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1
Introduction

1.1 Motivation

Various formulations of quantum field theory (QFT) have been proposed and established in the
last century. The most popular ones can be split into two conceptually different categories: The
path-integral and the operator approach.

The former uses the moments of some measure on the space of classical field configurations
in order to construct correlation functions. As this measure is (formally) given in terms of
the classical action, this formulation has the advantage of being closely related to classical
field theory. In the operator approach, on the other hand, quantum fields are viewed as linear
operators represented on some Hilbert space of states. Consequently, no corresponding classical
theory, i.e. no Lagrangian formalism, is needed in this case. In this formalism special emphasis
is put on the algebraic relations between the quantum fields. In fact, these relations may be
viewed as determining the whole theory, as originally proposed by Haag and Kastler [1] in the
framework of algebraic quantum field theory (AQFT). Algebraic approaches have also been
useful in conformal quantum field theories (cQFT), see e.g. [2, 3], and in view of the lack of a
preferred Hilbert space representation turned out to be essential in the construction of quantum
field theories on curved spacetimes [4, 5, 6, 7, 8].

In [9] a new approach to quantum field theory was proposed, where the algebraic relations
between the fields (at short distances) are encoded in the Wilson operator product expansion
(OPE)[10], which is elevated to the status of a defining element of the theory instead of an
identity derived from it (see section 1.2). Furthermore the OPE coefficients have to obey certain
constraints, in particular a factorization relation that was observed in the construction of the
OPE on curved spacetimes [11]. An axiomatic formulation of this framework is given in [9]. The
key observation is that consistency conditions arising from the mentioned factorization property
can be used, in combination with field equations, as a constructive tool. In addition, graphical
rules for the computation of OPE coefficients within this approach have been obtained [12]. The
resulting algorithm for the construction of the OPE is different from standard ones relying on
divergence properties of Feynman integrals [13], but one expects the results to be equivalent (see
section 3.6). A remarkable feature of the new approach is the fact that it is inherently finite
(see chapter 3.2), i.e. no renormalization procedure is needed.

This novel viewpoint has several advantageous features:
As mentioned above, it is viable also on curved spacetimes, where it might even be necessary

to elevate the existence of an OPE to axiomatic status [14]. In [9] the framework was also gener-
alized to gauge theories, which play a central role in the description of particle physics. Another
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interesting feature concerns the regularity of the OPE coefficients as opposed to quantum states.
In the case of simple examples it is easy to show that OPE coefficients may depend analytically
on certain parameters of the theory (like e.g. the mass of a particle) where the quantum states
show non-analytic behavior. As a result of such considerations, it was recently conjectured in
[15] that even the perturbation series for the OPE coefficients may converge, i.e. it might be
possible to perturbatively construct interacting quantum field theories within this approach.

This thesis will be concerned with a low order perturbative construction of this kind for
the case of a simple toy model theory. It thus constitutes the first specific application of the
very young framework outlined above and gives first impressions of the calculational effort
involved in the iterative construction of perturbation theory. The above mentioned cancellation
of divergences and also the formation of certain patterns in the mathematical structure of the
coefficients can be observed explicitly. This also gives insights into the expected structure of
higher order coefficients.

1.2 Historical background

The singular behavior of products of quantum fields at coinciding spacetime points has been a
major obstacle in the construction and understanding of quantum field theory since its discovery.
Thus, the analysis of these short distance divergences was, and still is, of great interest.

The idea of a short distance expansion for products of quantum field operators was first con-
sidered by Wilson in 1964 when, according to himself inspired by axiomatic QFT, he translated
some work he “had done on Feynman diagrams with some very large momenta (...) into po-
sition space” [16]. This work, however, never got published and it took five more years until
Wilson revisited his theory of short distance expansions adding new ideas by Kastrup and Mack
concerning scale invariance in QFT. Ironically, although in his 1969 paper Wilson introduces
the OPE as an alternative framework to Lagrangian models, in the following years it became an
important tool in the understanding of these theories.

In 1970 Zimmermann proved that an OPE holds in perturbative quantum field theory, thus
giving its first validation also in usual Lagrangian theories [17]. He used this new tool in order to
define normal products of interacting quantum fields as a generalization of the normal ordered
products in the free theory. Now a sensible notion of composite fields, i.e. for example higher
powers of fields, could be defined in terms of normal products [18].

In the following years the OPE was established in the most important branches of quantum
field theory: It became a standard tool in the analysis of quantum chromodynamics (QCD),
played a crucial role in the development of conformal quantum field theories, has been proven
within various axiomatic settings [19, 20] and has been shown to hold order by order in pertur-
bation theory on curved spacetime [11]. The OPE has also been used in order to prove a curved
spacetime version of the spin-statistics theorem and the PCT theorem [21] and played a crucial
role in the formulation of an axiomatic quantum field theory on curved spacetime, where the
OPE was elevated to a fundamental status and replaces the requirement for the existence of a
unique Poincare invariant state [14]. This shift of emphasis onto the OPE as defining property
of the theory is in the spirit of the new approach considered in this thesis. Here the OPE is
no longer viewed as simply a calculational tool that has been derived from the theory, but as a
central feature around which the theory is built.

1.3 Organization

This thesis is organized as follows:
In the next chapter we introduce the new framework of quantum field theory in terms of

consistency conditions as proposed in [9]. After a short motivation of the ideas leading to this
approach, an axiomatic setting for quantum field theory is presented, followed by an analysis of
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perturbation theory in this framework. Finally, a recently discovered convenient formulation of
the theory in terms of vertex operators - the fundamental left representation - is studied.

Chapter 3 presents the results of this thesis, namely the low order perturbative construction
of OPE coefficients for a specific Lagrangian model theory. Our considerations naturally start at
the non-interacting theory (i.e. zeroth perturbation order), where the model and some notation
are introduced. We then explain a general method of perturbations via non-linear field equations,
obtaining an iterative scheme for the construction of OPE coefficients. The application of this
algorithm to a specific model theory gives the main results of this thesis, which are presented in
section 3.4 and 3.5. In the end we briefly compare our framework to ordinary methods for the
calculation of OPE coefficients in terms of an example.

The thesis is closed by chapter 4, where our results are reviewed and interpreted. Conclusions
as well as an outlook on possible future developments are given.

We refer to the appendix for the introduction to the main mathematical objects appearing in
the calculations.





2
QFT in terms of consistency conditions

In this chapter a new formulation of quantum field theory, first proposed in [9], is described.
The central object of this framework is the OPE subject to certain constraints.

2.1 Motivation

The operator product expansion states that the product of two operators may be written as〈
φa(x1)φb(x2)

〉
ω
≈
∑
c

Ccab(x1, x2; y)
〈
φc(y)

〉
ω

�� ��2.1.1

in terms of local quantum fields φc and C-number distributions Ccab. Here a, b, c label the
composite fields of the underlying theory , 〈 · 〉ω is the expectation value in the state ω and “≈”
means that this identity holds as an asymptotic relation in the limit x1, x2 → y in a suitably
strong sense1. In the following we will shorten the notation by formally rewriting equation 2.1.1
as

φa(x1)φb(x2) =
∑
c

Ccab(x1, x2)φc(x2) ,
�� ��2.1.2

where we have implicitly made the choice y = x2. We furthermore assume the fields to live on a
real Euclidean spacetime, which can always be achieved by analytic continuation provided the
spectrum condition holds in the quantum field theory. In order to motivate the condition that
lies at the heart of the new framework we should study the OPE of a product of three operators.

φa(x1)φb(x2)φc(x3) =
∑
d

Cdabc(x1, x2, x3)φd(x3)
�� ��2.1.3

Now consider a situation as depicted in figure 2.1. Defining the Euclidean distance between
two points xi and xj as

rij := |xi − xj | =
√

(xi − xj)2
�� ��2.1.4

figure 2.1 tells us that r23 < r13. In this case we expect it to be possible to perform the
OPE successively, i.e. we first expand the product of φb(x2)φc(x3) in equation 2.1.3 around x3 ,

1See the discussion below equation 2.2.30 for more detail
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Figure 2.1.: A configuration of the spacetime points x1, x2, x3 ∈ Rd

multiply the result by φa(x1) and perform yet another OPE around x3. Writing this idea as an
equation, we obtain

Cdabc(x1, x2, x3) =
∑
e

Cebc(x2, x3)Cdae(x1, x3) .
�� ��2.1.5

Similarly, as figure 2.1 also implies r12 < r23, we expect that we can start by expanding the
product φa(x1)φb(x2) around x2, multiply the result by φc(x3) and finally expand around x3

again. In other words:

Cdabc(x1, x2, x3) =
∑
e

Ceab(x1, x2)Cdec(x2, x3)
�� ��2.1.6

So for constellations as in figure 2.1, i.e. on the open domain r12 < r23 < r13, we obtain
the consistency relation that both expansion 2.1.5 and 2.1.6 must be valid and should coincide.
Thus we require ∑

e

Cebc(x2, x3)Cdae(x1, x3) =
∑
e

Ceab(x1, x2)Cdec(x2, x3)
�� ��2.1.7

when r12 < r23 < r13. We will adopt the labeling of this constraint as ”consistency-” or
”associativity” condition from [9]. The basic idea of the new framework presented in this chapter
is that these conditions on the 2-point OPE coefficients are stringent enough to incorporate the
full information about the structure of the quantum field theory or, stated conversely, that
finding a solution to these conditions effectively means that one has constructed a quantum field
theory.

But if the full information on the quantum field theory is to be encoded in the constraints
on the 2-point OPE coefficients, then no further constraints should appear from higher order
associativity conditions, i.e. from conditions on products of more than three fields. If, for
example, we consider the OPE of four fields φa(x1)φb(x2)φc(x3)φd(x4) and successively expand
this product in a similar manner as above, we will obtain new relations for the 2-point OPE
coefficients similar to eq. 2.1.7. The question is now whether these constraints are genuinely
new or can be deduced from eq. 2.1.7. As it turns out, this problem is analogous to the analysis
of the associativity condition in ordinary algebra and as in this case we will show that no further
conditions arise (see chapter 2.3). These considerations will also yield a unique expression of the
higher order coefficients such as Ceabcd(x1, x2, x3, x4) in terms of the 2-point OPE coefficients.
This result is called the coherence theorem, because it states that the entire set of consistency
conditions is coherently encoded in the associativity condition 2.1.7.

Now that we have identified the 2-point OPE coefficients as fundamental entities of our ap-
proach, it would be of interest to formulate perturbation theory in terms of these coefficients.
With this aim in mind, let us assume the following setting: We are given a 1-parameter family of
2-point coefficients with parameter λ. These coefficients shall satisfy the associativity condition
2.1.7 and we want to perturb around the quantum field theory described by the coefficients with
λ = 0. In order to avoid messy equations we introduce an index free notation getting rid of
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the indices a, b, c . . . above. We view the 2-point OPE coefficients collectively as a linear map
C(x1, x2) : V ⊗ V → V , where V is the space of fields, whose basis components are given by
Ccab(x1, x2). Then the Taylor expansion in the parameter λ around λ = 0 is

C(x1, x2;λ) =
∞∑
i=0

Ci(x1, x2)λi .
�� ��2.1.8

If we expand the associativity condition, eq. 2.1.7, in this way and assume that the condition
holds at zeroth order, then we obtain the following constraint on the first order perturbation of
the 2-point OPE coefficients

C0(x2, x3)
(
C1(x1, x2)⊗ id

)
− C0(x1, x3)

(
id⊗ C1(x2, x3)

)
+

C1(x2, x3)
(
C0(x1, x2)⊗ id

)
− C1(x1, x3)

(
id⊗ C0(x2, x3)

)
= 0

�� ��2.1.9

which is linear in the first order coefficients and holds on the domain r12 < r23 < r13. It was
shown in [9] that this condition is of a cohomological nature and that one can identify the set of
all possible first order perturbations satisfying this condition (modulo trivial field redefinitions)
with the elements of a certain cohomology ring, which bears close resemblance to Hochschild
cohomology [22, 23]. This notion can be generalized to higher order perturbations, i.e. at each
order the associativity condition is a potential obstacle for the continuation of the perturbation
series. This obstruction is then again an element of our cohomology ring.

The above definition of perturbation theory is very general in the sense that the physical
meaning of the parameter λ is completely open. λ might for instance measure the strength of
some coupling in a Lagrangian theory, like e.g. the self interaction in the theory described by
the classical Lagrangian L = (∂φ)2 + λφ4. The perturbation would in this case be around the
free theory where the OPE coefficients are known. It is also possible to perturb more general,
not necessarily Lagrangian, theories, e.g. more general conformal field theories. One could also
take SU(N) Yang-Mills theory as yet another example. Here one could chose λ = 1/N , where
N is the number of colors of the theory, and perturb around the large-N -limit of the theory.
This general theory of perturbations is described in more detail in chapter 2.4.

2.2 Axiomatic framework

The aim of the present section is to give a precise formulation of the ideas informally presented
above. In this approach quantum field theory is defined by an axiomatic setup that was first
proposed in [9] (in [14] a basically similar framework was introduced for quantum field theory
on curved spacetime).

First we define the playground of our quantum field theory to be an infinite dimensional vector
space V , whose elements can be thought of as the components of the various composite scalar,
spinor and tensor fields. For example, in a theory containing only one scalar field ϕ, the elements
of V would be in one-to-one correspondence with the monomials in ϕ and its derivatives. One
would naturally assume V to be graded in various ways, as it should be possible to classify
the different quantum fields in the theory by characteristic properties, such as spin, dimension,
Bose/Fermi character, etc. As we are considering Euclidean quantum field theories, we expect
V to carry a representation of the D-dimensional rotation group SO(D), or of its covering
group Spin(D) respectively if spinor fields are present. This representation can be decomposed
into unitary, finite-dimensional irreducible representations VS characterized by the eigenvalues
S = (λ1, . . . , λr) of the r Casimir operators associated with SO(D). Thus, we introduce a
grading by these irreducible representations (irrep’s):
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V =
⊕

∆∈R+

⊕
S∈irrep

CN(∆,S) ⊗ VS
�� ��2.2.1

An additional grading, which will later be related to the dimension of the quantum fields,
is provided by the numbers ∆ ∈ R+. The numbers N(∆, S) ∈ N, here supposed to be finite,
express the multiplicity of the fields with a given dimension ∆ and spin S. Here we should
remark that the infinite sums in this decomposition are understood without any closure taken,
meaning that the elements of V are in one-to-one correspondence with sequences of the form
(|v1〉, |v2〉, . . . , |vn〉, 0, 0, . . .), where only finitely many zeros appear and |vi〉 is a vector in the
i-th summand of the decomposition. As further structure on V we demand the existence of an
anti-linear, involutive operation ? : V → V which should be thought of as hermitian conjugation
of the quantum fields. Additionally we would like to have a linear grading map γ : V → V
satisfying γ2 = id which is to be thought of as a grading with respect to bosonic (eigenvalue +1)
and fermionic (eigenvalue −1) vectors. Finally, we demand the existence of D derivations on V ,
i.e. linear maps ∂µ : V → V with µ ∈ {1, . . . , D} satisfying the Leibnitz rule and ∂µ ◦γ = γ ◦∂µ.
These derivations increase the dimension ∆ of the vectors in V by 1.

The linear space defined in this way is nothing more than a list of objects that we think of
as labeling the composite fields of the theory, but so far the dynamics and the quantum nature
of the theory, i.e. the information that is of most interest, have not been addressed. This
information is now encoded in the OPE coefficients associated with the quantum fields. This is
a hierarchy

C =
(
C(x1, x2), C(x1, x2, x3), C(x1, x2, x3, x4), . . .

)
,

�� ��2.2.2

where the C(x1, . . . , xn) are analytic functions on the configuration space

Mn := {(x1, . . . , xn) ∈ (RD)n | xi 6= xj , ∀ 1 ≤ i < j ≤ n}
�� ��2.2.3

taking values in the linear maps

C(x1, . . . , xn) : V ⊗ · · · ⊗ V︸ ︷︷ ︸
n−factors

→ V .
�� ��2.2.4

For the one-point coefficient we set C(x1) = id : V → V . By taking the components of these
maps in a basis of V the OPE coefficients from the previous section can be retrieved. So, if
{|va〉} denotes a basis of V in adapted to the grading with the corresponding basis {〈va|} of the
dual space

V ∗ =
⊕

∆∈R+

⊕
S∈irrep

CN(∆,S) ⊗ VS ,
�� ��2.2.5

with VS denoting the conjugate representation, 〈vb|va〉 = δba, then we have

Cba1...an(x1, . . . , xn) = 〈vb|C(x1, . . . , xn)|va1 ⊗ · · · ⊗ van〉 ,
�� ��2.2.6

using the customary bra-ket notation |va1 ⊗ · · · ⊗ van〉 := |va1〉 ⊗ · · · ⊗ |van〉. In the following
we express the basic properties of quantum field theory as axioms on the structure of the OPE
coefficients:
Axiom 1 (Hermitian conjugation)

Denoting by ι : V → V the anti-linear map given by the star operation ?, we have

C(x1, . . . , xn) = ιC(x1, . . . , xn)ιn ,
�� ��2.2.7

where ιn := ι⊗ · · · ⊗ ι denotes the n-fold tensor product of the map ι.
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Axiom 2 (Euclidean invariance)

Let R be the representation of Spin(D) on V , let a ∈ RD and g ∈Spin(D). Then the
equation

C(gx1 + a, . . . , gxn + a) = R∗(g)C(x1, . . . , xn)R(g)n
�� ��2.2.8

holds, where R(g)n := R(g)⊗ · · · ⊗R(g) again is the n-fold tensor product of R(g).

Axiom 3 (Bosonic nature)

The OPE coefficients themselves should be ”bosonic” in the sense that

C(x1, . . . , xn) = γC(x1, . . . , xn)γn ,
�� ��2.2.9

where the shorthand notation for the n-fold tensor product was used again.

Axiom 4 (Identity element)

There exists a unique element 1 ∈ V of dimension ∆ = 0 satisfying the properties 1∗ = 1,
γ(1) = 1 and

C(x1, . . . , xn)|v1 ⊗ · · ·1⊗ · · · vn−1〉 = C(x1, . . . , x̂i, . . . , xn)|v1 ⊗ · · · ⊗ vn−1〉
�� ��2.2.10

where 1 is in the i-th tensor position, with i < n. If 1 is in the n-th position, the relation

C(x1, . . . , xn)|v1 ⊗ · · · vn−1 ⊗ 1〉 = t(xn−1, xn)C(x1, . . . , xn−1)|v1 ⊗ · · · ⊗ vn−1〉
�� ��2.2.11

has to hold, where t is a ”Taylor expansion map” characterized below.

The reason for the slightly more complicated form of eq. 2.2.11 is that xn is the point we
expand around and thus the corresponding n-th tensor entry stands on a different footing than
the other entries. In order to heuristically motivate the form of equation 2.2.11 and to specify
the map t more precisely, we consider the following situation:

Let φa be a quantum (or classical) field. Then we can formally perform a Taylor expansion

φa(x1) =
∞∑
i=0

1
i!
yµ1 · · · yµi∂µ1 · · · ∂µiφa(x2)

�� ��2.2.12

with y = x1−x2. As each field ∂µ1 · · · ∂µiφa is just another composite field of the theory denoted
for example by φb, we might rewrite equation 2.2.12 in the form φa(x1) =

∑
tba(x1, x2)φb(x2).

The tba are defined using the above Taylor expansion, at least up to potential trivial changes
which take into account the fact that a derivative of the field φa might correspond to a linear
combination of other fields in the particular labeling we have chosen for the fields. Application
of these ideas formally yields

∑
b

Cba1...an−11
(x1, . . . , xn)φb(xn) = φa1(x1) · · ·φan−1(xn−1)1

=
∑
b

Cba1...an−1
(x1, . . . , xn−1)φb(xn−1)

=
∑
b,c

Cca1...an−1
(x1, . . . , xn−1) tbc(xn−1, xn)φb(xn) ,

�� ��2.2.13

which suggests that
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Cba1...an−11
(x1, . . . , xn) =

∑
c

tbc(xn−1, xn)Cca1...an−1
(x1, . . . , xn−1) .

�� ��2.2.14

We now argue that this sum if finite, so one does not have to bother with convergence issues.
Note that in eq. 2.2.12 the dimension of the operators on the right hand side should not be
smaller than that of the operator on the left hand side, because the former contain additional
derivatives. We thus conclude that tba(x1, x2) is only nonzero as long as the dimension of the
operator φa is greater or equal to the dimension of φb. Since there are only finitely many
operators up to a given dimension, our proposition is confirmed.

Abstracting the features derived from these heuristic considerations, we are now ready to give
a definition of the map t appearing in eq. 2.2.11. We postulate the existence of a linear map
t(x1, x2) : V → V for all x1, x2 ∈ RD satisfying the following conditions. First, the map should
have the same transformation properties as the OPE with respect to rotations (see axiom 2).
Defining V ∆ as the subspace of V in the decomposition 2.2.1 spanned by vectors of dimension
∆, we furthermore require

t(x1, x2)V ∆ ⊂
⊕
∆̂≥∆

V ∆̂ .
�� ��2.2.15

Next, we have the cocycle relation

t(x1, x2)t(x2, x3) = t(x1, x3) .
�� ��2.2.16

Finally, the restriction of any vector of t(x1, x2)V ∆ to any subspace of V ∆̂ is supposed to depend
polynomially on x1 − x2. This finishes the characterization of the ”Taylor expansion map” t
and thus completes the formulation of axiom 4. Note that this axiom implies in particular the
relation

t(x1, x2)|v〉 = C|v ⊗ 1〉 ,
�� ��2.2.17

i.e. t(x1, x2) uniquely determines the 2-point OPE coefficients with an identity operator and
vice versa. As a special case, we have t(x1, x2)1 = 1 using eq. 2.2.10 and C(x1) = id, which
implies that the identity operator does not depend on a reference point.

Before we come to the next axiom, some notation is introduced. Let I1, . . . , Ir denote a
partition of the set {1, . . . , n} into disjoint ordered subsets, where all elements in Ii are greater
than all elements in Ii−1 for all i. An example for such a partition in the case n = 5 would
be I1{1}, I2{2, 3, 4}, I3 = {5, 6}. For each ordered subset I ⊂ {1, . . . , n} we define XI to be
the ordered tuple (xi)i∈I ∈ (RD)|I| and we set mk := max(Ik) and C(XI) := id if I consists of
only one element. Furthermore, let d(XI) be the set of relative Euclidean distances between the
points in a collection XI = (xi)i∈I , defined as the set of positive real numbers

d(XI) := {rij | i.j ∈ I, i 6= j}
�� ��2.2.18

We are now ready for the
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Axiom 5 (Factorization)

The identity

C(X{1,...,n}) = C(X{m1,...,mr})
(
C(XI1)⊗ · · · ⊗ C(XIr)

) �� ��2.2.19

holds on the open domain

D[{I1, . . . , Ir}] :=
{

(x1, . . . , xn) ∈Mn|min d(X{m1,...,mr}) > max(d(XI1), . . . , d(XIr))
}

�� ��2.2.20

At this point some remarks are in order. First one should note that the factorization identity
2.2.19 expressed in a basis of V ⊗ · · · ⊗ V involves an r-fold infinite sum on the right side of
the equation. In fact, it is the statement of the factorization property that these infinite sums
converge on the indicated domain. Outside the domain the sums are not restricted at all and one
would expect them to diverge. The axiom can be generalized to arbitrary partitions of {1, . . . , n}
making use of the (anti-)symmetry axiom 7 below. If fermionic fields are included, then ± signs
will appear. It is also important to remark that the factorization relation can be iterated on
suitable domains, i.e. if for example the subset Ij is itself partitioned into subsets, then the
coefficient C(XIj ) will itself factorize on a suitable subdomain. Such subsequent partitions may
naturally be identified with trees. A version of the factorization property in terms of trees was
given in [11] and will also be given below 2.3.11.

Axiom 6 (Scaling)

Let va1 , . . . , van ∈ V be vectors with dimension ∆1, . . . ,∆n (remember the decomposition
of V in eq. 2.2.1) respectively and let vb ∈ V ∗ be an element in the dual space of V
with dimension ∆n+1. Then the scaling degree of the C-valued distribution 2.2.6 should be
estimated by

sdCba1...an ≤ ∆1 + . . .+ ∆n −∆n+1 .
�� ��2.2.21

By scaling degree we mean

sdCba1...an = inf
p∈R

(
lim
ε→0

εpCba1...an(εx1, . . . , εxn) = 0 for all (x1, . . . , xn) ∈Mn

)
.

�� ��2.2.22

Further, if vb is an element of the one-dimensional subspace of dimension-0 fields spanned by
the identity operator 1 ∈ V , and if n = 2 and va1 = v∗a2

6= 0, then the inequality in the eq.
2.2.21 is required to hold.
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Axiom 7 ((Anti-)symmetry)

Let τi−1,i be the permutation exchanging the (i − 1)-th and the i-th tensor factor in an
element of V ⊗ · · · ⊗ V . Then we have (for 1 < i < n)

C(x1, . . . , xi−1, xi, . . . , xn)τi−1,i = C(x1, . . . , xi, xi−1, . . . , xn)(−1)Fi−1Fi
�� ��2.2.23

with

Fi :=
1
2
idi−1 ⊗ (id− γ)⊗ idn−i .

�� ��2.2.24

In the case i = n we require

C(x1, . . . , xn−1, xn)τn−1,n = t(xn−1, xn)C(x1, . . . , xn, xn−1)(−1)Fn−1Fn
�� ��2.2.25

The last factor in eqs. 2.2.23 and 2.2.25 makes the OPE coefficients of bosonic fields symmetric
and the OPE coefficients of fermionic fields anti-symmetric. Also notice that again we had to
treat the case involving the n-th point and the n-th tensor factor separately. The reasons for
this are obviously similar to those leading to eq. 2.2.11.

Axiom 8 (Derivations)

The derivations ∂µ on V are compatible with partial derivatives of the OPE coefficients
with respect to the spacetime arguments xi ∈ RD in the sense that

C(x1, . . . , xn) |v1 ⊗ · · · ∂µvi ⊗ · · · vn〉 = ∂(xi)µC(x1, . . . , xn) |v1 ⊗ · · · vi ⊗ · · · vn〉
�� ��2.2.26

for i < n. If there is a derivative in the last tensor position, then the identity

C(x1, . . . , xn) |v1 ⊗ · · · ⊗ ∂µvn〉 =
[
∂(xn)µC(x1, . . . , xn) + ∂µ ◦ C(x1, . . . , xn)

]
|v1 ⊗ · · · ⊗ vn〉�� ��2.2.27

holds.

This axiom, which has not been required in [9], will later allow us to transform field equations,
i.e. partial differential equations on V , into similar relations involving the OPE coefficients (see
section 3.2).

This finishes our presentation of the axioms for the new framework. As already mentioned in
section 2.1, the factorization property, axiom 5, lies at the heart of the theory. The stringent
constraints it imposes on the possible consistent hierarchies (C(x1, x2), C(x1, x2, x3), . . .) carry
the main information in the approach. The Euclidean invariance condition, axiom 2, implies
translation invariance of the OPE coefficients and links the decomposition 2.2.1 of the field space
V into sectors of different spin to the transformation properties of the OPE coefficients under
rotations. Likewise, the scaling property links the grading of V with respect to the dimension to
the scaling properties of the OPE coefficients. Furthermore, the (anti-)symmetry requirement,
axiom 7, is a replacement for local (anti-)commutativity (Einstein causality) in the Euclidean
setting. Note also that we have not required a spin-statistics or PCT -theorem to hold, as these
can in fact be derived from the axiomatic framework just introduced (see [21]).

So in summary, a quantum field theory is defined as a pair (V, C) consisting of a vector space V
with the above properties and a hierarchy of OPE coefficients C := (C(x1, x2), C(x1, x2, x3), . . .)
satisfying axioms 1 to 8. Now the issue of equivalence of different theories of this kind arises.
One would naturally identify quantum field theories that only differ by a redefinition of their
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fields, where, informally, a field redefinition means that the definition of the quantum fields of
the theory is changed by a transformation of the form φa(x) to φ̂a(x) = zbaφb(x), where zba is
some matrix on field space. The following definition carries over these ideas to our framework.

Definition 2.1 (Equivalence)

Let (V, C) and (V̂ , Ĉ) be two quantum field theories. If there exists an invertible map
z : V → V̂ satisfying

zR(g) = R̂(g)z , zγ = γ̂z , z ? = ?̂ z
�� ��2.2.28

as well as

C(x1, . . . , xn) = z−1Ĉ(x1, . . . , xn)zn
�� ��2.2.29

for all n, where zn = z⊗· · ·⊗z, then the two quantum field theories are said to be equivalent
and z is called a field redefinition.

Before concluding this chapter one further condition is imposed, namely that the quantum field
theory (V, C) exhibits a vacuum state. The appropriate notion of quantum state in our Euclidean
setting is a collection of correlation functions, which we will write as 〈φa1(x1) · · ·φan(xn)〉Ω
with arbitrary n and a1, . . . , an. These functions should be analytic on Mn and satisfy the
Osterwalder-Schrader (OS) axioms for the vacuum state Ω (see [24, 25]) and also the OPE in
the sense that

〈φa1(x1) · · ·φan(xn)〉Ω ∼
∑
b

Cba1...an(x1, . . . , xn)〈φb(xn)〉Ω .
�� ��2.2.30

The symbol “ ∼ ” here indicates that the difference between the left and right side of this
expression is a distribution on Mn with smaller scaling degree than any given number δ provided
the above sum goes over all of the finitely many fields φb whose dimension is smaller than some
number ∆ = ∆(δ). Then by the OS-reconstruction theorem the theory can be continued back to
Minkowski spacetime and the fields can be represented as linear operators on a Hilbert space H
of states. It may also be of interest in some settings (e.g. theories with unbounded potentials) to
drop the notion of unique vacuum state by leaving out those OS-axioms which involve statements
about invariance under Euclidean transformations.

Obviously, if we require a quantum state to satisfy the OS-axioms, new constraints on the
OPE coefficients are expected to appear. These constraints will not be discussed here, as our
focus is on the algebraic conditions satisfied by the OPE coefficients. The additional restrictions
imposed by the OS-axioms are genuinely new, so in some contexts one might even want to drop
them (e.g. the condition of OS-positivity does not hold in some systems in statistical mechanics
and in gauge theories before taking the quotient by the BRST-differential).

