically de Sitter spacetime on its own: Birkhoff’s theorem (see e.g. [10]) implies that the metric
in the vacuum region outside of the dust sphere must be equal to the Schwarzschild de Sitter
metric. Indeed, after a change of coordinates, it can be written as

ds2 = −
(

1− 2MTB

Y
− Y 2

`2

)
dT 2 +

(
1− 2MTB

Y
− Y 2

`2

)−1

dY 2 + Y 2(dθ2 + sin2 θdφ2). (2.44)

Remark 6. Note that the entire Tolman-Bondi spacetime is considered asymptotically de Sitter
in [16]. This is due to different definitions of the notion of asymptotically de Sitter. (We do not
admit non-vacuum spacetimes. But see also remark 5.)

Note that the parameter 2MTB corresponds to the “mass” parameter of the Schwarzschild de
Sitter metric. This has some interesting consequences if we consider the following result:

Remark 7. Nakao, Shiromizu, and Maeda [16] have shown that it is possible to choose W in
such a way that MTB ≡ m(r →∞) becomes negative.

If we choose MTB to be negative, the spacetime possesses a timelike singularity in its vacuum
region beyond which it cannot be extended (see figure 2.6). This is in sharp contrast to the
usual Schwarzschild de Sitter spacetime with a positive parameter Cd=4 (see (2.35)). All the
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Y = ∞

Y = ∞

Y
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t = constant

r increasing

Figure 2.6: Conformal diagram of the Tolman-Bondi spacetime with negative MTB. Taken from
[16]. The omitted region on the left side has m > 0.

singularities of this spacetime are spacelike. However, if we choose a conformal factor analogous
to (2.37) for the vacuum region of the Tolman-Bondi spacetime, I ±

TB (of the vacuum region)
must clearly be isometric to a subset of a sphere. It is “intersected”10 by the timelike singularity
at a single point. As in the Schwarzschild de Sitter case, the contraction of the unphysical
Weyl tensors is not smooth at this intersection point. In terms of the coordinates of (2.40),
the contraction is not well defined at Ω = sinχ/Y = 0, χ = 2arctan r = π. Consequently, in
the vacuum region, (I +, h̃ab) corresponds to a simply connected subset of a 3-sphere minus one
point.

2.5 Asymptotic symmetries

Heuristically, asymptotic symmetries are maps that preserve the intrinsic geometric structure of
I +.11 For instance, in an asymptotically flat space with unphysical spacetime (M̃, g̃ab), asymp-
totic symmetries correspond to diffeomorphisms ψ : I + → I + that are conformal isometries
with respect to the induced metric h̃ab on I +.12

Similarly, we give the following definition for future asymptotically de Sitter spacetimes:

Definition 12. Let (M, gab) be a future asymptotically de Sitter spacetime, let (M̃, g̃ab) be an
associated unphysical spacetime and let h̃ab be the induced metric on I +. Then the asymptotic
symmetries are the diffeomorphisms ψ : I + → I + which satisfy ψ∗h̃ab = ω2h̃ab, where ω is an
arbitrary but smooth function.

9One might suspect that this not being smooth of the metric at Ω = 0, χ = 0 and Ω = 0, χ = π is related to the
singularities intersecting I ± at these points (for our choice of the conformal factor).

10See footnote 9.
11One could also include I−; in this thesis, however, we are only interested in asymptotic symmetries at I +.
12The BMS group.
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2 Asymptotically de Sitter spacetimes

Remark 8. In the following, we will also use the term asymptotic symmetries for equivalence
classes of vector fields on M̃ , where each class is comprised of the vector fields that generate the
same one-parameter group of asymptotic symmetries.

Remark 9. Note that definition 12 implies that every vector field which represents an asymptotic
symmetry is (i) a conformal Killing field on I +; (ii) spacelike on I +.

Let ξa be a Killing vector field on an future asymptotically de Sitter spacetime (M, gab). Then
we have Lξgab = 0 on all ofM . This can be rewritten in terms of an unphysical metric g̃ab = Ω2gab
as

Lξ g̃ab = 2Ω−1(ξc∇cΩ)g̃ab. (2.45)

If g̃abξaξb is finite in a neighborhood of I +, the left hand side of the above equation is finite
as well. In that case, (the extension of) ξa must be tangent to I +, because (ξa∇aΩ) has to
vanish there to compensate for the Ω−1 term. Consequently, the flow generated by ξa maps I +

to I +. Furthermore, (2.45) implies that ξa is a conformal Killing field of the unphysical metric
g̃ab. Hence:

Remark 10. A Killing field of a future asymptotically de Sitter spacetime is the generator of
a one-parameter group of asymptotic symmetries on I + of an associated unphysical spacetime.
It is the representative of an asymptotic symmetry in the sense of remark 8.
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3 Hamiltonian approach to conserved quantities

Wald and Zoupas [4] have shown how conserved quantities within a Hamiltonian framework can
be constructed in theories that arise from a diffeomorphism covariant Lagrangian. In section 3.2,
we will apply these ideas to (a subset of) future asymptotically de Sitter spacetimes. But first,
following [4], we will describe the general framework that is needed to construct Hamiltonians in
general relativity. Details can be found in [17, 18, 19, 20].

3.1 Covariant phase space formalism

3.1.1 Defining the notion of a Hamiltonian

Let M be a d-dimensional manifold and let F be the space of “kinematically allowed” Lorentizan
metrics on M of the theory under consideration. What kinematically allowed means depends
on the theory and on what is most suitable for one’s purposes. For instance, one could demand
all the metrics to have a certain asymptotic behavior: One possibility would be to require the
metrics to satisfy the asymptotic conditions of definition 11. For the moment, we will assume
that an appropriate field configuration space F has been chosen, such that the integrals in the
formulas below converge.

Let L be a diffeomorphism covariant Lagrangian density d-form1 on F which gives rise to the
equations of motion F = 0 of the theory. Then we can write the variation of L as2 [4]

δL = F (g) · δg + dθ(g, δg), (3.1)

where θ is the presymplectic potential (d− 1)-form. This form θ is not uniquely determined by
the above equation: We can add an arbitrary closed (d − 2)-form to θ without (3.1) changing.
However, we demand θ to be locally constructed out of g and δg in a covariant manner, which
restricts the freedom in the choice of the potential to the addition of exact (d − 2)-forms [20].
Hence,

θ → θ + dY (g, δg) (3.2)

is a valid presymplectic potential as well. θ can be used to define the presymplectic current
(d− 1)-form ω. It is given by3

ω(g, δ1g, δ2g) = δ1θ(g, δ2)− δ2θ(g, δ1g), (3.3)

where δ1g and δ2g are two perturbations off of g. Like the presymplectic potential θ, ω is not
unique. Its ambiguity stems from the freedom in the choice of θ. Hence,

ω → ω + d[δ1Y (g, δ2)− δ2Y (g, δ1g)] (3.4)
1Diffeomorphism covariant means that for every diffeomorphism f , we have L(f∗g) = f∗L(g). Theories that

arise from such Lagrangians are diffeomorphism invariant.
2Here, the “ · ” notation means “contract the indices of δg into the first indices of F”. For an explanation

regarding the variations: See chapter “Notations and conventions” on page 6.
3Here and in the following, we will assume that the variations commute, i.e. δ1(δ2g)− δ2(δ1g) = 0.
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3 Hamiltonian approach to conserved quantities

is a valid presymplectic current form if ω is one.
Now consider a perturbation δg: For any such perturbation, there exists a smooth one-

parameter family of metrics gλ, such that δg = dgλ/dλ |λ=0. In case gλ ∈ F , this perturbation
clearly corresponds to a vector which is tangent to F .

By integrating the presymplectic current (3.3) over a closed spacelike hypersurface4 without
boundary of M , we can construct a map σΣ that takes two tangent vectors δ1g and δ2g of F at
a point g into the real numbers. Because of (3.3), this map

σΣ(g, δ1g, δ2g) =
∫

Σ
ω(g, δ1g, δ2g) (3.5)

is antisymmetric in the perturbations, which implies that it is a presymplectic form on F . How-
ever, it is not a true symplectic form, since it is not non-degenerate [4]. Like the presymplectic
current, the presymplectic form inherits the non-uniqueness of the symplectic5 potential. More
precisely, (3.4) gives rise to the ambiguity

σΣ(g, δ1g, δ2g) → σΣ(g, δ1g, δ2g) +
∫

∂Σ
[δ1Y (g, δ2g)− δ2Y (g, δ1g)]. (3.6)

By the above integral over ∂Σ, we mean a limiting process, in which the integral is first taken
over the boundary6 ∂K of a compact region, K of Σ and then K approaches all of Σ in a suitable
manner. Of course, the integral over the right hand side will only be well defined if the limit
exists and is independent of the way in which K approaches all of Σ.

It is possible to construct a phase space Γ, equipped with a true symplectic form, out of the
field configuration space F with its presymplectic form σΣ. But for our purposes, F and its
presymplectic form will be sufficient. Details on the construction of a phase space can be found
in [17].

Now we are in a position to define the notion of a Hamiltonian. But first, take notice of the
following two remarks:

Remark 11. A complete vector field ξa on M can be used to define metric variations δξg ≡ Lξg.
These correspond to a tangent field on F if the flow φt generated by Lξg is a diffeomorphism on
F to itself for fixed t.

Remark 12. We will denote the subspace of F whose elements are solutions to the equations
of motion of the theory as F̄ . This space F̄ is called the covariant phase space.

Definition 13. Let F be a field configuration space with covariant phase space F̄ of a diffeomor-
phism covariant theory on a manifold M . Further, let Σ ⊂M be a closed spacelike hypersurface
without boundary, let ξa be a vector field on M , and let σΣ be the presymplectic form (3.5) on
F . (If there is an ambiguity in σΣ due to (3.6), we assume that a particular σΣ has been chosen.)
Assume that these quantities have been chosen in such a way that the integral

∫
Σ ω(g, δg,Lξg)

converges for all g ∈ F̄ and all tangent vectors δg to F̄ at g. Then a function Hξ : F → R is said

4We define the orientation of this hypersurface as (d−1)ε := n̂ · ε, where n̂ is a future directed timelike vector
normal to Σ and “ · ” represents the contraction of the vector into the first index of the spacetime volume form
(i.e. (d−1)εa1...ad−1 := n̂bεba1...ad−1).

5Note that we will occasionally omit the prefix “pre”.
6The orientation of ∂K is such that the volume form is given by (d−2)ε = û ·(d−1)ε, where û is an outward pointing

vector in compliance with Stokes’ theorem.
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3.1 Covariant phase space formalism

to be a Hamiltonian conjugate to ξ on a hypersurface Σ if for all g ∈ F̄ and all field variations
δg tangent to F we have

δHξ = σΣ(g, δg,Lξg) =
∫

Σ
ω(g, δg,Lξg). (3.7)

Remark 13. In case Lξg is tangent to F , this vector field can be understood as defining a notion
of “evolution” on F , similar to the Hamiltonian vector field in classical mechanics.

There does not need to exist a function Hξ that satisfies (3.7). But in case there is such a
function, there are other ones as well: Definition 13 fixes the Hamiltonian only up to terms of
vanishing variation. However, under the assumption that F̄ is connected, we can pick out a
particular one by requiring the Hamiltonian to vanish for a reference solution: Let gλ be a path
between the reference solution g0 and an arbitrary other solution g1. Now, if a Hamiltonian
exists, we can write the difference between the Hamiltonian associated to the reference solution
and the Hamiltonian associated to g1 as (Hξ)1 − (Hξ)0 =

∫ 1
0 dλδλHξ. (If a function Hξ exists,

the right hand side is clearly independent of the choice of the path.) Then, setting (Hξ)0 = 0
fixes Hξ uniquely.

Finally, note the following remarks:

Remark 14. Lξg is always a solution of the linearized field equations if g is a solution of the
field equations and ξ is a vector field that generates a one-parameter family of diffeomorphisms
φt on the spacetime manifold M . Since (3.1) is diffeomorphism covariant, φ∗t g is a solution of the
equations of motion as well, i.e. F (φ∗t g) = 0 holds. Hence it follows that we have dF (φ∗t g)/dt = 0,
which corresponds to the linearized field equations with solution Lξg = d(φ∗t g)/dt|t=0. Therefore,
Lξg satisfies the linearized equations of motion.

Remark 15. Similarly, if δg is tangent to F̄ , it satisfies the linearized field equations. This
can be seen as follows: In case δg is tangent to F̄ , it corresponds to dgλ/dλ|λ=0, where gλ is a
one-parameter family of metrics in F̄ . This family satisfies F (gλ) = 0, which implies that δg
satisfies the linearized field equations, i.e. dF (gλ)/dλ|λ=0 = 0.

3.1.2 Existence of a Hamiltonian

As mentioned below definition 13, there does not necessarily exist a function Hξ which satisfies
(3.7). It would be helpful to have a condition which implies the existence of a Hamiltonian
depending on the theory, the field configuration space, the hypersurface Σ and the vector field
ξ. In this section, we will show how such a condition can be found. Again, we will assume
throughout this section that all the fields have been chosen in a such a way that the integrals
converge.

First, define the Noether current (d− 1)-form Jξ. It is given by

Jξ = θ(g,Lξg)− ξ · L, (3.8)

where θ is the presymplectic potential, L is the Lagrangian of the theory, and ξ is some vector
field. ξ · L denotes the contraction of ξ into the first index (cf. footnote 4 on page 26) of the
differential form L. Note that the ambiguity in the choice of θ (3.2) gives rise to the ambiguity

Jξ → Jξ + dY (g,Lξg) (3.9)
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3 Hamiltonian approach to conserved quantities

in Jξ. Equation (3.1) together with the general identity

LξΛ = d(ξ · Λ) + ξ · dΛ, (3.10)

which holds for any differential form Λ and vector field ξ, implies that the exterior derivative of
the Noether current is given by

dJξ = −F · Lξg. (3.11)

Hence, Jξ is closed if the equations of motion of the theory (i.e. F = 0, see above (3.1)) are
satisfied. For the same reasons that restricted the freedom in the choice of the presymplectic
potential (see (3.2)) Jξ is not only closed but exact as well [18, 20]. Consequently, there exists a
(d− 2)-form Qξ, called the Noether charge, such that

Jξ = dQξ (3.12)

holds. This form Qξ is not unique either. It inherits the ambiguity (3.9) plus an additional exact
form7:

Qξ → Qξ + Y (g,Lξg) + dZ (3.13)

If the equations of motion are not satisfied, the Noether current can be written as

Jξ = dQξ + ξ · C (3.14)

[19], where C is a d-form that corresponds to the “constraints” of the theory (since C = 0 when
F = 0).

Now let us calculate the variation of the Noether current Jξ. To that end, we use (3.8), (3.1),
(3.3), and identity (3.10). Then we find that the variation of Jξ is given by

δJξ = ω(g, δg,Lξg) + d(ξ · θ) (3.15)

if g ∈ F̄ and δg tangent to F . Combining this equation with (3.14) gives

ω(g, δg,Lξg) = ξ · δC + d(δQξ)− d(ξ · θ). (3.16)

This relation can be used to rewrite (3.7). We find

δHξ =
∫

Σ
ξ · δC +

∫

∂Σ
[δQξ − ξ · θ], (3.17)

where the integral over ∂Σ is to be understood as in (3.6). If the metric perturbation satisfies
the linearized equations of motion, (3.17) reduces to

δHξ =
∫

∂Σ
[δQξ − ξ · θ]. (3.18)

If a Hamiltonian exists, the right hand side of (3.17) is a variation of some quantity. This
clearly implies that

0 = (δ1δ2 − δ2δ1)Hξ (3.19)

= −
∫

∂Σ
ξ · [δ1θ(g, δ2g)− δ2θ(g, δ1g)] (3.20)

= −
∫

∂Σ
ξ · ω(g, δ1g, δ2g) (3.21)

7Again, the reason for the form to be exact and not just closed is the same one that led to the ambiguities (3.2)
and (3.9).

28



3.2 Application to asymptotically de Sitter spacetimes

is satisfied for perturbations δ1g, δ2g that are tangent to F at g ∈ F̄ . In particular, this holds
for δ1g, δ2g tangent to F̄ . Even though this condition seems to be only a necessary one, it turns
out to also be sufficient for the existence of a Hamiltonian [4]. It is not even necessary to check
it for perturbations that are not tangent to F̄ . Thus, if∫

∂Σ
ξ · ω(g, δ1g, δ2g) = 0 (3.22)

is satisfied for all g ∈ F̄ and all δ1g, δ1g tangent to F̄ , a Hamiltonian (3.7) exists. This equation
will be called the consistency condition.

3.2 Application to asymptotically de Sitter spacetimes

Now let us evaluate the quantities of the previous sections for the Lagrangian (3.23). Since there
is an ambiguity in the choice of some of those quantities, the formulas below merely represent
convenient choices of the respective quantities to which we will, however, stick in the following
chapters.