2.3 The coherence theorem

It has already been mentioned a few times that we think of the factorization property, axiom
5, as the key condition on the OPE coefficients. These restrictions on the OPE coefficients
C(x1, . . . , xn) (with n ≥ 2) are expected to be very stringent and encode most of the non-trivial
information of the theory. It is the purpose of this section to analyze the interdependence of these
conditions for different n, i.e. for OPE coefficients coming from the expansion of a product of n
fields. The result will be that all the higher constraints (i.e. larger n) are already encoded in the
first non-trivial constraint arising for n = 3. As this implies that all the factorization constraints
can be coherently described by a single condition, this result was named the coherence theorem
in [9].
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It is instructive to consider an analog from ordinary algebra before treating our case in more
detail. Let us consider a finite dimensional associative algebra A. Thus

(AB)C = A(BC) ∀A,B,C ∈ A
�� ��2.3.1

holds, or rewritten in terms of the linear product map m : A⊗A→ A with m(A,B) = AB:

m(id⊗m) = m(m⊗ id)
�� ��2.3.2

Both sides of this equation are maps A⊗A⊗A→ A. By successively applying eq. 2.3.1 it is
easy to prove that also

(AB)(CD) = (A(BC))D ∀A,B,C,D ∈ A
�� ��2.3.3

holds without further restrictions on the map m. In fact, it is an elementary result in algebra
that no such higher associativity conditions arise. It is not difficult to see that this result is
analogous to our coherence theorem, where eq. 2.3.1 plays the role of the three point factorization
constraint and eq. 2.3.3 together with similar higher order conditions is identified with the n > 3
factorization conditions.

Now let us come back to our original setting and consider axiom 5 for n = 3. We encounter
three different partitions of the set {1, 2, 3} corresponding to non-trivial factorization conditions
2.2.19, namely T3 := {{1, 2}{3}}, T2 := {{1, 3}{2}} and T1 := {{2, 3}{1}}. The respective
domains on which the factorization identities are supposed to be valid are, according to eq.
2.2.20, given by

D[T1] = {(x1, x2, x3) | r23 < r13} ,
�� ��2.3.4

D[T2] = {(x1, x2, x3) | r13 < r23} ,
�� ��2.3.5

D[T3] = {(x1, x2, x3) | r12 < r23} .
�� ��2.3.6

The first two domains in the above equations are clearly disjoint, but both have a non-empty
intersection with the third domain. Thus, according to axiom 5, on these intersections both
factorizations should give C(x1, x2, x3) and hence should also be equal to each other. We can
write this as

C(x2, x3)
(
C(x1, x2)⊗ id

)
= C(x1, x3)

(
id⊗ C(x2, x3)

) �� ��2.3.7

where the spacetime arguments lie in the intersection D[T1] ∩ D[T3], i.e. r12 < r23 < r13. A
similar relation holds on the domain D[T2] ∩ D[T3], but it turns out that this relation can be
derived from 2.3.7 with the help of the symmetry condition, axiom 7,

C(x1, x2) = t(x1, x2)C(x2, x1)τ1,2

�� ��2.3.8

and the relation

C(x1, x3) = C(x2, x3)
(
t(x1, x2)⊗ id

) �� ��2.3.9

for r12 < r23. So in the case n = 3 (i.e. three spacetime points) there exists only one independent
consistency condition, eq. 2.3.7, which has already been given in component form in 2.1.7.

Remember, the aim of this chapter is to analyze higher factorization conditions, i.e. axiom 5
for n > 3. We have seen in the analogous problem in ordinary algebra that all higher associativity
conditions can be derived from eq. 2.3.2, which is the analogue to our eq. 2.3.7. In the following
it will be shown that, as in the example of associative algebra, we will not encounter any higher
factorization conditions and that the coefficients C(x1, . . . , xn), the analogue of a product of n
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elements of our algebra A, are completely determined by the coefficients C(x1, x2), which can
be identified with a product of two elements of A.

Thus, our first task is to write all the factorization equations only in terms of the C(x1, x2).
In this context the language of rooted trees is natural and useful (see also [11]). By a rooted
tree on n elements {1, . . . , n} we will mean a set {S1, . . . , Sk} of nested subsets Si ⊂ {1, . . . , n},
such that each Si is either contained in another set of the family of subsets, or disjoint from
it. The set {1, . . . , n}, called the root, is by definition not in the tree. One can then visually
think of the sets Si as the nodes of the tree, which are connected by branches to all those nodes
that are subsets of Si, but not proper subsets of any element of the tree other than Si. The
leaves of the tree are the nodes that do not contain any other sets of the tree as subsets, so
they are of the form Si = {i}. Let us introduce some further notation: If T is a tree on n
elements of a set, then we denote by |T| the elements of this set. Furthermore, let T be of the
form T = {T1, . . . ,Tr}, where each Ti is itself a tree on a proper subset of {1, . . . , n}, so that
|T1| ∪ · · · ∪ |Tr| = {1, . . . , n} is a partition into disjoint subsets. For such trees we recursively
define an open, non-empty domain of Mn, by

D[T] =
{

(x1, . . . , xn) ∈Mn |X|T1| ∈ D[T1], . . . , X|Tr| ∈ D[Tr];

min d(X{m1,...,mr}) > max(d(X|T1|), . . . , d(X|Tr|))
}
.

�� ��2.3.10

Here mi is the maximum element element upon which the tree Ti is built. Otherwise the
notation is as introduced above axiom 5. The domain presented in eq. 2.2.20 is recovered from
this definition, if the Ti are the trees with only a single node apart from the leaves. Then
the Ii of eq. 2.2.20 is given by the elements of the i-th subtree Ti. Thus, in this case, the
factorization property 2.2.19 holds on the given domain. But if we consider more complex trees,
the corresponding domains according to eq. 2.3.10 will just be proper open subsets of the domain
we just considered, so the factorization condition is still satisfied on these domains. Hence, the
factorization identity, eq, 2.2.19 holds on D[T] in any case. In addition, we may now iterate
this factorization, as the factors C(X|Ti|) themselves factorize on D[T], because that domain
is defined in such a way that X|Ti| ∈ D[Ti]. So, successively making use of such factorization
identities, we obtain a nested factorization property on each of the domains D[T].

In order to explicitly write down these identities, some further notation is useful. Let S ∈ T.
Then we write l(1), . . . , l(j) ⊂T S, if l(1), . . . , l(j) are the branches descending from S. By
mi we denote the largest element in l(i) and assume an ordering of the branches, such that
m1 < . . . < mj . Also, as above in eq. 2.2.6, we will work in a basis of the linear maps
C(x1, . . . , xn) : V ⊗n → V with components Cba1...an(x1, . . . , xn). Then for each tree T an iteration
of axiom 5 as described above will lead to the following factorization identity on the domain
D[T]:

Cba1...an(x1, . . . , xn) =
∑

aS :S∈T

 ∏
S: l(1),...,l(j)⊂TS

CaSal(1)...al(j)(xm1 , . . . , xmj )

 ,
�� ��2.3.11

where the sums are over all aS with S a subset in the tree excluding the root {1, . . . , n} and
the leaves 1, . . . , {n}. For the latter we set a{1} := a1, . . . , a{n} = an and a{1,...,n} := b. The
hierarchical order by which the nested infinite sums are carried out is determined by the tree,
with the sums corresponding to the nodes closest to the leaves coming first. Now, if we assume
T to be a binary tree, i.e. one with exactly two branches descending from every node, then
by the above formula we have expressed the n-point OPE coefficient C(x1, . . . , xn) in terms of
products of 2-point coefficients on the open domain D[T] ⊂Mn. Remembering that by definition
C(x1, . . . , xn) is an analytic function on the open, connected domain Mn and using the fact that
an analytic function on a connected domain is uniquely determined by its restriction to an open
set, we propose:
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Proposition 1

The n-point OPE coefficients C(x1, . . . , xn) are uniquely determined by the 2-point coeffi-
cients C(x1, x2). In particular, if two quantum field theories have equivalent 2-point OPE
coefficients (see definition 2.1), then they are equivalent.

Thus, our first task is achieved. However, the question of higher factorization conditions is
still not solved. It remains to show that the factorization condition 2.3.11 for binary trees does
not impose any further restrictions on C(x1, x2) apart from eq. 2.3.7. Therefore, let us study
the following expression

(fT)ba1...an(x1, . . . , xn) :=
∑

aS :S∈T

 ∏
S: l(1),l(2)⊂TS

CaSal(1)al(2)(xm1 , xm2)

 ,
�� ��2.3.12

on the domain D[T] for any binary tree T. In other words, fT(x1, . . . , xn) is just the expression
for C(x1, . . . , xn) in the factorization identity 2.3.11 for the binary tree T. So, as we have just
argued, fT can be analytically continued to an analytic function on Mn, which we will denote
by fT as well and which does not depend on the choice of binary tree T. As we want to analyze
the constraints imposed on the 2-point coefficients C(x1, x2) by the properties we just stated, we
now drop these assumptions and only assume that the sums in eq. 2.3.12 converge and define
an analytic function fT on D[T], which can be analytically continued to Mn for all n and all
binary trees T on n elements. For the sake of the argument, we in particular do not assume
the fT to coincide for different binary trees, except in the case n = 3, where the assumption
that the fT coincide for the three possible binary trees on the respective domains is equivalent
to the factorization condition for three points, eq. 2.3.7, plus the symmetry and normalization
conditions, eqs. 2.3.8 and 2.3.9. These three conditions will be assumed to hold.

Now we want to show that these assumptions suffice to deduce that all fT coincide for all
binary trees T, thus implying the absence of further consistency conditions on C(x1, x2) beyond
those for n = 3. We graphically present the corresponding proof, which is not very difficult
and quite similar to the proof of the analogous statement in our example of ordinary algebra.
We start with the case n = 3. Here, the assumption that all fT agree for the three trees is
graphically expressed by fig. 2.2.

2 3 1 1 2 3 3 1 2

Figure 2.2.: The associativity condition in graphical notation. Double arrows indicate that the
OPE’s represented by the respective trees coincide on the (non-empty) intersection
of the associated domains D[Ti]. Note that these arrows are not a transitive relation:
The domains associated with the left- and rightmost tree are disjoint.

Each tree in this graph symbolizes the corresponding expression fT and the arrows denote
the following relations: (i) the corresponding domains (see eq. 2.3.6) are not disjunct and (ii)
the expressions coincide on the intersection. Analyticity of the fT then implies that the fT’s
agree on the whole of Mn. Let us now move on to the n > 3 case and let T be an arbitrary tree
on n elements. The idea of the proof is the following: Find a sequence T0,T1, . . . ,Tr of trees
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such that T0 = T and Tr = S, where S is the reference tree

S :=
{
{n}, {n− 1, n}, {n− 2, n− 1, n}, . . . , {1, 2, . . . , n}

} �� ��2.3.13

as drawn in fig. 2.3.

1 2 n-2 n-1 n

Figure 2.3.: The reference tree S defined in eq.2.3.13

Furthermore, we want a relation as above, i.e. non-disjointness and equivalence on the inter-
section of the domains, to hold between elements Ti and Ti−1 in our sequence of trees. Making
use of the analyticity properties of the fT as in the n = 3 case, this would yield fT = fS on Mn,
and hence all fT would be equal.

The construction of the desired sequence of trees is presented in the following by inductive
methods. Our starting point is the binary tree T = T0 as depicted on the left of fig. 2.4, where
shaded regions represent subtrees whose particular form is irrelevant at this stage.

n n

Figure 2.4.: The first elementary manipulation of the tree T = T0 on the left into the tree T1

on the right. Shaded triangles represent subtrees whose specific form is irrelevant.

The next tree in the sequence, T1, is drawn on the right of fig. 2.4. As stated above, we now
need a relation between those trees. Simply using the definitions one easily finds D[T0]∩D[T1] 6=
∅, i.e. the corresponding domains have a non-empty intersection. Furthermore, these trees only
differ by an elementary manipulation of the kind already considered in fig. 2.2. Therefore we can
use the result from the three point consistency condition and conclude that the corresponding
expressions fT0 and fT1 coincide on the open domain D[T0] ∩ D[T1] and hence everywhere on
Mn because of analyticity. We repeat this procedure until we arrive at the tree Tr1 on the left
of fig. 2.5, which has the property that the n-th leaf is directly connected to the root.

The transformation of trees we used so far is no longer applicable on this tree, so we now
perform a manipulation as depicted in fig. 2.5. Again it is easy to convince oneself that the
desired relation holds between these trees. This process can be repeated until we reach the tree
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n-1 n n-1 n

Figure 2.5.: Another elementary manipulation.

Tr2 drawn in fig. 2.6. By now it is clear how to proceed the iteration until we reach the desired
tree S in fig. 2.3, thus finishing the proof.

n-1 n

Figure 2.6.: The tree Tr2

As a result, we obtain the following theorem:

Theorem 1 (Coherence Theorem)

Let fT be defined as in eq. 2.3.12 on the domain D[T] for any binary tree T as a convergent
power series expansion and assume that fT has an analytic extension to all of Mn. Further-
more, assume that the associativity condition 2.3.7 and the symmetry and normalization
conditions, eqs. 2.3.8 and 2.3.9, hold, i.e. suppose that all fT coincide for trees with three
leaves. Then fT = fS for any pair of binary trees T,S.

2.4 General theory of perturbations

The concept of perturbations of a quantum field theory is essential in the extraction of explicit
measurable predictions from the theory. Thus, we would like to implement this notion in our
framework as well. This section will be concerned with the description of perturbation theory
in the new framework. According to our definition, a perturbed quantum field theory should
correspond to a perturbation series in some parameter λ for the OPE coefficients. As these
coefficients are required to satisfy the constraints given in section 2.2, the perturbations of the
coefficients will also have to satisfy corresponding constraints. It will be shown in this section
that these constraints are of a cohomological nature.

We have seen in the previous section that, up to technicalities related to the convergence of
various series, the constraints on the OPE coefficients imposed by the factorization condition,
axiom 5, can be formulated as a single “associativity condition” on the 2-point coefficients only,
see eq.2.3.7. The perturbed 2-point OPE coefficients will have to satisfy a perturbed version of



2.4. GENERAL THEORY OF PERTURBATIONS 19

this constraint, which turns out to be essentially the only constraint. We now want to study
this perturbed version of the associativity condition.

The analogy between our framework (in particular the factorization condition) and ordinary
algebra has already been emphasized in the previous section. We now carry this analogy a bit
further, as the following discussion is closely analogous to the well-known characterization of
perturbations, or in this context deformations, of an ordinary finite dimensional algebra. Let us
therefore recall the basic theory of deformations of finite dimensional algebras (see [23, 26]). Let
A be a finite dimensional algebra over C, whose product is denoted as usual by A ⊗A → A,
A ⊗ B 7→ AB for all A,B ∈ A. Then a 1-parameter family of products A ⊗ B 7→ A •λ B,
where λ ∈ R is a smooth deformation parameter, is called a deformation. We define the product
A •0 B to be the original product AB, but for non-zero λ we obtain a new product on A, or
alternatively on the ring of formal power series C(λ)⊗A if we merely consider perturbations in
the sense of formal power series. As argued above, this new product has to satisfy the strong
constraints imposed by the associativity condition. Denoting the i-th order perturbation of the
product by

mi(A,B) =
1
i!

di

dλi
A •λ B

∣∣∣
λ=0

�� ��2.4.1

the associativity law yields to first order

m0(id⊗m1)−m0(m1 ⊗ id) +m1(id⊗m0)−m1(m0 ⊗ id) = 0
�� ��2.4.2

as a map A ⊗ A ⊗ A → A, in an obvious tensor product notation. Similarly, one obtains
conditions for higher derivatives mi of the new product, which for i ≥ 2 are of the form

m0(id⊗mi)−m0(mi⊗ id) +mi(id⊗m0)−mi(m0⊗ id) = −
i−1∑
j=1

mi−j(id⊗mj)−mi−j(mj⊗ id) .�� ��2.4.3
In this discussion we want to exclude the trivial case, i.e. a simple λ dependent redefinition of
the generators of A. Such a redefinition may be expressed in terms of a 1-parameter family of
invertible maps αλ : A → A, such that the corresponding trivially deformed product can be
written as

A •λ B = α−1
λ [αλ(A)αλ(B)] .

�� ��2.4.4

So αλ can be viewed as an isomorphism between (A, •0) and (A, •λ), which suggests that the
latter should not be regarded as a new algebra. To first order, the trivially deformed product is
given by

m1 = m0(id⊗ α1)−m0(α1 ⊗ id)− α1m0

�� ��2.4.5

where αi = 1
i!

di

dλi
αλ

∣∣∣
λ=0

. Similar formulas hold for higher orders.
We now want to give a more elegant formulation and interpretation of our conditions for the

i-th order deformations of the associative product, eq. 2.4.3, using the language of cohomology
theory [26]. For this purpose, we introduce the linear space Ωn(A) of all linear maps ψn :
A⊗ . . .⊗A→ A and the linear operator d : Ωn → Ωn+1 defined by

(dψn)(A1, . . . , An+1) =A1ψn(A2, . . . , An+1)− (−1)nψn(A1, . . . , An)An+1

+
n∑
j=1

(−1)jψn(A1, . . . , AjAj+1, . . . , An+1) .

�� ��2.4.6
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Using this definition and the associativity law for the original product on the algebra A one
can show that d2 = 0, i.e. d is a differential with a corresponding cohomology complex, the so
called Hochschild complex (see e.g. [27]). More precisely, let Zn(A) be the space of all closed
maps ψn, i.e. those satisfying dψn = 0, and Bn(A) the space of all exact ψn, that means
those for which ψn = dψn−1 for some ψn−1. Then the n-th Hochschild cohomology HHn(A) is
defined to be the quotient Zn(A)/Bn(A). In this language, we may now identify the first order
associativity condition, eq. 2.4.2, with the statement dm1 = 0, or equivalently m1 ∈ Z2(A). In
addition, if the new product arises from just a trivial redefinition, as in eq. 2.4.4, then it follows
that m1 = dα1, which means m1 ∈ B2(A). So indeed one finds that the non-trivial first order
perturbations m1 of the algebra product correspond to the non-trivial classes [m1] ∈ HH2(A).
Hence, HH2(A) 6= 0 is necessary for the existence of non-trivial deformations. We now want
to continue our analysis at higher orders. For this purpose, let us assume a non-trivial first
order deformation to exist and let us study the second order deformations. Thus, we consider
eq.2.4.3 for i = 2 and start with the right side of this equation, which can be viewed as a map
ω2 ∈ Ω3(A). Computation shows that dω2 = 0, so ω2 ∈ Z3(A). The left side of equation 2.4.3
for i = 2 turns out to be just dm2 ∈ B3(A). Thus, if the second order associativity condition
is to hold, we must have ω2 = dm2 ∈ B3(A), or in other words, the class [ω2] ∈ HH3(A) must
vanish. It follows that there is an obstruction to lift the perturbation to second order in the case
of non-trivial deformations, i.e. for HH3(A) 6= 0. We can analogously continue to third order,
obtaining the corresponding potential obstruction that [ω3] ∈ HH3(A) vanishes, and so on. In
summary, the space of non-trivial perturbations corresponds to elements of HH2(A), while the
obstructions lie in HH3(A).

Let us now conclude this example and try to carry over the concepts we just used to the case
of perturbations of a quantum field theory in our framework. A short reminder: A quantum
field theory as defined in section 2.2 is given by the pair (V, C) of a vector space V , as defined
in eq. 2.2.1, and a hierarchy of OPE coefficients C with certain properties. In section 2.3 we
argued that all higher n-point coefficients are uniquely determined by the 2-point coefficients
C(x1, x2). Furthermore, we were able to show that, up to technical assumptions concerning the
convergence of the series in eq. 2.3.12, the key constraints on the n-point OPE coefficients are
encoded in the associativity condition, eq. 2.3.7 for the 2-point coefficient, which we repeat for
convenience:

C(x2, x3)
(
C(x1, x2)⊗ id

)
− C(x1, x3)

(
id⊗ C(x2, x3)

)
= 0 for r12 < r23 < r13

�� ��2.4.7

We want to study the following problem: When is it possible to find a 1-parameter deformation
C(x1, x2;λ) of the OPE coefficients which again satisfies the associativity condition, at least in
the sense of formal power series in the deformation parameter λ? In fact, the symmetry condition
2.3.8, the normalization condition 2.3.9 and the axioms from section 2.2, except for axiom 5,
should hold for the perturbation as well. However, as these conditions are linear in C(x1, x2),
they are much more trivial in nature than eq. 2.4.7. Therefore, for the rest of this section, we
will not include these conditions in our discussion, but instead continue with the main point,
i.e. the implications of the associativity condition 2.4.7 for the perturbed OPE coefficients.

In analogy to the example from ordinary algebra, we will again find a characterization of
perturbations in a cohomological framework. We now want to define a linear operator b, which
defines the cohomology in question and therefore plays the role of the d in our example. However,
because the definition of this operator will involve infinite sums (just as eq.2.4.7) and as such
sums are typically only convergent on certain domains, we have to specify a set of domains that
will be stable under the action of b and is suitable for our application. The choice of a set of
this kind is by far not unique, and different choices will yield different rings. For simplicity and
definiteness, we chose the non-empty, open domains of (RD)n defined by
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F = {(x1, . . . , xn) ∈Mn; r1 (i−1) < r(i−1) i < r(i−2) i < . . . < r1 i, 1 < i ≤ n} ⊂Mn .
�� ��2.4.8

It is possible to express these domains in terms of the D[T] defined in eq. 2.3.10, but this
will not be necessary. Note also that the associativity condition 2.4.7 holds on the domain
F3{r12 < r23 < r13}.

We also need some objects for b to act upon. Therefore we define Ωn(V ) to be the set of all
holomorphic functions fn on the domain Fn that are valued in the linear maps

fn(x1, . . . , xn) : V ⊗ · · · ⊗ V → V, (x1, . . . , xn) ∈ Fn .
�� ��2.4.9

Now we are ready to introduce the boundary operator b : Ωn(V )→ Ωn+1(V ) by the formula

(bfn)(x1, . . . , xn+1) := C(x1, xn+1)(id⊗ fn(x2, . . . , xn+1))

+
n∑
i=1

(−1)ifn(x1, . . . , x̂i, . . . , xn+1)(idi−1 ⊗ C(xi, xi+1)⊗ idn−i)

+ (−1)n+1C(xn, xn+1)(fn(x1, . . . , xn)⊗ id) ,

�� ��2.4.10

where C(x1, x2) is the undeformed OPE coefficient and a hat ̂ means omission. Note that this
definition involves a composition of C with fn, which, when expressed in a basis of V , implicitly
involves an infinite summation over these basis elements. It is therefore necessary to assume
here (and also in the following for similar formulas) that these sums converge on the set of points
(x1, . . . , xn+1) ∈ Fn+1. Thus, whenever we write bfn, it is understood that fn ∈ Ωn(V ) is in the
domain of b. We now need the following lemma:

Lemma 1

The map b is a differential, i.e. b2fn = 0 for fn in the domain of b, such that bfn is also in
the domain of b.

The corresponding proof is essentially straightforward computation and was given in [9], so
it will not be repeated here. With the help of this lemma, we can define a cohomology ring
associated to the differential b as

Hn(V ; C) :=
Zn(V ; C)
Bn(V ; C)

=
{ker b : Ωn(V )→ Ωn+1(V )}
{ran b : Ωn−1(V )→ Ωn(V )}

.
�� ��2.4.11

Now that we have introduced the necessary concepts from cohomology theory into our frame-
work, we will, as in the case of our example from ordinary algebra, be able to find an elegant and
compact formulation of the problem to find a 1-parameter family of perturbations C(x1, x2;λ)
such that our associativity condition, eq. 2.4.7, continues to hold to all orders in λ. Introducing
the grading of the 2-point OPE coefficients with respect to the perturbation order by

Ci(x1, x2) =
1
i!

di

dλi
C(x1, x2;λ)

∣∣∣
λ=0

,
�� ��2.4.12

we note that the first order associativity condition

C0(x2, x3)
(
C1(x1, x2)⊗ id

)
− C0(x1, x3)

(
id⊗ C1(x2, x3)

)
+ C1(x2, x3)

(
C0(x1, x2)⊗ id

)
− C1(x1, x3)

(
id⊗ C0(x2, x3)

)
= 0 ,

�� ��2.4.13

which is valid for (x1, x2, x3) ∈ F3, can equivalently be stated as
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b C1 = 0 .
�� ��2.4.14

Here and in the following b is defined in terms of the unperturbed OPE coefficient C0. We
conclude that C1 has to be an element of Z2(V ; C0). Let us consider coefficients C(x1, x2) and
C(x1, x2;λ) connected by a λ-dependent field redefinition z(λ) : V → V in the sense of defn.2.1.
To first order, this implies

C1(x1, x2) = −z1C0(x1, x2) + C0(x1, x2)(z1 ⊗ id+ id⊗ z1) ,
�� ��2.4.15

which is equivalent to bz1 = C1, where again zi = 1
i!

di

dλi
z(λ)|λ=0. Thus, again in analogy to our

example from the beginning of this section, the first order deformations of C0 modulo the trivial
ones are given by the classes in H2(V ; C0). In order to generalize this result to arbitrary order
in λ, we assume all perturbations up to order i− 1 to exist and state the associativity condition
for the i-th order perturbation as the following condition for (x1, x2, x3) ∈ F3:

C0(x2, x3)
(
Ci(x1, x2)⊗ id

)
− C0(x1, x3)

(
id⊗ Ci(x2, x3)

)
+ Ci(x2, x3)

(
C0(x1, x2)⊗ id

)
− Ci(x1, x3)

(
id⊗ C0(x2, x3)

)
= ωi(x1, x2, x3) ,

�� ��2.4.16

where ωi ∈ Ω3(V ) is defined by

ωi(x1, x2, x3) := −
i−1∑
j=1

Ci−j(x1, x3)
(
id⊗ Cj(x2, x3)

)
− Ci−j(x2, x3)

(
Cj(x1, x2)⊗ id

)
.

�� ��2.4.17

At this stage we again encounter infinite sums when a basis of V is introduced into the above
equation. We assume these sums to converge on F3 as well. Then eq. 2.4.16 can also be put
into the elegant form

bCi = ωi .
�� ��2.4.18

A solution to this equation defines the i-th order perturbation. It is obvious that a necessary
condition on such a solution is bωi = 0, or in other words ω ∈ Z3(V ; C0). In [9] it has been
shown by the following lemma that this is indeed the case.
Lemma 2

If ωi is in the domain of b, and if bCj = ωj for all j < i, then bωi = 0.

Again, we do not repeat the proof of this lemma here, but refer the reader to [9]. Now if a
solution to eq. 2.4.18 exists, i.e. if ωi ∈ B3(V ; C0), then any other solution will differ from
this one by a solution to the corresponding homogeneous equation. A trivial solution to the
homogeneous equation of the form bzi again corresponds to an i-th order field redefinition and
is not counted as a genuine perturbation.

We conclude with a summary of our findings in this section: We have found that the pertur-
bation series can be continued at i-th order, if [ωi] is the trivial class in H3(V ; C0), which is a
potential obstruction. In the case where this imposes no obstruction, the space of non-trivial
i-th order perturbations is given by H2(V ; C0). In particular, if we knew H2(V ; C0) 6= 0 and
H3(V ; C0) = 0, then perturbations could be defined to arbitrary order in λ.

2.5 The fundamental left representation

In the previous sections we have often used examples from ordinary algebra in order to motivate
concepts in our framework. In the following we will introduce another such parallel, namely a
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construction in our framework which has some features in common with a representation of an
algebra.

In order to motivate certain aspects of our approach, we sometimes wrote formal relations like

”φa(x1)φb(x2) = Ccab(x1, x2)φc(x2)” ,
�� ��2.5.1

where summation over repeated indices is understood. It is, however, important to note that
these relations were only heuristic in the sense that none of our required properties of the OPE
coefficients relied on the existence or properties of the hypothetical operators φa, which merely
served as ”dummy variables”. Our viewpoint here is again similar to the standard viewpoint
taken in algebra, where an abstract algebra A is entirely defined in terms of its product, i.e. a
linear map m : A⊗A→ A. But, as in our case, the algebra elements need not be represented a
priori by linear operators on a vector space. Instead one is free to chose any representation, i.e.
a linear map π : A→ End(H), which preserves the product structure, π[m(A,B)] = π(A)π(B)
for all A,B ∈ A. By this line of thought it seems natural to look for a construction similar to a
representation in our context. As we will argue in the following, it is indeed possible to find a
”canonical” construction of this kind, which will be called the fundamental left representation.
This leads us to the following definition:

Definition 2.2 (The fundamental left representation)

We define “vertex operators” Y(|v〉, x) : V → V , also referred to as “left representatives” in
subsequent chapters, by the formula

Y(|v〉, x)|w〉 = C(x, 0)
(
|v〉 ⊗ |w〉

)
.

�� ��2.5.2

for any two vectors |v〉, |w〉 ∈ V and x 6= 0. Choosing a basis {|va〉} of our vector space V ,
the matrix components of this map are then given by

[Y(|va〉, x)]cb := 〈vc|Y(|va〉, x)|vb〉 = Ccab(x, 0) .
�� ��2.5.3

This notion will be referred to as fundamental left (or vertex algebra) representation.

Note that axiom 8 on the OPE coefficients implies

Y(|∂µv〉, x) = ∂µY(|v〉, x) ,
�� ��2.5.4

where on the right side ∂µ = ∂xµ denotes the usual partial derivative with respect to xµ. Further,
by the associativity condition on the OPE coefficients, eq. 2.4.7, one can deduce

Y(|va〉, x)Y(|vb〉, y) =
∑
c

Ccab(x, y)Y(|vc〉, y) , for 0 < |x− y| < |y| < |x| ,
�� ��2.5.5

which implies that the linear operators Y(|va〉, x) satisfy the operator product expansion. Thus,
we may formally view them as forming a ”representation” of the heuristic field operators, i.e.
formally ”π[φa(x)] = Y(|va〉, x)” is a ”representation” of the algebra defined by the OPE coeffi-
cients. Note also that eq. 2.5.5 may equivalently be written as

Y(|va〉, x)Y(|vb〉, y) = Y(Y(|va〉, x− y) |vb〉, y)
�� ��2.5.6

on the same domain as above. This is a standard identity in the theory of vertex operator
algebras [2, 3, 28, 29]. The relation between the approach to quantum field theory as outlined
in this chapter and the mathematical theory of vertex operator algebras will be pursued further
in [12].





3
The model

Whereas chapter 2 was concerned with the definition and general features of our new approach,
we will in this chapter give an explicit construction of a model theory within this framework.
Our model is a massless, scalar Lagrangian theory on 3-dimensional Euclidean space and the
construction will be up to low orders in perturbation theory.

We will proceed as follows: Our starting point will be the construction of a scalar, massless,
non-interacting quantum field theory in arbitrary dimension D ≥ 3, which is presented in section
3.1. In this context, we will make use of the fundamental left representation (see section 2.5)
in order to introduce a formulation of the theory in terms of the familiar concept of creation
and annihilation operators on a Fock space. This convenient formulation was developed in
joint work by Hollands and Olbermann [9]. Then, in section 3.2, an algorithm for the iterative
construction of perturbations of an interacting Lagrangian quantum field theory is developed
(also first presented in [9]). Following this scheme, low order calculations for a specific 3-
dimensional toy model theory are carried out in section 3.4. Finally, in section 3.5 we give some
results on OPE coefficients at arbitrary perturbation order, which follow from patterns emerging
in the mentioned iterative scheme. These last two sections constitiute the main results of this
thesis.

3.1 The free massless field

The aim of this section is to construct a quantum field theory in the sense outlined in chapter
2 for the “simplest possible example”, namely for a free, massless scalar field on D-dimensional
Euclidean space, which is classically described by a Lagrangian

Lfree(ϕ, ∂µϕ) = − 1
σD

∫
dDy ∂µϕ(y)∂µϕ(y) ,

�� ��3.1.1

which leads to the field equation

− 1
σD

�ϕ = �̃ϕ = 0 ,
�� ��3.1.2

with � = δµν∂µ∂ν and where σD = 2πD/2

Γ(D/2) is the surface area of the D-dimensional unit sphere.
Here the prefactor − 1

σD
is chosen for later convenience, since it leads to the particularly simple

form
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GF (x) = r2−D
�� ��3.1.3

for the Green’s function of the operator �̃, where r = |x|. In our framework, construction of
a corresponding quantum field theory means that we are to find the OPE coefficients C(x1, x2)
satisfying the axioms of section 2.2 for this model. Additionally, also according to section 2.2,
we need to define a vector space V as characterized in that section. We chose this vector space,
assuming D ≥ 3 for convenience, according to the following definition:

Definition 3.1 (Vector space V )

Let V be the unital, commutative C-module generated as a module (i.e. under addition,
multiplication and scalar multiplication) by formal expressions of the form ∂{µ1

. . . ∂µN}ϕ
and unit 1, where µi ∈ {1, . . . , D} and curly brackets denote the totally symmetric, trace-
free part, i.e. by definition

δµiµj∂{µ1
. . . ∂µN}ϕ = 0 .

�� ��3.1.4

The trace free condition has been imposed because any trace would give rise to an expression
containing �ϕ, which should vanish in order to satisfy the field equation on the level of V . The
next step is to find a basis of V which is most convenient for our purpose. As an intermediate
step, let us first consider a basis of RD in terms of totally symmetric, trace free, rank-l tensors.
For given l ≥ 0, the dimension of this space is N(l,D), where

N(l,D) =

{
1 for l = 0
(2l+D−2)(l+D−3)!

(D−2)!l! for l > 0
,

�� ��3.1.5

so for example N(l, 3) = 2l+1 and N(l, 4) = (l+1)2. We denote the corresponding basis elements
by (tlm)µ1...µl , m ∈ {1, . . . , N(l,D)}, and for convenience require these to be orthonormal with
respect to the natural hermitian inner product on (RD)⊗l induced by the Euclidean metric on
RD. Let us first define

ϕlm = F (l) tlm ∂lϕ := F (l)(tlm)µ1...µl∂µ1 . . . ∂µlϕ ,
�� ��3.1.6

where summation over repeated spacetime indices µi is understood and where

F (l) :=

√
Γ(D/2− 1)

2ll!Γ(l +D/2− 1)
,

�� ��3.1.7

is a normalization coefficient chosen in a way to later obtain a simple form for the OPE coeffi-
cients. Then a basis of V as a C-vector space is given by 1, together with the elements

|va〉 :=
∏
l,m

1
(alm!)1/2

(ϕlm)alm ,
�� ��3.1.8

where a = {alm| l ≥ 0 ; 0 < m ≤ N(l,D)} is a multi-index of non-negative integers alm, only
finitely many of which are non-zero. The canonical dimension of such an element shall be defined
as

|a| :=
∑
l,m

alm

(
D − 2

2
+ l

)
.

�� ��3.1.9

One may formally view V as a “Fock-space“, where alm is the ”occupation number“ of the
”mode“ labeled by the quantum numbers l,m. That means, we may decompose V into subspaces
of different ”particle number” (sum of all ”occupation numbers“) , i.e.
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V =
∞⊕
n=0

Vn =
∞⊕
n=0

⊗nV1

�� ��3.1.10

where Vn = ⊗nV1 is the ”n-particle” subspace. As usual, it is also possible to define creation
and annihilation operators, b†lm and blm, on the Fock-space, as linear maps b†lm : Vn → Vn+1

and blm : Vn → Vn−1, whose action on the basis elements in our case is given by

b†lm|va〉 := (alm + 1)1/2 |va+elm〉
�� ��3.1.11

blm|va〉 := (alm)1/2 |va−elm〉 ,
�� ��3.1.12

where elm is the multi-index with unit entry at position l,m and zeros elsewhere. Thus, Vn is
generated from the unit element 1, i.e. the “vacuum”, by span(bl1m1 . . .blnmn). These operators
satisfy canonical commutation relations

[
blm,b

†
l′m′

]
= δll′δmm′ id

�� ��3.1.13[
blm,bl′m′

]
= 0 =

[
b†lm,b

†
l′m′

] �� ��3.1.14

where id is the identity operator on V .
We now want to present the explicit form of the OPE coefficients of the model in terms of the

above operators. In order to further simplify the form of the coefficients, we introduce spherical
harmonics in D-dimensions (see [30] and appendix D) and establish an isomorphism between
the totally symmetric, trace-free tensors tlm and the mentioned spherical harmonics Ylm by

(tlm)µ1...µl = cl

∫
SD−1

dΩ x{µ1 · · ·xµl}Ylm(x) ,
�� ��3.1.15

where we integrate over the D − 1-dimensional unit sphere SD−1. The constant cl can be
determined by our requirement of orthonormality of the tensors tlm, with the result (see eq.
D.1.15).

cl =
(

2l Γ(l +D/2)
l! Γ(D/2)σD

)1/2

.
�� ��3.1.16

With this notation in place, we want to proceed to the actual construction of the OPE coefficients
C(x1, x2). For this purpose, it is sufficient to consider the left-representatives Y(|va〉, x) : V →
V for all |va〉 ∈ V , since the matrix elements [Y(|va〉, x)]cb = Ccab(x, 0) are exactly the OPE
coefficients, see section 2.5. We will start our investigation with the simplest non-trivial left-
representative, Y(ϕ, x), corresponding to the basic field, which is defined as

Y(ϕ, x) =
√
σD r−(D−2)/2

∞∑
l=0

N(l,D)∑
m=1

(
D − 2

2l +D − 2

)1/2

×[
rl+(D−2)/2 Y lm(x̂) b†lm + r−l−(D−2)/2 Ylm(x̂) blm

]
,

�� ��3.1.17

where r = |x|, x̂ = x/|r| and Y lm(x̂) = Ylm(x̂). Notice that this equation has the familiar
form of a free field operator with an ”emissive“ and an ”absorptive“ part. However, this is
less surprising if one remembers that Y(ϕ, x) is in a sense the ”representative“ of the (formal)
field operator ϕ(x) on V . We will now ”derive“ eq. 3.1.17 from the standard quantum field
theory formalism, i.e. the vectors |va〉 ∈ V are now really viewed as quantum fields in the usual
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sense. In order to determine Y(ϕ, x) let us consider the product of ϕ with an arbitrary element
|va〉 ∈ V . Using Wick’s theorem, this can be written as:

ϕ(x) |va(0)〉 =ϕ(x)

∏
l,m

1
(alm!)1/2

(ϕlm)alm(0)


=
∏
l,m

1
(alm!)1/2

(
: ϕ(x)(ϕlm)alm(0) : + all possible contractions

)
=
∏
l,m

1
(alm!)1/2

: ϕ(x)(ϕlm)alm(0) :

+
∑
l′,m′

al′m′F (l′) tl′m′ (−1)l
′
∂l
′
r2−D(ϕl′m′)al′m′−1(0)

∏
l,m

(l,m)6=(l′,m′)

1
(alm!)1/2

(ϕlm)alm(0)

�� ��3.1.18

Here we have simply inserted the explicit form of |va〉 as defined in eq. 3.1.8, applied Wick’s
theorem and in the last step used the fact that the propagator in our theory is just GF (x) = r2−D

as stated in eq. 3.1.3. Double dots : · : here denote the normal ordered product of the standard
free quantum field theory formalism. Due to the analyticity properties of this normal ordered
product, we can perform a Taylor expansion of the corresponding term in eq. 3.1.18 in x around
0, which yields

ϕ(x) |va(0)〉 =
∏
l,m

1
(alm!)1/2

[∑
l′

1
l′!
xµ1 · · ·xµl′ (∂µ1 · · · ∂µl′ϕ)(0)

]
(ϕlm)alm(0)

+
∑
l′,m′

al′m′F (l′) tl′m′ (−1)l
′
∂l
′
r2−D(ϕl′m′)al′m′−1(0)

∏
l,m

(l,m)6=(l′,m′)

1
(alm!)1/2

(ϕlm)alm(0)

�� ��3.1.19

This rather lengthy expression can be simplified by the observation that the term xµ1 · · ·xµl′ =
x⊗l may be replaced by its trace-free, anti-symmetric part x{µ1 · · ·xµl′} due to the field equation
3.1.2. We may thus use the identity

x{µ1 · · ·xµl} = c−1
l (tlm)µ1...µl rlY lm(x̂) ,

�� ��3.1.20

which holds as a result of eq. 3.1.15. Furthermore, we will need the relation

(−1)l∂lr2−D = c−1
l 2l

Γ(l + (D − 2)/2)
Γ(D − 2)/2

· tlm Ylm(x̂)r2−D−l ,
�� ��3.1.21

with tlm = tlm, which is derived in appendix D. By substitution of eqs. 3.1.20 and 3.1.21 into
eq. 3.1.19 we obtain

ϕ(x) |va(0)〉 =
∏
l,m

1
(alm!)1/2

[∑
l′

1
l′!
c−1
l′ r

l′Y l′m′(x̂)tl′m′ ∂l
′
ϕ(0)

]
(ϕlm)alm(0)

+
∑
l′,m′

al′m′F (l′)tl′m′
[
c−1
l′ 2l

′ Γ(l′ + (D − 2)/2)
Γ(D − 2)/2

tl
′m′Yl′m′(x̂)r2−D−l′

]
(ϕl′m′)al′m′−1(0)

×
∏
l,m

(l,m)6=(l′,m′)

1
(alm!)1/2

(ϕlm)alm(0)

�� ��3.1.22

A closer inspection of this equation yields the following simplifications: Remembering the defi-
nition of ϕlm(x) in eq. 3.1.6, we can use
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tl′m′ ∂
l′ϕ(0) = F (l′)−1ϕl′m′(0)

�� ��3.1.23

in the first line of equation 3.1.22. Secondly, we can just drop the contraction over the tensors
tl′m′ in the second line, because in our above construction we chose these tensors to be orthonor-
mal. Finally, if we insert the explicit form of the constants cl and F (l) into the equation and
perform simple algebraic manipulations, we obtain the convenient expression

ϕ(x) |va(0)〉 =
√
σDr

−(D−2)/2
∑
lm

(
D − 2

2l +D − 2

)1/2

×
[
(alm + 1)1/2rl+(D−2)/2Y lm(x̂)|va+elm〉+ (alm)1/2r−l−(D−2)/2Ylm(x̂)|va−elm〉

]
.�� ��3.1.24

From the above equation we can simply read off the desired OPE coefficients.

Cbϕa(x, 0) =
√
σDr

−(D−2)/2
∑
lm

(
D − 2

2l +D − 2

)1/2

×
[
(alm + 1)1/2rl+(D−2)/2Y lm(x̂)δa+elm,b + (alm)1/2r−l−(D−2)/2Ylm(x̂)δa−elm,b

]
�� ��3.1.25

Now, by definition 2.2 we have [Y(ϕ, x)]ba = Cbϕa(x, 0), so using the ladder operators introduced
above we finally obtain

Y(ϕ, x) =
√
σD r−(D−2)/2

∞∑
l=0

N(l,D)∑
m=1

(
D − 2

2l +D − 2

)1/2

×[
rl+(D−2)/2 Y lm(x̂) b†lm + r−l−(D−2)/2 Ylm(x̂) blm

]
,

�� ��3.1.26

which is just eq. 3.1.17. As stated above, this is only the simplest non-trivial left-representative.
The corresponding formula for a general |va〉 ∈ V , as defined in eq. 3.1.8, is

Y(|va〉, x) = :
∏
l,m

1
(alm!)1/2

[F (l)tlm ∂lY(ϕ, x)]alm :
�� ��3.1.27

Again double dots denote normal ordering, which in our Fock space formulation simply means
that all creation operators are to the left of the annihilation operators. This formula can be
derived in two ways: One can either proceed in analogy to the simple Y(ϕ, x) case presented
above, or use the factorization condition, axiom 5, in order to iteratively construct Y(|va〉, x)
out of Y(ϕ, x). If we use the former approach, we again import information from the standard
formulation of quantum field theory. We thus have to check whether the OPE coefficients found
this way are compatible with our framework, i.e. we have to check whether the axioms of section
2.2 hold. This can indeed be done, where most effort again goes into the proof of the consistency
condition, eq. 2.4.7. Here we will neither give this proof, nor the derivation of eq. 3.1.27 by
this method. Instead we take the above mentioned alternative road to this equation. In this
derivation we use the form of Y(ϕ, x) in eq. 3.1.26, and proceed in our framework, as defined
in chapter 2. So at this stage we impose all our axioms, in particular the factorization axiom
and therefore also the associativity condition 2.4.7, on the further OPE coefficients. In other
words, our axioms will not have to be checked afterwards, but are required to hold initially. This
iterative construction of Y(|va〉, x) out of Y(ϕ, x) will be described in the next section, where it
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will serve as an instructive example of the procedure presented there. One should mention here
that both approaches to the derivation of eq. 3.1.27 work equally well and give the same results.

Let us conclude this section with a brief summary of our results. We have constructed the
full quantum field theory, i.e. is the pair (V, C), for the non-interacting model described by the
field equation 3.1.2 in D-dimensions (D > 2). The corresponding vector space V is defined
in eq. 3.1.8 and the OPE coefficients C(x1, x2) can be obtained from the fundamental left
representation, given in eqs. 3.1.26 and 3.1.27, as described in definition 2.2. Furthermore,
by the coherence theorem, or more specifically by proposition 1, the n-point OPE coefficients
C(x1, . . . , xn) are uniquely determined by the 2-point coefficients C(x1, x2).

3.2 Perturbations via non-linear field equations

Having constructed free quantum field theory (for a massless scalar field), we now want to focus
on the more interesting case of a theory with interaction. In section 2.4 we have discussed
perturbations in our framework as an analog of deformations of an algebra. This setting was
very general, in the sense that it also holds for non-Lagrangian models. In the following, we
are going to deal with the special case of theories which have a classical counterpart with a
Lagrangian

L = Lfree + Lint
�� ��3.2.1

where Lfree is given by eq. 3.1.1 and with the interaction part

Lint =
−λ

(k + 1)σD

∫
dDy ϕk+1(y)

�� ��3.2.2

with1 2 ≤ k ∈ N and λ ∈ C. This choice leads to an equation of motion of the form

�̃ϕ = − λ

σD
ϕk ⇒ �ϕ = λϕk .

�� ��3.2.3

In other words, we consider massless, scalar ϕk+1-theory with interaction parameter λ on D-
dimensional Euclidean space. In this setting, the following theorem holds:

Theorem 2 (Perturbations via field equations)

An interacting quantum field theory (C, V ) obeying the field equation 3.2.3 can be con-
structed perturbatively up to arbitrary orders in the coupling constant λ from the underlying
free theory by an algorithm which relies on the successive application of the associativity
condition 2.4.7 and the differential equation 3.2.3.

This algorithm will be outlined in the following.
Recall from the previous section that we defined the vector space V to be spanned by trace-

free expressions of the form ∂{µ1
. . . ∂µN}ϕ. This was motivated by the fact that all expressions

containing a trace would vanish in the free theory due to the field equation 3.1.2. In the present
context, i.e. with a non-linear field equation of the form given above, this argument clearly does
not hold anymore. Therefore we consider from now on the vector space V̂ which is spanned by
the unit element and all expressions of the form ∂µ1 . . . ∂µNϕ. Then the vertex operators of the
interacting theory are maps from V̂ to End(V̂ ). In the remainder of this thesis we will drop the
caret over V̂ again to lighten the notation, but it is always understood that from now on also
expressions containing traces are allowed.

1In fact, we only want to consider renormalizable theories, so k should be chosen appropriately, see also section
3.2.1
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Let us chose a basis of the vector space V with elements |va〉 as in the previous section, see
3.1.8. Then we may transfer the field equation to the level of vertex operators by the identity
2.5.4, which yields

�Y(ϕ, x) = λY(ϕk, x) .
�� ��3.2.4

On the level of OPE coefficients2, this implies

�Cbϕa(x) = �〈vb|Y(ϕ, x)|va〉 = λ 〈vb|Y(ϕk, x) |va〉 = λCbϕka(x)
�� ��3.2.5

As described in section 2.4, perturbations in our framework imply a grading of the OPE coef-
ficients C as in eq. 2.4.12. In terms of the basis elements of the OPE coefficients, this grading
takes the form

(Ci)cab(x) :=
1
i!

di

dλi
Ccab(x)

∣∣∣
λ=0

,
�� ��3.2.6

or equivalently for the left representatives

Yi(|va〉, x) :=
1
i!

di

dλi
Y(|va〉, x)

∣∣∣
λ=0

.
�� ��3.2.7

Substitution of this grading into eq. 3.2.5 and comparison of the outermost left and right
expressions in this equation yields an infinite number of relations

�(Ci)bϕa(x) = (Ci−1)bϕka(x) ,
�� ��3.2.8

at any order i > 0 in λ. The perturbation orders of the coefficients in this equation differ by
one, as a result of the appearance of the parameter λ on the right of eq. 3.2.5. It is this fact,
which makes eq. 3.2.8 so powerful. At a first glance, it almost seems as if these relations were
already enough in order to establish an iterative pattern, which allows for the construction of
the perturbed OPE coefficients up to arbitrary order, starting from the free theory. However, it
is easy to see that we quickly run into problems. Let us briefly go through the procedure until
these obstacles appear: The zeroth-order coefficients are known from section 3.1. Then we solve
the differential equation 3.2.8 obtaining the coefficients (C1)bϕa. Obviously, we would now like
to apply this equation again and proceed to second order. For this purpose, however, we would
need the coefficients (C1)b

ϕka
, which a priori we know nothing about. So already at first order

our iteration seems to break down. At this stage we introduce the second ingredient into the
construction, namely we assume that the associativity condition, eq. 2.4.7, holds. Suppose for
the moment that all perturbations are known to order i− 1. Then, according to eq. 2.4.16, the
associativity condition on the i-th order perturbation can be written as (see also eq. 2.1.7)

i∑
j=0

∑
e

(Cj)eab(x1, x2)(Ci−j)dec(x2, x3) =
i∑

j=0

∑
e

(Cj)ebc(x2, x3)(Ci−j)dae(x1, x3) ,
�� ��3.2.9

on the domain F3 = {r12 < r23 < r13}, see eq. 2.4.8. Let us consider the special case |va〉 =
ϕ = |vb〉.

i∑
j=0

∑
e

(Cj)eϕϕ(x1, x2)(Ci−j)dec(x2, x3) =
i∑

j=0

∑
e

(Cj)eϕc(x2, x3)(Ci−j)dϕe(x1, x3) .
�� ��3.2.10

2It follows from the Euclidean invariance axiom that Cc
ab(x, y) = Cc

ab(x− y), so Cc
ab(x, 0) = Cc

ab(x)
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Next, we are interested in the limit x1 → x2. Clearly, the coefficient (Cj)eϕϕ(x1, x2) on the left
side of the above equation will be most dramatically affected by this procedure. By the scaling
dimension condition, axiom 6, we have for this coefficient

sd (Cj)eϕϕ ≤ D − 2− |e| ,
�� ��3.2.11

where we also used the fact that |ϕ| = (D−2)/2 from eq. 3.1.9. As all coefficients (Cj)eϕϕ(x1, x2)
with negative scaling degree will vanish in the limit, only few terms, namely those with |e| ≤ |ϕ2|,
will contribute to the sum on the left side of eq. 3.2.10.

Let us consider the case j = 0 in the sum on the left side of eq. 3.2.10. With the results
of the previous section it can easily be derived that only one term in the sum over e will give
a contribution in this case. This can be seen as follows: The condition |e| ≤ |ϕ2| restricts e
to be either 1, ϕlm with l ≤ (D − 2)/2 or ϕ2. However, orthonormality of our basis and the
form of the free theory left representative Y0(ϕ, x) imply that the OPE coefficients (C0)ϕlmϕϕ =
〈ϕlm|Y0(ϕ, x)|ϕ〉 vanish for any value of l, since a single ladder operator does not suffice to
transform the vector |ϕ〉 into |ϕlm〉. Now let us discuss the choice e = 1, i.e. we consider the
product (C0)1ϕϕ(x1, x2)(Ci)d1c(x2, x3). Here the second coefficient vanishes for i 6= 0, because the
requirement for an identity element, axiom 4, necessarily requires

Cb1a(x1, x2;λ) = δba
�� ��3.2.12

which obviously implies (Ci)b1a(x1, x2) = 0 for i 6= 0. Thus, for j = 0 and i > 0 the only contribu-
tion to the sum over e on the left side of eq. 3.2.10 is the product (Ci)dϕ2c(x2, x3)(C0)ϕ

2

ϕϕ(x1, x2).

Applying the results of the previous section one finds (C0)ϕ
2

ϕϕ(x1, x2) = 1. Thus, if we shovel
all terms except (Ci)dϕ2c(x2, x3) to the right side of the equality sign in eq. 3.2.10, we have the
equation3 (for i > 0)

(Ci)dϕ2c(x2, x3) = lim
x1→x2

(∑
e

i∑
j=0

(Cj)eϕc(x2, x3)(Ci−j)dϕe(x1, x3)

−
|e|≤|ϕ2|∑

e

i∑
j=1

(Cj)eϕϕ(x1, x2)(Ci−j)dec(x2, x3)

) �� ��3.2.13

Now suppose we already know (Ci)bϕa(x1, x2) for all |va〉, |vb〉 ∈ V in addition to all the lower
order coefficients. Then all expressions appearing on the right side of the above equation are
known. That means, if we have all coefficients up to (Ci)bϕa(x1, x2), then we can uniquely
determine (Ci)bϕ2a(x1, x2) by this equation, which is just the kind of identity we were looking
for. Before we go on with our iterative procedure, let us first view the above equation from a
different perspective. Remember, e.g. from eq. 2.1.7, that the first sum just gives the 3-point
coefficient (Ci)dϕϕc(x1, x2, x3) on the domain F3. Thus, the relation may equivalently be written
as

(Ci)dϕ2c(x2, x3) = lim
x1→x2

(Ci)dϕϕc(x1, x2, x3)−
|e|≤|ϕ2|∑

e

i∑
j=1

(Cj)eϕϕ(x1, x2)(Ci−j)dec(x2, x3)


�� ��3.2.14

for r23 < r13. This suggests the following interpretation: Naively, one might try to obtain the
desired coefficient (Ci)dϕ2c(x2, x3) by just letting two points of the above three point coefficient

3Here and in the following the limit is understood as lim
x1↗x2

, i.e. |x1| approaches |x2| from below
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approach each other. Similarly, one might try to obtain ϕ2(x2) as the coincidence limit of the
product ϕ(x1)ϕ(x2). It is a well known feature of quantum field theory that this naive limit does
not exist, as one is dealing with distributional objects (operator valued distributions in the stan-
dard formulation, distributional OPE coefficients in our framework). So in order to make sense
of expressions like ϕ2(x2) or (Ci)dϕ2c(x2, x3), one has to subtract counterterms before performing
the limit in order to obtain well defined objects. That is precisely the meaning of the sum on
the right side of equation 3.2.14. So in a sense, this equation may be viewed as our analogue of
renormalization, where the counterterms are represented by the finite sum that is subtracted.
Note, however, that this identity is an intrinsic feature of our theory resulting from the associa-
tivity condition. Therefore we do not have to apply any kind of external renormalization as the
framework is inherently finite at any order.

Let us conclude this interpretational interlude and come back to our iteration procedure.
Remember that we have just found a way to express the coefficients of the form (Ci)dϕ2c(x1, x2)
in terms of the (Ci)dϕc(x1, x2) and lower order coefficients. This procedure can be repeated. That
means we start at eq. 3.2.9 again, but this time we chose a = ϕ2 and b = ϕ. Following the
steps that lead to eq. 3.2.13, we again take the limit x1 → x2. We will encounter one summand
of the form (C0)ϕ

3

ϕ2ϕ
(x1, x2)(Ci)dϕ3c(x2, x3). The first factor here is again just 1, so we isolate

(Ci)dϕ3c(x2, x3) on the left side of the equation, obtaining

(Ci)dϕ3c(x2, x3) = lim
x1→x2

[∑
e

i∑
j=0

(Cj)eϕc(x2, x3)(Ci−j)dϕ2e(x1, x3)

−
|e|≤|ϕ3|∑

e

i∑
j=1

(Cj)eϕ2ϕ(x1, x2)(Ci−j)dec(x2, x3)−
|e|≤|ϕ3|∑
e6=ϕ3

(C0)eϕ2ϕ(x1, x2)(Ci)dec(x2, x3)

] �� ��3.2.15

Again, all coefficients on the right side are known. Clearly, this scheme can be continued
iteratively. Assume we know all coefficients up to those of the type (Ci)dϕk−1c

(x2, x3), then we
can uniquely construct the coefficients (Ci)dϕkc(x2, x3) by the formula

(Ci)dϕkc(x2, x3) = lim
x1→x2

[∑
e

i∑
j=0

(Cj)eϕc(x2, x3)(Ci−j)dϕk−1e(x1, x3)

−
|e|≤|ϕk|∑

e

i∑
j=1

(Cj)eϕk−1ϕ(x1, x2)(Ci−j)dec(x2, x3)−
|e|≤|ϕk|∑
e6=ϕk

(C0)eϕk−1ϕ(x1, x2)(Ci)dec(x2, x3)

]
�� ��3.2.16

This procedure solves the problem we encountered in the discussion below eq. 3.2.8 in our
approach towards a construction of the perturbed OPE coefficients just using the field equation.
There we got stuck already at first perturbation order, as we could not relate the coefficients
(C1)bϕa and (C1)b

ϕka
. This relation can now be achieved by k−1 iterations of the above equation.

Let us briefly sum up the algorithm we just found: The starting point of the iteration is the
free quantum field theory (V, C0) as described in section 3.1. Next we use the non-linear field
equation, more precisely we solve the differential equation 3.2.8, in order to construct the first
order coefficients of the form (C1)bϕa. Then we repeatedly apply eq. 3.2.16, which follows from
the associativity condition, obtaining the coefficients (C1)b

ϕka
, which allow for the construction

of the second order coefficients (C2)bϕa via the differential equation 3.2.8 again. Exploiting the
associativity condition and the field equation once more yields the third order coefficients, and
so on. The procedure is summarized schematically in the following diagram:
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(C0)cab (C1)bϕa (C1)cab (C2)bϕa
” �−1 “associativity

condition

” �−1 “

�� ��3.2.17

From the standard formulation of quantum field theory we have learned the lesson, that the
construction of higher order perturbations should be expected to run into serious calculational
difficulties already at rather low orders. These difficulties appear in the calculation of Feynman
integrals containing loops, which has become an independent branch of theoretical physics over
the last decades. Therefore, we should also expect serious calculational effort to go into the
explicit construction of perturbed OPE coefficients in our framework. Where do we encounter
these difficulties? Reviewing our algorithm, we find that it essentially consists of two calcula-
tional steps: Solving the differential equation 3.2.8 and performing the sums and the limit in
eq. 3.2.16. The former does not cause any trouble, as all 2-point coefficients can be expressed
as a linear combination of terms of the form c · Ylm(x̂)ra(log r)b for some constant c ∈ C and
parameters a, b, l,m ∈ N. As we will see below, it is not very difficult to invert the Laplace
operator on such an expression (see appendix E). It turns out that most calculational work has
to be put into eq. 3.2.16, especially into the first sum over e. This is an infinite sum over all
basis elements of our vector space V , i.e. a sum, or rather a multiple sum, over the multi-index
e. Before performing the limit in eq. 3.2.16, one has to put these sums into a form that makes
it possible to control the cancellation of infinities with the counterterms. So we have in a sense
traded the problematic higher loop Feynman integrals for multiple infinite sums. It is not clear
a priori which way is more convenient for explicit calculations and it is one aim of this thesis to
give some first impressions of the effort that goes into the explicit construction of perturbations
of a quantum field theory in the iterative scheme outlined above.

3.2.1. Ambiguities

In the usual approaches to renormalization, certain ambiguities are typically present. It is
therefore natural to ask ”how unique“ the results obtained from our method are. As mentioned
above, our algorithm consists of two computational steps: Solving the differential equation
3.2.8 and applying the consistency condition (eq. 3.2.16). The latter uniquely determines the
coefficients (Ci)bϕka from the coefficients (Ci)bϕk−1a

, so possible ambiguities can only arise in the
differential equation. In appendix E we present a special solution to this equation, which is used
throughout this thesis, and the freedom in the choice of this solution is also briefly discussed. To
sum up, we may add to any solution Yi(ϕ, x) of the field equation an End(V )-valued harmonic
polynomial in x, i.e.

Y ′i(ϕ, x) = Yi(ϕ, x) +K(x)
�� ��3.2.18

with

K(x) =
∞∑
J=0

KJr
JYJM (x̂;D) +

∞∑
J=0

K2−J−Dr
2−J−DYJM (x̂;D)

�� ��3.2.19

where KJ ∈ End(V ). Our choice of left representatives Yi(ϕ, x) is further restricted by the
axioms of our framework (see section 2.2). Most importantly, the scaling dimension constraint,
axiom 6, restricts Yi(ϕ, x) to be of the general form

Yi(ϕ, x) =
∑

Ai,d,q,J,M (|v〉)rd(log r)qYJM (x̂, D)
�� ��3.2.20

with
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Ai,d,q,J,M ∈ {A ∈ End(V ) : |A(v)| − |v| − |ϕ| ≥ d ∀v ∈ V } ,
�� ��3.2.21

where | · | denotes the canonical dimension of the vectors in V as defined in eq. 3.1.9. The
fact that in the above condition only an inequality is required to hold means that we may add
contributions of lower scaling dimension to any OPE coefficient. Thus, the grading of the OPE
coefficients by dimension, which held in our construction of the free theory in the previous
chapter, is replaced by a filtration at higher perturbation orders.

The convention used for the solution of the differential equation within this thesis is justified
by the following proposition:

Proposition 2

Given left representatives Yi−1(ϕk, x) satisfying the axioms of section 2.2, the solution
Yi(ϕ, x) = �−1Yi−1(ϕk, x) satisfies these axioms as well (except possibly the factoriza-
tion axiom). Further, if the OPE coefficients at order i − 1 are graded by dimension (i.e.
if the equality holds in the scaling dimension axiom), then this grading is preserved by the
solution obtained with the help of �−1.