A diffeomorphism covariant Lagrangian d-form density that gives rise to Einstein’s equation
with a positive cosmological constant Λ is given by

La1...εd =
1

16πG
(R− 2Λ)εa1...ad

, (3.23)

where R is the Ricci scalar and ε is the volume form associated with a metric gab. It can be
shown that this Lagrangian yields the field equations

Fabc1...cd =
1

16πG
εc1...cd

(
Rab − 1

2
Rgab + Λgab

)
(3.24)

and the (or more precisely, a) presymplectic potential

θa1...ad−1
=

1
16πG

vcεca1...ad−1
, (3.25)

where
va = gacgbd(∇dδgbc −∇cδgbd). (3.26)

From (3.25), we can derive the associated presymplectic current (d− 1)-form

ωa1...ad−1
=

1
16πG

wcεca1...ad−1
. (3.27)

The vector which appears in the above equation is given by

wa = P abcdef (δ1gbc∇dδ2gef − δ2gbc∇dδ1gef ), (3.28)

where

P abcdef = gaegfbgcd − 1
2
gadgbegfc − 1

2
gabgcdgef − 1

2
gbcgaegfd +

1
2
gbcgadgef . (3.29)

Then, from the definition of the Noether current (3.8), we find

(Jξ)a1...ad−1
=

1
8πG

∇c∇[cξb]εba1...ad−1
. (3.30)

Finally, we can use (3.30) to calculate a Noether charge. A possible choice is

(Qξ)a1...ad−2
= − 1

16πG
(∇bξc)εbca1...ad−2

. (3.31)
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3.2.1 Convergence of the Hamiltonian

Some of the formulas in section 3.1 contain metric variations that do not need to be tangent to
F̄ . These variations play a crucial role in justifying the interpretation of Hξ as the generator of
dynamics conjugate to ξ. But we are mainly interested in the conservation properties of Hξ. For
our purposes, it will therefore be sufficient to investigate (3.18). In contrast to relations (3.7) and
(3.17), this equation for the Hamiltonian holds only for perturbations that satisfy the linearized
equations of motion. Hence, we will assume in the following that δg is tangent to F̄ .8

Furthermore, we will restrict our analysis to spacelike hypersurfaces Σ in the physical spacetime
manifold M that are closed, without boundary, and extend smoothly to I + of an unphysical
manifold M̃ for every g ∈ F̄ , such that Σ∩I + is a smooth (d−2)-dimensional submanifold and
Σ ∪ ∂Σ is compact. Note that this means that ∂Σ ⊂ I +.

Now assume that the vector field ξ is such that Lξg is tangent to the covariant phase space.9

Then let us take a look at the right hand side of (3.18):

I :=
∫

∂Σ
[δQ− ξ · θ] (3.32)

First, we want to show that this expression is always well defined via the limiting procedure
described below (3.6). Let Ki be a nested sequence of compact subsets of Σ such that ∂Ki

approaches ∂Σ and let

Ii =
∫

∂Ki

[δQ− ξ · θ]. (3.33)

According to (3.16), we have
ω(g, δg,Lξg) = d[δQ− ξ · θ], (3.34)

which can be used to write the difference between Ii and Ij as

Ii − Ij =
∫

Σij

d[δQ− ξ · θ] =
∫

Σij

ω(g, δg,Lξg). (3.35)

Here, Σij denotes the portion of Σ that lies between ∂Ki and ∂Kj . An important result of
chapter 4 will be that ω(g, δ1g, δ2g) vanishes on I + for perturbations δ1g, δ2g that are tangent
to F̄ . Hence it follows that ω(g, δg,Lξg) vanishes on I +. Together with the compactness of
Σ ∪ ∂Σ, this implies that Ii is a Cauchy sequence with limit I.

To show that (3.32) is also independent of the choice of the hypersurface, define

Ji :=
∫

∂K̃i

[δQ− ξ · θ], (3.36)

where K̃i is a nested sequence of compact subsets of another hypersurface Σ̃, such that ∂Σ̃ = ∂Σ.
Then, by the same arguments that we employed above, it follows that (3.32) does only depend
on the cross section ∂Σ with I + and not on the particular choice of the hypersurface.10

Hence, we have shown that the right hand side of (3.32) or (3.18), respectively, is finite and
does not depend on the choice of the hypersurface for g ∈ F̄ and δg tangent to F̄ .

8The precise definition of F̄ can be found in section 4.2. However, it is not yet necessary to know what metrics
it is comprised of.

9The first thing that comes to mind is that ξ is probably a representative of an arbitrary asymptotic symmetry.
But in that case (considering our definition of F̄ (definition 14)), we could not immediately conclude that Lξg
is tangent to F̄ : Let φt be generated by ζ and let g ∈ F̄ . If we knew that φ∗t g ∈ F̄ , Lζg = dφ∗t g/dt|t=0 would
be a vector tangent to F̄ . However, we do not know that. Even though ξ is not a representative of an arbitrary
asymptotic symmetry, it still is a representative of some asymptotic symmetry.

10Note that this argument holds only if the orientations of the boundaries coincide.
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3.2 Application to asymptotically de Sitter spacetimes

3.2.2 Conservation of the Hamiltonian

In the previous section, we have seen that the right hand side of

δHξ =
∫

∂Σ
[δQ− ξ · θ] (3.37)

is well defined for appropriate vector fields ξ, suitable hypersurfaces Σ, and our choice of F̄ .
But we have not yet discussed whether a function Hξ exists that solves this equation. This can,
however, simply be answered by making use of the consistency condition (i.e. equation (3.22)):
Together with the fact that ω(g, δ1g, δ2g) = 0 on I + for variations δ1g, δ2g tangent to F̄ (see
previous section), it implies the existence of a function Hξ (recall that ∂Σ ⊂ I +). Thus, we can
write

δIξ = δQξ − ξ · θ (3.38)

for a function Iξ and

Hξ =
∫

∂Σ
Iξ. (3.39)

Now that we have succeeded in establishing the existence of a Hamiltonian, we can finally begin
to investigate as to howHξ and δHξ are conserved, i.e. depend on the choice of the hypersurface Σ.
The hypersurfaces that we considered in the previous section were required to have no boundary
in the physical spacetime manifold. But extending them to I + of an unphysical manifold had
to yield a hypersurface with boundary.

To get an idea of how such hypersurfaces look like, we will resort to de Sitter space as an
example spacetime.11 Cauchy surfaces do not satisfy the above requirements (see figure 3.1(a)),
since they do not possess a boundary in an unphysical manifold M̃ . The surfaces sketched in
3.1(b), however, do meet these criteria: They are hypersurfaces with boundaries while their
restrictions to M are hypersurfaces without boundaries. Consequently, such hypersurfaces can
be used to construct Hamiltonians.12

Since we want to construct a conserved quantity, Hξ should be independent of the choice of
the hypersurface within a certain class of hypersurfaces for a fixed metric g ∈ F̄ . It follows from
(3.1), (3.3), and (3.24) that the exterior derivative of the presymplectic current vanishes, i.e.

dω(g, δ1g, δ2g) = 0, (3.40)

if δ1g and δ2g satisfy the linearized Einstein equation. Now consider two hypersurfaces Σ1 and
Σ2 which, together with a portion I12 of I +, enclose a spacetime volume Σ12 (see figure 3.2).
Then we can use (3.7) and Stokes’ theorem to determine the difference between δHξ[Σ1] and
δHξ[Σ2]. This difference is given by13,14

δHξ[Σ1]− δHξ[Σ2] = ±
(∫

Σ12

dω −
∫

I12

ω

)
= 0, (3.41)

11Recall that I± of every spacetime that satisfies Einstein’s equation with a positive cosmological constant is
spacelike.

12Clearly, such hypersurfaces satisfy all the conditions on hypersurfaces listed above (3.32).
13This difference would, for instance, vanish if Σ1 and Σ2 were either like the continuous surfaces or like the

dashed surfaces in figure 3.1(b). However, due to the orientations of these surfaces, we would have σdashed =
−σcontinuous.

14The sign on the right hand side of (3.41) is determined by the position of the hypersurfaces relative to each
other. For the surfaces sketched in figure 3.2 we would get a plus sign.
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I −

I +Cauchy surfaces

(a)

hypersurfaces

boundaries of the
hypersurfaces

(b)

Figure 3.1: Different surfaces in de Sitter spacetime: (a) Cauchy surfaces. (b) Hypersurfaces
with boundaries on I +. Symplectic forms associated with the dashed surfaces are
identical, the same holds for the continuous ones (3.41).

where we again made use of the fact that ω = 0 on I +. This establishes that δHξ is independent
of the choice of the hypersurface as long as the hypersurfaces together with a portion of I +

enclose a spacetime volume.
Even though δHξ is independent of the choice of Σ, one might suspect that Hξ is not. However,

we have shown below definition 13 that a unique Hξ can be found for a fixed hypersurface by
requiring a solution of (3.7) to vanish for a reference metric in F̄ . Now, if the right hand side of
(3.7) is independent of the choice of the hypersurface, this requirement clearly ensures that the
Hamiltonian Hξ is independent of the choice as well. Hence, setting

Hξ(g0) = 0 (3.42)

for all asymptotic symmetries in de Sitter space guarantees that Hξ is independent of the choice
of the hypersurfaces within the class of hypersurfaces satisfying (3.41).

Σ2

Σ12

I12Σ1

Figure 3.2: Hypersurfaces Σ1 and Σ2, the portion I12 of I + and the area Σ12.
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I +

Hypersurfaces

Figure 3.3: Hypersurfaces with disjoint boundaries on I +.

Remark 16. Our analysis is based on the assumption that the hypersurfaces Σ in the physical
spacetime manifold are without boundary. If this is not satisfied, i.e. ∂Σ ∩M 6= ∅, the above
formalism might still be applicable if the consistency condition (i.e. equation (3.22)) holds. A
Hamiltonian would, however, not necessarily be conserved anymore. This can be seen by con-
sidering the following equation:

δHξ[Σ1]− δHξ[Σ2] = ±
∫

Σ′
ω (3.43)

Here, Σ1, Σ2, another hypersurface Σ′, and a portion of I + enclose a spacetime volume. The
non-conservation follows from the fact that the integral on the right hand side is not guaranteed
to vanish.

Remark 17. Instead of using hypersurfaces in the construction of Hξ that behave like the ones
that are sketched in figure 3.1(b), we could also use hypersurfaces that behave like the ones in
figure 3.3. An Hξ that is associated with such a surface Σ clearly vanishes if Σ and a portion
of I + enclose a spacetime volume. Therefore, if Hξ does not vanish, we can conclude that the
situation must be as in figure 3.4: Some part of I + must be “missing”. For the sake of the
argument, let us call this missing part “K”. In this scenario, a non-vanishing Hξ bears some
resemblance to a flux of a conserved current that emanates from K through the hypersurface Σ:
It is independent of the choice of the hypersurface as long as the surface encloses K.

not contained in I +

I +

Figure 3.4: Example of a situation in which Hξ would not necessarily vanish.
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4 Conserved quantities in asymptotically de
Sitter spacetimes

In this chapter, we will present and derive a formula for conserved quantities in future asymp-
totically de Sitter spacetimes.

We will begin this chapter by introducing this formula (i.e. (4.1)) and by discussing some of its
properties. In section 4.1, we will then investigate as to how conserved quantities arising from this
formula are conserved. At the same time, we will show that (4.1) really gives rise to conserved
quantities for every future asymptotically de Sitter spacetime. The derivation of the formula for
conserved quantities will be presented in section 4.2. By using the Hamiltonian framework of the
previous chapter, we will be able to derive a formula that, albeit less general, is identical in form
to (4.1). It can only be applied to spacetimes whose metric is in some covariant phase space (see
below for the precise requirements), whereas formula (4.1) works for every future asymptotically
de Sitter spacetime. Hence, our formula for conserved quantities is a generalization of the one
found via the Hamiltonian method. After the construction of the formula, we will apply our
results to some sample spacetimes: We will calculate conserved quantities for the Schwarzschild
de Sitter and the Tolman-Bondi spacetime. In the last section of this chapter, we will then turn
to investigating whether positive conserved quantities exist.

Let (M, gab) be an arbitrary future asymptotically de Sitter spacetime with unphysical space-
time (M̃, g̃ab = Ω2gab) and let C be a cut1 of I +. Then a conserved quantity conjugate to a
vector field ξa which represents an asymptotic symmetry is given by

Hξ =
`

8πG

∫

C
Ẽabũ

aξbdS̃. (4.1)

dS̃ is the integration element on C, ũa is a unit2 spacelike normal to C within I +, and

Ẽab =
`2

d− 3
Ω3−dC̃acbdñcñd (4.2)

is the normalized electric part of the unphysical Weyl tensor.3 The definition of the Weyl tensor
can be found in section 1.2 and the vector ña is given by ña = ∇̃aΩ, where ∇̃a is the derivative
operator that is associated with the unphysical metric. Note that the vector ũa is not uniquely
defined by the above condition. Being a unit spacelike normal to C within I + fixes ũa only up
to sign. Equation (4.1) is consequently only fixed up to sign as well.

It is worth noticing that it can explicitly be seen that Hξ is independent of the choice of the
conformal factor. Expressing Hξ in terms of another conformal factor Ω′ = ωΩ, where ω is a
smooth and strictly positive or negative function on C, does not change the form of (4.1).

As we mentioned at the beginning of this chapter, Hξ is foremost a conserved quantity. It is a
Hamiltonian in the sense of chapter 3 only if the following conditions are satisfied: (i) the metric

1A cut is a smooth (d− 2)-dimensional submanifold of I +.
2Normalized with respect to the unphysical metric.
3Despite the inverse powers of Ω, Ẽab is finite on I + (cf. sections 4.1 and 4.2).
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4 Conserved quantities in asymptotically de Sitter spacetimes

gab is an element of a covariant phase space F̄ over M (see definition 14); (ii) the cut C is the
boundary of a suitable hypersurface (see section 3.2.1); (iii) Lξg is tangent to F̄ . Hence, if Hξ is
a Hamiltonian, the sign of ũa is fixed by the induced orientation on C (see footnotes 4 and 6 on
page 26 for our orientation conventions).

Remark 18. It should be pointed out that the physical interpretation of Hξ remains unclear at
this point. In particular, we cannot relate any conserved quantity or Hamiltonian to the mass
of a spacetime: To calculate the mass, we would first turn to a representative of an asymptotic
symmetry ξa that is timelike on I +. But according to section 2.5, such symmetries do not exist
in future asymptotically de Sitter spacetimes.

Remark 19. Note that Hξ[C] can be understood as the flux of (the conserved current (cf.
(4.15)))

J̃a :=
`

8πG
Ẽabξ

b (4.3)

through C. In terms of J̃a, Hξ can be written as

Hξ =
∫

C
J̃adS̃a. (4.4)

This property is related to the one portrayed in remark 17.

Remark 20. Note that most of the conformal quantities that we will encounter in the following
(unphysical Riemann tensor, unphysical Ricci tensor and scalar, unphysical Weyl tensor, un-
physical extrinsic curvature tensor, . . . ) are smooth on I +. These quantities depend smoothly
on the (smooth) unphysical metric, the conformal factor, and smooth derivatives of thereof.

4.1 Conservation

Before we derive the formula for Hξ within the framework that we outlined in chapter 3, we will
explicitly show how and that Hξ is conserved for all future asymptotically de Sitter spacetimes.
But first note that our formula for Hξ really gives rise to a finite quantity: This follows from the
fact that the electric part of the Weyl tensor of an arbitrary unphysical spacetime of a future
asymptotically de Sitter spacetime behaves like C̃abcdñbñd = O(Ωd−3) in a neighborhood of I +.4

This implies that Ẽab is smooth on I + and that Hξ is finite.
Now let us turn to the conservation properties of Hξ. By using Einstein’s equation and the

contracted Bianchi identity, it can be shown that

∇̃a(Ω3−dC̃acbd) = 0, (4.5)

where Ω is an arbitrary conformal factor. A derivation of this equation can be found in appendix
A. There we also give a derivation of

Rab = R̃ab + (d− 2)Ω−1∇̃a∇̃bΩ + g̃abΩ−1∇̃c∇̃cΩ− g̃ab(d− 1)Ω−2∇̃cΩ∇̃cΩ. (4.6)

4We will derive this relation in the next section (see (4.41)). Even though this derivation will be done for particular
unphysical spacetimes, C̃abcdñ

bñd = O(Ωd−3) holds for any unphysical spacetime satisfying the conditions of
definition 11. This can easily be checked by making use of the conformal invariance of the Weyl tensor.
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4.1 Conservation

This equation describes the relation between the Ricci tensors Rab and R̃ab. The former is
associated with some future asymptotically de Sitter spacetime and the latter with a respective
unphysical spacetime. We can rewrite (4.6) as (cf. (A.9))

∇̃añb =
1

d− 2

[
(d− 1)Ω−1(ñcñc + `−2)g̃ab − (∇̃cñc)g̃ab − ΩR̃ab

]
, (4.7)

where we again made use of Einstein’s equation and where ña = ∇̃aΩ. If we contract ñcñd into
(4.5) and use (4.7) and the symmetries of the Weyl tensor as well as its tracelessness, we find

∇̃a(Ω3−dC̃acbdñcñd) +
1

d− 2
Ω4−dC̃acbdñcR̃ad = 0. (4.8)

Now we again need to refer to the asymptotic behavior of unphysical Weyl tensors in future
asymptotically de Sitter spacetimes. As we will show in the next section, C̃abcdñd = O(Ωd−3)
holds (cf. (4.43)). This implies that

Ω4−dC̃acbdñcR̃ad = 0 (4.9)

on I + and we can conclude that
∇̃aẼab = 0 (4.10)

on I +. If we denote the metric on surfaces of constant Ω by h̃ab and its associated derivative
operator by D̃a, we can write

D̃aẼab = h̃ach̃
d
a h̃

e
b ∇̃cẼde, (4.11)

from which follows that
D̃aẼab = 0 (4.12)

on I +. To obtain this last equation, we expressed the unphysical metric as g̃ab = −f(p)ñañb+h̃ab
in a neighborhood of I + and used relation (4.7) and the symmetries of the Weyl tensor. Here,
f is a smooth positive function with f(p) ¹ I + = `2.

Hence we have shown that Ẽab is divergence-free on I +. We can use this as follows: According
to Stokes’ theorem, the difference between conserved quantities associated to cuts C1, C2 of I +

which are the only boundaries of a set I12 can be written as either

Hξ[C1]−Hξ[C2] = ± `

8πG

∫

I12

D̃a(Ẽabξb)ds̃ (4.13)

or
Hξ[C1] +Hξ[C2] = ± `

8πG

∫

I12

D̃a(Ẽabξb)ds̃ (4.14)

depending on the specific choice of the vector field ũa on the cuts. The right hand sides of these
equations vanish, since

D̃a(Ẽabξb) = ẼabD̃(aξb) =
1

d− 1
Ẽ a
a D̃bξ

b = 0. (4.15)

Here we used (4.12) and the fact that representatives of asymptotic symmetries are conformal
Killing fields on I + (cf. section 2.5). Hence, conservation of Hξ means the following: If two cuts
can be smoothly deformed into each other, i.e. are homotopic, the respective Hξ’s will differ at
most by sign. If Hξ is a Hamiltonian that is associated with some hypersurface, conservation
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4 Conserved quantities in asymptotically de Sitter spacetimes

in the sense of (4.13) corresponds to the conservation properties outlined in section 3.2.2 (cf.
(3.41)).

Let us now investigate how the conserved quantities Hξ are affected by the structure of I +.
To that end, consider an arbitrary unphysical spacetime of a future asymptotically de Sitter
space. Then consider a subset IC of I + that is diffeomorphic to the disc Dd−1. A conserved
quantity Hξ associated to the boundary C of IC can then be expressed as

Hξ =
`

8πG

∫

IC

D̃a(Ẽabξb)ds̃ = 0, (4.16)

where the last equality follows from the fact that D̃a(Ẽabξb) = 0 on I +. Thus, every cut
C ⊂ I + of an arbitrary unphysical spacetime of a future asymptotically de Sitter space which
is the boundary of a subset of I + that is diffeomorphic to Dd−1 can only have vanishing Hξ’s
associated to it.

Hence, starting from a sphere, the minimal condition which allows for the possibility of non-
vanishing conserved quantities is the following one: There does not exist an unphysical spacetime
of a given spacetime whose I + is diffeomorphic to a (d− 1)-sphere or a (d− 1)-sphere with one
point (or a connected set) removed.

4.2 Construction

In this section, we will, in a manner similar to [9], derive equation (4.1) within the Hamiltonian
framework of chapter 3. The necessary steps are to show that: (i) the variation of Hξ is given by
(3.18) for perturbations tangent to F̄ ; (ii) Hξ vanishes for de Sitter space. The second property is
certainly satisfied, since the Weyl tensor vanishes in de Sitter space. To verify the first property,
we need to give a definition of the covariant phase space F̄ . But prior to that, we will analyze
certain consequences of our definition of the term future asymptotically de Sitter. We will do so
to ensure that the conservation of Hξ is guaranteed on account of the arguments of the previous
section for all future asymptotically de Sitter spacetimes and to motivate our definition of F̄ .
Hence, up to (4.48), the following analysis holds for all future asymptotically de Sitter spacetimes
and not just for spacetimes in a covariant phase space.

According to condition (iv) of definition 11, it is always possible to find a conformal factor Ω
and unphysical spacetime (M̃, g̃ab) of a future asymptotically de Sitter spacetime (M, gab) such
that the induced metric (h̃ab)0 on I + is locally isometric to the natural metric on Sd−1. Since
this condition fixes Ω only on I +, it is further possible to choose the conformal factor in such a
way that (see section 1.3)

g̃ab = −∇̃aΩ∇̃bΩ + h̃ab (4.17)

in a neighborhood of I +.5 Here, h̃ab is the metric on surfaces of constant Ω and (h̃ab)0 ≡
h̃ab(Ω = 0). In the following and in the related appendices, we will assume that the unphysical
metric and conformal factor have been chosen, such that (4.17) is satisfied.

For de Sitter space, the conformal factor (see section 2.4.1)

Ω = 2 exp(−|τ |) (4.18)

can be used to get an unphysical metric of the form (4.17). Expression (4.18) is not smooth
everywhere, but it certainly is smooth in a neighborhood of I +, which is all that is needed.

5See [9] for as to how such a particular conformal factor can be found.
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Using this conformal factor, we find

˜̄gab = −∇̃aΩ∇̃bΩ +
(

1 +
Ω2

2
+

Ω4

16

)
σab (4.19)

for the unphysical de Sitter metric ˜̄g and

˜̄hab =
(

1 +
Ω2

2
+

Ω4

16

)
σab (4.20)

for the induced unphysical metric on hypersurfaces of constant Ω. Here, σab is the standard
metric of Sd−1.

Now let us have a look at Einstein’s equation to analyze the behavior of future asymptotically
de Sitter metrics more closely at I +. The unphysical Ricci tensor and scalar can be used to
define the tensor

S̃ab :=
2

d− 2
R̃ab − 1

(d− 1)(d− 2)
R̃g̃ab. (4.21)

Then we can write Einstein’s equation with a positive cosmological constant as (appendix A.1)

S̃ab + 2Ω−1∇̃añb − Ω−2g̃ab(ñcñc + `−2) = 0, (4.22)

where ña = ∇̃aΩ and where ` is the de Sitter radius (cf. (2.25)). For the sake of simplicity, we
set

` = 1 (4.23)

for the rest of this section and in the related appendices. The de Sitter radius ` can always be
restored by dimensional arguments. Then it can be read off (4.22) that

ñaña ¹ I + = −1, (4.24)

i.e. ña is unit and timelike on I +. By making use of (4.23) and the specific form (4.17) of the
unphysical metric, we can reduce (4.22) to

S̃ab = −2Ω−1∇̃añb. (4.25)

Due to the nature of (4.17) this clearly holds only in a neighborhood of I +. This equation can
be split up with respect to the hypersurfaces of constant Ω (see appendix A.2 and A.3): First,
by contracting ñañb and h̃ a

c ñ
b into (4.25), we find

R̃+ K̃2 − K̃abK̃
ab − 2(d− 2)Ω−1K̃ = 0, (4.26)

D̃bK̃
b
a − D̃aK̃ = 0. (4.27)

These equations are called the constraint equations. The remaining information that is contained
in (4.25) can be extracted by contracting h̃ a

c h̃
b
d into this equation. The resulting relation, which

we will call the first evolution equation, can be expressed as

− d

dΩ
K̃ b
a = R̃ b

a + K̃ b
a K̃ − (d− 2)Ω−1K̃ b

a − δ b
a Ω−1K̃. (4.28)

Here, R̃ and R̃ab are the intrinsic Ricci scalar and tensor of the surfaces of constant Ω and
D̃a is the derivative operator that is associated with h̃ab. The tensor K̃ab = −∇̃cñd is the
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4 Conserved quantities in asymptotically de Sitter spacetimes

extrinsic curvature of these surfaces. It is symmetric and purely spatial6, i.e. it satisfies K̃ab =
−h̃ c

a h̃
d
b ∇̃cñd. Hence, we can raise and lower its indices with the spatial metric h̃ab. We denote

its trace by K = K a
a . The second evolution equation is given by

d

dΩ
h̃ab = 2h̃bcK̃ c

a . (4.29)

It just captures the fact that
Lñh̃ab = −2K̃ab (4.30)

(cf. appendix A.3).
In order to investigate the consequences implied by (4.28) and (4.29), we perform a Taylor

expansion in Ω, such that

h̃ab =
∞∑

j=0

(h̃ab)jΩj , p̃ b
a =

∞∑

j=0

(p̃ b
a )jΩj , K̃ =

∞∑

j=0

(K̃)jΩj , (4.31)

where p̃ b
a is the traceless part of K̃ b

a and where the expansion coefficients are independent of Ω.
If we similarly expand the intrinsic Ricci tensor and scalar, we get

(−d+ 2 + j)(p̃ b
a )j = −(R̃ b

a )j−1 +
1

d− 1
(R̃)j−1δ

b
a −

j−1∑

m=0

(K̃)m(p̃ b
a )j−1−m (4.32)

(−2d+ 3 + j)(K̃)j = −(R̃)j−1 −
j−1∑

m=0

(K̃)m(K̃)j−1−m (4.33)

j(h̃ab)j = 2
j−1∑

m=0

[
(h̃bc)m(p̃ c

a )j−1−m +
1

d− 1
(h̃ab)m(K̃)j−1−m

]
(4.34)

from the evolution equations.
If we knew (p̃ b

a )0, (K̃)0 and (h̃ab)0, the above relations would uniquely determine (K̃ b
a )j and

(h̃ab)j up to order d− 2 and d− 1, respectively. All the information we need about these “initial
conditions” can be found in the definition of the term future asymptotically de Sitter (definition
11). First, from Einstein’s equation follows that (to be more precise: from multiplying (4.28) by
Ω)

K̃ b
a = 0 (4.35)

on I +, which implies
(p̃ b
a )0 = (K̃)0 = 0. (4.36)

Second, the necessary information about (h̃ab)0 is provided by the fourth condition of definition
11. We have already seen the consequences of this condition in (4.17): With our choice of the
conformal factor, (I +, (h̃ab)0) is locally isometric to (Sd−1, σab).

Now recall that (I +, (h̃ab)0) of an unphysical de Sitter spacetime is not only locally but really
isometric (equal) to a (d−1)-sphere with its natural metric for our choice of the conformal factor.
This implies that we recover the (unphysical) spatial metric of de Sitter space and its extrinsic
curvature (up to the respective orders) if we insert the metric of a sphere into the recursion

6Symmetry follows from the fact that ∇̃a is torsion-free. Being spatial follows from that fact that ña is a unit
geodesic tangent field.
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4.2 Construction

relations. But this also means that (I +, (h̃ab)0) of an arbitrary future asymptotically de Sitter
space is locally isometric to that of de Sitter space. Consequently, if we insert a metric into the
recursion relations that is locally isometric to the metric of a sphere, (h̃ab)j and (K̃ b

a )l must be
locally diffeomorphic to their de Sitter counterparts (up to the respective orders) and the maps
that relate these quantities to the respective de Sitter quantities must be equal to the ones that
relate (h̃ab)0 to its de Sitter counterpart.7,8 Hence, if we recall the form of the induced unphysical
metric on surfaces of constant Ω of de Sitter space (i.e. (4.20)), we can conclude that

h̃ab =
(

1 +
Ω2

2
+

Ω4

16

)
(h̃ab)0 +O(Ωd−1) (4.37)

must hold for any future asymptotically de Sitter spacetime in a neighborhood of I +.9

At order j = d− 2, the left hand side of equation (4.32) is equal to 0 · (p̃ b
a )d−2. Therefore, we

cannot calculate this coefficient and all the successive ones without further information. But if
(p̃ b
a )d−2 is given, the coefficients (h̃ab)j , (K̃)j , and (p̃ b

a )j are uniquely determined for j ≥ d−1.10

Consequently, this tensor carries all the information about the metric that is not supplied by the
asymptotic conditions.

Now we will show that this tensor is related to the leading order electric part of the unphysical
Weyl tensor. To that end, consider the following equation (see appendix A.4):

C̃acbdñ
cñd = LñK̃ab + K̃acK̃

c
b + Ω−1K̃ab (4.38)

Expanding equation (4.38) in powers of Ω gives

− 1
d− 3

(C̃acbdñcñd)d−3 = (K̃ab)d−2 − 1
d− 3

d−3∑

m=0

(K̃ac)m(K̃ c
b )d−3−m (4.39)

for the coefficients at order Ωd−3. The second term on the right hand side of this equation
vanishes11 for d = 4 as well as d ≥ 6 and is equal to −1/8(h̃ab)0 for d = 5. Hence, we can rewrite
(4.39) as

− 1
d− 3

(C̃acbdñcñd)d−3 =

{
(K̃ab)d−2 for d = 4, d ≥ 6
(K̃ab)3 − 1

8(h̃ab)0 for d = 5,
(4.40)

which relates the leading order of the electric part of the Weyl tensor to the coefficient (K̃ab)d−2.
Of course, this also relates (p̃ b

a )d−2 to the electric part of the Weyl tensor, because p̃ b
a is just

the tracefree part of K̃ b
a .

7More precisely, for every point p ∈ I +, there must exist a neighborhood U ⊂ I + of p and a diffeomorphism

f , such that (f−1)∗(h̃ab)j = (˜̄hab)j and (f−1)∗(K̃ b
a )l = ( ˜̄K b

a )l on U for j < d− 1 and l < d− 2, where (˜̄hab)j

and ( ˜̄K b
a )l are the respective quantities of de Sitter space.

8In coordinates, we can locally write the spatial metric of I + of an arbitrary future asymptotically de Sitter
spacetime in the form of the metric of the sphere. Then, obviously, the recursion relations yield identical
quantities (locally) for de Sitter space and other future asymptotically de Sitter spaces.

9This extends to quantities that depend only on (h̃ab)j and (K̃ b
a )l for j < d − 1 and l < d − 2: They must be

locally diffeomorphic to their de Sitter counterparts.
10Note that we can get (K)2d−3 from the constraint equations.
11The vanishing in d ≥ 6 follows from the fact that we have (h̃ab)d−1 = 0 in de Sitter space: This implies

(K̃ab)d−2 = 0 via equation (4.30), which means that the first term on the right hand side of (4.39) vanishes.
This is also true for the term on the left hand side, because the Weyl tensor vanishes in de Sitter space.
Consequently, the sum in (4.39) must vanish for de Sitter space. From this follows that this sum has to vanish
in any future asymptotically de Sitter spacetime, because it is locally diffeomorphic to the respective de Sitter
expression.
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4 Conserved quantities in asymptotically de Sitter spacetimes

Remark 21. The quantity C̃acbdñcñd (see (4.38)) depends only on the extrinsic curvature (and
the spatial metric) and derivatives thereof. More precisely, up to order d − 4, its expansion
coefficients can be expressed through12 (K̃ b

a )l and (h̃ab)l, where l < d− 2. Hence, (C̃abcdñbñd)j
must be locally isometric to the corresponding quantity in de Sitter space for j < d − 3, from
which

C̃acbdñ
cñd = O(Ωd−3) (4.41)

follows, since the Weyl tensor vanishes in pure de Sitter space. We can draw the same conclusion
for (cf. appendix A.4)

C̃abcdñ
d = 2ñ[aC̃b]ecdñ

dñe − D̃aK̃bc + D̃bK̃ac. (4.42)

The asymptotic behavior of the first term on the right hand side of this equation clearly agrees
with the one of (4.41). Up to order d− 4, the second and third term contain (h̃ab)j and (K̃ b

a )j
as well as ordinary derivatives to first order of these quantities to no higher order than j = d−4.
Hence,

C̃abcdñ
d = O(Ωd−3), (4.43)

i.e. the asymptotic behavior of this quantity is identical to the one of (4.41).

To proceed with our analysis, we now relate (h̃ab)d−1 to the electric part of the Weyl tensor.
According to (4.30), the coefficient (hab)d−1 is simply given by

(h̃ab)d−1 =
2

d− 1
(K̃ab)d−2. (4.44)

Then we can use the relation between the leading order of the electric part of the Weyl tensor
and the coefficient (K̃ab)d−2 that we have just derived (i.e. relation (4.40)): By definition, we
have (see (4.2))

(Ẽab)0 =
1

d− 3
(C̃acbdñcñd)d−3, (4.45)

which means that (4.44) can be rewritten as

(h̃ab)d−1 =

{
− 2
d−1(Ẽab)0 for d = 4, d ≥ 6

−1
2(Ẽab)0 + 1

16(h̃ab)0 for d = 5
. (4.46)

Now recall equation (4.37). This equation and the above result imply that we can write the
unphysical metric of an arbitrary future asymptotically de Sitter spacetime as

g̃ab = −∇̃aΩ∇̃bΩ +
(

1 +
1
2
Ω2

)
(h̃ab)0 − 2

3
Ω3Ẽab +O(Ω4) for d = 4 (4.47)

or as

g̃ab = −∇̃aΩ∇̃bΩ +
(

1 +
Ω2

2
+

Ω4

16

)
(h̃ab)0 − 2

d− 1
Ωd−1Ẽab +O(Ωd) for d > 4 (4.48)

in a neighborhood of I +.