Remark: The factorization axiom can not be checked with the knowledge of Yi(ϕ, x) alone, see
eq. 2.5.6. Recall from the previous discussion that we assume this property to hold, which
allows us to determine the other i-th order left representatives by the algorithm outlined above.
Proof : Axioms 1, 3, 4 and 7 are satisfied trivially, simply because they were also satisfied by the

zeroth order coefficients and since the operator �−1 does not change any relevant properties for these
axioms. Similarly, the zeroth order coefficients satisfy the Euclidean invariance property. Since �−1

acts rotationally invariant (i.e. it does not change the spherical harmonics YJM ) our choice is also
consistent with this axiom. Further, the constraint implied by axiom 8 is precisely the field equation
as a differential equation on RD. Since �−1 is a solution to that equation, it also satisfies this axiom.
It remains to discuss the scaling axiom and the claim that the grading by dimension is conserved.
Assume the axiom and the grading to hold at order i−1. Then sd (Ci−1)b

ϕka = |a|+ |ϕk|− |b| holds.
Using our solution to the field equation, which increases the scaling degree by 2, it then follows that

sd (Ci)b
ϕa = sd (Ci−1)b

ϕka − 2 = |a|+ |ϕk| − |b| − 2
�� ��3.2.22

Now we claim that in a renormalizable theory |ϕk| − |ϕ| = 2 always holds. This can be deduced
from the field equation as follows: Comparing the dimensions of both sides of the equation using eq.
3.1.9 we can solve for the dimension4 of the coupling constant λ.

|�ϕ| − |ϕk| = 2− |ϕk−1| = |λ|
�� ��3.2.23

By definition, a theory is renormalizable if |λ| = 0, super-renormalizable if |λ| < 0 and non-
renormalizable if |λ| > 0. Since we are interested only in the first case, the relation

|ϕk| − |ϕ| = |ϕk−1| = 2
�� ��3.2.24

does indeed hold. Using this relation in eq. 3.2.22 we find the desired equation

sd (Ci)b
ϕa = |a|+ |ϕ| − |b|

�� ��3.2.25

confirming axiom 6 and preserving the grading. Since both the axiom and the grading hold in the
free theory, they hold to all perturbation orders using our solution.

Since the OPE is a short distance expansion, the following theorem should be of interest:

4Recall that the derivations ∂µ on V increase the dimension by 1



36 CHAPTER 3. THE MODEL

Theorem 3 (Ambiguities at short distances)

Let |va〉 ∈ V , 〈vb| ∈ V ∗ be arbitrary with (Ci−1)b
ϕka

(x) 6= 0. Then the most rapidly divergent

part of the OPE coefficients (Ci)bϕa(x) in the limit x → 0 is uniquely determined by the

solution �−1(Ci−1)b
ϕka

(x).

Proof : In order to find the part of an OPE coefficient with the strongest divergence, we first extract
the contribution of maximal scaling degree. From the scaling axiom we know that this is the
contribution proportional to r|c|−|a|−|b| for a coefficient (Ci)c

ab. Let us denote the projection on the
contribution of scaling degree d by Scd. Thus

(Ci)c
ab(x) = Sc|a|+|b|−|c| (Ci)c

ab(x) +O(rd)
�� ��3.2.26

with d > |c| − |a| − |b|. As the OPE coefficients may also contain powers of logarithms, it is not
guaranteed that all terms in Sc|a|+|b|−|c| (Ci)c

ab(x) have the same divergent behavior for x → 0. In
order to find the dominating contribution to Sc|a|+|b|−|c| (Ci)c

ab(x) at short distances, we have to
pick out the terms including the highest powers of log r.

Now the claim is that this contribution containing the highest power of log r among the terms
of maximal scaling degree is uniquely determined by �−1(Ci−1)b

ϕka(x) (provided (Ci−1)b
ϕka(x) 6=

0). Recall from proposition 2 that �−1(Ci−1)b
ϕka(x) exclusively contains terms of maximal scaling

degree, i.e.

Sc|a|+|ϕ|−|b| (Ci)b
ϕa(x) = �−1(Ci−1)b

ϕka(x) + ”ambiguities“.
�� ��3.2.27

To finish the proof, we show in the following that �−1(Ci−1)b
ϕka(x) always contains higher powers

of log r than any possible ambiguity. Recall from the discussion at the beginning of this section that
the ambiguities have to be in the kernel of � and in addition have to be compatible with the axioms
of section 2.2. The elements in the kernel of the Laplacian are the harmonic polynomials, hence the
ambiguities have to be of the form

KJ(x) =

{
rJYJM (x̂) for J ≥ 0
rJY−(J+D−2)M (x̂) for J < 0

�� ��3.2.28

Since we only consider ambiguities of maximal scaling degree, we are only interested in J = |b| −
|ϕ| − |a|. We distinguish two cases:

1. K(|b|−|ϕ|−|a|)(x) is incompatible with the Euclidean invariance axiom. Thus, no terms of max-
imal scaling degree may be added to �−1(Ci−1)b

ϕka(x) and we have

Sc|a|+|ϕ|−|b| (Ci)b
ϕa(x) = �−1(Ci−1)b

ϕka(x)
�� ��3.2.29

in accordance with the theorem
2. K(|b|−|ϕ|−|a|)(x) is compatible with the Euclidean invariance axiom. Then �−1(Ci−1)b

ϕka(x)
contains a contribution proportional to the same spherical harmonic as K(|a|+|ϕ|−|b|)(x), since
�−1(Ci−1)b

ϕka(x) itself also satisfies the Euclidean invariance axiom. It follows from the defi-
nition of �−1 in eq. E.7 that any contribution to �−1(Ci−1)b

ϕka(x) proportional to a harmonic
polynomial includes at least one power of log r. Since the ambiguities contain no logarithms,
they diverge less rapidly.

Remark: The theorem does not imply that �−1 determines the short distance behavior of the
complete OPE, since we excluded coefficients (Ci)bϕa with (Ci−1)b

ϕka
= 0.

It has been mentioned a few times that our construction does not rely on any renormalization
prescription. Nevertheless the ambiguities in our approach share some intriguing similarities
with the well known remormalization ambiguities of standard quantum field theory.

• Renormalized composite quantum fields are filtered objects by scaling dimension (as op-
posed to graded). Similarly, our OPE coefficients are filtered by scaling dimension in the
interacting case.
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• One may change the definition of �−1 by introducing a complex parameter µ in every
logarithmic contribution, i.e. log r → log(µr). This solution also satisfies proposition 2.
The free parameter µ is reminiscent of the choice of renormalization scale in the standard
formulation of quantum field theory (see also section 3.6).

A deeper understanding of the ambiguities and their relation to renormalization theory may be
a topic for future research (see chapter 4).

3.2.2. Construction of Y0(|va〉, x)

As already promised in the previous section, we conclude with the construction of the general
left-representative Y(|va〉, x) in the free theory, i.e. we give a proof of eq. 3.1.27 (in this section we
should actually write Y0(|va〉, x) indicating zeroth perturbation order, but for convenience we will
not do this in the following discussion). Our starting point is the left representative Y(ϕ, x),see
eq. 3.1.26 , which has been ”derived“ from standard quantum field theory. Remembering the
identity [Y(|va〉, x)]cb = Ccab, it is clear that the iterative scheme of this section, in particular eq.
3.2.16, is exactly the needed tool for our purpose, as it allows for the construction of Y(ϕk, x)
starting from Y(ϕ, x). It is then possible, by taking the appropriate derivatives and multiplying
the right constants, to determine Y(|va〉, x) from Y(ϕk, x). Thus, the following calculation is
also a good practice for later applications of the consistency condition, eq. 3.2.16. Let us begin
with the first application of this equation:

Cbϕ2a(x2, x3) = lim
x1→x2

(∑
c

Ccϕa(x2, x3)Cbϕc(x1, x3)− C1
ϕϕ(x1, x2) δba

) �� ��3.2.30

This is just eq. 3.2.13 for i = 0 with an additional counterterm due to eq. 3.2.12. We can
rewrite this equation as

Y(ϕ2, x) = lim
y→x

(
Y(ϕ, x)Y(ϕ, y)− [Y(ϕ, x− y)]1ϕ 1

)
.

�� ��3.2.31

By the definition of Y(ϕ, x) in eq.3.1.26, we can write this product as

Y(ϕ, x)Y(ϕ, y) = σD r−(D−2)/2
y r−(D−2)/2

x

∑
l,l′

∑
m,m′

(
D − 2

2l +D − 2

)1/2( D − 2
2l +D − 2

)1/2

×

[
rl
′+(D−2)/2
x Y l′m′(x̂) b†l′m′ + r−l

′−(D−2)/2
x Yl′m′(x̂) bl′m′

]
×[

rl+(D−2)/2
y Y lm(ŷ) b†lm + r−l−(D−2)/2

y Ylm(ŷ) blm
]
, �� ��3.2.32

where rx = |x| and ry = |y| respectively. Let us focus on the following partial sum

σD r−(D−2)/2
y r−(D−2)/2

x

∞∑
l=0

N(l,D)∑
m=1

D − 2
2l +D − 2

[
rl+(D−2)/2
y r−l−(D−2)/2

x Y lm(ŷ)Ylm(x̂) blmb†lm
]

�� ��3.2.33
This sum is of particular interest, because it is the only partial sum of eq. 3.2.32 with infinitely
many non-vanishing contributions after taking matrix elements 〈vb| · |va〉. This is due to the
fact that the successive application of creation and annihilation operator with the same indices
on some vector |va〉 ∈ V gives, according to the definitions 3.1.11 and 3.1.12, just a prefactor of
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(alm + 1), where alm is the ”occupation number” of the respective mode. It is easy to convince
oneself that all other contributions to Y(ϕ, x)Y(ϕ, y) have finite matrix elements. First, consider
the partial sum of eq. 3.2.32 with two annihilation operators. Again, according to eq. 3.1.12,
the action of an annihilation operator blm on a vector |va〉 gives a prefactor of (alm)1/2 and
reduces the index alm by 1. Recall that in the definition of our basis V we demanded the multi-
indices a of the basis elements |va〉 to contain only a finite number of non-zero entries. Hence,
the aforementioned prefactor resulting from the application of an annihilation operator makes
sure that a sum of the type

∑∞
l=0 blm|va〉 is always finite. So if we sum over the product of two

annihilation operators, both of these sums will be finite. Concerning the case of two creations
operators, we can deduce from orthogonality of the basis elements that 〈vb|b†lm|va〉 = 0 for
a+ elm 6= b, so the sum

∑∞
l=0〈vb|b

†
lm|va〉 has at most one non-zero summand and is thus finite.

Finally, let us come to the partial sums with a pair of one annihilation and one creation operator.
If the former stands to the right of the latter, we can simply use the same argumentation as in
the case of two annihilation operators and find that also here no infinite sums appear. This only
leaves the case where the creation operator acts before the annihilator. However, if the indices
on these two operators do not coincide, it follows from the commutation relations 3.1.14 that
we may simply exchange their order, which leads us to the case that we just argued to be finite.
Hence, the only possibility for infinities to appear in an arbitrary matrix element of eq. 3.2.32
is the matrix element 〈va| · |va〉 of the partial sum in eq. 3.2.33.

We can further simplify the analysis of this infinite sum by exploiting the commutation relation
of the ladder operators also in this case, which suggests that in addition to the term where the
order of the two operators is switched we pick up a term with the identity operator replacing
the pair of ladder operators, i.e.

blmb†lm = b†lmblm + id
�� ��3.2.34

Then, the first term is finite again, since now the annihilation operator acts first, and the
remaining infinite sum has the form of eq. 3.2.33 with the ladder operators replaced by the
identity. We now want to find a closed form expression for this sum. Using the addition
theorem for the D-dimensional spherical harmonics (see eq. D.1.7),

∑
m

Ylm(x̂)Y lm(ŷ) =
N(l,D)
σD

Pl(D, x̂ · ŷ)
�� ��3.2.35

where Pl(D, x̂) is the D-dimensional Legendre polynomial and N(l,D) and σD are defined as in
section 3.1, we can perform the sum over m and arrive at the formula

r−(D−2)
x

∞∑
l=0

(
l +D − 3

l

) (
ry
rx

)l
Pl(D, x̂ · ŷ)

�� ��3.2.36

In view of eq. 3.2.31, we are interested in the limit y → x in this expression, so for convenience
we may chose x and y collinear, i.e. x̂ = ŷ. As the Legendre polynomials are normalized,
Pl(D, 1) = 1, the equation further simplifies

r−(D−2)
x

∞∑
l=0

(
l +D − 3

l

) (
ry
rx

)l
= r−(D−2)

x

∞∑
l=0

C
(D−2

2 )
l (1)

(
ry
rx

)l
.

�� ��3.2.37

Here Cνl (x) are the Gegenbauer polynomials (see e.g. [31] or [32]) and should not be confused
with an OPE coefficient. It is useful to write the equation in this form, because the generating
function of the Gegenbauer polynomials is well known:

∞∑
l=0

Cνl (z)hn = (1− 2hz + h2)−ν for |h| < |z ± (z2 − 1)1/2|
�� ��3.2.38
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Since we know that rx > ry in our case, we can apply this identity to eq. 3.2.37 with the result

r−(D−2)
x

(
1− ry

rx

)−(D−2)

=
(

1
rx − ry

)D−2

,
�� ��3.2.39

so this partial sum of eq. 3.2.32 is in fact divergent in the limit y → x. Hence, there should
either be another divergent part of this sum with opposite sign, or the ”counterterm” has to
cancel the divergence. Our formula for Y(ϕ, x), eq. 3.1.26, yields for the counterterm

C1
ϕϕ(x− y) = |x− y|−(D−2) ,

�� ��3.2.40

which is indeed equal to eq. 3.2.39 in the limit y → x. As there are no additional counterterms,
and as the rest of eq. 3.2.32 is finite, the intrinsic renormalization procedure has indeed worked
out. Note that we can reduce the calculational effort drastically if we just drop the counterterm
together with the partial sum considered above from eq. 3.2.31. This can be achieved in a very
elegant manner, namely by normal ordering, i.e. by simply rearranging the order of the ladder
operators in eq. 3.2.32 in such a way that the annihilation operators always act first. If these
operators are commuting, nothing changes in this trivial process. Hence the only case where this
procedure actually manifests itself is if we put products of the form blmb†lm into normal order.
Usually we would have obtained an additional term with the ladder operators replaced by the
identity, if we were to exchange the order of this expression by hand, due to the commutation
relations. If we require normal ordering, this extra term is neglected. Now recall form eq. 3.2.33
and the subsequent discussion that it was precisely this extra term that was responsible for the
divergence, which canceled with the counterterm. Hence, we may simply forget about this extra
term and the counterterm altogether, which is expressed in the following formula:

Y(ϕ2, x) = lim
y→x

(: Y(ϕ, x)Y(ϕ, y) :) = :
(
Y(ϕ, x)

)2
:

�� ��3.2.41

As above, double dots denote normal ordering.
This procedure can again be iterated. Let us proceed with the analog of equation 3.2.31 for

the next left representative

Y(ϕ3, x) = lim
y→x

[
Y(ϕ, x)Y(ϕ2, y)−

|e|≤|ϕ3|∑
e 6=ϕ3

[Y(ϕ, x− y)]eϕY(|ve〉, x)
]
,

�� ��3.2.42

which follows from eq.3.2.15. The sum over e can be further specified by noting that the
restrictions |e| ≤ |ϕ3| and e 6= ϕ3 constrain e to be of the form 1, ϕlm with l ≤ (D − 2) or
ϕlmϕl′m′ with l+ l′ ≤ (D−2)/2. Eq. 3.2.41 suggests that Y(ϕ2, x) acts by two ladder operators,
so it follows that only the option e = ϕlm gives a non-vanishing OPE coefficient Ceϕ2 ϕ, since
in the other two cases no combination of the two ladder operators can transform ϕ into e.
Therefore, the above equation may be simplified to

Y(ϕ3, x) = lim
y→x

[
Y(ϕ, x)Y(ϕ2, y)−

D−2∑
l=0

Cϕlm
ϕ2 ϕ

(x− y)Y(ϕlm, x)
]
,

�� ��3.2.43

Now let us see what happens is we again just prescribe normal ordering to the product of the
left representatives Y(ϕ2, y) = : [Y(ϕ, y)]2 : and Y(ϕ, x). This time we encounter products of
three ladder operators, two of which are already normal ordered. Normal ordering is trivial
except for terms of the form : b†l′m′blm : b†lm or : bl′m′blm : b†lm. Ignoring the sum over the
primed indices in these expressions, we can carry out the sums over m and l just as we did in
the calculations leading to eq. 3.2.41. Therefore, the partial sum containing all expressions of
the form just mentioned can be simplified to
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2(rx − ry)−(D−2)Y(ϕ, y) ,
�� ��3.2.44

where the term in brackets results from the sum over l and m, Y(ϕ, y) represents the sum over l′

and m′ and the additional factor 2 comes into the equation, because the sums over expressions
including : b†l′m′blm : b†lm or : blmb†l′m′ : b†lm are the same due to normal ordering. Since Y(ϕ, x)
is analytic around y = x, we may perform a Taylor expansion

2(ry − rx)−(D−2)Y(ϕ, y) = 2(ry − rx)−(D−2)
∑
l

(y − x)l

l!
∂lY(ϕ, x)

�� ��3.2.45

But this is exactly equal to the counterterms Cϕlm
ϕ2 ϕ

(x − y)Y(ϕlm, x) in the limit x → y, so we
can drop all these terms, require normal ordering and write

Y(ϕ3, x) =: Y(ϕ, x)Y(ϕ, x)Y(ϕ, x) : .
�� ��3.2.46

The generalization of this result to arbitrary powers uses the same argumentation, and it is then
a straightforward calculation to verify the formula for the general left representative Y(|va〉, x)
given in eq. 3.1.27.

3.3 Diagrammatic notation

The algorithm presented in the previous section can be neatly visualized in terms of rooted
trees, which should not be confused with the trees we used in chapter 2.3. These trees will
help us keeping track of all the infinite sums and subsequent inversions of the Laplace operator,
which are the main steps in the scheme of the previous section. They might further be helpful to
distinguish emerging patterns in our construction. In this section we introduce this diagrammatic
notation, defining the explicit correspondence between parts of the graphs and the expressions
appearing in the scheme of section 3.2. Its usefulness will become clear in the following sections,
where it will be widely applied.

Let V be the Fock space defined in section 3.1 and let (see also appendix E)

Y(x) = CJr, r−1, log rK⊗ {Yn(x̂;D)} ⊗ End(V ) .
�� ��3.3.1

Then the following linear map defines our diagrammatic notation:
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Definition 3.2 (Diagrammatic notation)

Let T be a rooted tree. To each leaf of this tree assign a label of the form ±lm, where l ∈ N
and m ∈ {1, . . . , N(l,D)} and N(l,D) is defined as in section 3.1. Let us call these labeled
trees Tl. Further, let x ∈ RD, r = |x| and x̂ = x/r as in the previous section. Then we
define the linear map Gx : Tl → Y(x) by the following rules:

+lm
σD

(
D−2

2l+D−2

)1/2
rl Y lm(D; x̂) b†lm

Gx

−lm σD

(
D−2

2l+D−2

)1/2
r−l−(D−2) Ylm(D; x̂) blm

Gx

�−1(”terms associated to ingoing edges“)
Gx

Here by �−1 we mean inversion of the Laplace operator (see appendix E). The order of the
ladder operators b is according to the corresponding labels on the trees, i.e. if the label
+lm is left of the label −l′m′, then the operator b†lm is left of bl′m′ .

Let us explain these relations: By the first two assignments, the leaves of the tree are closely
related to Y0(ϕ, x), see eq. 3.1.26. In fact, they are either the part of Y0(ϕ, x) containing the
annihilation operator, or the part containing the creation operator. This is where one starts to
calculate the expression corresponding to a tree. Whenever edges meet at a vertex, the outgoing
(parent) edge is recursively determined by its children, i.e. the ingoing edges, by an inversion
of the Laplace operator on the expressions associated to these ingoing edges (see appendix E for
more information on this inversion). It should be noted that the root is not a vertex (although
incoming edges meet), so no differential equation must be solved there.

As an example, let us write the left representative Y(ϕ2, x) in this notation (compare eqs.
3.2.41 and 3.1.26):

Y(ϕ2, x) =
∑
l,l′

∑
m,m′

: Gx
(
+lm +l′m′ −lm −l′m′ +lm −l′m′ −lm +l′m′

+ + +
)

:

�� ��3.3.2
Double dots again denote normal ordering, which in this case means that in the last tree the
leaves are switched if the indices coincide, i.e. if (l,m) = (l′,m′). In explicit calculations,
such relations will come in handy, especially at higher perturbation orders. Some additional
conventions will also be helpful in more complicated examples:

• from here on we use the following shorthand notation (analogously for more complicated
trees):

Gx
(

+lm +l′m′

x

+lm +l′m′

)
= �� ��3.3.3

• whenever we draw a tree with unlabeled leaves, it is understood that we sum over all
possible labels for those leaves
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• whenever two leaves are connected (”from below“) by a line with an arrow, then the labels
of these leaves are contracted ; more precisely we attach the label −(lm) to the leaf that
is pointed at by the arrow, attach the label +(lm) to the leaf at the other end of the line
and sum over l and m

=
∑
l,m -(lm) +(lm)

�� ��3.3.4

• if two leaves are connected by a line from below and if this line is dashed, then we contract
the labels of these leaves, but replace the corresponding ladder operators by the identity
operator id on V

These conventions substantially simplify the diagrammatic notation, e.g. eq. 3.3.2 may now be
expressed as

Y(ϕ2, x) = :
x

: �� ��3.3.5

More complicated examples can be found in the following sections.

3.4 Low order computations: Next to leading order

From now on we focus on 3-dimensional scalar, massless quantum field theory with ϕ6-interaction
(see 3.2.3). This allows for more explicit results and facilitates calculations. The choice to
work on a 3-dimensional spacetime was made in order to keep representation theory simple, as
the 3-dimensional rotation group SO(3) is familiar and well understood. The exponent of the
interaction term in the field equation was chosen in such a way that the coupling constant is
dimensionless.

3.4.1. Construction of Y1(ϕ, x)

Recall the results of the previous two sections: In sec. 3.1 we constructed the complete left
representation, and hence the complete quantum field theory, for the non-interacting model
obeying a field equation of the form 3.1.2. Secondly, in sec. 3.2, we presented an iterative
scheme that allows for the perturbative construction of an interacting quantum field theory, with
a non-homogeneous field equation of the form 3.2.3, given that the corresponding free theory is
known (more precisely, we actually only need the left representative Y0(ϕ, x) as starting point
of the iteration). Combining the information from these chapters, it is clear that we should
be able to construct perturbations of the free theory in our setting. The first step beyond
leading perturbation order is the calculation of the left representative Y1(ϕ, x) according to our
algorithm, which is the aim of this section.

Remember from section 3.2 that the field equation can be exploited in order to find relations
between OPE coefficients of different perturbation orders, see eq. 3.2.8. The corresponding
relation connecting first order coefficients to those of the free theory is of the form

�(C1)bϕa(x) = (C0)bϕkb(x) .
�� ��3.4.1

As mentioned above, for calculational ease we will in the following consider the specific theory
with ϕ6-interaction, i.e. k = 5 in the above formula, in 3 dimensions. In this context we have
the equation
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∆(C1)bϕa(x) = (C0)bϕ5b(x)
�� ��3.4.2

where ∆ = ∂2
x1

+ ∂2
x2

+ ∂2
x3

is the familiar three dimensional Laplace operator. In terms of left
representatives, this equation implies

∆Y1(ϕ, x) = Y0(ϕ5, x) .
�� ��3.4.3

Therefore, to reach the aim of this section, all we have to do is solve this differential equation.
Let us first recall our results for the free theory from section 3.1. In D = 3 dimensions, the
leading order of our theory is characterized by the equations

Y0(ϕ, x) =
∞∑
l=0

l∑
m=−l

(
4π

2l + 1

)1/2 [
rl Y lm(x̂) b†lm + r−(l+1) Ylm(x̂) blm

]
,

�� ��3.4.4

which is the D = 3 case of the general expression for Y0(ϕ, x) in eq. 3.1.26, and

Y0(|va〉, x) = :
∏
l,m

1
(alm!)1/2

[tlm ∂lY0(ϕ, x)]alm : .
�� ��3.4.5

An even more compact form of eq. 3.4.4 can be obtained with the help of the modified spherical
harmonics defined as

Slm(x̂) :=
(

4π
2l + 1

)1/2

Ylm(x̂) ,
�� ��3.4.6

see [33] and eq. D.2.3, which gives

Y0(ϕ, x) =
∞∑
l=0

l∑
m=−l

[
rl Slm(x̂) b†lm + r−(l+1) Slm(x̂) blm

]
.

�� ��3.4.7

In view of eq. 3.4.3, the left representative Y0(ϕ5, x) is of special interest to us. According to
the equations above, it takes the form

Y0(ϕ5, x) =
∑
l1,...,l5

∑
m1,...,m5

(
rl1+...+l5 · Sl1m1(x̂) · · ·Sl5m5(x̂) · b†l1m1

· · ·b†l5m5

+ 5 · rl1+...+l4−l5−1 · Sl1m1(x̂) · · ·Sl4m4(x̂)Sl5m5(x̂) · b†l1m1
· · ·b†l4m4

bl5m5

+ 10 · rl1+l2+l3−l4−l5−2 · Sl1m1(x̂)Sl2m2(x̂)Sl3m3(x̂)Sl4m4(x̂)Sl5m5(x̂) · b†l1m1
b†l2m2

b†l3m3
bl4m4bl5m5

+ 10 · rl1+l2−l3−l4−l5−3 · Sl1m1(x̂)Sl2m2(x̂)Sl3m3(x̂)Sl4m4(x̂)Sl5m5(x̂) · b†l1m1
b†l2m2

bl3m3bl4m4bl5m5

+ 5 · rl1−l2−...−l5−4 · Sl1m1(x̂)Sl2m2(x̂) · · ·Sl5m5(x̂) · b†l1m1
bl2m2 · · ·bl5m5

+ r−l1−...−l5−5 · Sl1m1(x̂) · · ·Sl5m5(x̂) · bl1m1 · · ·bl5m5

)
. �� ��3.4.8

Here normal ordering has already been carried out, which explains the numerical prefactors in
lines 2-5, as e.g. the sums over : b†l1m1

· · ·b†l4m4
bl5m5 : and : b†l1m1

· · ·bl4m4b
†
l5m5

: are equivalent
after normal ordering. In our graphical notation, this could simply be written as

Y0(ϕ5, x) = :

x

: �� ��3.4.9
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where we remind the reader that summation over all possible labels for the 5 unlabeled leaves
is implicitly assumed.

Before solving the differential equation 3.4.3, we want to put Y0(ϕ5, x) into a form better
suited for this task. The main obstacle in trying to invert the Laplace operator on eq. 3.4.8
is the product of the spherical harmonics. The differential equation is simplified decisively if
these products are decomposed into their irreducible parts, i.e. if we ”couple” the spherical har-
monics using as intertwiners the familiar Clebsch-Gordan coefficients (or, equivalently, Wigner
3j-symbols). For details on the representation theory of the 3-dimensional rotation group, see
appendix D.2 and references therein. The identity we are looking for is eq. D.2.22, which was
derived in the appendix, and we repeat it here for reference:

Sl1m1(x̂) · · ·Slpmp(x̂)Slp+1mp+1(x̂) · · ·Slqmq(x̂) =∑
J

T [+(l1m1), . . .+ (lpmp),−(lp+1mp+1), . . . .− (lqmq)]JM SJM (x̂)�� ��3.4.10

Here T is a tensor, which contains the consecutive application of the intertwiners as defined in
eqs. D.2.20 and D.2.23. Before we apply this equation on the product of the spherical harmonics
in eq. 3.4.8, let us first introduce some abbreviations:

Definition 3.3 (Abbreviated indices)

Let q, i, li ∈ N and mi ∈ {−li, . . . , li}. Then we define the abbreviated notation

l
q
i =

{
+(limi) for i > q
−(limi) for i ≤ q .

�� ��3.4.11

Further, let b+(lm) := b†lm and b−(lm) := blm,
b∑

lqi=a

=
b∑

li=a

li∑
mi=−li

and e±(lm) = ±elm (recall

that elm is the multiindex with unit entry at ”position“ (lm)).

With this notation and representation theoretic machinery, we can put eq. 3.4.8 into the con-
venient form

Y0(ϕ5, x) =
5∑
q=0

∞∑
lq1,...,l

q
5=0

∑
J

(
5
q

)
r(−l1−...−lq+lq+1+...+l5−q) · T [lq1, . . . , l

q
5]JMSJM (x̂) blq5

· · ·blq1
,�� ��3.4.12

which is much better suited for our purpose, i.e. for solving the differential equation 3.4.3, since
now we have expressed Y0(ϕ5, x) as an element of the ring of functions Y(x) defined in eq. E.2.
Assuming that any left representative can be written as an element of this ring, a solution to
the differential equation is simply found by application of the operator �−1 ∈ End(Y(x)), which
we call ∆−1 in three spacetime dimensions. Recall, however, that this solution is not unique.
For a discussion of these ambiguities see section 3.2.1.

Before we give the result for the left representative Y1(ϕ, x), let us first introduce some more
notation for convenience:
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Definition 3.4 (Gradings of left representatives)

The decomposition of an arbitrary left representative Yn(|va〉, x) with respect to its dimen-
sion is written as

Yn(|va〉, x) =:
∞∑

d=−∞
Yn(|va〉, x; d) · rd ,

�� ��3.4.13

while the grading by irreducible representations of the rotation group SO(3) is introduced
as

Yn(|va〉, x) =:
∞∑
J=0

J∑
M=−J

Yn(|va〉, x)JM · SJM (x̂) .
�� ��3.4.14

Then we finally obtain Y1(ϕ, x) by application of the operator ∆−1, i.e. eq. E.7 in D = 3
dimensions, to Y0(ϕ5, x) in the form of eq. 3.4.12. Using the gradings introduced above, we
find:

Result 3.4.1 (The left representative Y1(ϕ, x))

Y1(ϕ, x) =
∞∑

d=−∞

∞∑
J=0

J∑
M=−J

Y0(ϕ5, x; d)JM · rd+2SJM (x̂) ·D(d+ 2, J, r) ,
�� ��3.4.15

where we defined (see also eq. E.8 for q = 0 and D = 3)

D(d, J, r) :=


1

d(d+1)−J(J+1) for min{|d|, |d+ 1|} 6= J

log r
2d+1 for min{|d|, |d+ 1|} = J

�� ��3.4.16

for the sake of brevity. The diagram corresponding to this equation is simply

Y1(ϕ, x) = :

x

: =

x

�� ��3.4.17

The difference to the diagram for the left representative Y0(ϕ5, x) in eq. 3.4.9 is the appearance
of a vertex below the root, which according to the rules of def. 3.2 stands for the inversion of
the Laplace operator. In the second equality we dropped the double dots, as from here on we
implicitly assume normal ordering whenever 5 leaves meet at a vertex. In summary, we have
successfully determined the first NLO left representative.

We end this section with the computation of the explicit form of the first order OPE coefficient
(C1)bϕa. We will proceed as follows: After introducing some additional notation to keep the
equations at a reasonable length, we first give a general result for the OPE coefficients of the
free theory. Then the differential equation 3.4.2 will be applied in order to find the desired first
order coefficients.
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Definition 3.5 (Metric on V )

For two vectors |va〉, |vb〉 ∈ V we introduce the metric5 g : V ⊗ V → N

g(|va〉, |vb〉) = g(a, b) :=
∞∑
l=0

l∑
m=−l

|alm − blm| ,
�� ��3.4.18

where |·| denotes the usual absolute value of an integer. This notion measures how much |va〉
differs from |vb〉, in the sense that at least g(a, b) ladder operators are needed to transform
one of the vectors into the other. Note that g(a, b) is always finite, since we required the
multi-indices labeling our basis elements to have only finitely many non-zero entries (see
eq.3.1.8).