Now let us restrict our analysis to the covariant phase space F̄ .
12Recall equations (A.25) and (A.27) and that K̃ab = K̃ c

a h̃bc.
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Definition 14. Let M be a manifold, let I + be a (future13) boundary, such that M̃ = M ∪I +

and let Ω be a smooth conformal factor on M̃ . A covariant phase space F̄ over M satisfies the
following properties: (i) it is connected; (ii) ḡ ∈ F̄ , where ḡ is the de Sitter metric; (iii) gab ∈ F̄
is smooth on M and g̃ab = Ω2gab extends smoothly to I +; (iv) in a neighborhood of I +, gab
is of the form gab = Ω−2g̃ab, where g̃ab is given by (4.47) or (4.48) and (h̃ab)0 is the same for all
gab ∈ F̄ ; (v) gab satisfies Einstein’s equation (2.23).

Remark 22. Note that (M, gab) is future asymptotically de Sitter for all gab ∈ F̄ . The opposite
is not true.

All the metrics in F̄ are of the form gab = Ω−2g̃ab, where g̃ab is as in (4.47) or (4.48) with
(hab)0 fixed. Hence, every vector tangent to F̄ must asymptotically (on the spacetime manifold)
be of the form

δgab = γab + Lηgab, (4.49)

where
γab = − 2

d− 1
Ωd−3δẼab +O(Ωd−2) (4.50)

and
Lηgab = − 2

d− 1
Ωd−3LηẼab +O(Ωd−2). (4.51)

Lηgab corresponds to the gauge freedom in perturbations (see e.g. [5]). It is an infinitesimal
diffeomorphism generated by a vector field ηa. With our choice of the covariant phase space F̄ ,
the vector field ηa is not arbitrary, but must be in compliance with definition 14. This means
that

Lηḡ = O(Ωd−2), (4.52)

for the de Sitter metric ḡ, which leads to (4.51). Calculating the symplectic current (d− 1)-form
(3.3) for perturbations (4.49) yields (cf. appendix A.5)

ω(g, δ1g, δ2g) = 0 (4.53)

on I +. Therefore, as argued in chapter 3, a Hamiltonian Hξ exists.14 Now recall that

δHξ =
∫

C
[δQξ − ξ · θ(g, δg)] (4.54)

for variations δg that are tangent to F̄ . Here, C ⊂ I + is the boundary of a suitable hypersurface
Σ (cf. chapter 3). To evaluate this expression for (4.49), we analyze (4.50) and (4.51) separately.
We begin with δgab = γab.

The Noether charge Qξ and its variation under (4.50) can be written as15

(Qξ)a1...ad−2
=

1
8πG

Ω1−dε̃a1···ad−2bcñ
bξc − 1

16πG
Ω2−dε̃a1···ad−2bcg̃

be∇̃eξ
c (4.55)

and
(δQξ)a1...ad−2

=
1

8πG
ε̃a1...ad−2bcñ

bδẼcdξ
d +O(Ω), (4.56)

13See condition (v) of definition 11.
14Recall that ξa is such that Lξg is tangent to F̄ . See footnote 9 on page 30.
15Recall that we have chosen the particular Noether charge (3.31).
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4 Conserved quantities in asymptotically de Sitter spacetimes

respectively (see appendix A.6). To further reexpress this equation, let us take a look at the
volume form (d−2)ε̃ on C. It is fully determined by the volume forms of the physical spacetime:
The volume form of Σ is n̂bεba1...ad−1

, where n̂a is a future directed unit vector normal to Σ.16 The
volume forms of boundaries of a compact subsets of Σ are ûcn̂bεbca1...ad−2

, where ûa is an outward
pointing unit vector. In terms of conformal quantities, the volume forms of these boundaries can
be written as

Ωd−2ûcn̂bεbca1...ad−2
= ˜̂uc ˜̂nbε̃bca1...ad−2

, (4.57)

where ˜̂uc = Ω−1ûc and ˜̂nb = Ω−1n̂b. On I +, we find17

˜̂uc ˜̂nbε̃bca1...ad−2
¹ I + = ũcñbε̃bca1...ad−2

¹ I + = (d−2)ε̃a1...ad−2
, (4.58)

where ũa and ña are as defined below (4.1). This condition fixes the vector ũa uniquely. The
volume form ε̃ can be written as

ε̃ = ũ ∧ ñ ∧ (d−2)ε̃. (4.59)

Inserting this into (4.56) and restricting18 to C yields

(δQξ)a1...ad−2
¹ C =

1
8πG

δ
[
(d−2)ε̃a1...ad−2

Ẽcdũcξ
d
]
. (4.60)

We still need to calculate the second term on the right hand side of (4.54). However, it turns
out that (see appendix A.7)

θ(g, γ) = 0 (4.61)

on I +. Therefore, we can write (4.54) as

δHξ =
∫

C
δQξ =

1
8πG

δ

∫

C
Ẽabũ

bξadS̃ (4.62)

for perturbations of type (4.50). Restoring ` in this equation already gives formula (4.1), even
though we still need to investigate the second part of the variation (4.49). However, if we repeat
the above analysis for (4.51), we find the exact same result, namely

δηHξ =
∫

C
δηQξ =

1
8πG

δη

∫

C
Ẽabũ

bξadS̃. (4.63)

Thus, the variation of Hξ under (4.49) indeed satisfies (4.54) (i.e. (3.18)) and is consequently the
correct expression for the Hamiltonian.

4.3 Examples

In this section, we will evaluate the conserved quantities Hξ in some examples. In particular, we
will calculate conserved quantities for the Schwarzschild de Sitter spacetime in d dimensions.

16See footnotes 4 and 6 on page 26.
17The first equality in this equation can always be satisfied: ε̃ is antisymmetric.
18Note: This means also restricting the resulting forms to vectors tangent to C.
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4.3.1 Schwarzschild de Sitter space

In section 2.4.2, we have shown that there exists an unphysical spacetime (M̃, g̃ab) of the
Schwarzschild de Sitter spacetime whose (I +, h̃ab) is isometric to a (d − 1)-sphere minus two
antipodal points. Therefore, it might be possible to construct non-vanishing conserved quantities
(cf. section 4.1).

Let us take a look at the Schwarzschild de Sitter metric (2.35). For simplicity, we choose the
conformal factor Ω = 1/r, which gives rise to the unphysical metric

ds̃2 = −1/
(

1
`2

+ CdΩd−1 − Ω2

)
dΩ2 +

(
1
`2

+ CdΩd−1 − Ω2

)
dt2 + dσ2

d−2. (4.64)

To calculate a conserved quantity, we need a representative of an asymptotic symmetry, the
representation of the vector field ña (on I +) in the above coordinates, and a suitable cut with
vector field ũa. We choose the Killing field ta ≡ (∂/∂t)a as the representative of an asymptotic
symmetry (see section 2.5) and we note that the vector field ña is given by ña = −`−2(∂/∂Ω)a at
points of I +. A generic cut that does not necessarily have only vanishing quantities associated
to it (again, see section 4.1), is given by the set whose points satisfy Ω = 0 and t = t0, where
t0 ∈ R. Finally, in compliance with the cut, we choose ũa to be ũa = −` · ta. Then we find
Ẽabũ

atb = (d− 2) · Cd/(2`) and consequently

Ht =
(d− 2)
16πG

Ad−2Cd, (4.65)

where Ad is the surface area of a unit d-sphere. In ordinary flat d-dimensional Schwarzschild
spacetimes, one usually chooses Cd = 16πG

(d−2)Ad−2
M [21], where M is the generalization of the

ADM-mass (see e.g. [5]) to higher dimensions. If we use this, we find

Ht = M. (4.66)

Ht is a non-vanishing quantity for d ≥ 4, which means that there cannot exist an unphysical
spacetime of Schwarzschild de Sitter whose I + is diffeomorphic to Sd−1 or Sd−1 \ {p}, where
p ∈ Sd−1.

Another conserved quantity can be calculated by replacing the Killing field ta with the Killing
field φa ≡ (∂/∂φ)a.19 We find

Hφ = 0. (4.67)

Let us now have a look at a few suggestions for the mass of the Schwarzschild de Sitter
spacetime:

(i) The most prominent suggestion for masses of asymptotically de Sitter spacetimes is ar-
guably the AD-mass (Abbott and Deser, [1]). Interestingly, Ht agrees with the AD-mass
for the Schwarzschild de Sitter spacetime in 4 dimensions. Unfortunately, we are not aware
of any attempt to calculate the AD-mass in higher dimensions. A general comparison of

19This Killing field represents (part of) the rotational symmetry of the Schwarzschild de Sitter spacetime. Usually,
such fields are used to calculate the total angular momentum of a given spacetime. For instance: A field theory
on a fixed background spacetime with rotational symmetry represented by a Killing field φa. In that case, if Σ is
a Cauchy surface,

R
Σ
T a

bφ
bdΣa is a conserved quantity and is usually taken to be the total angular momentum.

In our case, this interpretation of Hφ might also be possible: The angular momentum of the Schwarzschild de
Sitter spacetime should vanish.
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4 Conserved quantities in asymptotically de Sitter spacetimes

our formalism with the one of Abbott and Deser would be extremely interesting: It is the
most widely known approach and often considered as reference in the literature. Since our
result agrees with the AD-mass in the Schwarzschild de Sitter case, one could hope that
these expressions agree in general for appropriate choices of the symmetry and the cut.

(ii) Another approach to conserved quantities in asymptotically de Sitter spaces has been given
by Balasubramanian, Boer, and Minic [2]. They also used their approach to calculate the
mass of Schwarzschild de Sitter spacetimes. More precisely, they calculated the mass in 4
and 5 dimensions. But contrary to our formula, their construction assigns non-vanishing
conserved quantities to de Sitter space, which causes the mass of the Schwarzschild de Sitter
spacetime to deviate from Ht by this de Sitter contribution. There is also a difference in
sign, but that can be attributed to conventions. This deviation from our result is not
completely unexpected in light of some results of [9]: In that paper, an analysis similar to
the one found in this thesis has been carried out for asymptotically anti de Sitter spacetimes.
They compared their conserved quantities (also [22]), which are formally identical to our
Hξ’s, to charges that were constructed with the so-called counterterm subtraction method
(see e.g. [23]). Since this method was also employed by Balasubramanian et al. in the
construction of their charges and since the form of these charges is identical to their anti
de Sitter counterparts, the comparison of [9] can probably be carried over to the case at
hand with only minor changes. It showed that the charges differ by an integral over a cut
of I , which, in our case, probably corresponds to the de Sitter contribution.

(iii) A third approach to conserved quantities has been given by Kastor and Traschen [3].
They also applied their method to the Schwarzschild de Sitter spacetime. But the mass
they computed differs completely from Ht. We mention this approach, because Kastor
and Traschen’s expressions for spacetime masses (the Spinor charge) have the interesting
property of always being positive. In section 4.4, we will to some extent look into the
relation between these expressions and our conserved quantities.

But note that within our formalism we have no reason to consider Ht as the spacetime mass.
The vector fields ta and ũa as well as the cut were arbitrarily chosen.

4.3.2 Tolman-Bondi space with a cosmological constant

In general, our formalism cannot be applied to spacetimes with non-vanishing stress-energy
tensors. But, as already mentioned in section 2.4.3, the vacuum region of the Tolman-Bondi
spacetime can be considered as a future asymptotically de Sitter spacetime on its own. Since
we know by Birkhoff’s theorem that the spacetime is Schwarzschild de Sitter outside of the dust
sphere, we can immediately give an expression for a conserved quantity which is associated with
a vector field that equals (∂/∂t)a of Schwarzschild de Sitter on I + (see previous section). It is
given by (4.65), where Cd=4 < 0 if MTB < 0. Similarly, we can transfer the result for the field
φa of the previous section to the Tolman-Bondi case.

4.4 Are there positive conserved quantities?

It has been shown that the masses of asymptotically flat and asymptotically anti de Sitter
spacetimes are positive (e.g. the ADM-mass). This is known as the positive mass theorem. We
would expect a similar result for future asymptotically de Sitter spacetimes. That is, if we find
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a condition that fixes a representative of an asymptotic symmetry ξa, the vector field ũa, and
the cut C in such a way that Hξ is always positive, then this quantity Hξ might be related to a
viable expression for the spacetime mass.

Remark 23. The quantity Ht that we have calculated for the Schwarzschild de Sitter spacetime
seems to be a viable expression for the spacetime mass (recall that Ht is equal to the AD-mass
of Schwarzschild de Sitter). But as we have already mentioned, within our formalism we have no
reason to regard Ht as the spacetime mass: We arbitrarily chose the symmetry ta and the vector
field ũa in the computation of Ht. Even if the mass of a general future asymptotically de Sitter
spacetime could be calculated in the same way20 as Ht, we would be faced with the following
problem: Which representative of an asymptotic symmetry should we use? ξa or −ξa? A similar
problem stems from the definition of the vector field ũa. It is only defined up to sign.

To find such a condition, we will try to relate Hξ to a manifestly positive expression, the Spinor
charge Qψ [3]. This approach worked very well in asymptotically anti de Sitter spacetimes: The
Spinor charge can also be defined there and it was successfully related to the charges Hζ of [9],
which are formally identical to our Hξ’s. This implied the positivity of Hζ for suitable vector
fields ζa. Apart from [9], analyzes regarding the relation between the Spinor charge and Hζ can
be found in [24, 25]. For simplicity, we will again set ` = 1 in the following. Details and notations
regarding this section can be found in appendix B.

On a future asymptotically de Sitter spacetime (M, gab) that satisfies (4.75) and admits a
spinor bundle and curved spacetime gamma matrices with γ(aγb) = gab, define the Nester 2-form
by

Bab := ψ̄γ[aγbγc]∇̂cψ. (4.68)

Here, ψ̄ is the adjoint spinor to ψ and ∇̂a is the super-covariant derivative operator which is
given by

∇̂aψ = ∇aψ +
i

2
γaψ. (4.69)

Let Σ be a spacelike hypersurface without boundary in the physical spacetime that can be
smoothly extended to I + in the unphysical spacetime. If we write the metric on the hypersurface
Σ as

gab = −η̂aη̂b + qab, (4.70)

where η̂a are the future pointing geodesic normals to Σ and qab is its intrinsic metric, we can
define the Spinor charge

Qψ :=
1
2

∫

∂Σ
(Bab +B∗ab)û

bη̂adS. (4.71)

In this equation, the star denotes complex conjugation, ∂Σ is to be understood as in (3.6), and
ûa is an outward pointing vector which is orthogonal to η̂a as well as ∂Σ. Equation (4.71) can
then be reexpressed as [16]

Qψ =
∫

Σ
[qab(∇̂aψ)†∇̂bψ − (qabγa∇̂bψ)†(qcdγc∇̂dψ)

− 2i(ψ†qabγa∇̂bψ)− (qabγa∇̂bψ)†ψ)] ds. (4.72)
20By choosing a vector field as the representative of an asymptotic symmetry that approaches the Killing field

(∂/∂t)a (see below (2.32)) of de Sitter in the asymptotic region. (Note that −(∂/∂t)a is also a Killing field of
de Sitter. It is not possible to distinguish between (∂/∂t)a and −(∂/∂t)a in a canonical way.) This requires,
of course, that the metric can be written as gab = ḡab + kab, where ḡab is the de Sitter metric and where kab is
a deviation which vanishes at I +.
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4 Conserved quantities in asymptotically de Sitter spacetimes

If the Witten equation
qabγb∇̂aψ = 0 (4.73)

is satisfied, (4.72) reduces to

Qψ =
∫

Σ
qab(∇̂aψ)†∇̂bψ ds, (4.74)

which is a manifestly positive expression or zero.
Now let us try to find a relation between Hξ and the Spinor charge Qψ. We consider, however,

only spacetimes (M, gab) whose metric is of the form

gab = ḡab + kab, (4.75)

where ḡab is the de Sitter metric and where kab is a tensor which vanishes sufficiently fast as we go
to I +. Additionally, we will assume that the metric of the unphysical spacetime (M̃, g̃ab = Ω2gab)
satisfies (4.47) or (4.48). First, let us reexpress the super-covariant derivative of a spinor in terms
of a background and a deviation part:

∇̂aψ = ˆ̄∇aψ + (∇̂a − ˆ̄∇a)ψ

= ˆ̄∇aψ + (∇̃a − ˜̄∇a)ψ +
1
2
Ω−1(−γ̃aγ̃bñb + ˜̄γa ˜̄γb ˜̄nb + iγ̃a − i˜̄γa)ψ.

(4.76)

Here, the bar quantities are associated with the de Sitter metric ḡab, the tilde quantities are
associated with the unphysical metric g̃ab, and the tilded bar quantities are associated with the
unphysical de Sitter metric. The unphysical gamma matrices21 satisfy g̃ab = γ̃(aγ̃b) and γ̃a = Ωγa.
To further simplify (4.76), note that

eµa = ēµa +
1
2
kabḡ

bcēµc +O(k2) (4.77)

constitutes an orthonormal basis with respect to gab if ēµa is an orthonormal basis with respect
to the pure de Sitter metric. The tensor kab in (4.77) is the deviation from the de Sitter metric
(see (4.75)). In a neighborhood of I +, it can be written as (see (4.47) and (4.48))

Ω2kab = k̃ab = − 1
d− 1

Ωd−1Ẽab +O(Ωd). (4.78)

For the respective conformal metrics, we have

ẽµa = ˜̄eµa +
1
2
k̃ab ˜̄gbc ˜̄eµc +O(k2). (4.79)

Now let us define
ψ̃ := Ω1/2ψ, (4.80)

which we assume to be smooth on I +. Together with relation (B.9), we can use (4.79) to
calculate the difference between two derivative operators which act on a spinor and are associated
with ˜̄gab and g̃ab, respectively. This difference appears in the second term on the right hand side
of (4.76) and is given by

(∇̃a − ˜̄∇a)ψ =
1
4
g̃bcC̄

b
adγ̃

cdψ +O(Ωd−3/2) = −1
2
iΩd−5/2Ẽabγ̃

bψ̃ +O(Ωd−3/2), (4.81)

21Note that γ̃a is clearly smooth on I +.
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where C̄abc = 1
2 g̃
ad( ˜̄∇bh̃dc + ˜̄∇ch̃bd − ˜̄∇dh̃bc). Furthermore, we can use (4.79) to show how the

gamma matrices γ̃a and ˜̄γa are related to each other.

γ̃a − ˜̄γa =
1
2
h̃ b
a γ̃b +O(h2) (4.82)

Then, utilizing (4.81) and (4.82), we can rewrite (4.76) as

∇̂aψ = ˆ̄∇aψ − 1
2
iΩd−5/2Ẽabγ̃

bψ̃ +
1

2(d− 1)
Ωd−5/2Ẽ b

a γ̃b(γ̃cñ
c − i)ψ̃ +O(Ωd−3/2). (4.83)

Alternatively, this equation can be written as

∇̂aψ = Ω−1/2 ˜̄∇aψ̃ − 1
2
iΩd−5/2Ẽabγ̃

bψ̃ − 1
2
Ω−3/2γ̃a(γ̃bñb − i)ψ̃ +O(Ωd−3/2). (4.84)

To get to (4.84), we reexpressed the first term on the right hand side of (4.83) and made use of
(4.82).

In [3], Kastor and Traschen have calculated a spinor ψ0 that satisfies

ˆ̄∇aψ0 = 0. (4.85)

Such spinors are called Killing spinors. Here, ψ0 is a Killing spinor of the de Sitter spacetime.
It yields a vector ξa (via (B.8)), which is normal to I + and satisfies g̃abξaξa ¹ I + <∞. Let us
try to use this particular spinor in our attempt to reexpress Qψ.22

If ψ0 = Ω−1/2ψ̃0 is a Killing Spinor of the de Sitter spacetime, we can immediately conclude
from (4.84) that ˜̄γa(˜̄γb ˜̄nb − i)ψ̃0 = O(Ω), from which γ̃a(γ̃bñb − i)ψ̃0 = O(Ω) follows (cf. (4.82)).
Hence, (4.83) reduces to

∇̂aψ0 = −1
2
iΩd−2Ẽabγ̃

bψ0 +O(Ωd−3/2) (4.86)

for a Killing spinor of the pure de Sitter spacetime.
Before we insert this expression into equation (4.71), note that we can certainly write (recall

that Bab is antisymmetric)
Babû

bη̂a = Babū
bn̄a, (4.87)

where n̄a → Ω−1ña and ūa → Ω−1ũa in the limit Ω → 0. ña and ũa correspond to the vectors
that we defined below (4.1) only that ũa is uniquely fixed by this condition.

If we make use of the relation γ̃[aγ̃bγ̃c] = γ̃[aγ̃b]γ̃c + 2g̃c[aγ̃b], we can proceed to show that

Babû
bη̂a = −1

2
Ωd−2 ¯̃

ψ0γ̃aψ̃0Ẽ
a
b ũ

b, (4.88)

which leads to
Qψ = −

∫

∂Σ

¯̃
ψ0γ̃

aψ̃0Ẽabũ
bΩd−2dS. (4.89)

Now recall that ξa = −ψ̄0γ
aψ0, where the relation

¯̃
ψ0γ̃

aψ̃0 = ψ̄0γ
aψ0 (4.90)

22g̃abξ
aξa ¹ I + < ∞ can be written as Ω2g̃abψ̄0γ̃

aψ0ψ̄0γ̃
bψ0 ¹ I + < ∞ (B.8), which implies that ψ0 is of order

Ω−1/2. This means that our assumption in the above paragraph was justified.

49



4 Conserved quantities in asymptotically de Sitter spacetimes

holds, since ¯̃
ψ = Ω1/2ψ̄. Using dS = Ω2−ddS̃, we can then rewrite (4.89) as

Qψ =
∫

∂Σ
Ẽabξ

aũbdS̃. (4.91)

This result seems to be very promising, because it looks like our formula for Hξ (i.e. (4.1)) (apart
from a constant prefactor). But actually, it is very unfortunate: Since the vector ξa is normal to
I +, Ẽabξa vanishes and we have

Qψ = 0. (4.92)

At this point, our entire approach stalls. Even though we have shown that Qψ can be written
in the same way as our formula for Hξ (4.91), we cannot take advantage of this fact. If Qψ did
not vanish, i.e. was positive, we could infer a positivity condition for Hξ from (4.91). With Qψ
vanishing, this is, however, not possible. There is no new information (regarding our problem)
contained in (4.91).

Remark 24. Note that we used a Killing spinor from equation (4.85) up to equation (4.91). This
spinor does not satisfy the Witten equation, which is required to hold for Qψ to be positive. Since
the above analysis failed, we refrained from showing that a spinor can be found that satisfies the
Witten equation and asymptotically approaches the Killing spinor we used in such a way that
(4.91) remains unchanged.
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In the previous chapter, we introduced a formula for conserved quantities in future asymptoti-
cally de Sitter spacetimes. But apart from the sample spacetimes we looked at in sections 2.4
and 4.3, we do not know if there really exists a wide class of future asymptotically de Sitter
spacetimes. The first condition of definition 11 could in general be incompatible with the asymp-
totic conditions. Unfortunately, due to the non-linearities of Einstein’s equation, it is difficult
to analyze this issue in a straightforward manner. It is, however, possible to address it in the
context of perturbation theory. In the following, we will investigate whether perturbations off of
de Sitter space that satisfy the linearized Einstein equation are compatible with the asymptotic
conditions.

Note that the results of this chapter were not derived by me alone. Originally, I carried the
following analysis out using the form (2.31) of the metric (see appendix E). However, for the
purposes of this thesis it turned out to be advantageous to work in the global chart. A key part
of this analysis rests on formulas derived by Prof. Dr. Ishibashi, whom I had asked for advice.1

He derived (5.43) and (5.47) for ψS and solved (5.49). I subsequently derived the differential
equations (5.44) and (5.45), which can be cast into (5.47), and solved (5.50).

5.1 Weyl curvature perturbations

Note that the derivation of the master equation resembles a similar derivation in [9]. In the
following, we will frequently use the global coordinates of de Sitter space (cf. section 2.4.1). In
these coordinates, the de Sitter metric can be written as

ds2 = −dτ2 + a2(τ)(dχ2 + sin2 χdσ2
d−2), (5.1)

where dσ2
d−2 is the metric of the unit (d − 2)-sphere and a(τ) = ` cosh(τ/`). Here, ` is the de

Sitter radius.
Instead of working directly with metric perturbations, it is more convenient to use Weyl tensor

perturbations instead. These have three advantages over metric perturbations: The Weyl tensor
is conformally and gauge invariant and it is the key quantity in our formula for Hξ (cf. (4.1)).
Conformal invariance of the Weyl tensor refers to (1.7) and gauge invariance simply means that
C d
abc = 0 for de Sitter space. That it is the key quantity in our formula for Hξ will enable us to

immediately conclude whether a generic metric perturbation gives rise to a perturbed spacetime
for which conserved quantities can be defined.

By using Einstein’s equation and the Bianchi identity, we can show that Weyl perturbations
in de Sitter space satisfy

(
∇e∇e − 2(d− 1)

`2

)
δCabcd = 0, (5.2)

∇aδCabcd = 0, (5.3)

1Due to a miscalculation around equation (5.24), I got stuck in the derivation of (5.37)

51



5 Perturbation analysis of de Sitter space

where ∇a is the covariant derivative operator that is compatible with the de Sitter metric gab.
Now let us define

Y := − sinh(τ/`), (5.4)
Za := ∇aY, (5.5)

and
Eab := δCacbdZ

cZd. (5.6)

Then, if we make use of the relations

∇aZb = −Y
`2
gab, (5.7)

∇a∇bZc = − 1
`2
Zagbc, (5.8)

we can show that (5.2) and (5.3) imply
(
∇c∇c − 2(d− 2)

`2

)
Eab = 0, (5.9)

∇aEab = 0. (5.10)

We now introduce a new notation: Coordinates with capital Latin letters denote the coordi-
nates τ and χ and coordinates with lowercase Latin letters i, j, . . . denote the angular coordinates
of the (d− 2)-dimensional subspace on which dσ2

d−2 acts. Then we have

gABdyAdyB = −dτ2 + a2(τ)dχ2 (5.11)

and
dσ2

d−2 = σijdθidθj . (5.12)

In contrast to abstract indices, these new indices denote tensor components and not the tensors
themselves. We denote the derivative operator associated with gAB by DA and the derivative
operator associated with σij by D̂i. Then we find the following relations between these derivative
operators and the derivative operator ∇a which is associated with the de Sitter metric gab:

∇AtB = DAtB −XC
ABtC −Xi

ABti, (5.13)

∇Ati = DAti −XC
AitC −Xk

Aitk, (5.14)

∇itj = D̂itj − X̂C
ijtC − X̂k

ijtk, (5.15)

∇itA = D̂itA − X̂C
iAtC − X̂k

iAtk. (5.16)

The connection coefficients are given by

XC
AB = 0, Xk

ij = 0, Xi
AB = 0, XB

Aj = X̂B
Aj = 0, (5.17)

X̂A
ij = −D

Ar

r
gij , Xi

Aj = X̂i
Aj =

DAr

r
δij , (5.18)

where
r = a(τ) sinχ. (5.19)
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Then, if we define
∆̂ := D̂iD̂i, (5.20)

we can rewrite (5.9) as

DCDCEAB + (d− 2)
DCr

r
DCEAB − (d− 2)

DCr

r

(
DAr

r
EBC +

DBr

r
ECA

)
− 2(d− 2)

`2
EAB

+
∆̂
r2
EAB − 2

DAr

r
D̂mEmB − 2

DBr

r
D̂mEmA + 2

(DAr)DBr

r2
Emm = 0, (5.21)

DCDCEAi + (d− 4)
DCr

r
DCEAi −

(
DCDCr

r
+ (d− 3)

(DCr)(DCr)
r2

)
EAi

− d
(DAr)DCr

r2
ECi + ∆̂

r2
EAi − 2(d− 2)

`2
EAi − 2

DAr

r
D̂mEmi + 2

DCr

r
D̂iECA = 0, (5.22)

and

DCDCEij + (d− 6)
DCr

r
DCEij − 2

(
DCDCr

r
+ (d− 4)

(DCr)(DCr)
r2

)
Eij +

∆̂
r2
Eij

− 2(d− 2)
`2

Eij + 2
DCr

r
(D̂iECj + D̂jECi) + 2

(DCr)DAr

r2
ECAgij = 0. (5.23)

Similarly, (5.10) can be reexpressed as

DCECA + (d− 2)
DCr

r
ECA +

DAr

r
ECC + D̂mEmA = 0, (5.24)

D̂mEmj +
1

rd−2
DA(rd−2EAj) = 0. (5.25)

Now define

χa :=
(
∂

∂χ

)a

, τa :=
(
∂

∂τ

)a

, (5.26)

and2

E := EABχAχB, (5.27)

Ei := EAiχA. (5.28)

By making use of

DAχB =
ȧ

a
(χAτB − τAχB), (5.29)

DAr

r
= − ȧ

a
τA +

1
a2

1
tanχ

χA, (5.30)

2Note that EABτ
A = 0. This is because Za = (a/`2)τa.
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where ” ˙ “ denotes the derivative with respect to τ , we can show that (5.24) implies

χAD̂mEmA = − 1
a2

[
χCDCE + (d− 1)

1
tanχ

E
]
, (5.31)

ECC =
1
a2
E , (5.32)

and (5.25) implies

D̂mEmi + (d− 2)
1
a2

1
tanχ

Ei + 1
a2
χCDCEj = 0. (5.33)

Furthermore, note that

χAχBDCEAB = DCE + 2
ȧ

a
τCE , (5.34)

χADCDCEAj = DCDCEj + 2
ȧ

a
τCDCEj +

1
`2
Ej , (5.35)

χAχBDCDCEAB = DCDCE + 4
ȧ

a
τCDCE +

2
a2
E . (5.36)

Using these equations and inserting (5.31) and (5.32) into (5.21) gives

DCDCE +
[
−(d− 6)

ȧ

a
τC + (d+ 2)

1
a2

1
tanχ

χC
]
DCE

+

[
−2

ȧ

a2
+ 2(d− 2)

ȧ2

a2
+

2(d− 1)
a2

1
tan2 χ

− 2(d− 2)
`2

+
∆̂
r2

]
E = 0. (5.37)

Similarly, by inserting (5.33) into (5.22), we obtain

DCDCEi +
[
−(d− 6)

ȧ

a
τC + (d− 2)

1
a2

1
tanχ

χC
]
DCEi

+

[
(d− 4)

ȧ2

a2
+

∆̂− (d− 3)
r2

+ (d− 4)
1
a2

1
tan2 χ

− 2
(d− 2)
`2

+
d

`2

]
Ei

= −2
1
a2

1
tanχ

D̂iE . (5.38)

Just simplifying (5.23) gives

DCDCEij + (d− 6)
[
− ȧ
a
τC +

1
a2

1
tanχ

χC
]
DCEij +

∆̂− 2(d− 4)
r2

= −2
1
a2

1
tanχ

(D̂iEj + D̂jEi)− 2
1
a4

1
tan2 χ

Egij . (5.39)

5.2 Master equation

The above differential equations are coupled to each other. It is possible to decouple them if
we make use of certain results of [9] (also [26] and [27]). Consider the harmonic functions Sk,
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vectors Vki, and symmetric tensors Tkij which are defined by the eigenvalue equations

(∆̂ + k2
S)Sk = 0,

(∆̂ + k2
V )Vkj = 0, D̂iVk

i = 0,

(∆̂ + k2
T )Tkij = 0, D̂iTk

i
j = 0, Tk

i
i = 0.

(5.40)

We can then expand E , Ei, and Eij in terms of these harmonics as follows [26, 9]:

E = ψSS,

Ei = φSD̂iS+ ψV Vi,

Eij = ELσijS+ ET
(
D̂iD̂j − 1

d− 2
∆̂σij

)
S+ EV D̂(iVj) + ψTTij .

(5.41)

Here we omitted the indices k which label the different eigenvalues of the different harmonics
and the summation symbol Σk over them. It can be shown that there exist solutions of (5.40)
for eigenvalues k2

S = l(l + d − 3), l = 0, 1, . . . and k2
V = l(l + d − 3) − 1, l = 1, 2, . . . and

k2
T = l(l + d− 3)− 2, l = 2, 3, . . . [26].
The coefficients ψS , φS , ψV , EL, ET , EV , ψT are not independent of each other: They are

related by (5.31), (5.32), and (5.33). It can be shown that (i) EL is described by ψS ; (ii) φS is
described in terms of (ψS , ∂χψS); (iii) ET is described by (EL, φS , ∂χφS); (iv) EV is described in
terms of (ψV , ∂χψV ) (cf. appendix C.2). Consequently, if we know ψS , ψV , and ψT , we know all
the expansion coefficients.3

Noting that

DCDCψ = − ∂2

∂τ2
ψ − ȧ

a

∂

∂τ
ψ +

1
a2

∂2

∂χ2
ψ, (5.42)

we find the following decoupled differential equations for ψS , ψV , and ψT by inserting (5.41) into
(5.37), (5.38), and (5.39):

[
− ∂2

∂τ2
− (d− 5)

ȧ

a

∂

∂τ
− 4(d− 2)

a2

]
ψS

+
1
a2

[
∂2

∂χ2
+ (d+ 2)

cosχ
sinχ

∂

∂χ
+

2(d− 1)− k2
S

sin2 χ

]
ψS = 0, (5.43)

[
− ∂2

∂τ2
− (d− 5)

ȧ

a

∂

∂τ

]
ψV +

1
a2

[
∂2

∂χ2
+ (d− 2)

cosχ
sinχ

∂

∂χ
− 1 + k2

V

sin2 χ
− 2(d− 4)

]
ψV = 0, (5.44)

and[
− ∂2

∂τ2
− (d− 5)

ȧ

a

∂

∂τ

]
ψT +

1
a2

[
∂2

∂χ2
+ (d− 6)

cosχ
sinχ

∂

∂χ
− 2(d− 4) + k2

T

sin2 χ

]
ψT = 0. (5.45)

Now let us define

ψS =: a(τ)−(d−5)/2(sinχ)−(d+2)/2ΨS ,

ψV =: a(τ)−(d−5)/2(sinχ)−(d−2)/2ΨV ,

ψT =: a(τ)−(d−5)/2(sinχ)−(d−6)/2ΨT .