As we will see below, OPE coefficients (C1)b
ϕk a

with equal values of g(a, b) exhibit structural
similarities, so we will often classify OPE coefficients by this value. Further, the notion of multiset
will be frequently used (see appendix B). In this context, we make the following definitions:

Definition 3.6 (Multisets of indices)

Let l
q
i be defined as in def. 3.3 and let |va〉, |vb〉 ∈ V . We define the following three sets:

I =
{

A = Hlq1, . . . , l
q
nI |n ∈ N , q ∈ {0, . . . , n}

} �� ��3.4.19

I(n) =
{

A ∈ I | card(A) = n
}

=
{

A = Hlq1, . . . , l
q
nI |q ∈ {0, . . . , n}

} �� ��3.4.20

Iba(n) =
{

A ∈ I(n) | 〈vb| :
∏
lqi∈A

blqi
: |va〉 6= 0

} �� ��3.4.21

The set I may be interpreted as the set of all possible labels for any number of leaves of a tree
(see section 3.3). Then I(n) is the subset of I containing all labels for trees with n leaves. Recall
from section 3.3 that we associate ladder operators to the leaves of a tree. The set Iba(n) is the
restriction of I(n) to the labels of those trees that transform the vector |va〉 into |vb〉 (recall that
our basis is orthogonal, thus 〈vb|va〉 = 0 for a 6= b) after normal ordering of the corresponding
ladder operators.

Proposition 3

From the definitions above it follows that

card
(
Iba(n)

)
= 1 if g(a, b) = n

�� ��3.4.22

and
Iba(n) = ∅ for g(a, b) > n or g(a, b) + n = odd .

�� ��3.4.23

Proof : The first statement, eq. 3.4.22 follows straightforwardly from the definition of g(a, b): The
condition g(a, b) = n tells us that at least n ladder operators are needed to transform |va〉 into |vb〉.
In other words, the multiindices a and b differ in n entries. Therefore the multiset A = Hlq1, . . . , lqnI ∈
Ib

a(n) is uniquely fixed by the condition 〈vb| :
∏

lqi∈A blqi
: |va〉 6= 0, so Ib

a(n) contains only one
element if g(a, b) = n.

Let us come to the second part of the proposition. For g(a, b) > n the set Ib
a(n) is empty, because

more than n ladder operators are needed to tranform |va〉 into |vb〉. Thus, the condition on the
multisets A in the definition of Ib

a(n) cannot be satisfied due to orthogonality of our basis. Hence

5This notion is not directly related to and should not be confused with the canonical dimension |a| defined in
eq. 3.1.9.
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Ib
a(n) = ∅ for g(a, b) > n.

�� ��3.4.24

Similarly, the set is empty for g(a, b) + n = odd, which can be seen as follows: If g(a, b) is an even
number, then we need an even number of ladder operators to transform |va〉 into |vb〉 (the minimum
number g(a, b) plus pairs of contracted operators, i.e. creation and annihilation operators with the
same indices). Thus, Ib

a(n) vanishes if n = odd in this case. Similarly, the set is empty for n = even
if g(a, b) is odd, so

Ib
a(n) = ∅ for g(a, b) + n = odd .

�� ��3.4.25

Definition 3.7 (Shorthand notation for dimension of OPE coefficients)

Given any three basis vectors |va〉, |vb〉, |vc〉 ∈ V , we define

d = |c| − |a| − |b| = −sd (Ci)cab
�� ��3.4.26

(recall the definition of | · | for multiindices from eq. 3.1.9 and the definition of scaling degree
from eq. 2.2.22). Further, given a multiset A = Hlq1, . . . , l

q
nI ∈ I(n) and two basis vectors

|va〉, |vb〉 ∈ V satisfying b = a+
∑n

i=1 elqi , let

dA :=
n∑

i=q+1

(
li +

1
2

)
−

q∑
j=1

(
lj +

1
2

)
− 1

2
= −sd (Ci)bϕa .

�� ��3.4.27

Definition 3.8 (Shorthand notation for coupling tensors)

Let A ∈ I. Then we define

T [A = Hlq1, . . . , l
q
nI]J := T [lqi1 , . . . , l

q
in

]JM with lij ≥ lij+1 ∀ j ∈ {1, . . . , n− 1} .
�� ��3.4.28

Note that on the left hand side we suppressed the magnetic quantum number M , which is
uniquely encoded in the multiset A as the sum m1 + . . . + mn, for the sake of brevity. The
definition of T [A] is motivated by the fact that in many expressions we are free to choose a
coupling order for the spherical harmonics appearing in the construction. For such cases we
introduce the convention that always the spherical harmonics of highest degree are coupled
first. Then the coupling tensor is uniquely characterized by a multiset of indices instead of
a (ordered) tuple. Note that there seems to be an ambiguity in this prescription, e.g. if we
consider the multiset A = H+(l1m1),+(l2m2),−(l1m1)I. In this case, it is not clear whether to
couple +(l1m1) before −(l1m1) or the other way around. However, in such cases, i.e. whenever
li = lj with i ≤ q < j, we may apply the addition theorem of the spherical harmonics, eq. D.2.2,
and omit the indices l

q
i and l

q
j altogether.

T [Hlq1, . . . , l
q
i , . . . , l

q
j , . . . , l

q
nI]J = T [Hlq1, . . . , l̂

q
i , . . . , l̂

q
j , . . . , l

q
nI]J if li = lj and i ≤ q < j�� ��3.4.29

This solves the apparent ambiguity. Another property to be remarked is that zero entries may
be dropped from the coupling tensor, i.e.

T [Hlq1, . . . , l
q
i−1, l

q
i , l

q
i+1, . . . , l

q
nI]J = T [Hlq1, . . . , l

q
i−1, l

q
i+1, . . . , l

q
nI]J if li = 0

�� ��3.4.30

This may be seen either from the property

〈l0m0|JM〉 = δJlδMm

�� ��3.4.31
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of the Clebsch-Gordan coefficients, or from the fact that the coupling of the spherical harmonic
S00(x̂) = 1 is trivial. Is also follows that

T [Hlq1I]J = δJl1 .
�� ��3.4.32

Definition 3.9 (Symmetry factor)

Let s : I → N be the map defined by

s[A ∈ I] = card
({

(a1, . . . , an) | Ha1, . . . , anI = A
})

,
�� ��3.4.33

where (a1, a2, . . . , an) denotes (ordered) tuples. Thus, s[A] is the number of different tuples
constructed from the elements of A.

Remarks: Equivalently, s[A] may be interpreted as the number of different trees obtained from

a1 a2 an
�� ��3.4.34

by permutations of the leaves. An explicit formula for s[A] is most conveniently obtained if the
multiset A is expressed in terms of a set A and a function f : A→ N (see def. B.1). Then

s[A = (A, f) ∈ I(n)] =
n!∏

a∈A f(a)!
.

�� ��3.4.35

Definition 3.10 (Prefactors from ladder operators)

Let f : V ⊗V ⊗I(n)→ R be the map defined by the following property: Given two vectors
|va〉, |vb〉 ∈ V , a number n ∈ N and a multiset A ∈ Iba(n), let

f ba[A] = 〈vb| :
∏
lqi∈A

blqi
: |va〉 .

�� ��3.4.36

Explicit expressions for f ba(A) can be obtained using eqs. 3.1.11 and 3.1.12.

Now we are ready to express the zeroth order OPE coefficients in the compact form

Result 3.4.2 (OPE coefficients (C0)b
ϕk a

)

Using the notation introduced above, the zeroth order OPE coefficients take the compact
form

(C0)bϕk a(x) =


0 for g(a, b) > k

0 for g(a, b) + k = odd∑
A∈Iba(k)

∑
J

f ba[A] ·∆0[A]J · SJ(x̂) · rd otherwise

�� ��3.4.37

with6

∆0[A]J = s[A] · T [A]J
�� ��3.4.38

Remark: Here we also suppressed the magnetic quantum number of the spherical harmonic
SJM (x̂). As in the definition of the coupling tensor T [A]J , the corresponding number M can
always be uniquely retrieved from the elements of the multiset A.

6This function ∆0 : I → N, and also the functions ∆1, . . . to be defined below, should not be confused with
the Laplace operator ∆.
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Proof : Using the graphical notation of section 3.3, we may express the left representative Y0(ϕk, x)
by a sum over labeled trees with k leaves. If we take the matrix elements 〈vb| · |va〉 of this expression,
then all contributions to this sum which do not transform |va〉 into |vb〉 vanish due to orthogonality
of the basis. Thus, the labels lq1, . . . , l

q
k of the k leaves have to satisfy b = a +

∑k
i=1 elqi

. Further,
recall that the operators corresponding to the leaves of the tree are normal ordered, so the order of
the labelings does not matter. In other words, we obtain the same result for all permutations of the
leaves. So instead of summing over all possible tress satisfying the mentioned property, we might as
well restrict the sum to such trees that can not be transformed into one another by permutations
of the leaves and multiply by a symmetry factor of the respective tree. These arguments imply the
equation

(C0)b
ϕka(x) = 〈vb| :

x

: |va〉 =
∑

A∈Ib
a(k)

〈vb| :
x

l
q
1 l

q
2 l

q
k

: |va〉 · s[A]

,
�� ��3.4.39

since the elements of the multisets in Ib
a(k) satisfy the desired property, since the order of the entries

in a multiset does not matter and since the factor s[A] was defined to be the mentioned symmetry
factor of the diagram. We found in proposition 3 that the set Ib

a(k) is empty for g(a, b) > k or
g(a, b) + k = odd, which implies (C0)b

ϕk a(x) = 0 in those cases just as we have claimed in the result.
Now it remains to translate these diagrams into explicit formulae using the rules of section 3.3.

To begin with, the action of the ladder operators associated to the leaves of the tree on the vector
|va〉 gives a numerical prefactor, which by definition 3.10 is denoted by f b

a[A]. Further, for each leaf
we obtain a spherical harmonic whose indices are determined by the label of the leaf. “Coupling” of
these spherical harmonics, i.e. a decomposition into irreducible parts, yields a factor

∑
J T [A]JSJ(x̂).

It remains to determine the power of r, which by definition is just d = |b| − |a| − k/2, so we indeed
arrive at eq. 3.4.37.

With this result at hand, it is an easy task to find the

Result 3.4.3 (OPE coefficients (C1)b
ϕ a)

Using the right inverse ∆−1 to solve the differential equation 3.4.2, one obtains

(C1)bϕ a(x) =


0 for g(a, b) > 5
0 for g(a, b) = even∑
A∈Iba(5)

∑
J

f ba[A] · SJ(x̂) · rd∆1[A, r]J otherwise

�� ��3.4.40

with
∆1[A, r]J = s[A] · T [A]JD[dA, J, r]

�� ��3.4.41

and where D(d, r, J) is defined as in eq. 3.4.16.

Proof : The differential equation to be solved is

∆(C1)b
ϕa(x) = (C0)b

ϕ5b(x) .
�� ��3.4.42

Inserting the concrete form of the zeroth order coefficient, we arrive at the equation

∆(C1)b
ϕa(x) =


0 for g(a, b) > 5
0 for g(a, b) + 5 = odd∑
A∈Ib

a(5)

∑
J

f b
a[A] ·∆0[A]J · SJ(x̂) · rd otherwise

�� ��3.4.43

Application of the operator ∆−1 to the right side of the equation yields (C1)b
ϕa(x) = 0 for g(a, b) > 5

or g(a, b) = even and otherwise
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(C1)b
ϕa(x) =

∑
A∈Ib

a(5)

∑
J

f b
a[A]∆0[A]J · SJ(x̂) · rdD(d, J, r) .

�� ��3.4.44

Note that in the case at hand d = dA, so the result is confirmed.

In summary, we have found explicit expressions for all OPE coefficients of the type (C1)bϕa. Some
particularly simple coefficients are tabulated in appendix A. As an illustration of how to obtain
these expressions from result 3.4.3, we close this section with an example computation.

Example : We want to determine the OPE coefficient (C1)ϕp+2∂l′ϕ
ϕ ϕp with p, l′ 6= 0. As a first step, let us

determine the set Iϕp+2∂l′ϕ
ϕp (5). The constraint 〈vb| :

∏
lqi∈A blqi

: |va〉 6= 0 in the definition of the set
Ib

a leaves only one allowed multiset, namely

Iϕp+2∂l′ϕ
ϕp (5) =

{
A = H+(00),+(00),+(00),−(00),+(l′m′)I

}
.

�� ��3.4.45

The numerical prefactor f b
a[A] is in this case

fϕp+2∂l′ϕ
ϕp [A = H+(00),+(00),+(00),−(00),+(l′m′)I] = p

�� ��3.4.46

because the creation operators do not yield any prefactor, while the action of the annihilation operator
gives the factor p, i.e. b†00ϕ

p = ϕ(p+1) but b00ϕ
p = pϕ(p−1). Now we come to ∆0[A, r]J . First, the

symmetry factor is

s[A = H+(00),+(00),+(00),−(00),+(l′m′)I] = 5 · 4 = 20 .
�� ��3.4.47

Recall that the product T [A]JSJ(x̂) resulted from the coupling of five spherical harmonics whose indices
are the elements of A. Since S00(x̂) = 1, we only have one non-trivial spherical harmonic, Sl′m′(x̂), in
the case at hand. Thus

T [A = H+(00),+(00),+(00),−(00),+(l′m′)I]JSJ(x̂) = Sl′m′(x̂) .
�� ��3.4.48

The value of d = −sd (C1)ϕp+2∂l′ϕ
ϕ ϕp of the coefficient is

d = |ϕp+2∂l′ϕ| − |ϕp| − |ϕ| = l′ + 1 .
�� ��3.4.49

Finally, we find

D[dA = d = l′ + 1, J = l′, r] =
1

2(l′ + 1)
,

�� ��3.4.50

which gives the total result (see also appendix A)

(C1)ϕp+2∂lϕ
ϕ ϕp = 10p

∑
m

Slm(x̂)rl+1 · 1
l + 1

.
�� ��3.4.51
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3.4.2. Construction of Y1(ϕ
2, x)

According to our algorithm of section 3.2, it is now possible to construct all first order left
representatives Y1(|va〉, x) (and thus the complete quantum field theory at first perturbation
order) just from Y1(ϕ, x) by application of the associativity condition. In this section we take
the first step into this direction by constructing the left representative Y1(ϕ2, x). As we will
see in the following, this task turns out to be comparably simple, as no ”renormalization” is
needed at this stage in our toy model. More serious calculational effort will be needed in the
next section.

The relation between Y1(ϕ, x), which is known from the previous section, and the desired left
representative Y1(ϕ2, x), is

Y1(ϕ2, x) = lim
y→x

Y0(ϕ, y)Y1(ϕ, x) + Y1(ϕ, y)Y0(ϕ, x)−
|e|≤ϕ2∑
e

(C1)eϕ ,ϕ(x− y)Y0(|ve〉, x)

 ,�� ��3.4.52
which is just eq. 3.2.13 at first order expressed in terms of left representatives. Let us take
a closer look at the counterterms, i.e. the expressions subtracted on the right side. The fact
that (C1)bϕ a vanishes for g(a, b) =even together with the restriction |e| ≤ |ϕ2| suggests that

only the terms including (C1)1ϕϕ(x− y) or (C1)ϕ
2

ϕϕ(x− y) survive the limit. Due to the specific
form of Y1(ϕ, x) from the previous section, however, these matrix elements, or OPE coefficients,
both vanish, see eq. 3.4.40 (the set Iba(5) is empty in those cases) or table A. The absence of
counterterms from eq. 3.4.52 implies that the remaining expressions are finite, so we may simply
perform the limit and write

Y1(ϕ2, x) = Y0(ϕ, x)Y1(ϕ, x) + Y1(ϕ, x)Y0(ϕ, x).
�� ��3.4.53

In our diagrammatic notation of section 3.3 this equation takes the form

Y1(ϕ2, x) =

x x

+ �� ��3.4.54

where again summation over all combinations of labels for the leaves is understood.
Let us investigate this expression more closely and try to understand why no counterterms

are necessary. As could be seen in section 3.2.2, infinities occur whenever infinite sums over a
product of the form blmb†lm are performed, i.e., diagrammatically speaking, whenever the indices
of two leaves are contracted, with the leave on the right corresponding to a creation operator.
In the free theory computations we then made use of the identity blmb†lm = b†lmblm + id, which
follows from the commutation relation 3.1.14, to separate these expressions into a normal
ordered (finite) part and a divergent part. We then saw that this divergent part precisely
cancels with the counterterms, which suggests that the renormalization procedure is equivalent
to normal ordering. Obviously, it would be convenient to carry over this approach to the first
order calculations and to include also the sixth operator in the above diagrams into the normal
ordering process. However, since no counterterms are present in eq. 3.4.53, it is not clear what
to make of the terms which are neglected if we demand normal ordering. As it turns out, the
infinite parts of these extra terms cancel out, but there is a finite remainder, which we call
(R1)ϕ2 . Introducing the
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Definition 3.11 (Additional grading of left representatives)

By Yn(|va〉, x; d, q) we denote the contribution to Yn(|va〉, x; d) comprised of q ∈ N annihi-
lation operators.

we obtain

Result 3.4.4 (Left representative Y1(ϕ2, x) in normal ordered form)

Using the left representative Y1(ϕ, x) given in the previous section, one obtains

Y1(ϕ2, x) = : Y1(ϕ, x)Y0(ϕ, x) : + : Y0(ϕ, x)Y1(ϕ, x) : +(R1)ϕ2(x)
=2 : Y1(ϕ, x)Y0(ϕ, x) : +(R1)ϕ2(x) = 2 : Y0(ϕ, x)Y1(ϕ, x) : +(R1)ϕ2(x)

�� ��3.4.55

with (R1)ϕ2(x) ∈ Y(x) given by

(R1)ϕ2(x) := 5
4∑
q=0

∞∑
d=−∞

∞∑
j=0

rd+1Sjm(x̂)Y0(ϕ4, x; d, q)jm(R1)ϕ2(d, j, q, r)
�� ��3.4.56

where

(R1)ϕ2(d, j, q ∈ {0, 4}, r) = 0 ,
�� ��3.4.57

(R1)ϕ2(d, j, q ∈ {1, 3}, r) :=
|d+2|−1∑
l=0


l+j∑

J=|l−j|
denom.6=0

〈jl00|J0〉2

(l − |d+ 2|)(l − |d+ 2|+ 1)− J(J + 1)

+ sign(d+ 2)
(
j l |d+ 2| − 1− l
0 0 0

)
log r

}
�� ��3.4.58

and

(R1)ϕ2(d, j, q = 2, r) := R(q=2)(d, j, r) + sign(d+ 2) log r
|d+2|−1∑
l=0

(
j l |d+ 2| − 1− l
0 0 0

)
.�� ��3.4.59

Here R(q=2)(d, j, r) is a finite, real valued function defined below in eq. G.1.22.

By sign(x) we denote the sign function

sign(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

.
�� ��3.4.60

Proof : As mentioned above, we want to exploit the commutation relations of the ladder operators
to bring the operators in eq. 3.4.54 into normal order. This is trivial, unless we have to switch the
order of a pair of the form blmb†lm. Since the operators associated to the left representative Y1(ϕ, x)
are already normal ordered (see section 3.4.1), only the two diagrams
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x x

+

�� ��3.4.61

contain expressions of this kind (recall from chapter 3.3 that the arrows denote contraction). Here
we have to apply blmb†lm = b†lmblm + id and obtain in addition to the normal ordered products
a sum where the two contracted operators are replaced by the identity. In diagrams, this may be
written as (recall that dashed lines denote replacement of the corresponding ladder operators with
the identity)

x x

+
x

= :
x

: + :
x x

: +5 +5

�� ��3.4.62
This formula is exactly equivalent to the first line of eq. 3.4.55 if we define (R1)ϕ2 to be equal to the
two diagrams including the dashed contractions. The second line of eq. 3.4.55 simply follows from
the fact that the order of ladder operators inside normal ordering signs does not matter, so the two
normal ordered diagrams in the equation above are in fact equal. The equation above may also be
written in terms of the left representatives as

Y0(ϕ, x)Y1(ϕ, x) + Y1(ϕ, x)Y0(ϕ, x) = : Y0(ϕ, x)Y1(ϕ, x) : + : Y1(ϕ, x)Y0(ϕ, x) :

+ Y0(ϕ, x)Y1(ϕ, x) + Y1(ϕ, x)Y0(ϕ, x)

�� ��3.4.63

where the line connecting the left representatives denotes contraction:

Definition 3.12 (Contraction of left representatives)

The commutators

[
Y−0 (ϕ, x),Yn(|va〉, y)

]
= Y0(ϕ, x)Yn(|va〉, y)

�� ��3.4.64

and

[
Yn(|va〉, y),Y+

0 (ϕ, x)
]

= Yn(|va〉, y)Y0(ϕ, x)
�� ��3.4.65

are called “contractions” of the left representatives Y0(ϕ, x) and Yn(|va〉, y), where Y±0 (ϕ, x) is the
part of Y0(ϕ, x) containing only creation (+) or only annihilation (−) operators.

It remains to determine (R1)ϕ2 . This rather involved computation can be found in appendix G.

To sum up the results of the above discussion, we have most importantly verified that in ac-
cordance with eq. 3.4.53 no subtraction of counterterms is needed in order to cure possible
divergences in the calculation of Y1(ϕ2, x). Further we have succeeded in writing Y1(ϕ2, x)
purely in terms of normal ordered expressions. As we will see in the following, this is partic-
ularly helpful in the calculation of matrix elements of this left representative, since no infinite
sums have to be performed.

We conclude this section with explicit results for OPE coefficients obtained from the left
representative Y1(ϕ2, x) by taking the according matrix elements. Again it is helpful to introduce
some additional notation in order to keep equations short.
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Definition 3.13 (Partitions of multisets)

By Pi,j(A) we denote the set of partitions of any multiset A of cardinality i + j into two
submultisets of cardinalty i and j respectively, whose sum is A, i.e.

Pi,j [A = Ha1, . . . , ai+jI] =
{

P1 = Han1 , . . . , aniI,P2 = Hani+1 , . . . , ani+jI
∣∣∣P1 ]P2 = A

}
�� ��3.4.66

Result 3.4.5 (OPE coefficients (C1)b
ϕ2 a)

The matrix elements of the left representative Y1(ϕ2, x) given in result 3.4.4 are

(C1)bϕ2 a(x) = 0 for g(a, b) > 6 or g(a, b) = odd or g(a, b) = 0
�� ��3.4.67

and otherwise

(C1)bϕ2 a(x) =2
∑

A∈Iba(6)

∑
P5,1[A]

∑
J,J1,J2

f ba[A] ∆1[P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) rd

+
∑

B∈Iba(4)

∑
J

f ba[B] Λ1[ϕ2,B, r]J · SJ(x̂) · rd
�� ��3.4.68

with

Λ1[ϕ2,A = Hlq1, . . . , l
q
4I, r]J := s[A] · T [A]J (R1)ϕ2 [dA − 3/2, J, q, r] .

�� ��3.4.69

Proof : The first two statements, i.e. vanishing of the OPE coefficient for g(a, b) > 6 and g(a, b) =odd,
follow simply from proposition 3. For the remaining values of g(a, b) we first note that

2〈vb| : Y1(ϕ, x)Y0(ϕ, x) : |va〉 =2〈vb| :

x

: |va〉

=2
∑

A∈Ib
a(6)

∑
P5,1[A]

〈vb| :

x

P2 P1

: |va〉 · s[P1] s[P2]

�� ��3.4.70

Here the second equality holds for the following reasons: For the matrix element not to vanish, the
labels of the six leaves above have to be in Ib

a(6) by definition, which explains the first sum on the
right side. Now we have to attach five of those labels to leaves entering the vertex, and one to the
leaf directly connected to the root. Therefore, we split the multiset A into two submultiset: The
multiset P1 of cardinality 5 and the multiset P2 of cardinality 1. The labels in P1 are then attached
to the five leaves entering the vertex in any order and we have to multiply by the symmetry factor
s[P1] in order to account for all the diagrams that may be obtained by permutations of those five
leaves. Analogously, we attach the one label in P2 to the remaining leaf and multiply by s[P2],
obtaining the right side of the equation above.

Now it remains to translate the diagram into a formula. Again the numerical factor obtained from
the action of the six ladder operators on |va〉 is denoted by f b

a[A]. Further, coupling of the five spher-
ical harmonics associated to the leaves entering the vertex gives a factor of

∑
J1
T [P1]J1SJ1(x̂). The

remaining leaf contributes one additional spherical harmonic, which we write as
∑

J2
T [P2]J2SJ2(x̂).

Coupling these two contributions then yields the factor∑
J,J1,J2

T [P1]J1T [P2]J2T [J1, J2]JSJ(x̂). The vertex in the diagram gives an additional factor
D[dP1 , J1, r] and the overall scaling degree is again by definition −d. In summary, we have found
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2〈vb| : Y1(ϕ, x)Y0(ϕ, x) : |va〉 =

2
∑

A∈Ib
a(6)

∑
P5,1[A]

f b
a[A]s[P1] s[P2]

∑
J,J1,J2

T [P1]J1T [P2]J2T [J1, J2]JSJ(x̂)D[dP1 , J1, r]rd
�� ��3.4.71

Recalling the definitions of ∆0[A]J and ∆1[A, r]J , we indeed verify the first line of eq. 3.4.68.
Now consider the contribution from the remainder term. Here we find

〈vb|(R1)ϕ2(x)|va〉 =
∑

J

(R1)ϕ2(d− 1, J, q, r)SJ(x̂) rd · 〈vb|Y0(ϕ4, x; d− 1, q)J |va〉

=
∑

B∈Ib
a(4)

∑
J

(R1)ϕ2(dB − 3/2, J, q, r)SJ(x̂) rd · f b
a[B] ∆0[B]J

�� ��3.4.72

where in the first equality eq. 3.4.56 was used. The second equality follows from result 3.4.3 and
from the dimensional analysis

d− 1 = −sd (C1)b
ϕ2 a − 1 = |b| − |a| − 2

�� ��3.4.73

and

dA = −sd (Ci)b
ϕa = |b| − |a| − 1/2 for A ∈ Ib

a(n)
�� ��3.4.74

This confirms eq. 3.4.68.
To finish the proof we have to show that the OPE coefficient vanishes for g(a, b) = 0, i.e. for

a = b. We start the computation in the first line of eq. 3.4.68 and want to determine the set
of multisets Ia

a (6). The condition a = a +
∑6

i=1 elqi
restricts the multisets in Ia

a (6) to the form
A = H+(l1m1),−(l1m1), . . . ,+(l3m3),−(l3m3)I. Hence, the submultisets are either of the form

P1 = H+(limi),−(limi),+(ljmj),−(ljmj),+(lkmk)I and P2 = H−(lkmk)I
�� ��3.4.75

or
P1 = H+(limi),−(limi),+(ljmj),−(ljmj),−(lkmk)I and P2 = H+(lkmk)I

�� ��3.4.76

with i, j, k ∈ {1, 2, 3}. For the first case, we obtain

∑
J,J1,J2

∆1[P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) = s[P1]
log r

2lk + 1
�� ��3.4.77

Here no spherical harmonics and coupling tensors appear, as we may simply apply the addition
theorem three times. Further we used the fact that

D[dP1 = lk, J1 = lk, r] =
log r

2lk + 1
.

�� ��3.4.78

Similarly, we find for the second type of decomposition, eq. 3.4.76, that

∑
J,J1,J2

∆1[P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) = −s[P1]
log r

2lk + 1
,

�� ��3.4.79

where again we applied the addition theorem of the spherical harmonics and where we used

D[dP1 = −lk − 1, J1 = lk, r] = − log r
2lk + 1

.
�� ��3.4.80

Thus, the contributions from the two decompositions of any multiset A ∈ Ib
a(6) cancel each other,

implying that the first line in eq. 3.4.68 vanishes.
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It remains to consider the contribution from the remainder term. Here the multisets B ∈ Ia
a (4) are

restricted to be of the form B = H+(l1m1),−(l1m1),+(l2m2),−(l2m2)I, which implies dB = −1/2
and J = 0. However, it follows from eqs. 3.4.59 and G.1.22 that

(R1)ϕ2(dB − 3/2 = −2, J = 0, r; q = 2) = 0
�� ��3.4.81

which follows from inspection of the summation limits in those expression. Therefore, we also have
Λ1[ϕ2,B, r]J = 0 for all B ∈ Ia

a (4), so the second line of eq. 3.4.68 vanishes as well. Hence, we have
found that (C1)a

ϕ a(x) = 0.

Again we compute a specific example OPE coefficient in order to illustrate the application of
result 3.4.5.

Example : Consider the coefficient (C1)ϕp

ϕ2 ϕp+3∂lϕ
for l 6= 0. We start with the determination of the

multisets in Iϕp

ϕp+3∂lϕ
(6). Again this set consists of only one element

Iϕp

ϕp+3∂lϕ
(6) = {A = H−(00),−(00),−(00),−(00),+(00),−(lm)I}

�� ��3.4.82

The numerical prefactor then becomes

fϕp

ϕp+3∂lϕ
[A] = (p+ 3)(p+ 2)(p+ 1)p =

(p+ 3)!
(p− 1)!

.
�� ��3.4.83

Since all zero entries in the coupling tensors T may be dropped, only the product T [−(lm)]JSJ(x̂) =
Slm(x̂) remains in the case at hand (equivalently, the coupling of S00 · · ·S00Slm = Slm). The multiset
A may be split into two submultisets of cardinality 5 and 1 in three different ways:

P1a = H−(00),−(00),−(00),+(00),−(lm)I P2a = H−(00)I
P1b = H−(00),−(00),−(00),−(00),−(lm)I P2b = H+(00)I

P1c = H−(00),−(00),−(00),−(00),+(00)I P2c = H−(lm)I
�� ��3.4.84

As the second multiset only contains one element, its symmetry factor s[P2] is always 1. For the other
multisets we obtain

s[P1a] = 20
�� ��3.4.85

s[P1b] = s[P1c] = 5 .
�� ��3.4.86

It remains to determine the factors

D[dP1a
= −l − 2, J = l, r] =

1
2(l + 1)

D[dP1b
= −l − 3, J = l, r] =

1
4l + 6)

D[dP1c = −2, J = 0, r] =
1
2

�� ��3.4.87�� ��3.4.88

and the power of r

d = |ϕp| − |ϕp+3∂lϕ| − |ϕ2| = −l − 3 .
�� ��3.4.89

This finishes the discussion of the contribution from the first line of eq. 3.4.68. In the second line we
find again only one allowed multiset

Iϕp

ϕp+3∂lϕ
(4) = {B = H−(00),−(00),−(00),−(lm)I} .