(5.46)

3The tensor harmonics Tij have d(d − 4)/2 independent components, the vector harmonics Vi have d − 3 inde-
pendent components, and the scalar harmonics S have one independent component. This corresponds to the
number of dynamical degrees of freedom for gravitational radiation in d-dimensional spacetimes. Therefore,
ψS , ψV , and ψT describe all the dynamical modes of gravitational perturbations [9].
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5 Perturbation analysis of de Sitter space

If we use these relations to rewrite (5.42), (5.43), and (5.44), we find that these equations are
cast into the same form. This master equation is given by

a(τ)2
[
∂2

∂τ2
− (d− 5)2

4`2

]
Ψ =

[
∂2

∂χ2
−

{
(d− 2)(d− 4)

4
+ l(l + d− 3)

}
1

sin2 χ
+

1
4

]
Ψ (5.47)

where ΨS , ΨV , and ΨV are collectively denoted by Ψ.
Before we set out to solve this equation, let us recapitulate what we have done so far. We began

by deriving two equations ((5.2) and (5.3)), which govern the behavior of perturbed Weyl tensors
that obey the linearized Einstein equation. These equations implied the simpler equations (5.9)
and (5.10), which we subsequently rewrote in terms of particular derivative operators and global
coordinates. This finally yielded (5.37), (5.38), and (5.39). However, these were still coupled
differential equations, which were too complicated to be solved directly. By expanding the fields
E , Ei, and Eij in terms of certain harmonic functions, we were, however, able decouple these
differential equations. The last step of our analysis was to show that these decoupled equations
could be written as a single master equation (5.47). This means that the solutions of this master
equation provide solutions for the linearized equations (5.2) and (5.3) we started with.

5.3 General solutions of the master equation

Now let us try to find solutions of the master equation (5.47). To that end, we make the following
ansatz: Let

Ψ = T (τ)X(χ) (5.48)

and insert this into the master equation. This yields two ordinary differential equations, namely
[
− ∂2

∂χ2
+

{
(d− 2)(d− 4)

4
+ l(l + d− 3)

}
1

sin2 χ

]
X = ω2X, (5.49)

[
− ∂2

∂τ2
+
−ω2 + 1/4

a2
+

(d− 5)2

4`2

]
T = 0, (5.50)

where ω2 is a separation constant.

If we define X =: (sinχ)ν+1/2(cosχ)X̄, z := cos2 χ, and

ζων,σ :=
ω + ν + σ + 1

2
, (5.51)

(5.49) can be cast into a hypergeometric differential equation. More precisely, it can be written
as

z(1− z)
d2

dz2
X̄ +

[
3
2
− (ζων,1/2 + ζ−ων,1/2 + 1)z

]
d
dz
X̄ − ζων,1/2ζ

−ω
ν,1/2X̄ = 0, (5.52)

where
ν := l +

d− 3
2

. (5.53)

Hence, any solution of (5.49) is a linear combination of the following two equations [28]:

X1 = (sinχ)ν+1/2(cosχ) · F (ζων,1/2, ζ
−ω
ν,1/2; 3/2; cos2 χ), (5.54)

X2 = (sinχ)ν+1/2 · F (ζων,−1/2, ζ
−ω
ν,−1/2; 1/2; cos2 χ) (5.55)
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5.3 General solutions of the master equation

Here, F is the hypergeometric function (see appendix D). The hypergeometric functions in the
equations above are not well defined4 at χ = 0 and χ = π, which can be easily shown with the
methods outlined in appendix D. However, it is possible that the functions X1 and X2 are well
defined. If the first two arguments of the hypergeometric functions in (5.54) and (5.55) are not
negative integers, we can rewrite these equations as (see (D.4))

X1 = (sinχ)1/2−ν(cosχ) · F (ζ−ω−ν,1/2, ζ
ω
−ν,1/2; 3/2; cos2 χ), (5.56)

X2 = (sinχ)1/2−ν · F (ζ−ω−ν,−1/2, ζ
ω
−ν,−1/2; 1/2; cos2 χ). (5.57)

Then it turns out thatX1 as well asX2 do not converge at 0 and π: The hypergeometric functions
in these expressions converge for all χ ∈ [0, π] but we have5 ν > 1/2, which implies that the sine
terms diverge. Hence, X1 is only normalizable, i.e. well defined for all χ ∈ [0, π], if ζων,1/2 or ζ−ων,1/2
is a negative integer, which is equivalent to

ω = ±(2m+ ν + 3/2), (5.58)

where m ∈ N0. Similarly, X2 is normalizable only if

ω = ±(2m+ ν + 1/2). (5.59)

A normalizable solution of (5.49) for other values of ω and ν might be given by a linear combi-
nation of (5.54) and (5.55). And indeed, another solution of (5.49) is given by [28]

X3 = (sinχ)ν+1/2(cosχ) · F (ζων,1/2, ζ
−ω
ν,1/2; 1 + ν; sin2 χ), (5.60)

which can be rewritten as (again, cf. (D.4))

X3 = (sinχ)ν+1/2 · F (ζ−ων,−1/2, ζ
ω
ν,−1/2; 1 + ν; sin2 χ), (5.61)

in case the first two arguments of the hypergeometric function in (5.60) are not negative integers
(recall that ν > 0). Equation (5.60) is normalizable for all possible values of ω and ν. It clearly
is finite if ζων,1/2 or ζ−ων,1/2 are negative integers, and, as we can read off (5.61), it is also finite for
arbitrary other values of ω and ν.

Now let us turn our attention to solving (5.50). Again, it is possible to cast this equa-
tion into the form of the hypergeometric differential equation. This time, we define T =:
(sinh τ/`)(cosh τ/`)ω+1/2T̄ , which enables us to write (5.50) as

z(1− z)
d2

dz2
T̄ + [1 + ω − (1 + ζωµ,1/2 + ζω−µ,1/2)z]

d
dz
T̄ − ζωµ,1/2ζ

ω
µ,1/2T̄ = 0, (5.62)

where z := cosh2 τ/` and

µ :=
d− 5

2
. (5.63)

4We are not interested in solutions that are not well defined for all χ ∈ [0, π], because these cannot give rise to
asymptotically de Sitter spacetimes (to first order).

5This does not hold for the mode which is associated with kS = 0 (see (5.40)).
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5 Perturbation analysis of de Sitter space

The solutions of this equation depend drastically on the dimension d. In the following, we
have to distinguish between three different cases. If d is even, two linearly independent solutions
of equation (5.50) are

T1 = (tanh τ/`)(cosh τ/`)−µ · F
(
ζωµ,1/2, ζ

−ω
µ,1/2, 1 + µ;

1
cosh2 τ/`

)
, (5.64)

T2 = (tanh τ/`)(cosh τ/`)+µ · F
(
ζω−µ,1/2, ζ

−ω
−µ,1/2, 1− µ;

1
cosh2 τ/`

)
, (5.65)

because neither 1 + µ nor 1 − µ can be a negative integer or zero. However, if d is odd, T2 is
either not well defined or not linearly independent of T1. Thus, we need other second solutions
in these cases.

First, let us have a look at d = 5. In this case, we have 1− µ = 1 + µ = 1, which implies that
T1 = T2. Hence, we are left with only one solution, namely

T1 = (tanh τ/`) · F
(
ζω0,1/2, ζ

−ω
0,1/2, 1;

1
cosh2 τ/`

)
. (5.66)

We can show that a linearly independent second solution is given by

T2 = (tanh τ/`)

[
− 2F

(
ζω0,1/2, ζ

−ω
0,1/2, 1;

1
cosh2 τ/`

)
log(cosh τ/`)

+
∞∑

n=1

(ζω0,1/2)n(ζ
−ω
0,1/2)n

(n!)2

(
1

cosh τ/`

)2n {
ψ(ζω0,1/2 + n)− ψ(ζω0,1/2)

+ ψ(ζ−ω0,1/2 + n)− ψ(ζ−ω0,1/2)− 2ψ(n+ 1) + 2ψ(1)
}]
, (5.67)

where (α)n = Γ(α+ n)/Γ(α) is the Pochhamer symbol (see (D.2)) and where ψ(z) = Γ′(z)/Γ(z)
is the digamma function.

For odd d with d > 5, 1 − µ becomes a negative integer or zero, in which case (5.65) is
indeterminate. Consequently, we again need another second solution, which can be shown to be

T2 = (tanh τ/`)(cosh τ/`)−µ
[
− 2F

(
ζωµ,1/2, ζ

−ω
µ,1/2, 1 + µ;

1
cosh2 τ/`

)
log (cosh τ/`)

+
∞∑

n=1

(ζωµ,1/2)n(ζ
−ω
µ,1/2)n

(1 + µ)nn!

(
1

cosh τ/`

)2n {
ψ(ζωµ,1/2 + n)− ψ(ζωµ,1/2) + ψ(ζ−ωµ,1/2 + n)

− ψ(ζ−ωµ,1/2)− ψ(µ+ n+ 1) + ψ(µ+ 1)− ψ(n+ 1) + ψ(1)
}

−
µ∑

n=1

(n− 1)!(−µ)n
(1− ζωµ,1/2)n(1− ζ−ωµ,1/2)n

(cosh τ/`)2n
]
. (5.68)

The solutions T1 are smooth on the entire physical spacetime manifold. This is also true for T2

in even dimensions. The second solutions in odd dimensions are smooth on the entire physical
spacetime manifold as well, unless ζ±ωµ,1/2 evaluates to zero or a negative integer. In that case, the
solutions are nowhere well defined.

We are mainly interested in solutions that result in normalizable Ψ’s. In the following, we will
therefore disregard the non-normalizable solutions and we will assume that Ψ is smooth on the
spacetime manifold.
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5.4 Asymptotic behavior of the solutions of the master equation

5.4 Asymptotic behavior of the solutions of the master equation

For our purposes, we do not need the exact behavior of the solutions of the previous section
on the entire spacetime manifold (as long as they are smooth there). What matters to us is
the behavior of these solutions on I +. The asymptotic behavior6 of Ψ, which we denote by
the symbol “∼”, can be immediately read off the above equations. Note that we will disregard
prefactors when we talk about the asymptotic behavior. For d 6= 5, we have

Ψ ∼
{
a−µ

a+µ
(5.69)

whereas

Ψ ∼
{

const.
τ

(5.70)

in d = 5 dimensions. (Recall that a = ` cosh(τ/`).) The curly braces in the above formulas
denote the two possible distinct asymptotic behaviors of the solutions of the master equation.
Now, since (see (5.46))

ψS , ψV , ψT ∝ a−(d−5)/2Ψ, (5.71)

the asymptotic behavior of Ψ results in the following asymptotic behavior of the expansion
coefficients: For d 6= 5, we have

ψS , ψV , ψT ∼
{

const.
Ωd−5

(5.72)

and for d = 5, we find

ψS , ψV , ψT ∼
{

const.
log Ω

, (5.73)

where Ω = a−1. Ω corresponds to the conformal factor (2.28) of the de Sitter metric.
From this we get the asymptotic behavior of certain Weyl tensor components via (5.41).7 If

we recall that Za = (a/`2)τa, we first find

δCχτχτ ∝ Ω2Eabχaχb = Ω2E = Ω2ψSS. (5.74)

Now note that the other expansion coefficients that we introduced in (5.41) exhibit the same
asymptotic behavior as (5.72) and (5.73) (see appendix C.2). Hence, we find

δCχτiτ ∝ Ω2Eabχaθbi = Ω2Ei ∼ Ω2ψV Vi (5.75)

as well as
δCiτjτ ∝ Ω2Eabθai θbj = Ω2Eij ∼ Ω2ψTTij . (5.76)

Now it is of course possible that, for instance, the asymptotic behavior of ψS dominates the one
of ψV , in which case we would have δCχτiτ ∼ ψSD̂iS. But this does not give us new possible
asymptotic behaviors, which is why we did not explicitly write this down. For the same reason,
we wrote the asymptotic behavior of δCiτjτ as in (5.76).

6That is the behavior as τ →∞.
7Recall that Eab is related to the perturbed Weyl tensor by (5.6).
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5 Perturbation analysis of de Sitter space

With these results, we can finally analyze the asymptotic behavior of (4.1), i.e.

Hξ =
`

8πG

∫

C
Ẽabũ

aξbdS̃ (5.77)

for perturbations off of de Sitter space that satisfy the linearized Einstein equation. In our case
and for our choice of the conformal factor Ω = a−1, the electric part of the unphysical Weyl
tensor Ẽab can be written as

Ẽab =
`2

d− 3
Ω3−dδC̃acbdñbñd =

1
d− 3

Ω3−dδCaτbτ , (5.78)

where ña = (Ω`)−1τa. Both vector fields ξa and ũa of the integrand Ẽabũ
aξb of (5.77) are

tangent to I + and of finite norm. Thus, they must be given by a linear combination of χa and
θai , i = 1, . . . , d−2, which implies that the integrand is of the form λẼχχ+µiẼχi+νi1ν

j
2Ẽij , where

the coefficients are smooth functions on I +. It follows from (5.74) - (5.76) and (5.78) that

Ẽχχ Ẽχi, Ẽij ∼
{

const.
Ω−(d−5)

(5.79)

in d 6= 5 dimensions and

Ẽχχ Ẽχi, Ẽij ∼
{

const.
log Ω

(5.80)

in d = 5 dimensions.

Remark 25. Note that it is possible to calculate all the components of the (perturbed) Weyl
tensor from δCχτχτ , δCχτiτ , and δCiτjτ by making use of equation (C.3) (the Bianchi identity
combined with Einstein’s equation) and the symmetries of the Weyl tensor (see section 1.2).
Then it can be shown that the unphysical Weyl tensor exhibits the same asymptotic behavior as
δC̃acbdñ

cñd (see [9]).

5.5 Conclusion

We will assume here that Ẽab is smooth on the physical spacetime manifold (cf. section 5.3).
As we can read off (5.79) and (5.80), different perturbations may then have different asymptotic
behaviors.

In the most interesting case, d = 4, Ẽab is smooth on I + for both asymptotic behaviors
of (5.79). This means that a generic metric perturbation in 4 dimensions which is smooth on
the physical spacetime manifold gives rise to spacetimes for which quantities Hξ can be defined.
Considering that the smoothness of Ẽab implies the behavior (4.41) of the Weyl tensor (cf. remark
25), Hξ is a conserved quantity in the sense of section 4.1.8

In d ≥ 5, Ẽab can be either smooth on I + or not well defined there. As in 4 dimensions,
the solutions that result in smooth electric Weyl tensors correspond to spacetimes that admit
quantities Hξ. On the other hand, if Ẽab is not smooth on I +, we can immediately preclude the
associated spacetimes from being future asymptotically de Sitter. This is due to the fact that

8We have not explicitly shown that spacetimes which admit quantities Hξ are necessarily future asymptotically
de Sitter. Here, it is, however, a very fair assumption that this holds.
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5.5 Conclusion

this behavior is not consistent with a direct consequence of the definition of future asymptotically
de Sitter: According to (4.41), an unphysical Weyl tensor of a future asymptotically de Sitter
spacetime behaves like O(Ωd−3) in a neighborhood of I +.9

Consequently, we have shown that, for any dimension, there exist metric perturbations whose
corresponding spacetimes allow for the definition ofHξ’s. In d = 4, this is even possible for all our
solutions. This indicates that there probably exists a wide class of spacetimes (solutions to the
full Einstein equation) for which quantitiesHξ can be defined and which are future asymptotically
de Sitter.

However, we need to keep in mind that our results hold only to first order: We worked with the
linearized field equation instead of the full one, which means that the question of linearization
stability remains open. Moreover, we must not forget that we had to consider solutions with
distinct asymptotic behaviors. In the non-linearized case, we would expect a generic solution
(that corresponds to our linearized solutions) to have an asymptotic behavior that is a mixture
of the behaviors of (5.79) (or (5.80)). This means, in particular in d ≥ 5, that a generic Ẽab
will probably not be smooth everywhere on a boundary of the spacetime. However, Ẽab will be
smooth on subsets of such a boundary, which then might correspond to a I +.