�� ��3.4.90
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Note, however, that all indices in this multiset correspond to annihiliation operators (i.e. they have a
negative sign), so we have to determine remainder terms of the form (R1)ϕ2(dB − 3/2, J = l, q = 4),
which vanish by eq. 3.4.57.
Putting all the pieces together (recall also the factor 2 in eq. 3.4.68), we arrive at the result

(C1)ϕp

ϕ2 ϕp+3∂lϕ
(x) =

(p+ 3)!
(p− 1)!

∑
m

Slm(x̂)r−l−3

(
5 +

5
2l + 3

+
20
l + 1

) �� ��3.4.91

in accordance with appendix A.

3.4.3. Construction of Y1(ϕ
3, x)

In the previous section we were able to perform the first iteration step at next to leading order,
i.e. we constructed Y1(ϕ2, x) out of Y1(ϕ, x) and Y0(ϕ, x), without the need to subtract any
counterterms, see eq. 3.4.52. The first true example of our analog of renormalization will be
encountered in the present section. The iteration step yielding Y1(ϕ3, x) is expressed by the
formula (see 3.2.15)

Y1(ϕ3, x) = lim
y→x

[
Y0(ϕ, x)Y1(ϕ2, y) + Y1(ϕ, x)Y0(ϕ2, y)− (C1)ϕ

3

ϕ2 ϕ
(x− y)Y0(ϕ3, x)

−(C0)ϕ
ϕ2 ϕ

(x− y)Y1(ϕ, x)− (C0)ϕ1m

ϕ2 ϕ
(x− y)Y1(ϕ1m, x)

]
.

�� ��3.4.92

Here the expressions (assuming x, y collinear and |x| > |y|)

(C1)ϕ
3

ϕ2 ϕ
(x− y) = 20 log |x− y| = 20

[
log |x|+ log

(
1− |y|
|x|

)] �� ��3.4.93

(C0)ϕ
ϕ2 ϕ

(x− y) =
2

|x− y|
�� ��3.4.94

are divergent in the limit y → x. Therefore in our analysis of the first two summands on the
right side of eq. 3.4.92 we have to find terms that precisely cancel these infinities, and the
remaining expressions should then be finite. This procedure might be interpreted as a sort
of renormalization of the products Y0(ϕ, x)Y1(ϕ2, y) and Y1(ϕ, x)Y0(ϕ2, y). Note that the two
counterterms have different divergent behavior: Polynomial and logarithmic. We have already
encountered polynomial counterterms in our constructions at zeroth order, and we will see in the
following that indeed the polynomial divergences of the present section are very closely related
to those of the free theory computations. The logarithmic counterterm, however, is a completely
new feature at first perturbation order, and it will turn out to be considerably more complicated
to find the corresponding expressions in eq. 3.4.92 canceling this term.

Our plan for this section is the following: As in previous calculations, it is the aim to write
Y1(ϕ3, x) as a normal ordered product of left representatives plus some finite remainder (R1)ϕ3 ,
simliar to eq. 3.4.55. Basically, the procedure is analogous to the Y1(ϕ2, x) case: We exploit the
commutation relations for the ladder operators, eq. 3.1.14, to bring all expressions into normal
order, picking up additional terms whenever we have to exchange the order of a creation and
annihilation operator with the same index. These additional terms include infinite sums, whose
divergent behavior has to be analyzed. In contrast to the previous section, we expect these
sums to be divergent in the limit y → x. This divergence should be cured by the subtraction
of the counterterms, see eq. 3.4.94. Hence, the above mentioned remainder (R1)ϕ3 is precisely
the difference of the additional terms we pick up in the process of bringing all expressions into
normal order, and the counterterms, where we take the limit y → x. The section is again con-
cluded by a discussion of the OPE coefficients obtained from Y1(ϕ3, x) by taking matrix elements.

To begin with, we present
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Result 3.4.6 (Left representative Y1(ϕ3, x) in normal ordered form)

Y1(ϕ3, x) = 3 : Y1(ϕ, x)Y0(ϕ2, x) : +3 : Y0(ϕ, x)(R1)ϕ2(x) : +(R1)ϕ3(x)
�� ��3.4.95

where

x y x y

+ +
x y

− log |x− y|Y0(ϕ3, x)
]

(R1)ϕ3(x) = 20 lim
y→x

[

= lim
y→x

[
Y0(ϕ, x)Y0(ϕ, y)Y1(ϕ, y) + Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y) + Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)

− 20 log |x− y|Y0(ϕ3, x)
]

�� ��3.4.96

Proof : Starting at eq. 3.4.92, we can bring Y1(ϕ3, x) into the desired form simply by applying the
results of the previous chapters, and without the need to perform any new calculations. This can
be seen from the following observations: First, we substitute eq. 3.4.55 for the left representative
Y1(ϕ2, x) into eq. 3.4.92, obtaining

Y1(ϕ3, x) = lim
y→x

[
Y0(ϕ, x) 2 : Y1(ϕ, y)Y0(ϕ, y) : +Y0(ϕ, x)(R1)ϕ2(y) + Y1(ϕ, x) : Y0(ϕ, y)Y0(ϕ, y) :

− 2
x− y

Y1(ϕ, x)− 20 log |x− y|Y0(ϕ3, x)− (C0)ϕ1m

ϕ2 ϕ(x− y)Y1(ϕ1m, x)
]
. �� ��3.4.97

Now let us try to bring the operators in the first line of this equation into normal order. For the
first term we find

2 lim
y→x

[
Y0(ϕ, x) : Y1(ϕ, y)Y0(ϕ, y) :

]
= 2 : Y1(ϕ, x)Y0(ϕ2, x) :

+2 lim
y→x

[
Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y) + Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y)

] �� ��3.4.98

where we have already performed the limit in the (finite) normal ordered term. Similarly, we may
write the last term in the first line of eq. 3.4.97 as

lim
y→x

[
Y1(ϕ, x) : Y0(ϕ2, y) :

]
= : Y1(ϕ, x)Y0(ϕ2, x) :

+ lim
y→x

[
2Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y) + Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)

]
�� ��3.4.99

Finally, remembering the definition of the remainder term (R1)ϕ2 , eq. G.1.1, the last remaining
term in the first line of eq. 3.4.97 may be put into the form

lim
x→y

[
Y0(ϕ, x)(R1)ϕ2(y)

]
= : Y0(ϕ, x)(R1)ϕ2(x) : + lim

y→x
Y0(ϕ, x)(R1)ϕ2(y)

= : Y0(ϕ, x)(R1)ϕ2(x) : + lim
y→x

[
Y0(ϕ, x)Y0(ϕ, y)Y1(ϕ, y) + Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y)

] �� ��3.4.100
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Now recall from our construction of the free theory left representatives, in particular from the
computation of Y0(ϕ2, x) in section 3.2.2, that

lim
y→x
Y0(ϕ, x)Y0(ϕ, y) = lim

y→x

1
x− y

.
�� ��3.4.101

which implies for the last summand in eq. 3.4.98

2 lim
y→x
Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y) = 2 lim

y→x

1
x− y

Y1(ϕ, y) .
�� ��3.4.102

A Taylor expansion of Y1(ϕ, y) around x shows that this contribution cancels with the polynomial
counterterms in the second line of eq. 3.4.92. Furthermore, we can write the sum of the remaining
expressions with one contraction as

2 lim
y→x

[
Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y) + Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)

]
= 2 : Y0(ϕ, x)(R1)ϕ2(x) :

�� ��3.4.103

where the definition of the remainder (R1)ϕ2 has been used. Thus, if we plug eqs. 3.4.98, 3.4.99
and 3.4.100 into eq. 3.4.97 and further use the two identities above, we end up with result 3.4.6 as
claimed.

The first two terms in eq. 3.4.95 are known, so it remains to find an explicit formula for the
new remainder term (R1)ϕ3 . Unfortunately, we have not been able to determine this operator
completely, but we have found the following partial results.
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Result 3.4.7 (The remainder operator (R1)ϕ3)

Let

(R1)ϕ3(x) =
3∑
q=0

∞∑
d=−∞

∞∑
j=0

rdSjm(x̂)Y0(ϕ3, x; d, q)jm(R1)ϕ3(d, j, q; r) .
�� ��3.4.104

Then

(R1)ϕ3(d, j, q = 0; r) = 20 log r

l+l′≤d∑
l,l′=0

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ d− l − l′
0 0 0

)2

− 1


+20

∑
J1,J2
M1,M2

 ∑
l,l′

l+l′≤d

+2
d∑
l=0

J1+d−l
2∑

l′=d+1−l

 〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
denom. 6=0

− 10
π

j∑
k=0

(j−2k+d)/2∑
l′=0

Γ(k + 1
2)Γ(j − k + 1

2)Γ(d+j−2k+1
2 − l′)Γ(d+j−2k

2 + 1)

Γ(k + 1)Γ(j − k + 1)Γ(d+j−2k
2 − l′ + 1)Γ(d+j−2k+3

2 )

× L5

[
1, d+ j − 2k + 5

2 , d− k + 3
2 , d+ j − k + 2, d+j−2k−l′

2 + 1, d+j−2k+l′+3
2

d+ j − 2k + 3
2 , d− k + 2, d+ j − k + 5

2 ,
d+j−2k−l′+3

2 , d+j−2k+l′

2 + 2

]
,�� ��3.4.105

and

(R1)ϕ3(−d− 3, j, q = 3; r) = −20 log r

l+l′≤d∑
l,l′=0

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ d− l − l′
0 0 0

)2

+ 1


+20

∑
J1,J2
M1,M2

 ∑
l,l′

l+l′≤d

+2
d∑
l=0

J1+d−l
2∑

l′=d+1−l

 〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
denom.6=0

− 10
π

j∑
k=0

(j−2k+d)/2∑
l′=0

Γ(k + 1
2)Γ(j − k + 1

2)Γ(d+j−2k+1
2 − l′)Γ(d+j−2k

2 + 1)

Γ(k + 1)Γ(j − k + 1)Γ(d+j−2k
2 − l′ + 1)Γ(d+j−2k+3

2 )

× L5

[
1, d+ j − 2k + 5

2 , d− k + 3
2 , d+ j − k + 2, d+j−2k−l′

2 + 1, d+j−2k+l′+3
2

d+ j − 2k + 3
2 , d− k + 2, d+ j − k + 5

2 ,
d+j−2k−l′+3

2 , d+j−2k+l′

2 + 2

]
, �� ��3.4.106

where L5 is the non divergent part of the hypergeometric series 6F5, see eq. C.7.

The derivation of this result can be found in appendix G. Remark: For d = j = 0 we obtain the
simple results

(R1)ϕ3(d = 0, j = 0, q = 0, r) = 0
�� ��3.4.107

(R1)ϕ3(d = −3, j = 0, q = 3, r) = −40 log r
�� ��3.4.108

This may be seen as follows: The second line in eqs. 3.4.105 and 3.4.106 does not give any
contribution in the case at hand, since for l = l′ = 0 the denominator in the summand would
vanish. Further, for L5, i.e. the finite part of the hypergemetric series, we find (for d = j = 0)
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lim
ε→0

6F5

[
1, 5

2 ,
3
2 , 2, 1,

3
2

3
2 , 2,

5
2 ,

3
2 , 2

; 1− ε

]
= lim

ε→0
2F1

[
1, 1
2

; 1− ε
]

= lim
ε→0

log ε
ε− 1

�� ��3.4.109

Since there is no finite contribution to this hypergeometric series, we have L5 = 0 in the case
at hand. Concerning the logarithmic contribution, we derive the results given above using
〈0000|00〉 = 1.

It remains to determine the operators (R1)ϕ3(x; q = 1) and (R1)ϕ3(x; q = 2). Unfortunately,
in this case we have neither been able to find a closed form expression, nor have we been able to
verify the cancellation of infinities. The additional difficulty here is due to the lack of relations
like d ≥ j or −d − 3 > j, which were a result of the fact that the three ladder operators in
(R1)ϕ3(x, q = 0) and (R1)ϕ3(x, q = 3) were either all creators, or all annihilators. Thus, we can
not use the simplifications discussed in appendix F.

The end of this section is again devoted to matrix elements of the left representative Y1(ϕ3, x),
i.e. to OPE coefficients of the form (C1)bϕ3a.

Result 3.4.8 (OPE coefficients (C1)b
ϕ3 a)

The matrix elements of the left representative Y1(ϕ3, x) given in result 3.4.6 are

(C1)bϕ3 a(x) = 0 for g(a, b) > 7 or g(a, b) = even
�� ��3.4.110

and

(C1)bϕ3 a(x) =3
∑

A∈Iba(7)

∑
P5,2[A]

∑
J,J1,J2

f ba[A] ∆1[P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) rd

+3
∑

B∈Iba(5)

∑
P4,1[B]

∑
J,J1,J2

f ba[B] Λ1[ϕ2,P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd

+
∑

C∈Iba(3)

∑
J

f ba[C] Λ1[ϕ3,C, r]J · SJ(x̂) · rd
�� ��3.4.111

for g(a, b) > 1, with

Λ1[ϕ3,A = Hlq1, l
q
2, l

q
3I]J := s[A] · T [A]J (R1)ϕ3 [dA − 1, J, q, r] .

�� ��3.4.112

Remark: The family of coefficients with g(a, b) = 1 is not considered here, since all these coeffi-
cients necessarily involve contributions from remainder terms (R1)ϕ3(x, q = 1) or (R1)ϕ3(x, q =
2), which are unknown as mentioned above.
Proof : The argumentation here is basically the same as in the previous section. Eq. 3.4.110 is just a

consequence of proposition 3. Eq. 3.4.111 may be derived analogously to eq. 3.4.68 of the previous
section, so we will discuss it only briefly. In the first line the only difference is that the submultiset
P2 now has cardinality 2. This is due to the fact that in the case at hand we have one additional
power of Y0(ϕ, x), so we sum over diagrams of the form

x

l
q
1 l

q
2 l

q
3 l

q
4 l

q
5 l

q
6 l

q
7

�� ��3.4.113

The additional leaf directly attached to the root is the cause of the additional element in P2. The
second line of the result accounts for the contribution from the product 3 : (R1)ϕ2(x)Y0(ϕ, x) :. In
total this product consists of 5 ladder operators, so we have to sum over all multisets B ∈ Ib

a(5). Then
these multisets are split into a submultiset of cardinality 4, which is associated to the contribution



62 CHAPTER 3. THE MODEL

Λ1 from the remainder operator, and a submultiset of cardinality 1, which is the argument of the
contribution ∆0 from the zeroth order term. Coupling all spherical harmonics, we obtain the second
line of eq. 3.4.111. The third line of that equation follows if we insert eq. 3.4.104 for the remainder
operator and use result 3.4.2 in order to determine the matrix elements of this expression.

3.4.4. Construction of Y1(ϕ
4, x)

Next in line is the left representative Y1(ϕ4, x), which can be determined from known expressions
by the formula (see 3.2.16)

Y1(ϕ4, x) = lim
y→x

[
Y0(ϕ, x)Y1(ϕ3, y) + Y1(ϕ, x)Y0(ϕ3, y)− (C1)ϕ

4

ϕ3 ϕ
(x− y)Y0(ϕ4, x)

−(C1)ϕ
2

ϕ3 ϕ
(x− y)Y0(ϕ2, x)− (C1)ϕϕ1m

ϕ3 ϕ
(x− y)Y0(ϕϕ1m, x)

−(C0)ϕ
2

ϕ3 ϕ
(x− y)Y1(ϕ2, x)− (C0)ϕϕ1m

ϕ3 ϕ
(x− y)Y1(ϕϕ1m, x)

]
.

�� ��3.4.114

The counterterms here take the values (see appendix A)

(C1)ϕ
4

ϕ3 ϕ
(x− y) = 60 log |x− y|

�� ��3.4.115

(C1)ϕ
2

ϕ3 ϕ
(x− y) = [(R1)ϕ3(x− y)]ϕ

2

ϕ

�� ��3.4.116

(C1)ϕϕ1m

ϕ3 ϕ
(x− y) = [(R1)ϕ3(x− y)]ϕϕ1m

ϕ

�� ��3.4.117

(C0)ϕ
2

ϕ3 ϕ
(x− y) =

3
|x− y|

�� ��3.4.118

Recall that we have not found results for the OPE coefficients (C1)bϕ3 a with g(a, b) = 1, so the
two coefficients in eqs. 3.4.116 and 3.4.117 are unknown. Clearly this is a problem if one wants
to determine Y1(ϕ4, x) completely. However, in this section our modest aim is to determine only
the contribution acting by more than two ladder operators. As we shall see below, this can be
achieved without knowledge of the mentioned counterterms.

By now the general procedure should be familiar: We exploit the commutation relations of
the ladder operators (and possibly results of the previous sections as shortcuts) to bring the
desired left representative into the form

Result 3.4.9 (Left representative Y1(ϕ4, x) in normal ordered form)

Y1(ϕ4, x) =4 : Y1(ϕ, x)Y0(ϕ3, x) : +6 : (R1)ϕ2(x)Y0(ϕ2, x) :
+4 : (R1)ϕ3(x)Y0(ϕ, x) : +(R1)ϕ4(x)

�� ��3.4.119

where

(R1)ϕ4(x) = lim
y→x

[
Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) + Y0(ϕ, x)(R1)ϕ3(y)

−(C1)ϕ
2

ϕ3 ϕ
(x− y)Y0(ϕ2, x)− (C1)ϕϕ1m

ϕ3 ϕ
(x− y)Y0(ϕϕ1m, x)

] �� ��3.4.120

Remark: According to the scheme outlined in section 3.2 all matrix elements of (R1)ϕ4(x) should
be finite. It should be noted that we have not been able to check this convergence in this thesis.
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Proof : The shortest way to this result is again to first substitute Y1(ϕ3, x) in the form of eq. 3.4.95
into eq. 3.4.114.

Y1(ϕ4, x) = lim
y→x

[
3Y0(ϕ, x) : Y0(ϕ2, y)Y1(ϕ, y) : +3Y0(ϕ, x) : Y0(ϕ, y)(R1)ϕ2(y) :

+Y0(ϕ, x)(R1)ϕ3(y) + Y1(ϕ, x)Y0(ϕ3, y)− (C1)ϕ4

ϕ3 ϕ(x− y)Y0(ϕ4, x)− (C1)ϕ2

ϕ3 ϕ(x− y)Y0(ϕ2, x)

−(C1)ϕϕ1m

ϕ3 ϕ (x− y)Y0(ϕϕ1m, x)− (C0)ϕ2

ϕ3 ϕ(x− y)Y1(ϕ2, x)− (C0)ϕϕ1m

ϕ3 ϕ (x− y)Y1(ϕϕ1m, x)
]
.�� ��3.4.121

Now let us bring all expressions with a positive sign in this equation into normal order:

3 lim
y→x

[
Y0(ϕ, x) : Y1(ϕ, y)Y0(ϕ2, y) :

]
= 3 : Y1(ϕ, x)Y0(ϕ3, x) :

+3 lim
y→x

[
: Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ2, y) : +2 : Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) :

]
�� ��3.4.122

lim
y→x

[
Y1(ϕ, x)Y0(ϕ3, y)

]
= : Y1(ϕ, x)Y0(ϕ3, x) : + lim

y→x

[
3 : Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ2, y) :

+3 : Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) : +Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y)
] �� ��3.4.123

3 lim
x→y

[
Y0(ϕ, x) : Y0(ϕ, y)(R1)ϕ2(y) :

]
= 3 : Y0(ϕ2, x)(R1)ϕ2(x) :

+3 lim
y→x

[
Y0(ϕ, x)Y0(ϕ, y)(R1)ϕ2(y)+ : Y0(ϕ, x)Y0(ϕ, y)(R1)ϕ2(y) :

]
�� ��3.4.124

lim
y→x

[
Y0(ϕ, x)(R1)ϕ3(y)

]
= : Y0(ϕ, x)(R1)ϕ3(x) : + lim

y→x
Y0(ϕ, x)(R1)ϕ3(y)

�� ��3.4.125

Many of the contracted operator products in these equations have already been analysed in the
previous chapters. To begin with, recall from 3.4.101

lim
y→x
Y0(ϕ, x)Y0(ϕ, y) = lim

y→x

1
x− y

.
�� ��3.4.126

which appears in eq. 3.4.122 and eq. 3.4.124. With the definitions of (R1)ϕ2 and Y1(ϕ2, x), see eqs.
G.1.1 and 3.4.55, it follows that

3 lim
y→x

[
2 : Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) : +Y0(ϕ, x)Y0(ϕ, y)(R1)ϕ2(y)

]
= lim

y→x

(
6 : Y1(ϕ, y)Y0(ϕ, y) : +3(R1)ϕ2(y)

) 1
x− y

= lim
y→x

3
x− y

Y1(ϕ2, y) ,

�� ��3.4.127

which cancels with the polynomial counterterms in the last line of eq. 3.4.114 after a Taylor expansion
in y around x. Further we find for the sum of the products with one contraction in eqs. 3.4.122 and
3.4.123

3 lim
y→x

[
: Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ2, y) : + : Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ2, y) :

]
= 3 : Y0(ϕ2, x)(R1)ϕ2(x) :�� ��3.4.128
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where we again applied the results of section 3.4.2. Remembering the definition of (R1)ϕ3 , 3.4.96,
we find for the following expressions from eqs. 3.4.123 and 3.4.124

3 lim
y→x

[
: Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) : + : Y0(ϕ, x)Y0(ϕ, y)(R1)ϕ2(y) :

]
= 3 : Y0(ϕ, x)(R1)ϕ3(x) : +60Y0(ϕ4, x) lim

y→x
log |x− y| .

�� ��3.4.129

Here the divergence cancels with the logarithmic counterterm 3.4.115. We have now dealt with all
divergent expressions in eqs. 3.4.122- 3.4.125, except for the products including three contractions
in eq. 3.4.123 and the contraction with the remainder term (R1)ϕ3 in eq. 3.4.125 (which is essen-
tially also a threefold contraction, since (R1)ϕ3 itself includes two contractions). Further, the only
remaining counterterms are the ones in the second line of eq. 3.4.114. Thus, we have found

(R1)ϕ4(x) = lim
y→x

[
Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) + Y0(ϕ, x)(R1)ϕ3(y)

−(C1)ϕ2

ϕ3 ϕ(x− y)Y0(ϕ2, x)− (C1)ϕϕ1m

ϕ3 ϕ (x− y)Y0(ϕϕ1m, x)
] �� ��3.4.130

and we may verify eq. 3.4.119 by insertion of the above results into eq. 3.4.121.

Although we do not determine the concrete form of the new remainder term (R1)ϕ4 in this
thesis, results for a wide class of OPE coefficients (C1)bϕ4 a can be obtained. Namely

Result 3.4.10 (OPE coefficients (C1)b
ϕ4 a)

The matrix elements of the left representative Y1(ϕ4, x) presented in result 3.4.9 are

(C1)bϕ4 a(x) = 0 for g(a, b) > 8 or g(a, b) = odd
�� ��3.4.131

and

(C1)bϕ4 a(x) =4
∑

A∈Iba(8)

∑
P5,3[A]

∑
J,J1,J2

f ba[A] ∆1[P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) rd

+6
∑

B∈Iba(6)

∑
P4,2[B]

∑
J,J1,J2

f ba[B] Λ1[ϕ2,P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd

+4
∑

C∈Iba(4)

∑
P3,1[C]

∑
J,J1,J2

f ba[C] Λ1[ϕ3,P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd�� ��3.4.132

for g(a, b) > 2.

Remark: The remaining classes of coefficients, namely (C1)bϕ4 b with g(a, b) = 2 and g(a, b) = 0,
include contributions from (R1)ϕ4 and are thus not treated here. Otherwise the derivation of
the above result is analogous to previous sections, so we do not bother to give a “proof” here.

3.4.5. Construction of Y1(ϕ
5, x)

The last left representative at first perturbation order to be discussed in this thesis is Y1(ϕ5, x).
This is the final step in our algorithm before we can proceed to second order by the field equation.
The general outline of this section is similar to the previous ones. As always, our starting point
is the expression of Y1(ϕ5, x) in terms of known left representatives,
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Y1(ϕ5, x) = lim
y→x

[
Y0(ϕ, x)Y1(ϕ4, y) + Y1(ϕ, x)Y0(ϕ4, y)− (C1)ϕ

5

ϕ4 ϕ
(x− y)Y0(ϕ5, x)

−(C0)ϕ
3

ϕ4 ϕ
(x− y)Y1(ϕ3, x)− (C0)ϕ

2ϕ1m

ϕ4 ϕ
(x− y)Y1((ϕ2ϕ1m), x)

−(C1)ϕ
3

ϕ4 ϕ
(x− y)Y0(ϕ3, x)− (C1)ϕ

2ϕ1m

ϕ4 ϕ
(x− y)Y0((ϕ2ϕ1m), x)

−(C1)ϕ
ϕ4 ϕ

(x− y)Y0(ϕ, x)
]

�� ��3.4.133

which is a consequence of our consistency condition. It should be remarked that in the last line
of this equation no counerterms of the form (C1)ϕlm

ϕ4 ϕ
with l 6= 0 appear, because this coefficient is

zero according to the results of the previous section (since here g(a, b) =odd). The counterterms
in the above equation take the values

(C1)ϕ
5

ϕ4 ϕ
(x− y) = 120 log |x− y|

�� ��3.4.134

(C0)ϕ
3

ϕ4 ϕ
(x− y) =

4
|x− y|

�� ��3.4.135

(C1)ϕ
3

ϕ4 ϕ
(x− y) = 4(C1)ϕ

2

ϕ3 ϕ
(x− y) + [(R1)ϕ4(x− y)]ϕ

3

ϕ

�� ��3.4.136

(C1)ϕ
2ϕ1m

ϕ4 ϕ
(x− y) = 4

(
(C1)ϕ

2

ϕ3 ϕ
(x− y) · |x− y|S1m(x̂) + (C1)ϕϕ1m

ϕ3 ϕ
(x− y)

)
+4(C1)ϕ

2ϕ1m

ϕ3 1
(x− y) · 1

|x− y|
+ [(R1)ϕ4(x− y)]ϕ

2ϕ1m
ϕ

�� ��3.4.137

(C1)ϕ
ϕ4 ϕ

(x− y) = [(R1)ϕ4 ]ϕϕ
�� ��3.4.138

The above relation between the coefficients (C1)ϕ
3

ϕ4 ϕ
and (C1)ϕ

2

ϕ3 ϕ
may be derived as follows:

The sets Iϕ
2

ϕ (7) and Iϕ
2

ϕ (5) are empty, so the first two lines in eq. 3.4.111 do not give any
contribution to (C1)ϕ

2

ϕ3 ϕ
. Thus, the only contribution comes from the matrix element of the

remainder term (R1)ϕ3 , i.e.

(C1)ϕ
2

ϕ3 ϕ
(x) = [(R1)ϕ3(x)]ϕ

2

ϕ .
�� ��3.4.139

Now let us come to the coefficient (C1)ϕ
3

ϕ4 ϕ
. Here the first two lines of eq. 3.4.132 vanish, because

the sets Iϕ
3

ϕ (8) and Iϕ
3

ϕ (6) are empty as well. Therefore, the coefficient at hand contains the
following contributions:

(C1)ϕ
3

ϕ4 ϕ
(x) =〈ϕ3|4 : (R1)ϕ3(x)Y0(ϕ, x) : |ϕ〉+ 〈ϕ3|(R1)ϕ4(x)|ϕ〉

=4[(R1)ϕ3(x)]ϕ
3

1 · (C0)1ϕϕ(x) + 4[(R1)ϕ3(x)]ϕ
2

ϕ · (C0)ϕ
3

ϕϕ2(x) + [(R1)ϕ4(x)]ϕ
3

ϕ

=4[(R1)ϕ3(x)]ϕ
2

ϕ + [(R1)ϕ4(x)]ϕ
3

ϕ = 4(C1)ϕ
2

ϕ3 ϕ
(x) + [(R1)ϕ4(x)]ϕ

3

ϕ �� ��3.4.140

In the second line we decomposed the left representative Y0(ϕ, x) into a creation and an anni-
hilation part. In addition, the results (C0)ϕ

3

ϕϕ2(x) = 1 and [(R1)ϕ3(x)]ϕ
3

1 = 0 from the previous
sections were applied. The final equality then follows from eq. 3.4.139 and confirms eq. 3.4.136.
Eq. 3.4.137 was derived in a similar manner.

The strategy is again to write Y1(ϕ5, x) as a sum of some known normal ordered (and thus
finite) expressions and an additional remainder term (R1)ϕ5 . The computation of this remainder
term is the main effort that goes into the construction of the desired left representative.
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Result 3.4.11 (Left representative Y1(ϕ5, x) in normal ordered form)

Y1(ϕ5, x) =5 : Y1(ϕ, x)Y0(ϕ4, x) : +10 : (R1)ϕ2(x)Y0(ϕ3, x) : +10 : (R1)ϕ3(x)Y0(ϕ2, x) :
+5 : (R1)ϕ4(x)Y0(ϕ, x) : +(R1)ϕ5(x) �� ��3.4.141

where

(R1)ϕ5(x) =

lim
y→x

[
Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) + Y0(ϕ, x)(R1)ϕ4(y)− (C1)ϕ

ϕ4 ϕ
(x− y)Y0(ϕ, x)

]
�� ��3.4.142

Remark: Again, we have not been able to verify convergence of this limit explicitly. However,
our renormalization procedure implies

Result 3.4.12 (Constraints on remainder terms)

For the consistency condition 3.2.16 to hold, it is necessary that

[(R1)ϕ4(x)]ϕ
3

ϕ = 0
�� ��3.4.143

and
[(R1)ϕ4(x)]ϕ

2ϕ1m
ϕ = −160 · S1m(x̂) · (log r + c)

�� ��3.4.144

with c ∈ C.

Proof of results 3.4.11 and 3.4.12 : Insertion of Y1(ϕ4, x) in the form 3.4.119 into our equation
for Y1(ϕ5, x) yields

Y1(ϕ5, x) = lim
y→x

[
4Y0(ϕ, x) : Y1(ϕ, y)Y0(ϕ3, y) : +6Y0(ϕ, x) : (R1)ϕ2(y)Y0(ϕ2, y) :

+4Y0(ϕ, x) : (R1)ϕ3(y)Y0(ϕ, y) : +Y0(ϕ, x)(R1)ϕ4(y) + Y1(ϕ, x)Y0(ϕ4, y)− “counterterms”
]�� ��3.4.145

The next step is to bring these expressions into normal order and to keep track of the additional
terms generated in the process. To be begin with, we pick up the additional expressions

lim
y→x

[
4 : Y0(ϕ, x)Y1(ϕ, y)Y0(ϕ3, y) : +4 : Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ3, y) :

]
= 4 : Y0(ϕ3, x)(R1)ϕ2(x) :�� ��3.4.146

from normal ordering of the first and the last product in eq. 3.4.145. Further, the contractions

4 lim
y→x

[
Y0(ϕ, x)Y0(ϕ, y)

(
3 : Y1(ϕ, y)Y0(ϕ2, y) : +3 : (R1)ϕ2(y)Y0(ϕ, y) : +(R1)ϕ3(y)

)]
= 4 lim

y→x

1
|x− y|

(
3 : Y1(ϕ, y)Y0(ϕ2, y) : +3 : (R1)ϕ2(y)Y0(ϕ, y) : +(R1)ϕ3(y)

)
= lim

y→x

4
|x− y|

Y1(ϕ3, y) ,�� ��3.4.147

result from normal ordering of the first three summands in eq. 3.4.145. The result cancels with
the polynomial counterterms in the second line of 3.4.133. The remaining expressions with two
contractions are
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6 lim
y→x

[
: Y0(ϕ, x)(R1)ϕ2(y)Y0(ϕ2, y) : + : Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ2, y) :

]
= 6 : (R1)ϕ3(x)Y0(ϕ2, x) : +120Y0(ϕ5, x) lim

y→x
log |x− y|

�� ��3.4.148

This divergence cancels with the logarithmic counterterm in eq. 3.4.134. Next consider the products
with three contractions

4 lim
y→x

[
: Y0(ϕ, x)(R1)ϕ3(y)Y0(ϕ, y) : + : Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y) :

]
=4 : (R1)ϕ4(x)Y0(ϕ, x) :

+4 lim
y→x

[
: Y0(ϕ2, x)Y0(ϕ, y) : (C1)ϕ2

ϕ3 ϕ(x− y) + (C1)ϕϕ1m

ϕ3 ϕ (x− y) : Y0(ϕϕ1m, x)Y0(ϕ, y) :
]

,�� ��3.4.149

which follows from the definition of (R1)ϕ4 , see eq. 3.4.120. Here we encounter the problem that
neither the OPE coefficients in the expression above, nor the counterterms in eqs. 3.4.136 and
3.4.137 are explicitly known. Thus it seems difficult to verify the cancellation of infinite terms
in the limit above. This is not really a problem, however, since Y1(ϕ5, x) is finite by its very
construction (see section 3.2). Thus, we may change our point of view and from now on assume
that the counterterms render the left representative finite, instead of trying to show this with the
help of results from previous sections. This yields the following constraints:

lim
y→x

[
4(C1)ϕ2

ϕ3 ϕ(x− y)− (C1)ϕ3

ϕ4 ϕ(x− y)
]

= finite
�� ��3.4.150

lim
y→x

[
4
(

(C1)ϕ2

ϕ3 ϕ(x− y) · |x− y|S1m(x̂) + (C1)ϕϕ1m

ϕ3 ϕ (x− y)
)
− (C1)ϕ2ϕ1m

ϕ4 ϕ (x− y)
]

= finite�� ��3.4.151

These conditions were derived as follows: We performed a Taylor expansion of the operators Y0(ϕ, y)
in eq. 3.4.149 around the point x and neglected all terms with positive scaling dimension in |x− y|,
since these terms vanish in the limit. Eq. 3.4.150 then follows if we demand that the resulting
expressions proportional to Y0(ϕ3, x) are rendered finite by the corresponding counterterm, eq.
3.4.136. Similarly, eq. 3.4.151 collects all terms multiplying the left representative Y0(ϕ2ϕ1m, x)
and requires that subtraction of the corresponding counterterm, eq. 3.4.137, yields a finite result.

Substitution of eq. 3.4.136 into the first condition above yields

lim
y→x

[
−[(R1)ϕ4(x− y)]ϕ

3

ϕ

]
= finite .

�� ��3.4.152

Since the OPE coefficient (C1)ϕ3

ϕ4 ϕ has scaling degree 1, this is also true for the contribution from

the remainder term, [(R1)ϕ4(x − y)]ϕ
3

ϕ . Thus, we conclude that [(R1)ϕ4(x − y)]ϕ
3

ϕ is of the form
(c1 log |x − y| + c2)/|x − y|, where c1, c2 ∈ C are constants. This fact together with the condition
above uniquely determines [(R1)ϕ4 ]ϕ

3

ϕ .

[(R1)ϕ4(x)]ϕ
3

ϕ = 0
�� ��3.4.153

This confirms the first half of result 3.4.12. Now let us come to eq. 3.4.151. Here substitution of eq.
3.4.137 leads to

lim
y→x

[
−[(R1)ϕ4(x− y)]ϕ

2ϕ1m
ϕ − 4[(R1)ϕ3(x− y)]ϕ

2ϕ1m

1

1
|x− y|

]
= finite .

�� ��3.4.154

Dimensional analysis of the expressions in brackets suggests that all summands are at most logarith-
mically divergent. Therefore, the above constraint is not as strong as the first constraint, in the sense
that it will not allow for a unique determination of [(R1)ϕ4 ]ϕ

2ϕ1m
ϕ . The term [(R1)ϕ3(x − y)]ϕ

2ϕ1m

1
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may be determined with the help of result 3.4.7. As mentioned above, we are only interested in the
logarithmic contribution to this matrix element. We find

[(R1)ϕ3(x)]ϕ
2ϕ1m

1 = 40 · |x|S1m(x̂) · log r + polynomial contribution
�� ��3.4.155

which yields upon insertion into the constraint above

[(R1)ϕ4(x)]ϕ
2ϕ1m

ϕ = −160 · S1m(x̂) · (log r + c)
�� ��3.4.156

where c ∈ C is some constant. Thus, we have confirmed result 3.4.12.
It remains to analyze the genuinely new contributions containing four contractions and the re-

maining counterterm

(R1)ϕ5(x) = lim
y→x

[
Y0(ϕ, x)(R1)ϕ4(y) + Y1(ϕ, x)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y)Y0(ϕ, y)− (C1)ϕ

ϕ4 ϕ(x− y)Y0(ϕ, x)
]

�� ��3.4.157

Restoring all the normal ordered products obtained in eqs. 3.4.146- 3.4.149, one verifies eq. 3.4.141.

The OPE coefficients (C1)bϕ5 a with g(a, b) > 3 can be determined without any knowledge of
(R1)ϕ4 and (R1)ϕ5 , so we will focus on these cases.

Result 3.4.13 (OPE coefficients (C1)b
ϕ5 a)

(C1)bϕ5 a(x) = 0 for g(a, b) > 9 or g(a, b) = even
�� ��3.4.158

and

(C1)bϕ5 a(x) =5
∑

A∈Iba(9)

∑
P5,4[A]

∑
J,J1,J2

f ba[A] ∆1[P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) rd

+10
∑

B∈Iba(7)

∑
P4,3[B]

∑
J,J1,J2

f ba[B] Λ1[ϕ2,P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd

+10
∑

C∈Iba(5)

∑
P3,2[C]

∑
J,J1,J2

f ba[C] Λ1[ϕ3,P1, r]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd�� ��3.4.159

for g(a, b) > 3.

The result may be derived from the form of the left representative Y1(ϕ5, x) in analog to the
previous sections.

3.4.6. Construction of Y2(ϕ, x)

According to the algorithm outlined in section 3.2 it is possible to construct the second order
left representatives Y2(ϕ, x), or equivalently the OPE coefficients (C2)bϕ a, from the knowledge
of the first order left representatives Y1(ϕ5, x). In the previous chapters we have presented the
iteration up to this point, so we are finally ready to exploit the field equation and proceed to
second perturbation order. This process will be carried out in the present chapter.

The central equation of this chapter is

∆Y2(ϕ, x) = Y1(ϕ5, x) =5 : Y1(ϕ, x)Y0(ϕ4, x) : +10 : (R1)ϕ2(x)Y0(ϕ3, x) :

+10 : (R1)ϕ3(x)Y0(ϕ2, x) : +5 : (R1)ϕ4(x)Y0(ϕ, x) : +(R1)ϕ5(x)�� ��3.4.160
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which follows from eq. 3.2.8. Since we do not know the concrete form of the operators (R1)ϕ4

and (R1)ϕ5 , we will only be able to analyze the contributions from the first three terms on the
right side of the above equation. As we have seen in the previous chapter, this still allows for
the computation of a large class of OPE coefficients (C2)bϕ a, namely those with g(a, b) > 3.
With the help of the equation above and the definition (here we implicitly assume that at n-th
perturbation order logarithms up to the power n may appear, which will be proven in section
3.5)

Definition 3.14 (Gradings by powers of the logarithm)

The gradings of the vertex operators Yn(|va〉, x) and the remainder terms (Rn)ϕk(x) by
scaling dimension d, “spin” J and powers of logarithms p are denoted by Yn(|va〉, x; d)pJ and
(Rn)ϕk(x, d)pJ , i.e.

Yn(|va〉, x) =
∞∑

d=−∞

∞∑
J=0

n∑
p=0

Yn(|va〉, x; d)pJ · r
d(log r)pSJ(x̂)

�� ��3.4.161

and

(Rn)ϕk(x) =
∞∑

d=−∞

∞∑
J=0

n∑
p=0

(Rn)ϕk(x, d)pJ · r
d(log r)pSJ(x̂) .

�� ��3.4.162

Furthermore, let

∆p
1[A]J :=

1
p!

dp

(d log r)p
∆1[A, r]J

∣∣∣
log r=0

�� ��3.4.163

and

Λp1[ϕk,A]J :=
1
p!

dp

(d log r)p
Λ1[ϕk,A, r]J

∣∣∣
log r=0

.
�� ��3.4.164

we obtain the following partial result

Result 3.4.14 (Left representative Y2(ϕ, x))

Using the operator ∆−1 to solve the differential equation 3.4.160, we find

Y2(ϕ, x) =5 : ∆−1
[
Y1(ϕ, x)Y0(ϕ4, x)

]
: +10 : ∆−1

[
(R1)ϕ2(x)Y0(ϕ3, x)

]
:

+10 : ∆−1
[
(R1)ϕ3(x)Y0(ϕ2, x)

]
: + terms including ≤ 3 ladder operators�� ��3.4.165

where the terms on the right side are concretely
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∆−1
[
Y1(ϕ, x)Y0(ϕ4, x)

]
=

∞∑
d1,d2=−∞

∑
J,J1,J2

1∑
p=0

Y1(ϕ, x; d1)pJ1
· Y0(ϕ4, x; d2)J2

T [J1, J2]J SJ(x̂) rd1+d2+2(log r)p ·D(p)[d1 + d2 + 2, J, r]
�� ��3.4.166

∆−1
[
(R1)ϕ2(x)Y0(ϕ3, x)

]
=

∞∑
d1,d2=−∞

∑
J,J1,J2

1∑
p=0

(R1)ϕ2(x; d1)pJ1
Y0(ϕ3, x; d2)J2

T [J1, J2]J SJ(x̂) rd1+d2+2(log r)p ·D(p)[d1 + d2 + 2, J, r]
�� ��3.4.167

∆−1
[
(R1)ϕ3(x)Y0(ϕ2, x)

]
=

∞∑
d1,d2=−∞

∑
J,J1,J2

1∑
p=0

(R1)ϕ3(x; d1)pJ1
Y0(ϕ2, x; d2)J2

T [J1, J2]J SJ(x̂) rd1+d2+2(log r)p ·D(p)[d1 + d2 + 2, J, r]
�� ��3.4.168

with D(q)(d, J, r) defined as in eq. E.8 (the special cases q = 0 and q = 1 can be found in eqs.
E.10 and E.11).

Proof : We simply have to use the gradings introduced above, the coupling rules of the spherical
harmonics as discussed in appendix D.2 and the solution to the resulting differential equation from
appendix E.

As in the previous chapter, this knowledge allows for the computation of the OPE coefficients
(C2)bϕ a with g(a, b) = 9 and g(a, b) = 7 in full generality, and for g(a, b) = 5 in the cases where
(R1)ϕ3 is known.

Result 3.4.15 (OPE coefficients (C2)b
ϕ a)

The matrix elements of the left representative Y2(ϕ, x) given in result 3.4.14 are

(C2)bϕ a(x) = 0 for g(a, b) > 9 or g(a, b) = even
�� ��3.4.169

and

(C2)bϕ a(x) =

[
5
∑

A∈Iba(9)

∑
P5,4[A]

∑
J,J1,J2

1∑
p=0

f ba[A] ∆p
1[P1]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) rd(log r)p

+10
∑

B∈Iba(7)

∑
P4,3[B]

∑
J,J1,J2

1∑
p=0

f ba[B] Λp1[ϕ2,P1]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd(log r)p

+10
∑

C∈Iba(5)

∑
P3,2[C]

∑
J,J1,J2

1∑
p=0

f ba[C] Λp1[ϕ3,P1]J1 ∆0[P2]J2 T [J1, J2]J SJ(x̂) · rd(log r)p
]
·D(p)[d, J, r]�� ��3.4.170

for g(a, b) > 3.

Proof : All we have to do is invert the Laplace operator on the OPE coefficients (C1)b
ϕ5 a, see re-

sult 3.4.13. This effectively means that we have to multiply logarithmic expressions by D(1) and
polynomial expressions by D(0). This procedure yields eq. 3.4.170.
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3.5 Some higher order results8

One aim of this thesis is to recognize patterns in our iterative scheme and in this way to
extrapolate our knowledge of low perturbation orders to gain some insight into higher orders.
The present section, which is dedicated to precisely this topic, is structured as follows: First we
extend our results for the simplest class of OPE coefficients to arbitrary order in perturbation
theory (still in the 3-dimensional model considered in the previous sections). Then the general
structure of more complicated higher order coefficients is discussed.

We begin our discussion of results for arbitrary orders with the analysis of vanishing OPE
coefficients. We would first like to show
Proposition 4

The left representative Yn(ϕk, x) contains products of no more than 4n+k ladder operators.

Proof : For the left representatives of the free theory this follows simply from eq. 3.1.27. Now suppose
we know the claim holds at order n − 1. Then we know that the left representative Yn−1(ϕ5, x) is
related to Yn(ϕ, x) by the field equation 3.2.5. Hence Yn(ϕ, x) contains at most 4(n−1)+5 = 4n+1
ladder operators just as we claimed. In order to construct the other n-th order left representatives
we use the consistency condition. Let us now assume the claim holds for Yn(ϕk−1, x). Then the
consistency condition yields

Yn(ϕk, x) = lim
y→x

[
n∑

i=0

Yi(ϕ, x)Yn−i(ϕk−1, y)−
n∑

i=1

(Ci)c
ϕk−1ϕ(x− y)Yn−i(|vc〉, x)

− (C0)ϕk−2

ϕk−1ϕ
(x− y)Yn(ϕk−2, x)− (C0)(ϕ

k−3ϕ1m)

ϕk−1ϕ
(x− y)Yn(ϕk−3ϕ1m, x)

] �� ��3.5.1

Since the left representatives up to Yn(ϕk−1, x) fulfill the proposition by assumption, it is easy to
check that the product of the left representatives on the right side of this equation contains at
most 4i + 1 + 4(n − i) + k − 1 = 4n + k ladder operators. Further, the OPE coefficient (Ci)c

ϕk−1ϕ

vanishes in the limit y → x if |vc〉 contains higher powers than ϕk. Thus, the left representative
Yn−i(|vc〉, x) multiplying this coefficient contains at most 4(n− i) +k ladder operators, where i > 0.
It remains to discuss the left representatives in the second line, which also fulfill the desired property
by assumption. Therefore, our claim also holds for Yn(ϕk, x) and by iteration of this procedure for
arbitrary left representatives.

In a similar manner, it can be shown that

Proposition 5

The left representative Yn(ϕk, x) contains only products of an even number of ladder oper-
ators if k is even, and an odd number of ladder operators if k is odd.

Proof : Again there is nothing to show at zeroth perturbation order due to eq. 3.1.27. Also, assuming
the claim holds at order n− 1, it holds for Yn(ϕ, x) if we use ∆−1 to solve the field equation. Thus,
it remains to check whether the consistency condition respects our proposition. Assuming the left
representatives up to Yn(ϕk−1, x) satisfy the proposition, we can deduce that both factors in the
product of the left representatives on the right side of eq. 3.5.1 satisfy our claim, so the product as
a whole does so as well. It remains to investigate the counterterms. Let for the moment k =even.
Then, since Yi(ϕk−1, x) acts by an odd number of ladder operators for i ≤ n, one can show (see
result 3.5.1) that the OPE coefficient (Ci)c

ϕk−1ϕ vanishes if g(|vc〉, ϕ) = even, i.e. if |vc〉 is constructed
from ϕ by an even number of ladder operators. In other words, for the coefficient not to vanish, |vc〉
has to be of the form ϕl1m1 · · ·ϕljmj where j is an even number. Therefore, the left representative
Yn−i(|vc〉, x), which multiplies this OPE coefficient, is obtained from Yn−i(ϕj , x) by taking the
appropriate derivatives, see eq. 3.1.27. For j =even this left representative also acts by an even

8As above, we use the operator ∆−1 to solve the field equation in this section. For other solutions the results
of this section might not hold.
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number of ladder operators due to our assumption, so the proposition does indeed hold. On the
other hand, if k =odd, one can follow the same argumentation to show that Yn−i(|vc〉, x) acts by an
odd number of ladder operators. As the left representatives in the second line of eq. 3.5.1 fulfill the
desired property by assumption, the iteration is complete.

As a simple conclusion from these propositions, we find

Result 3.5.1 (Vanishing OPE coefficients)

At arbitrary perturbation order n ∈ N and for any exponent k ∈ N the equation

(Cn)bϕk a(x) = 0 for g(a, b) > 4n+ k or g(a, b) + k = odd
�� ��3.5.2

holds.

Proof : By proposition 4 the left representative Yn(ϕk, x) acts by at most 4n + k ladder operators.
Further, g(a, b) > 4n+k means that more than 4n+k ladder operators are needed to transform |va〉
into |vb〉. Thus, the matrix element 〈vb|Yn(ϕk, x)|va〉 = (Cn)b

ϕk a(x) vanishes, due to orthonormality
of our basis.

Now we come to the second part of the result. Assume g(a, b) =even for the moment, i.e. we need
an even number of ladder operators to transform |va〉 into |vb〉. Then only the part of Yn(ϕk, x) that
acts by an even number of ladder operators contributes to the coefficient (Cn)b

ϕk a. Proposition 5
tells us that for k =odd, this left representative does not contain any contribution of this kind, so for
g(a, b)+k =odd the OPE coefficient under consideration vanishes. If on the other hand g(a, b) =odd,
we find by the same arguments that the coefficient vanishes for k =even, which finishes the proof.

This result implies that only the coefficients (Cn)b
ϕk a

with g(a, b) = 4n+ k− 2i where i ∈ N are
non-zero. The difficulty in the computation of these remaining coefficients depends strongly on
the value of g(a, b), as we have also seen in the constructions of the previous sections. This is
due to the fact that for g(a, b) = 4n + k − 2i we have to contract i pairs of ladder operators,
which essentially means that we have to solve an i-fold infinite sum. Thus, it is natural to first
consider the coefficients (Cn)b

ϕk a
with g(a, b) = 4n + k, since here no infinite sums appear. In

this simple case it is possible to give a closed form expression with the help of the following
generalizations of our notation:

Definition 3.15 (Generalized partitions)

Let P(a1,...,an) [A] be the set of partitions of any multiset A of cardinality a1 + . . .+ an into
n submultisets of cardinality a1, a2, . . . and an respectively, whose sum is A, i.e.

P(a1,...,an) [A] =
{

P1, . . . ,Pn

∣∣∣ card Pi = ai ∀i ∈ {1, . . . , n} and P1 ] · · · ]Pn = A
}

�� ��3.5.3
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Definition 3.16 (Notation for higher orders)

For n > 0 we define recursively

∆n[A = Hlq1, . . . , l
q
4n+1I, r]J :=

n1+...+n5=n−1∑
n1,...,n5

∑
P(4n1+1,...,4n5+1)[A]

n1∑
p1=0

· · ·
n5∑
p5=0

∑
J1,...,J5

× (log r)p1+...+p5D(p1+...+p5) [dA, J, r] ·∆p1
n1

[P1]J1 · · ·∆p5
n5

[P5]J5 T [J1, . . . , J5]J

�� ��3.5.4

where D(n)[dA, J, r] is defined as in eq. E.8 and with

∆p
n[A]J :=

1
p!

dp

(d log r)p
∆n[A, r]J

∣∣∣
log r=0

.
�� ��3.5.5

As in previous sections, let

∆0[A]J = ∆0
0[A]J = T [A]J s[A] .

�� ��3.5.6

Remark: This definition of ∆p
1 is consistent with the formula given in eq. 3.4.163. This can be

seen as follows: Note that for n = 1 the parameters n1, . . . , n5 are all restricted to be equal to
zero. Thus, eq. 3.5.4 takes the form

∆1[A = Hlq1, . . . , l
q
5I, r]J =

∑
P(1,1,1,1,1)[A]

D(0)[dA, J, r]T [A]J
�� ��3.5.7

where we also used the fact that ∆0[A = Hlqi I]J = δli,J according to the definition above. The sum
over partitions of A into submultisets of cardinality 1 is equivalent to a sum over permutations
of the elements of A. The right side of the above equation is invariant under such permutations
(the submultisets Pi do not appear) so we may replace this sum by a symmetry factor, which
by definition is just s[A]. Therefore, eq. 3.4.163 is equivalent to the definition above.

Result 3.5.2 (The simplest class of non-vanishing OPE coefficients)

For g(a, b) = 4n+ k, b = a+
∑4n+k

i=1 elqi and A = Hlqi , . . . , l
q
4n+kI the equation

(Cn)bϕk a(x) =f ba[A]rd
n1+...+nk=n∑
n1,...,nk=0

∑
P(4n1+1,...,4nk+1)[A]

∑
J

∑
J1,...,J5

× SJM (x̂)T [J1, . . . , Jk]J ·∆n1 [P1, r]J1 · · ·∆nk [Pk, r]Jk

�� ��3.5.8

holds.

Before we give the proof of this result, let us first present the following
Lemma 3

The counterterms appearing in the construction of an arbitrary left representative Yn(ϕk, x)
act by less than 4n+ k ladder operators.

Proof : We have already shown this in the proof of proposition 4. There we have argued that the
counterterms in the first line of eq. 3.5.1 contain at most products of 4(n− i) + k ladder operators
with i > 0. For the counterterms in the second line of eq. 3.5.1 the lemma holds trivially.

Now we are ready for the
Proof of result 3.5.2 : Let g(a, b) = 4n+ k. Then it follows from lemma 3 that we may write9

9Here we do not have to require normal ordering, since any contribution containing a product of contracted
ladder operators vanishes due to proposition 4.
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〈vb|Yn(ϕk, x)|va〉 = 〈vb|
n∑

i=0

Yn−i(ϕ, x)Yi(ϕk−1, x)|va〉 ,
�� ��3.5.9

since the matrix elements of all the counterterms in eq. 3.5.1 vanish, which also allows us to perform
the limit y → x. Repetition of this procedure yields

〈vb|Yn(ϕk, x)|va〉 = 〈vb|
n∑

i=0

i∑
j=0

Yn−i(ϕ, x)Yi−j(ϕ, x)Yj(ϕk−2, x)|va〉 .
�� ��3.5.10

This process can be further iterated to obtain the factorized form

〈vb|Yn(ϕk, x)|va〉 = 〈vb|
n∑

n1,...,nk=0
n1+...+nk=n

Yn1(ϕ, x) · · · Ynk
(ϕ, x)|va〉

�� ��3.5.11

Hence, we can reduce the problem to finding an expression for

〈vb|Yn(ϕ, x)|va〉 = (Cn)b
ϕ a(x)

�� ��3.5.12

with g(a, b) = 4n+1. Recall that we may use the field equation in order to determine this coefficient
from

(Cn)b
ϕ a(x) = ∆−1(Cn−1)b

ϕ5 a(x) =
n1+...+n5=n−1∑

n1,...,n5

∆−1〈vb|Yn1(ϕ, x) · · · Yn5(ϕ, x)|va〉 .
�� ��3.5.13

In the second step we again used the factorization property 3.5.11. With the help of this relation
we can establish an iteration: We start at n = 1 with the formula

(C1)b
ϕ a(x) = ∆−1(C0)b

ϕ5 a(x) = ∆−1〈vb|Y0(ϕ, x) · · · Y0(ϕ, x)|va〉
�� ��3.5.14

with g(a, b) = 5, which is familiar from section 3.4.1. There we have found the result

(C1)b
ϕ a(x) = f b

a[A]
∑

J

∆1[A, r]J SJ(x̂) rd
�� ��3.5.15

with A = Hlq1, . . . , l
q
5I and b = a+

∑5
i=1 elqi

(recall that for g(a, b) = n the set Ib
a(n) consists of only

one element). This is in accordance with eq. 3.5.8.
Now suppose eq. 3.5.8 holds for all OPE coefficients up to (Cn−1)b

ϕ a. Then the right side of eq.
3.5.13 can be written as

∆−1(Cn−1)b
ϕ5 a(x) =∆−1

(
f b

a[A]rdA−2
n1+...+n5=n−1∑

n1,...,n5

∑
P(4n1+1,...,4n5+1)[A]

∑
J

∑
J1,...,J5

n1∑
p1=0

· · ·
n5∑

p5=0

× (log r)p1+...+p5∆p1
n1

[P1]J1 · · ·∆p5
n5

[P5]J5 SJ(x̂)T [J1, . . . , J5]J
)

=f b
a[A]rdA

n1+...+n5=n−1∑
n1,...,n5

∑
P(4n1+1,...,4n5+1)[A]

∑
J

∑
J1,...,J5

n1∑
p1=0

· · ·
n5∑

p5=0

(log r)p1+...+p5

×D(p1+...+p5)[dA, J, r] ∆p1
n1

[P1]J1 · · ·∆p5
n5

[P5]J5 SJ(x̂)T [J1, . . . , J5]J

=f b
a[A]rdA

∑
J

SJ(x̂)∆n[A, r]J = (Cn)b
ϕ a(x) �� ��3.5.16

where g(a, b) = 4n+ 1 and A = Hlq1, . . . , l
q
4n+1I with b =

∑4n+1
i=1 elqi

. In the second step we used the
definition of D(n), eq. E.8, in order to solve the differential equation, and in the last line we used the
definition of ∆n, see eq. 3.5.4. Therefore, eq. 3.5.8 holds for all coefficients of the form (Cn)b

ϕ a with
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g(a, b) = 4n+ 1, and hence for all coefficients (Cn)b
ϕk a with g(a, b) = 4n+ k due to the factorization

property, eq. 3.5.11.

As mentioned above, the construction of OPE coefficients (Cn)b
ϕk a

becomes increasingly dif-
ficult for decreasing values of g(a, b), so it will be considerably more complicated to extend
the above result so smaller values of g(a, b). Thus, instead of trying to determine the concrete
form of these coefficients, we will spend the rest of this section discussing some general prop-
erties of arbitrary OPE coefficients, which follow from the patterns observed in our low order
computations.

Powers of logarithms

Here we want to prove the familiar claim

Proposition 6

At n-th order in perturbation theory, OPE coefficients (Cn)cab(x) contain at most the n-th
power of log r.

Proof : We prove this statement iteratively. At zeroth-order it is obviously true, as can be seen from
our explicit construction of the general left representative Y0(|va〉, x) of the free theory. Matrix
elements of this normal ordered operator contain only finite sums of polynomial terms, and hence
no logarithms. Now suppose the proposition is true at order n. Then according to our algorithm we
proceed to order n+1 by inverting the Laplace operator on (Cn)b

ϕ5 a. By assumption, this coefficient
contains no higher powers than (log r)n. Now according to eq. E.8, inversion of the Laplace operator
on such an expression can increase the power of log r at most by one, which implies that our claim also
holds for (Cn+1)b

ϕ a. The next step in our scheme is to determine (Cn+1)b
ϕ2 a using the consistency

condition

(Cn+1)b
ϕ2 a(x) = lim

y→x

[
n+1∑
i=0

(Ci)c
ϕ a(y)(Cn+1−i)b

ϕ c(x)− counterterms

] �� ��3.5.17

All expressions in this formula are known, i.e. only coefficients up to (Cn+1)b
ϕ a appear. Thus, we

know that each summand on its own fulfills our claim, so the only possible source for an additional
power of the logarithm is the infinite sum over c. Despite our lack of knowledge of the explicit form
of the coefficients in this sum, dimensional analysis10 allows us to put it into the form

(Ci)c
ϕ a(y)(Cn+1−i)b

ϕ c(x) ∝
∑

c

(
|y|
|x|

)|c|
· |x|

|b|−1/2

|y||a|+1/2
(log |x|)q(log |y|)p , p+ q ≤ n+ 1

�� ��3.5.18

From this estimate we can see that if the infinite sum over c is to produce additional powers of
logarithms, the argument of this logarithm will clearly be 1−|y|/|x|. However, in the limit y → x this
expression is divergent and thus has to be cured by subtraction of an appropriate counterterm. Let
us suppose the sum over c diverges as (log 1−|y|/|x|)r, then the counterterm has to be proportional
to (log |x|)p+q(log |x−y|)r|x||b|−|a|−1. After cancellation of the infinite parts, we are left with a finite
contribution of the form (log |x|)p+q+r|x||b|−|a|−1. Now recall that every counterterm is a product of
two OPE coefficients of order i and n+1−i respectively, which both satisfy our proposition. In other
words, the combined power of logarithms in this product may not exceed n+ 1. Therefore, for our
counterterm of the form (log |x|)p+q(log |x− y|)r|x||b|−|a|−1 we find the condition p+ q + r ≤ n+ 1,
and it follows that also the finite result will fulfill our proposition.

This argumentation can be straightforwardly generalized to show that all coefficients (Cn+1)b
ϕk a,

and thus also the general coefficient (Cn+1)c
a b, fulfill our proposition, which completes the iteration.

10Recall that the OPE coefficients obtained with ∆−1 are graded by dimension, i.e. sd (Ci)
c
ab = |a|+ |b| − |c|.
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3.6 Comparison to customary method

In the standard approach to quantum field theory OPE coefficients are determined via certain
renormalized Feynman integrals [13]. In this section an exemplary computation of this type for
a first order coefficient is presented. It will be shown that our method, i.e. the scheme outlined
above, does indeed yield an equivalent result.

We want to determine the three-point coefficient (C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) again in our three di-
mensional toy model with ϕ6 interaction. In the usual approach this means that we have to
perform the integrals

(C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) =

[
� −�

]
UV-renormalized

= − 120
24π

∫
R3

(
GF (x1, y)GF (x2, y)GF (x3, y)−G3

F (x3, y)
)

UV-ren.
d3y

=
5
π

∫
R3

(
1√

(y − x3)23 −
1√

(y − x1)2(y − x2)2(y − x3)2

)
UV-ren.

d3y

=
5
π

∫
R3

(
1√
y2

3 −
1√

y2(y − x13)2(y − x23)2

)
UV-ren.

d3y , �� ��3.6.1

with xij := xi − xj and where

GF (x, y) =
1

|x− y|
�� ��3.6.2

is the propagator in our theory. Here we used the Feynman rules corresponding to the Lagrangian

L(ϕ, ∂µϕ) = − 1
4π

∫ (
∂µϕ(y)∂µϕ(y) +

λ

6
ϕ6(y)

)
d3y ,

�� ��3.6.3

see eqs. 3.1.1 and 3.2.2. In the last step of eq. 3.6.1 we simply shifted the integration variable
y → y + x3. Power counting suggests that the integrals are logarithmically infrared-divergent.
Therefore, we introduce a cutoff as regularization and treat the integrals separately. In the end,
as the cutoff is removed, we will obtain a finite result for eq. 3.6.1.