9However, Ẽab is not necessarily not smooth on all of I +. Appropriate superpositions of solutions (5.48) could,
for instance, lead to perturbations that are compactly supported on I +. In that case, our formula might again
be applicable to the respective spacetimes, because I + could be chosen to not include the set on which Ẽab is
not smooth.
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Summary and outlook

In this thesis, we used a Hamiltonian framework - Wald’s covariant phase space formalism - to
construct conserved quantities for (future) asymptotically de Sitter spacetimes.10 We investigated
these quantities by explicitly deriving their conservation properties and we demonstrated them
by applying our method to the Schwarzschild de Sitter and Tolman-Bondi spacetime.

We also tried to show that there exists a particular prescription for calculating conserved
quantities within our formalism that always yields positive expressions. Our hope was that such
a prescription would lead to a viable notion of mass of a spacetime. However, our analysis stalled
at a certain point and we failed in finding such a prescription.

The last part of this thesis was concerned with the question of whether our definition of the term
(future) asymptotically de Sitter is too strict to admit a wide class of spacetimes. We approached
this question with a perturbative analysis of de Sitter space. Even though this analysis did not
imply the existence of a wide class of (future) asymptotically de Sitter spacetimes, it considerably
supported the assumption that such a wide class exists.

To further extend the understanding and validity of the conserved quantities (4.1) and the
approach of this thesis, the following things could be done:

• The question of whether there exists a prescription for positive conserved quantities could
be further pursued. As already said, this may lead to a viable notion of mass.

• Second, our definition of asymptotically de Sitter excludes spacetimes with non-vanishing
stress-energy tensors. It should, however, be possible to extend the framework of this thesis
to certain non-vacuum spacetimes.

• Third, it is not clear how our asymptotic conditions are related to the ones that have been
used in other publications (cf. e.g. remark 5). This information is necessary to make an
extensive comparison between Hξ and other conserved quantities that rely on these asymp-
totic conditions possible. It would be particularly interesting to compare our conserved
quantities to the ones of Abbott and Deser [1]. Their quantities are probably the most
prominent and referenced ones.

10Strictly speaking, we only used this framework to construct conserved quantities for some covariant phase
space. The extension to all (future) asymptotically de Sitter spacetimes was done by explicitly checking the
conservation properties of these quantities.
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A Formulas needed in the construction of the
Hamiltonian

A.1 Curvature quantities of conformally transformed metrics

(i) The difference between two derivative operators acting on a one form ωc can be written as1

∇̃bωc −∇bωc = Cdbcωd. (A.1)

If ∇a is associated with gab and ∇̃a is associated with g̃ab = Ω2gab, we find

Ccab = −Ω−1(δ c
b ∇̃aΩ + δ c

a ∇̃bΩ− g̃abg̃
cd∇̃dΩ). (A.2)

Applying another derivative operator ∇a to (A.1) gives

∇a∇bωc = ∇̃a∇̃bωc − Cdab∇̃dωc − Cdac∇̃bωd − (∇̃aC
d
bc)ωd

+ CeabC
d
ecωd + CeacC

d
beωd − Cdbc∇̃aωd. (A.3)

Now recall the definition of the Riemann tensor2 (see chapter “Notations and conventions”
on page 6):

R d
abc ωd = ∇a∇bωc −∇b∇aωc (A.4)

We can insert (A.3) into this equation, which yields

R d
abc ωd = (R̃ d

abc − 2∇̃[aC
d
b]c + 2Cec[aC

d
b]e)ωd. (A.5)

Contracting over b and d and using (A.2) gives the Ricci tensor

Rac = R̃ac + (d− 2)Ω−1∇̃a∇̃cΩ + g̃acΩ−1∇̃d∇̃dΩ− g̃ac(d− 1)Ω−2∇̃dΩ∇̃dΩ, (A.6)

and contracting over the remaining indices gives the Ricci scalar

R = Ω2R̃+ 2(d− 1)Ω1∇̃c∇̃cΩ− d(d− 1)∇̃cΩ∇̃cΩ. (A.7)

These two equations relate the Ricci tensor and Ricci scalar of some spacetime to the
respective quantities of an associated unphysical spacetime.

1For tensors of higher order, we have

∇aT
b1...bk

c1...cl
= ∇̃aT

b1...bk
c1...cl

−
lX

i=1

Cd
aci
T

b1...bk
c1...d...cl

+

kX
j=1

C
bj

adT
b1...d...bk

c1...cl

2and

(∇a∇b −∇b∇a)T
c1...ck

d1...dl
= −

kX
i=1

R ci
abe T

c1...e...ck
d1...dl

+

lX
j=1

R
e

abdj
T

c1...ck
d1...e...dl
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(ii) Inserting the Ricci scalar R = d(d − 1)/`2 (i.e. the trace of Einstein’s equation with a
positive cosmological constant (see (2.22))) into (A.7) gives

R̃ = −2(d− 1)Ω−1∇̃a∇̃aΩ + d(d− 1)Ω−2(∇̃cΩ∇̃cΩ + `−2), (A.8)

where the de Sitter radius ` is given by (2.25). For spacetimes without a cosmological
constant, the term containing ` drops out. Similarly, if we insert Einstein’s equation (2.22)
into (A.6), we find

R̃ac = −(d− 2)Ω−1∇̃a∇̃cΩ− g̃acΩ−1∇̃d∇̃dΩ + g̃ac(d− 1)Ω−2(∇̃dΩ∇̃dΩ + `−2). (A.9)

Now let us define
S̃ab :=

2
d− 2

R̃ab − 1
(d− 1)(d− 2)

R̃g̃ab. (A.10)

Inserting this into (A.9) and using (A.8) gives the following form of Einstein’s equation:

S̃ab + 2Ω−1∇̃a∇̃bΩ− Ω−2g̃ab(∇̃cΩ∇̃cΩ + `−2) = 0 (A.11)

For vacuum spacetimes without a cosmological constant, the term containing ` drops out.

(iii) The Bianchi identity
∇[aRbc]de = 0 (A.12)

implies
∇aRadbc −∇bRcd +∇cRbd = 0. (A.13)

In spacetimes that satisfy Einstein’s vacuum equation with a positive cosmological constant,
the Ricci tensor is proportional to the spacetime metric. This means that ∇aRbc = 0 holds
and it follows from (A.13) that

∇aCabcd = 0 (A.14)

(see (1.6) for the definition of the Weyl tensor). The conformal invariance of the Weyl
tensor (1.7) then implies

∇aC̃
a
bcd = 0. (A.15)

We can rewrite this equation in terms of an unphysical derivative operator as (cf. footnote
1 on page 67)

∇̃aC̃abcd + (3− d)Ω−1ñaC̃abcd = 0 (A.16)

if we make use of the symmetries of the Weyl tensor. Hence it follows that

∇̃a(Ω3−dC̃abcd) = 0. (A.17)

A.2 Constraint equations

Let us define
G̃ab := R̃ab − 1

2
R̃g̃ab. (A.18)

Then we can write (4.25) as

G̃ab = R̃ab − 1
2
R̃g̃ab = (d− 2)Ω−1(K̃ab − g̃abK̃). (A.19)
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A.3 Evolution equations

Consequently, the first constraint equation can be obtained by contracting ñañb into (A.19). We
find

G̃abñ
añb =

1
2
(R̃+ K̃2 − K̃abK̃

ab)

= (d− 2)Ω−1K̃,
(A.20)

where R̃ is the Ricci scalar of surfaces of constant Ω and where K̃ab is the extrinsic curvature of
these surfaces. K is the trace of K̃ab. A derivation of the first line of the above equation is given
in [5]. The second constraint equation can be calculated by contracting h̃ c

a ñ
b into (A.19). This

calculation yields
G̃cbh̃

c
a ñ

b = D̃bK̃
b
a − D̃aK̃ = 0. (A.21)

Again, a derivation of this can be found in [5].

A.3 Evolution equations

First, consider the following two relations:

• We can show that

h̃ e
a h̃

f
c R̃ebfdñ

bñd = h̃ e
a h̃

f
c ñ

b(∇̃e∇̃b − ∇̃b∇̃e)ñf
= LnK̃ac + K̃bcK̃

b
a ,

(A.22)

where LñK̃ab = ñc∇̃cK̃ab + K̃cb∇̃añ
c + K̃ac∇̃bñ

c is the Lie derivative of K̃ab with respect
to ña.

• According to [5],

h̃ f
a h̃

g
b h̃

k
c h̃

d
j R̃

j
fgk = R̃ d

abc + K̃acK̃
d
b − K̃bcK̃

d
a (A.23)

holds, where R̃ d
abc is the Riemann tensor of surfaces of constant Ω.

We again consider (4.25) in the form (A.19). The first evolution equation is then given by

G̃cdh̃
c
a h̃

d
b = R̃ e

ckd h̃
k
l h̃

c
a h̃

d
b h̃

l
e − R̃ckdjñ

kñj h̃ c
a h̃

d
b −

1
2
h̃abR̃

= (d− 2)Ω−1(K̃cd − g̃cdK̃)h c
a h

d
b .

(A.24)

Inserting (A.22) and (A.23) into this equation and using R̃ = 2(d− 1)Ω−1K̃ as well as

LñK̃ab = LñK̃ c
a h̃bc − 2K̃ c

a K̃bc (A.25)

gives
LñK̃ b

a = R̃ b
a + K̃ b

a K̃ − (d− 2)Ω−1K̃ b
a − δ̃ b

a Ω−1K̃. (A.26)

The second evolution equation can be obtained by simply calculating the Lie derivative of h̃ab:

Lñh̃ab = −2K̃ab = −2h̃bcK̃ c
a (A.27)
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Note that

ña = ∇̃aΩ = −
(
∂

∂Ω

)a

, (A.28)

which implies

LñK̃ b
a = − d

dΩ
K̃ b
a , Lñh̃ab = − d

dΩ
h̃ab. (A.29)

If we insert these relations into (A.26) and (A.27), we find the evolution equations as given in
(4.28) and (4.29).

A.4 Relation between the extrinsic curvature and the electric part of
the Weyl tensor

It is straightforward to show that

R̃abcd = C̃abcd + g̃a[cS̃d]b − g̃b[cS̃d]a. (A.30)

The latter terms on the right hand side of this equation satisfy

h̃ e
a h̃

f
c ñ

bñd(g̃e[f S̃d]b − g̃b[f S̃d]e) = −Ω−1K̃ac, (A.31)

which, together with (A.30) and (A.22), implies

C̃abcdñ
bñd = h̃ e

a h̃
f
c C̃ebfdñ

bñd = LñK̃ac + K̃abK̃
b
c + Ω−1K̃ac. (A.32)

Additionally, let us try to find a relation between C̃abcdñ
d and the extrinsic curvature. Note

that

C̃abcdñ
d = −C̃aecdñdñeñb + C̃aecdñ

dh̃ e
b

= 2ñ[aC̃b]ecdñ
dñe + h̃ f

a h̃
g
c h̃

e
b C̃fegdñ

d.
(A.33)

Together with (A.30) and (A.4), this yields

C̃abcdñ
d = 2ñ[aC̃b]ecdñ

dñe − D̃aK̃bc + D̃bK̃ac, (A.34)

where we used that h̃ d
a h̃

e
b h̃

f
c ∇̃dK̃ef = D̃aK̃bc and S̃abñ

a = 0 (4.25). By inserting (A.32) into
this equation, we obtain the relation we were looking for.

A.5 The presymplectic current on I +

A general presymplectic current ω satisfies (3.3). In our case, ω is given by (3.27). For pertur-
bations δ1g, δ2g that satisfy (4.49),

16πG · ωa1...ad−1
= Ω6−dε̃ca1...ad−1

P̃ cabdef (δ1gab∇dδ2gef − δ2gab∇dδ1gef )

= Ω6−dε̃ca1...ad−1
P̃ cabdef ·O(Ω2d−7)

= O(Ωd−1)

(A.35)

implies that
ω(g; δ1g, δ2g) = 0 (A.36)

on I +.
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A.6 The Noether charge and its variation

A.6 The Noether charge and its variation

(i) The particular Noether charge we want to work with is given by (3.31). It can be reex-
pressed in terms of conformal quantities:

(Qξ)a1...ad−2
=− 1

16πG
εa1···ad−2bc∇bξc

=− 1
16πG

Ω2−dε̃a1···ad−2bcg̃
be∇̃eξ

c − 1
16πG

Ω2−dε̃a1···ad−2bcg̃
beCcefξ

f

=− 1
16πG

Ω2−dε̃a1···ad−2bcg̃
be∇̃eξ

c +
1

8πG
Ω1−dε̃a1···ad−2bcñ

bξc

(A.37)

The quantity Ccef in the second line corresponds to (A.2).

(ii) The variation of the Noether charge under (4.50) can be written as

(δQξ)a1...ad−2
=

1
8πG

Ω1−d
[
(δε̃a1...ad−2bc)ñ

bξc + ε̃a1...ad−2bc(δñ
b)ξc + ε̃a1...ad−2bcñ

bξc

−1
2
Ω(δε̃a1···ad−2bc)g̃

be∇̃eξ
c − 1

2
Ωε̃a1···ad−2bcδ(g̃

be∇̃eξ
c)

]
. (A.38)

If we make use of the following relations

δε̃ab...c = − 1
d− 1

Ωd−1δẼ d
d ε̃ab...c +O(Ωd) = O(Ωd), (A.39)

δña =
2

d− 1
Ωd−1δẼabñb +O(Ωd) = O(Ωd), (A.40)

δ(g̃be∇̃eξ
c) = −2Ωd−2ñ[bδẼ

c]
dξ
d − Ωd−2δẼ(bc)ñdξ

d +O(Ωd−1), (A.41)

we find
(δQξ)a1...ad−2

=
1

8πG
ε̃a1...ad−2bcñ

bδẼcdξ
d +O(Ω). (A.42)

A.7 The presymplectic potential on I +

Before we investigate the behavior of θ on I + for variations δgab = γab (see (4.50)), let us take
a look at the asymptotic behavior of some other quantities. We have

δẼabg̃
ab = −Ẽabδg̃ab = Ẽabδg̃ab = O(Ωd−1) (A.43)

and
ñaδẼab = −Ẽabδna = O(Ωd), (A.44)

where we used (A.40) in (A.44). Together with (A.1), these equations can be used to obtain

g̃ac∇aδẼbc = g̃ac[∇̃aδẼbc − CeabδẼec − CeacδẼbe] = −g̃ac[CdabδẼec + CeacδẼbe] +O(Ω0)

=
1
Ω

[
δẼbcn

c + δẼacg̃
acnb − δẼben

e + δẼbcn
c + δẼben

e − d · δẼbene
]

+O(Ω0)

= O(Ω0),
(A.45)
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where Ccab is given by (A.2). Equipped with these results, we can turn our attention to the actual
calculation of the asymptotic behavior of the presymplectic potential (3.25) for perturbations
(4.50):

16πG · θa1...ad−1
= Ω4−dε̃ca1...ad−1

g̃cbg̃de(∇eδgbd −∇bδgde)

= − 2
d− 1

ε̃ca1...ad−1
g̃cb(ñdδẼbd + Ωg̃de∇eδẼbd) +O(Ω)

= O(Ω)

(A.46)

Hence,
θ(g; γ) = 0 (A.47)

on I +.
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B Spinors and curved spacetime gamma
matrices

Let (M, gab) be a Lorentzian manifold that admits a spinor bundle S and curved spacetime
gamma matrices. These gamma matrices satisfy the Clifford algebra relation

γ(aγb) = gab. (B.1)

This is identical to the usual gamma matrix relation

γ(µγν) = ηµν . (B.2)

Note that we denote flat gamma matrices by Greek indices. We raise and lower these Greek
indices with ηµν while we raise and lower the indices on the curved spacetime gamma matrices
with the spacetime metric gab. Now assume that we have an orthonormal basis in some region
U of the spacetime which satisfies

gabe
a
µ e

b
ν = ηµν , ηµνe

µ
ae
ν
b = gab. (B.3)

According to this equation, we can construct curved spacetime gamma matrices by

γa = eµaγµ, γa = e a
µ γ

µ (B.4)

in U .
Let (M̃, g̃ab) be an unphysical spacetime which is associated with (M, gab = Ω−2g̃ab). This

spacetime also admits a spinor bundle S̃ with

γ̃(aγ̃b) = g̃ab. (B.5)

A curved spacetime gamma matrix γa is related to the respective matrix γ̃a by

γ̃a = Ωγa, γa = Ωγ̃a. (B.6)

A spinor field ψ on M is a section in the spinor bundle S. Let us define the Dirac conjugate
(or adjoint) spinor of a spinor ψ by

ψ̄ := ψ†γ0, (B.7)

where γ0 is the zeroth flat spacetime gamma matrix. Then the quantity

ξa = −ψ̄γaψ (B.8)

is a vector, which is future directed and timelike for all spinors ψ. The covariant derivative
operator on spinor fields is given by

∇aψ = ∂aψ +
1
4
ω µν
a γ[µγν]ψ, (B.9)
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B Spinors and curved spacetime gamma matrices

where ω µν
a is the spin connection. It is defined by

ω µν
a = eµb∇ae

ν
b = eµb(∂aeνb − Γcabe

ν
c). (B.10)

Therefore, the difference between two derivative operators which are associated with a confor-
mally transformed metric g̃ab and the spacetime metric gab is given by

(∇̃a −∇a)ψ =
1
4
(ω̃ µν
a − ω µν

a )γ[µγν]ψ

= −1
4
g̃bcC

b
adγ̃

[cγ̃d] =
1
2
Ω−1(γ̃aγ̃bñb − ña),

(B.11)

where Ccab = −Ω−1(δ c
b ∇̃aΩ + δ c

a ∇̃bΩ− g̃abg̃
cd∇̃dΩ) (see (A.2)).
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C Formulas needed in the perturbation analysis
of de Sitter space

C.1 Weyl perturbations

Inserting Einstein’s equation with a positive cosmological constant (see e.g. (2.22)) into (1.6)
gives

Rabcd = Cabcd +
1
`2

(gacgbd − gadgbc). (C.1)

Then we can immediately conclude from the Bianchi identity

∇[aRbc]de = 0 (C.2)

that
∇[aCbc]de = 0, (C.3)

which in turn implies
∇aCbcae = 0. (C.4)

If we apply ∇a to (C.3), we find

∇a∇aCbcde +∇a∇bCcade +∇a∇cCabde = 0. (C.5)

Now we can show that

∇a∇bCcade = ∇b∇aCcade +Ra f
bc Cfade +Ra f

ba Ccfde +Ra f
bd Ccafe +Ra f

be Ccadf

= Ca f
bc Cfade + Ca f

bd Ccafe + Ca f
be Ccadf +

1
`2

(d− 1)Ccbde
(C.6)

holds, where we used the generalization of (A.4) to tensors of higher order (cf. footnote 2 on page
67), the symmetries of the Weyl tensor as well as (C.1) and (C.4). Combining (C.6) with (C.5)
yields (

∇a∇a − 2(d− 1)
`2

)
Cbcde = terms quadratic in C. (C.7)

Now note that
δ(∇aCbcde) = ∇̄aδCbcde, (C.8)

for perturbations off of de Sitter space, where ∇̄a is the derivative operator associated with the
de Sitter metric.1 Hence it follows from (C.4) that

∇̄aδCabcd = 0 (C.9)

and from (C.7) that (
∇̄e∇̄e − 2(d− 1)

`2

)
δCabcd = 0. (C.10)

The last equations holds, since variations of terms that are quadratic in the Weyl tensor must
clearly vanish for perturbations off of de Sitter space.

1Recall that the Weyl tensor vanishes in de Sitter space.
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C Formulas needed in the perturbation analysis of de Sitter space

C.2 Relations between the coefficients of the harmonic expansion

The relation between EL and ψS can be found by making use of the tracelessness of Eab. We have
Eaa = 0, which implies

EL = − 1
d− 2

(sin2 χ)ψS (C.11)

if we take (5.32) as well as (5.41) into account. The next relation follows from (5.31). Inserting
(5.41) into this equation gives

φS =
1
k2
S

[
(sin2 χ)χCDCψS + (d− 1)(sinχ)(cosχ)ψS

]
. (C.12)

For the two remaining relations, we take a look a (5.33). This equation implies

EV =
2
k2
V

[
(d− 2)(sinχ)(cosχ)ψV + (sin2 χ)χCDCψV

]
(C.13)

as well as
ET =

1
k2
S

d− 2
d− 3

[
EL + (d− 2)(sinχ)(cosχ)φS + (sin2 χ)χCDCφS

]
. (C.14)

The derivatives of the coefficients in the above equations must have the same asymptotic behavior
as the base quantities themselves. Hence, the asymptotic behavior of the coefficients is given by

EL ∼ ψS , φS ∼ ψS , (C.15)
EV ∼ ψV , ET ∼ ψS . (C.16)
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D A short note on hypergeometric functions

The Gauss hypergeometric series, also called the hypergeometric function, is given by

F (a, b; c; z) ≡ 2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (D.1)

where

(a)0 = 1,

(a)n =
Γ(a+ n)

Γ(n)
= a(a+ 1)(a+ 2) . . . (a+ n− 1)

(D.2)

is the Pochhammer symbol. The circle of convergence of (D.1) is given by |z| = 1, assuming that
neither a, b or c are negative integers or zero. On the circle, the series diverges if Re(c−a−b) ≤ −1,
it converges if Re(c−a−b) > 0, and it converges, except at the point z = 1, if −1 < Re(c−a−b) ≤
0. If a or b are negative integers or zero and c is either not a negative integer or zero or smaller
than the negative integer a or b, the series becomes a finite sum. If c is a negative integer or zero
and neither a or b are negative integers or zero with a > c or b > c, (D.1) is indeterminate.

In general, it is non-trivial to calculate F (a, b; c; z) for fixed z. However, for z = 0, the
hypergeometric series (D.1) simply reduces to

F (a, b; c; 0) = 1 (D.3)

if c 6= 0.
There exist a lot of relations between hypergeometric functions with different parameters. In

chapter 5, we will use the following one:

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) (D.4)

This holds only if a, b, and c are not negative integers of zero.
Most prominently, the hypergeometric function appears in solutions of the hypergeometric

differential equation

z(1− z)
d2

dz2
w + [c− (a+ b+ 1)z]

d
dz
w − abw = 0. (D.5)

For instance, if a and b and c are such that F (a, b; c; z) is well defined for |z| < 1, a solution of
(D.5) in that region is given by w = F (a, b; c; z). For further solutions and solutions in other
domains see e.g. [28, 29].
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E Perturbation analysis in another chart

Originally, I did not conduct the perturbation analysis in the global chart. Instead, I used the
form (2.31) of the metric. However, I ran into certain problems that I will briefly describe at
the end of this section. I will not go into much detail here but will only give a short summary
of (some of) the progress I made within this approach. A lot of the following is quite similar to
chapter 5. Consequently, we will repeatedly refer to said chapter and the notations used therein.

Let us take a look at figure 2.3. We will consider region II of de Sitter space with metric

ds2 = −
(
r2

`2
− 1

)−1

dr2 +
(
r2

`2
− 1

)
dt2 + r2dσ2

d−2. (E.1)

As in chapter 5, we define

Y := V (r) cosh(t/`), (E.2)
Za := ∇aY, (E.3)

and
Eab := δCacbdZ

cZd, (E.4)

where

V (r) =
(
r2

`2
− 1

)1/2

. (E.5)

Note that V (r) > 0 in region II.
This gives us the following differential equations

(
∇c∇c − 2(d− 2)

`2

)
Eab = 0, (E.6)

∇aEab = 0 (E.7)

if we make use of (5.2) and (5.3). Eab’s that solve these give rise to Weyl tensors that satisfy the
linearized Einstein equation. Introducing a component notation1 as in section 5.1, we find that
we can write the above differential equations in exactly the same form as (5.21) - (5.25), only
that r is no longer given by (5.19) but corresponds to the r of (E.1).

From there, we can proceed to the following, equivalent, set of equations:

DCDCE +
[
(d− 2)

DCr

r
− 4

ZC

Y

]
DCE +

[
1
r2

∆̂− 6
`2
Y 2

]
E = 0, (E.8)

DCDCEi +
[
(d− 4)

DCr

r
− 2

ZC

Y

]
DCEi +

[
1
r2

∆̂− 2
`2
Y 2 − d− 3

r2

]
Ei = 2

`2

r2
Ẏ

Y
D̂iE , (E.9)

1See above (5.11); capital Latin letters represent t or r indices, whereas lowercase Latin indices i, j, . . . represent
angular indices.
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DCDCEij + (d− 6)
DCr

r
DCEij +

[
1
r2

∆̂− 2(d− 4)
r2

]
Eij

=
2`2

r2
Ẏ

Y
(D̂iEj + D̂jEi)− 2

(
`2

r2
Ẏ

Y

)2

gijE , (E.10)

where

ta =
(
∂

∂t

)a

, E = EABtAtB, E = EAitA, Ẏ =
∂Y

∂t
. (E.11)

We can decouple these equations in exactly the same way that we used in chapter 5 (see at the
beginning of section 5.2). If we stick to the notation we used there, we find

(
∂2

∂t2
− 4

Ẏ

Y

∂

∂t
− 6
`2
V 2

Y 2

)
ψS =

[
V 2

rd−2

∂

∂r

(
rd−2V 2 ∂

∂r

)
− 4V 4Y

′

Y

∂

∂r
+
V 2

r2
k2
S

]
ψS , (E.12)

(
∂2

∂t2
− 2

Ẏ

Y

∂

∂t
− 2
`2
V 2

Y 2

)
ψV

=
[
V 2

rd−4

∂

∂r

(
rd−4V 2 ∂

∂r

)
− 4V 4Y

′

Y

∂

∂r
+ {(d− 3) + k2

V }
V 2

r2

]
ψV , (E.13)

and
∂2

∂t2
ψT =

[
V 2

rd−6

∂

∂r

(
rd−6V 2 ∂

∂r

)
+ {2(d− 4) + k2

T }
V 2

r2

]
ψT , (E.14)

where Y ′ denotes the derivative of Y with respect to r. If we define

ψS =: Y 2 · r−(d−2)/2ΨS ,

ψV =: Y · r−(d−4)/2ΨV ,

ψT =: r−(d−6)/2ΨT ,

(E.15)

and introduce
r

`
=:

1
tanhx

, (E.16)

we can again reduce these equations to one master equation:

`2
∂2

∂t2
Ψ =

[
∂2

∂x2
+

(
(d− 2)(d− 4)

4
+ l(l + d− 3)

)
1

cosh2 x
− (d− 4)(d− 6)

4
1

sinh2 x

]
Ψ (E.17)

With the ansatz
Ψ = R(r)T (t), (E.18)

we find
(

d2

dt2
+
ω2

`2

)
T = 0, (E.19)

(
− d2

dx2
−

[
σ2 − 1

4

]
1

cosh2 x
+

[
ν2 − 1

4

]
1

sinh2 x

)
R = ω2R, (E.20)
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E Perturbation analysis in another chart

where σ = l + (d− 3)/2 and ν = (d− 5)/2.
The solutions of the first equation are simply given by

T (t) = A exp(iωt/`) +B exp(−iωt/`). (E.21)

To solve the second equation, we cast it into the form of a hypergeometric differential equation.
Then it reads

z(1− z)
d2

dz2
R̄+

[
1 + σ − (ζων,σ + ζ−ων,σ + 1)z

] d
dz
R̄− ζων,σζ

−ω
ν,σ R̄ = 0, (E.22)

where

R = (sinhx)ν+1/2(coshx)σ+1/2R̄, (E.23)

z = cosh2 x, (E.24)

and ζ is as defined in (5.51). Then it is possible to find the general solutions of this equation.
Before we discuss why this entire approach is problematic for our purposes, let us recall what

the coordinates r and t describe. First of all, (∂/∂r) is timelike in region II (cf. figure 2.3) while
(∂/∂t) is spacelike there. Hypersurfaces of constant r are spacelike and r → ∞ corresponds to
I +. Conversely, hypersurfaces of constant t are timelike. If we keep r fixed and let t → ±∞,
we end up at points2 of I + (upper corners of figure 2.3).

There are several reasons, why the used coordinate system is not the best possible choice for
our purposes. A very significant one is that (E.21) is not well defined for t→ ±∞ (i.e. on I +)
if ω 6= 0. To resolve this, one could try to find a class of superpositions of solutions (E.18) that
exhibit a suitable decay behavior for t→ ±∞ or have compact support in t. However, it turned
out that both these solutions are quite difficult to implement. This is supplemented by the fact
that even though we can find solutions of (E.22) that are smooth for x = 0 (which corresponds
to r →∞), it turned out that their behavior for x→∞ depends on the separation parameter ω
in such a way that the solutions might not be well defined there. This is problematic, because
perturbations that are not smooth in the interior of the spacetime manifold cannot give rise to
asymptotically de Sitter spacetimes. Hence, we would have to be very careful which mode to use
when trying to construct superpositions of (E.18).

Another property of the coordinate system that interfered with our analysis is related to the
fact that it does not cover the entire spacetime manifold. By using these coordinates, we cannot
find out what happens in the other regions (i.e. region I, III, and IV; cf. figure 2.3) of the
spacetime. This is of considerable interest, because, as mentioned above, perturbations that are
not smooth in the interior cannot give rise to asymptotically de Sitter spacetimes.

These problems can be evaded by using the global coordinate system. Its constant time
hypersurfaces do not end at I + and it covers the entire spacetime. This led us to redo the
analysis in this coordinate system (see chapter 5).

We were able to carry a lot of the above analysis over to the one in the global chart. The
results of this appendix might also be useful in other contexts.

2Note that the coordinates are not smooth at these points: The horizon “intersects” I + there and we may end
up at the the same point if we take t→ ±∞ for different values of r.
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Symbols

Here we list some of the symbols that appear repeatedly throughout the thesis.

Symbol Description

M Spacetime manifold
gab Spacetime metric; in chapter 5: the de Sitter metric
d Dimension of the spacetime manifold
ds2 Spacetime metric without abstract indices
M̃ Unphysical spacetime manifold
∂M̃ ∂M̃ = M̃ −M
g̃ab Unphysical metric
Ω Conformal factor
I + Future infinity of M̃
I − Past infinity of M̃
I I = I + ∪I −

∇a Derivative operator associated with the spacetime metric; in chapter 5: associated
with the de Sitter metric

∇̃a Derivative operator associated with the unphysical metric
ηµν ηµν = diag(−1, 1, 1, . . . )
J±(U) Causal future/past of U
εa1...ad

Volume form
Sd d-dimensional sphere
σab Natural metric of the sphere
dσ2

d Metric of the sphere; given in terms of coordinates without abstract indices
Cd “Mass” parameter of the Schwarzschild de Sitter spacetime, cf. (2.35)
F Field configuration space
F̄ Covariant phase space
θa1...ad−1

Presymplectic potential form, cf. (3.1) and (3.25)
ωa1...ad−1

Presymplectic current form, cf. (3.3) and (3.27)
(Jξ)a1...ad−1

Noether current with respect to vector field ξa, cf. (3.8) and (3.30)
(Qξ)a1...ad−2

Noether charge with respect to vector field ξa, cf. (3.12) and (3.31)
ḡab De Sitter metric
∇̄a Derivative operator associated with the de Sitter metric
Lξ Lie derivative with respect to the vector ξa

ña ña = ∇̃aΩ
Λ Cosmological constant
` De Sitter radius, ` =

√
(d− 1)(d− 2)/(2Λ)

Ccab Difference between two derivative operators that are associated with a spacetime
metric and a corresponding unphysical metric, i.e. (∇a − ∇̃a)ωb = Ccabωc
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E Perturbation analysis in another chart

R d
abc Riemann tensor

C d
abc Weyl tensor

R̃ d
abc Riemann tensor with respect to the unphysical metric

C̃ d
abc Weyl tensor with respect to the unphysical metric

Ẽab Normalized electric part of the unphysical Weyl tensor; Ẽab = `2

d−3Ω3−dC̃acbdñcñd

Rab Ricci tensor
R̃ab Ricci tensor with respect to the unphysical metric
R Ricci scalar
R̃ Ricci scalar with respect to the unphysical metric
hab Metric on some spacelike hypersurface; in chapter 4: metric on surfaces of constant

Ω
R̃ab Unphysical intrinsic Ricci tensor of surfaces of constant Ω
R̃ Unphysical intrinsic Ricci scalar of surfaces of constant Ω
K̃ab Unphysical extrinsic curvature of surfaces of constant Ω; K̃ab = −∇̃añb
K̃ Trace of K̃ab

D̃a Derivative operator on surfaces of constant Ω
kab Deviation from the de Sitter metric
e a
µ Basis vector of an orthonormal basis with respect to the physical metric
ẽ a
µ Basis vector of an orthonormal basis with respect to the unphysical metric
ē a
µ Basis vector of an orthonormal basis with respect to the de Sitter metric
qab Metric on a spacelike hypersurface, cf. (4.70)
ψ Dirac spinor
ψ̃ ψ̃ = Ω1/2ψ
ψ̄ Dirac adjoint, ψ̄ = ψ†γ0

γµ Flat spacetime gamma matrix
γa Curved spacetime gamma matrix
Bab The Nester form, cf. (4.68)
∇̂a The super-covariant derivative operator, cf. (4.69)
a a(τ) = ` cosh(τ/`)
Y Y = − sinh(τ/`)
Z Za = ∇aY
Eab Eab = Eab = δCacbdZ

cZd

E E = Eabχaχb
Ei Ei = Eabχaθbi , where θai is as in (5.12)
Eij Eij = Eabθai θbj
ψS,V,T See (5.40)
φS See (5.40)
EL,T,V See (5.40)
N0 N ∪ {0}
Ψ See (5.46)
F (a, b; c; z) F = 2F1, the Gauss hypergeometric function
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