Let us start with the first integral in eq. 3.6.1 and assume without loss of generality r13 ≤ r23,
where rij = |xij |. Then we can solve the integral using the Gegenbauer polynomial technique
[34][35]. Let ry = |y|, dΩ = sin Θ dΘ dφ and Λ ∈ R. Then we find
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∫
1√

y2(y − x13)2(y − x23)2
d3y

∣∣∣
ry<Λ

=

r13∫
0

dry

∫
dΩ

 r2
y

ry · r13 · r23
· 1√

1 + r2y
r213
− 2 ry

r13
ŷ · x̂13

· 1√
1 + r2y

r223
− 2 ry

r23
ŷ · x̂23



+

r23∫
r13

dry

∫
dΩ

 r2
y

r2
y · r23

· 1√
1 + r213

r2y
− 2 r13ry ŷ · x̂13

· 1√
1 + r2y

r223
− 2 ry

r23
ŷ · x̂23



+

Λ∫
r23

dry

∫
dΩ

r2
y

r3
y

· 1√
1 + r213

r2y
− 2 r13ry ŷ · x̂13

· 1√
1 + r223

r2y
− 2 r23ry ŷ · x̂23



�� ��3.6.4

Here we split the radial integration into three parts and introduced the cutoff parameter Λ.
The original integral is restored in the limit Λ → ∞. The square root expressions under the
integrals can now be recognized as generating functions of the Legendre polynomial (see eq.
D.2.4). Hence,

∫
1√

y2(y − x13)2(y − x23)2
d3y

∣∣∣
ry<Λ

=

=

r13∫
0

dry

∫
dΩ

[
ry

r13 · r23
·
∞∑
n=0

Pn(ŷ · x̂13)
(
r

r13

)n
·
∞∑
m=0

Pm(ŷ · x̂23)
(
r

r23

)m]

+

r23∫
r13

dry

∫
dΩ

[
1√
r2

23

·
∞∑
n=0

Pn(ŷ · x̂13)
(
r13

ry

)n
·
∞∑
m=0

Pm(ŷ · x̂23)
(
ry
r23

)m]

+

Λ∫
r23

dry

∫
dΩ

[
1
ry
·
∞∑
n=0

Pn(ŷ · x̂13)
(
r13

ry

)n
·
∞∑
m=0

Pm(ŷ · x̂23)
(
r23

ry

)m]
�� ��3.6.5

Now the angular integration can be performed conveniently with the help of the orthogonality
relation of the Legendre polynomials∫

dŷ Pn(ŷ · x̂1)Pm(ŷ · x̂2) = δn,m
1

2n+ 1
Pn(x̂1 · x̂2) ,

�� ��3.6.6

which yields

∫
1√

y2(y − x13)2(y − x23)2
d3y

∣∣∣
ry<Λ

= 4π

r13∫
0

dry
ry

r13 · r23
·
∞∑
n=0

Pn(x̂13 · x̂23)
2n+ 1

(
r2
y

r13r23

)n

+4π

r23∫
r13

dry
1
r23
·
∞∑
n=0

Pn(x̂13 · x̂23)
2n+ 1

(
r13

r23

)n
+ 4π

Λ∫
r23

dry
1
ry
·
∞∑
n=0

Pn(x̂13 · x̂23)
2n+ 1

(
r13r23

r2
y

)n
�� ��3.6.7

Finally, we are ready to perform the radial integration, which is trivial in our present form of
the integral.
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∫
1√

y2(y − x13)2(y − x23)2
d3y

∣∣∣
ry<Λ

=

4π

[ ∞∑
n=0

Pn(x̂13 · x̂23)
1

2n+ 1
· 1

2n+ 2

(
r13

r23

)n+1

− 0

]

+4π

[ ∞∑
n=0

Pn(x̂13 · x̂23)
1

2n+ 1

(
r13

r23

)n
−
∞∑
n=0

Pn(x̂13 · x̂23)
1

2n+ 1

(
r13

r23

)n+1
]

+4π [log Λ− log r23]

+4π

[
−
∞∑
n=1

Pn(x̂13 · x̂23)
1

2n+ 1
· 1

2n

(r13r23

Λ2

)n
+
∞∑
n=1

Pn(x̂13 · x̂23)
1

2n+ 1
· 1

2n

(
r13

r23

)n]
�� ��3.6.8

Now consider the other integral in eq. 3.6.1. In addition to the infrared-divergence, which we
will again control using a cutoff, this integral is also ultraviolet-divergent. This divergence may
be cured using differential renormalization [36, 37, 38], which works as follows: We may replace
the integrand using the identity

1
r3
y

= −∆
log(µry)

ry
,

�� ��3.6.9

with some renormalization parameter µ ∈ C, which holds for r 6= 0. Thus, we obtain for the
integral under consideration

∫
1√
y2

3 dy
3
∣∣∣
ry<Λ

= −
∫

∆
(

log(µry)
ry

)
dy3

∣∣∣
ry<Λ

= −
∫
dΩ r2

y∂ry

(
log(µry)

ry

) ∣∣∣
ry=Λ

= 4π (log(µΛ)− 1) ,

�� ��3.6.10

where Gauss’-theorem was applied in the second step. Subtraction of this result from eq. 3.6.8
shows that the logarithmic divergences cancel out. Hence we may safely remove the cutoff, i.e.
take the limit Λ→∞, and arrive at the result

(C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) = 20

( ∞∑
n=0

Pn(c)sn+1

(
1

2(n+ 1)

)
−
∞∑
n=1

Pn(c)sn · 1
2n

+ log r23 + logµ− 1

)

= 10

( ∞∑
n=0

1
n+ 1

sn+1 (Pn(c)− Pn+1(c)) + log(µ2r2
23)− 2

)
�� ��3.6.11

where the abbreviations

s :=
r13

r23
, c := x̂13 · x̂23

�� ��3.6.12

were used. Now let us compute the same coefficient in our framework. First, the coherence
theorem, thm. 1, states that the desired three-point coefficient can be uniquely determined
just from the knowledge of the two-point coefficients. This can be seen by application of the
factorization axiom (assuming r13 ≤ r23, i.e. s ≤ 1)
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(C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) =
∑
c

(C1)vcϕϕ(x1, x3)(C0)ϕ
3

ϕvc(x2, x3) +
∑
c

(C0)vcϕϕ(x1, x3)(C1)ϕ
3

ϕvc(x2, x3)�� ��3.6.13
where the sums go over all basis elements |vc〉 ∈ V . The coefficients on the right side have been
determined in section 3.4.1, see results 3.4.2 and 3.4.3. With the help of these results we can
reduce the sums to the form

(C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) =
∞∑
n=0

(C1)(∂nϕ)ϕ3

ϕϕ (x1, x3)(C0)ϕ
3

ϕ,(∂nϕ)ϕ3(x2, x3)

+
∞∑
n=0

(C0)(∂nϕ)ϕ
ϕϕ (x1, x3)(C1)ϕ

3

ϕ,(∂nϕ)ϕ(x2, x3)

�� ��3.6.14

since the coefficients vanish for all other (linearly independent) choices of vc. Explicitly, we find
for the coefficients on the right side (using the mentioned results from section 3.4.1 or appendix
A)

(C0)ϕ
3

ϕ,(∂nϕ)ϕ3(x1, x2) = r−n−1
12

∑
m Snm(x̂12) · (1 + 3δn,0)

�� ��3.6.15

(C0)(∂nϕ)ϕ
ϕϕ (x1, x2) = rn12

∑
m S

nm(x̂12)
�� ��3.6.16

(C1)(∂nϕ)ϕ3

ϕϕ (x1, x2) = rn+1
12
n+1

∑
m S

nm(x̂12) · (10− 15
2 δn,0)

�� ��3.6.17

(C1)ϕ
3

ϕ,(∂nϕ)ϕ(x1, x1) =

{
−10
n r−n12

∑
m Snm(x̂12) for n > 0

20 log r12 for n = 0

�� ��3.6.18

Thus we have by substitution into eq. 3.6.14

(C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) =
∞∑
n=0

n∑
m=−n

10
n+ 1

(
r13

r23

)n+1

Snm(x̂13)Snm(x̂23)

−
∞∑
n=1

n∑
m=−n

10
n

(
r13

r23

)n
Snm(x̂13)Snm(x̂23) + 20 log r23

�� ��3.6.19

Finally, using the addition theorem of the spherical harmonics and the abbreviations s and c as
introduced above, we arrive at the formula

(C1)ϕ
3

ϕ,ϕ,ϕ(x1, x2, x3) = 10
∞∑
n=0

sn+1

n+ 1

(
Pn(c)− Pn+1(c)

)
+ 10 log r2

23

�� ��3.6.20

Comparing this result to eq. 3.6.11 we find that the difference can be absorbed in the arbitrary
choice of renormalization parameter11 µ. Therefore, the results obtained from the two methods
are indeed equivalent.

11Recall from sec.3.2.1 that we may also introduce an analog to this parameter in our approach by a redefinition
of ∆−1.





4
Conclusions and outlook

This thesis contains the first concrete results on the construction of an interacting, perturbative
quantum field theory in the framework of [9] (see also chaper 2). Adopting a Fock-space rep-
resentation and diagrammatic notation from Hollands and Olbermann [12] for the free theory,
we have explicitly constructed all OPE coefficients of the form (C1)bϕ a and (C1)bϕ2 a, as well as
a large class of coefficents (C1)b

ϕk a
, k > 2 and (C2)bϕ a in a model theory with ϕ6-interaction on

3-dimensional Euclidean space.
These results were obtained with the help of an iterative algorithm first proposed in [9] (see

also 3.2 ), which contains an inherent analog of renormalization via subtraction of counterterms.
It was found by Hollands and Olbermann that this procedure could be neatly replaced in the
free theory by a normal ordering prescription on the ladder operators in the mentioned Fock-
space. As one might expect, however, the process of renormalization in interacting theories is
considerably more complicated, in analog to usual formulations of perturbative quantum field
theory. The constructions of section 3 constitute the first explicit example of this non-trivial
process.

We have found that one can again incorporate renormalization by bringing all ladder oper-
ators into normal order. However, in the interacting case there is a finite difference between
this procedure and the subtraction of counterterms arising from the general algorithm (see e.g.
eq. 3.2.16). In order to compensate for this difference, we have to add additional remainder
operators, which in a sense contain all the non-trivial information on the remormalization pro-
cedure, and are the main computational obstacle to proceed the iterative scheme. In order to
find explicit expressions for these remainder terms, one has to perform divergent multiple series,
subtract divergent counterterms and extract the finite difference. In result 3.4.4 we have defined
the first operator of this kind, and in result 3.4.7 the second one is partially given. The compu-
tational machinery applied to obtain these results consists of identities of special functions and
of hypergeometric series. Most notably, the results of [39] and [40] have been of great help in the
analysis of the mentioned infinite sums. At the heart of these identities lies Dougall’s formula,
see eq. F.4, which may be generalized to arbitrary dimension and should thus be of importance
in more general models [12]. These findings constitute the first insights into the structure of the
infinite sums appearing in the framework.

Apart from these specific results on the OPE coefficients at first and second perturbation
order, we have observed some general structures in the construction, which also apply to higher
orders. These results are presented in section 3.5. We were able to give a result for a particularly
simple class of OPE coefficients to arbitrary orders by extrapolating the knowledge gathered in
first order computations. In addition, a general statement about the powers of logarithms ap-
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pearing in arbitrary OPE coefficients was made. Finally, in section 3.6 we have shown in an
example that our approach does indeed yield the same results as standard ones.

Future research will be aimed at a better conceptual understanding of the underlying math-
ematics of the framework, e.g. the interpretation of the left representatives as vertex operators
[12], but also at a better understanding of the explicit computational obstacles. In particular,
one would like to find ways to treat the infinite sums inherent in the framework in a general
way. The results of this thesis may provide a first step into this direction, and future work
could extend the results to higher orders and also to more general models in terms of spacetime
dimension and type of coupling. Furthermore, a generalization of the framework to arbitrary
(globally hyperbolic) background manifolds would be of interest, since the OPE is expected to
play a fundamental role in the formulation of quantum field theory on curved spacetimes [14].
It may also be fruitful to study the relation to standard renormalization theory more deeply,
and possibly to incorporate renormalization group techniques.
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A
Table of OPE coefficients

In the following table explicit results for OPE coefficients of the form (Cn)cab are summarized.

n a b c (Cn)cab(x)
0 ϕp ϕq ϕp+q 1
0 ϕp+q ϕq ϕp (p+q)!

p! r−q

0 ϕq ϕp+q ϕp (p+q)!
p! r−q

0 ϕ 1 ∂lϕ rl
∑

m Slm(x̂)
0 ϕ ∂lϕ 1 r−l−1

∑
m S

lm(x̂)
0 ϕ |va〉 |va + elm〉 (alm + 1)rl

∑
m Slm(x̂)

0 ϕ |va〉 |va − elm〉 (alm)r−l−1
∑

m S
lm(x̂)

0 ϕk |va〉 |va +
k∑
i=1

elqi 〉 s[A = Hlq1, . . . , l
q
kI]fa[A]r

 
kP

i=q+1
li−

qP
j=1

lj−q
!
SJM (x̂)T [A]JM

1 ϕ ϕp ϕp+5 r2

6

1 ϕ ϕp ϕp+3 5p r2
1 ϕ ϕp ϕp+1 10p(p− 1) log r
1 ϕ ϕp+1 ϕp −10 (p+1)!

(p−2)!
log r
r

1 ϕ ϕp+3 ϕp 5 (p+3)!
(p−1)!

1
2r2

1 ϕ ϕp+5 ϕp (p+5)!
p!

1
6r3

1 ϕ ϕp ϕp+4∂lϕ 5rl+2

4l+6

∑
m S

lm(x̂)
1 ϕ ϕp ϕp+2∂lϕ p10rl+1

l+1

∑
m S

lm(x̂)

1 ϕ ϕp ϕp∂lϕ p(p− 1)30rl log r
2l+1

∑
m S

lm(x̂)
1 ϕ ϕp+2 ϕp∂lϕ − (p+2)!

(p−1)!
10rl−1

l

∑
m Slm(x̂)

1 ϕ ϕp+4 ϕp∂lϕ − (p+4)!
p!

5rl−2

4l−2

∑
m Slm(x̂)

1 ϕ2 ϕp ϕp+6 1
3 · r

2

1 ϕ2 ϕp ϕp+4 16
3 p · r

1 ϕ2 ϕp ϕp+2 20p2 log r + 5p(p− 1)
1 ϕ2 ϕp+2 ϕp (p+ 2)(p+ 1) [5p− 20(p+ 1) log r] r−2

1 ϕ2 ϕp+4 ϕp 16
3 p

(p+4)!
p! · r−3

1 ϕ2 ϕp+6 ϕp 1
3

(p+6)!
p! · r−4
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n a b c (Cn)cab(x)

1 ϕ2 ϕp ϕp+5∂lϕ rl+2Slm(x̂)
(

1
3 + 5

2l+3

)
1 ϕ2 ϕp∂lϕ ϕp+5 r1−lSlm(x̂)

(
1
3 −

5
2l−1

)
1 ϕ2 ϕp ϕp+3∂lϕ p · rl+1Slm(x̂)

(
5 + 20

l+1 + 5
2l+3

)
1 ϕ2 ϕp ϕp+1∂lϕ

20p(p− 1)rlSlm(x̂)
(

3 log r
2l+1 + log r + 1

l+1

)
+60prlSlm(x̂)

l∑
l′=0

l+l′∑
J=l−l′

〈ll′ 00|J 0〉2D[l − l′ − 2, J, r]

1 ϕ2 ϕp+1∂lϕ ϕp
−20(p+ 1)p(p− 1)r−l−2Slm(x̂)

(
3 log r
2l+1 + log r − 1
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B
Multisets

A multiset is a generalization of the notion set, where finite occurrences of any element are
allowed. Equivalently, one may view a multiset as an unordered tuple. The concept was first used
by Dedekind in 1888 and has since found applications in various fields of applied mathematics
[41, 42]. A formal definition is given by

Definition B.1 (Multiset)

Let D be a set. A multiset over D is a pair (D, f), where f : D → N is a function.

Remark: Any set A is a multiset (A,χA), where χA is the characteristic function. Throughout
this thesis, we denote multisets by capital fraktur letters A,B,C, . . ..

One may also define a multiset by giving the list of its elements. In order to avoid confusion,
we will use H·I as brackets. Then for example the multiset A = (D = {a, b, c}, f) with

f(x ∈ D) =

{
1 for x = b or x = c

2 for x = a

�� ��B.1

may equivalently be written as

A = Ha, b, c, aI = Ha, a, b, cI = Ha, b, a, cI = . . .
�� ��B.2

Many properties of sets can be naturally generalized to multisets. Here we only need the notion
of cardinality.

Definition B.2 (Cardinality of a multiset)

Let A = (A, f) be a multiset; its cardinality, denoted by card(A), is defined as

card(A) =
∑
a∈A

f(a)
�� ��B.3

As an example, the cardinality of the multiset given in eq. B.2 is 4. Further, one can define the
following operations between multisets:
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Definition B.3 (Sum of multisets)

Suppose that A = (A, f) and B = (A, g) are multisets. Their sum, written as A ]B, is the
multiset C = (A, h), where for all a ∈ A:

h(a) = f(a) + g(a)
�� ��B.4

One can show that this sum operation has the following properties:

1. Commutativity: A ]B = B ] A

2. Associativity: (A ]B) ] C = A ] (B ] C)

3. There exists a multiset, called null multiset ∅, such that A ] ∅ = A

However, there is no inverse multiset, so this structure is not an Abelian group.

Definition B.4 (Union of multisets)

Let A = (A, f) and B = (A, g) be multisets. Their union, denoted A ∪B, is the multiset
C = (A, h), where for all a ∈ A:

h(a) = max
(
f(a), g(a)

) �� ��B.5

Definition B.5 (Intersection of multisets)

Let A = (A, f) and B = (A, g) be multisets. Their intersection, denoted A ∩ B, is the
multiset C = (A, h), where for all a ∈ A:

h(a) = min
(
f(a), g(a)

) �� ��B.6

As in the case of ordinary sets, the notions of union and intersection are commutative, associative,
idempotent and distributive. One can illustrate these operations on multisets with the following
example. Let A be the multiset given in B.2 and further let

B = Ha, c, dI .
�� ��B.7

Then the definitions above imply

A ]B = Ha, a, a, b, c, c, dI
�� ��B.8

A ∪B = Ha, a, b, c, dI
�� ��B.9

A ∩B = Ha, cI
�� ��B.10



C
Hypergeometric series

Due to their appearance in calculations in all fields of physics, hypergeometric series have received
increasing attention over the last decades. In this chapter, after a brief introduction into the
notation, definitions and basic results on hypergeometric series, we state the identities used in
the computations of this thesis. For proofs and additional results on the topic we refer the reader
to the literature [31, 43].

The series

2F1(a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
; a, b, c, z ∈ C

�� ��C.1

is called hypergeometric series or also Gaussian hypergeometric series, as it was introduced into
analysis by Gauss in 1812. Here the Pochhammer symbol

(λ)n :=
Γ(λ+ n)

Γ(λ)
,

�� ��C.2

where Γ(z) is the Gamma function

Γ(z) =
{ ∫∞

0 tz−1e−t dt, Re(z) > 0
Γ(z + 1)/z, Re(z) < 0; z 6= −1,−2,−3, . . .

,
�� ��C.3

was employed for convenience. We call a, b and c the parameters of the hypergeometric series
and z its argument. A natural generalization of eq. C.1 is

pFq(α1, . . . , αp;β1, . . . , βq; z) = pFq

[
α1, . . . , αp
β1, . . . , βq

; z
]

:=
∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
,

�� ��C.4

with αi, βj ∈ C∀i ∈ {1, . . . p}, j ∈ {1, . . . q} and p, q ∈ N, which is known as the generalized
hypergeometric series.

Convergence

The generalized hypergeometric function, eq. C.4, converges for |z| <∞ if p ≤ q and for |z| < 1
if p = q + 1. It diverges for all z 6= 0 if p > q + 1. Furthermore, if we set
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ω =
q∑
j=1

βj −
p∑
j=1

αj ,
�� ��C.5

then the series pFp+1 with |z| = 1 is absolutely convergent if Re(ω) > 0 and divergent if
Re(ω) ≤ −1. If ω ∈ Z, then it is customary to refer to the corresponding class of hypergeometric
series as ω-balanced hypergeometric series. A one-balanced series is also called Saalschützian
series.

It is often necessary in the calculations of chapter 3.4 to analyze the divergent behavior of
zero-balanced hypergeometric series in the limit z → 1. Therefore, the formula

Γ(α1) · · ·Γ(αp+1)
Γ(β1) · · ·Γ(βp)

p+1Fp

[
α1, . . . , αp+1

β1, . . . , βp
; z
]

= L(p)[1+O(1−z)]− log(1−z)[1+O(1−z)]
�� ��C.6

will be of great value. Here we defined (see [43])

L(p) := 2ψ(1)− ψ(α1)− ψ(α2) +B(p)
�� ��C.7

and

B(p) :=
β1 − α3

α1α2

 p∑
j=2

βj −
p+1∑
j=3

aj

 4F3

β1 − α3 + 1,
p∑
j=2

βj −
p+1∑
j=3

aj + 1, 1, 1

α1 + 1, α2 + 1, 2
; 1



+
p∑

k=3

(βk−1 − αk+1)

(
p∑
j=k

βj −
p+1∑
j=k+1

aj

)
Γ(α1) · · ·Γ(αk)

Γ(β1) · · ·Γ(βk−2)Γ

(
p∑

j=k−1

βj −
p+1∑
j=k+1

aj + 1

) ×

∞∑
l=0

(βk−1 − αk+1 + 1)l

(
p∑
j=k

βj −
p+1∑
j=k+1

aj + 1

)
l

(l + 1)!

(
p∑

j=k−1

βj −
p+1∑
j=k+1

aj + 1

)
l

kFk−1

 α1, . . . , αk

β1, . . . , βk−2,
p∑

j=k−1

βj −
p+1∑
j=k+1

αj + 1 + l
; 1


�� ��C.8



D
Spherical symmetries in Euclidean spaces

As probably the most intuitive kind of symmetry that is frequently present in various problems
in physics, rotational symmetries have naturally been studied extensively, as documented in the
vast amount of literature on the topic. By axiom 2, symmetries of this kind will also appear
in our framework, and should thus be expected to play a prominent role in simplifications of
explicit calculations. In the following two subsections, we want to recall some basic results from
the analysis of such symmetries, first for the general case of arbitrary dimensional space and
then for the special 3-dimensional case of relevance for the calculations of this thesis.

The first subsection will mainly be concerned with some special functions related to spherical
symmetries, most notably the spherical harmonics in D dimensions [44, 30]. After stating
the definitions and basic properties of these functions, we will derive some results needed in
section 3.1, in particular concerning the relationship between a basis of spherical harmonics and
traceless, totally symmetric tensors. Then additional properties of the special D = 3 dimensional
case are recalled [33, 45, 46]. Emphasis will be shifted to group theoretical results, which were
first introduced into physics in the context of quantum mechanics.

D.1 Euclidean spaces of arbitrary dimension D

In a setting where spherical symmetries are present, it is often desirable to express formulas
in terms of functions, which are invariant under these symmetries. Let C(SD−1) be the (pre-)
Hilbert space of continuous functions SD−1 → C, where SD−1 is the (D − 1)-dimensional unit
sphere, with scalar product

〈f, g〉(D) :=
∫
SD−1

fḡ dSD−1 .
�� ��D.1.1

Then the following three definitions describe convenient properties we would like these functions
to employ.

Definition D.1 (Invariant spaces)

Let O(D) be the orthogonal group of degree D, i.e. the group of all real D×D matrices A
with AT = A−1. A linear space I ∈ C(SD−1) is called invariant or stable if for all f ∈ I
and all A ∈ O(D) we have f(Ax) ∈ I.
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Definition D.2 (Irreducibility)

An invariant space I is called reducible if it can be split into two nontrivial invariant
subspaces I1, I2 with I1 ⊥ I2. Otherwise, the space is called irreducible.

Definition D.3 (Primitive spaces)

A space I is called primitive if it is invariant and irreducible.

In the following we turn to the explicit construction of a primitive space in arbitrary dimension
D, namely the space of spherical harmonics. The latter are most straightforwardly introduced
with the help of the linear spaceHn(D) of homogeneous polynomials of degree n in D-dimensions,
which consists of elements of the form

Hn(x1, . . . , xD) =
∑
|i(D)|=n

ai1,...,iDx
i1
1 · · ·x

iD
D

�� ��D.1.2

with ai1,...,iD ∈ C, ij ∈ {1, . . . , n} and |i(D)| = i1 + i2 + · · · + iD. Furthermore, a homogeneous
polynomial of degree n ≥ 2 that satisfies �Hn = 0 is called homogeneous- or solid harmonic.
Now we are ready for the central definition of this section:

Definition D.4 (Spherical harmonics in D dimensions)

The restriction Yn(D; x̂) of the homogeneous harmonic Hn(x) to SD−1, i.e.

Hn(rx̂) = rnHn(x̂) =: rnYn(D; x̂) ,
�� ��D.1.3

is called spherical harmonic of order n in D dimensions. The space of such functions
is denoted by Yn(D) with basis elements Ynm(D) labeled by an additional parameter m ∈ Z.

Alternatively one might give a more abstract, but also more easily extendible definition of
spherical harmonics. Namely, we can define the space Yn(D) as the space of eigenfunctions of
the Beltrami operator ∆∗(D−1) on SD−1, defined via �(D) = ∂2

r + D−1
r ∂r + 1

r2
∆∗(D−1), to the

eigenvalue −n(n+D − 2).
In the following, we sum up some basic properties of spherical harmonics without giving any

proofs, which may be looked up in the cited literature:

• the space Yn(D) has dimension N(n,D), where

N(n,D) =

{
1 for l = 0
(2l+D−2)(l+D−3)!

(D−2)!l! for l > 0
,

�� ��D.1.4

hence the parameter m labeling the basis elements Ynm(D) goes from 1 to N(n,D)

• the spaces Yn(D) for n = 0, 1, . . . are primitive with respect to O(D)

• the spherical harmonics are complete in C(SD−1), i.e. the set of linear combinations of
spherical harmonics are dense in C(SD−1)

• from here on, we will denote by Ynm(D; x̂) an orthonormal basis of Yn(D), i.e.∫
SD−1

dΩYnm(D;x)Yn′m′(D;x) = δnn′δmm′ ,
�� ��D.1.5

where the bar denotes complex conjugation, and by

Snm(D; x̂) =
(

σD
N(n,D)

)1/2

Ynm(D; x̂)
�� ��D.1.6
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a reparametrization of this basis (which is not normalized anymore) with σD = |SD−1|
being the surface area of the D − 1-dimensional sphere

• the following addition theorem holds for the basis elements defined above:

N(n,D)∑
m=1

Ynm(D; x̂1)Ynm(D; x̂2) =
N(n,D)
σD

Pn(D; x̂1 · x̂2)
�� ��D.1.7

N(n,D)∑
m=1

Snm(D; x̂1)Snm(D; x̂2) = Pn(D; x̂1 · x̂2) ,
�� ��D.1.8

where Pn(D;x) is the Legendre polynomial in D dimensions defined as

Definition D.5 (Legendre polynomial in D dimensions)

Let Ln(D;x) be a homogeneous harmonic with the following two properties:

• Ln(D;x) is isotropically invariant with respect to the axis (−εD, εD), i.e. Ln(D;Ax) =
Ln(D;x) for all A ∈O(D) satisfying AεD = εD for a vector εD ∈ SD−1

• Ln(D; εD) = 1.

Then Ln(D;x) is called the Legendre harmonic of degree n in D dimensions and the
Legendre polynomial Pn(D; t) with t ∈ R is defined via Ln(D; x̂) = Pn(D; t), where
polar coordinates x̂ = tεD +

√
1− t2 x̂D−1 were used.

Remarks:

• Pn(D; t) is a polynomial of degree n in t with the properties Pn(D; 1) = 1 and Pn(D;−t) =
(−1)nPn(D; t)

• the generating function of the Legendre polynomials is

∞∑
n=0

(
n+D − 3
D − 3

)
xnPn(D; t) =

(
1

1 + x2 − 2xt

)(D−2)/2 �� ��D.1.9

where D ≥ 3, 0 ≤ x < 1 and −1 ≤ t ≤ 1.

• Legendre polynomials obey the orthogonality relation

∫ 1

−1
dx (1− x2)(D−3)/2Pl(D;x)Pl′(D;x) = δll′

σD
σ(D−1)

1
N(l,D)

�� ��D.1.10

Of course, many additional properties and alternative definitions of spherical harmonics and
Legendre polynomials can be found in the literature on the subject [44, 30]. In the context
of this thesis, however, the above general relations should be sufficient, and we now focus on
some specific results that are needed in the calculations of our framework. First, in section 3 we
made use of the following isomorphism between spherical harmonics Ynm and totally symmetric,
traceless, orthonormal tensors tlm

(tlm)µ1...µl = cl

∫
SD−1

dΩ x{µ1 · · ·xµl}Ylm(x) .
�� ��D.1.11

Here we want to derive the normalization factor cl. Orthonormality of the tlm means
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tlmtlm = 1 .
�� ��D.1.12

As mentioned above, the space of spherical harmonics for given l has dimension N(l,D), which
implies by the isomorphism, eq. D.1.11, that this is also true for the tlm. With this information
we can determine cl as follows:

N(l,D) =
∑
m

tlmtlm

=|cl|2
∑

m;µ1,...,µl

∫
SD−1

dΩxdΩy Y
lm(D;x)Ylm(D; y)x{µ1

. . . xµl}y
{µ1 . . . yµl}

=|cl|2|σD
∑
m

∫
SD−1

dΩx Y
lm(D;x)Ylm(D; ê)xle

=|cl|2σ(D−1)N(l,D)
∫ 1

−1
dxe Pl(D;xe)xle(1− x2

e)
(D−3)/2

=|cl|2σDN(l,D)
Γ(D/2) l!

Γ(l +D/2) 2l

�� ��D.1.13

The third equality holds because of rotational invariance, i.e. we simply performed the angular
integral over y by replacing y → ê, where ê is any unit vector, and multiplying with the surface
area of the D − 1-dimensional sphere. We also abbreviated x · ê by xe. Then the addition
theorem, eq. D.1.7, was used and the integral over the D−2-dimensional sphere was performed.
Finally, by the orthogonality relation for the Legendre polynomials D.1.10 and the expansion
(see [44])

Pl(D;x) =
1

N(l,D)
Γ(l +D/2) 2l

Γ(D/2) l!
xl +O(xl−2)

�� ��D.1.14

we obtain the last equality. This confirms our definition

cl =
(

2l Γ(l +D/2)
l! Γ(D/2)σD

)1/2 �� ��D.1.15

of section 3.1. In another calculation of that section we used the identity

(−1)l∂µ1 · · · ∂µlr
2−D = c−1

l 2l
Γ(l + (D − 2)/2)

Γ(D/2− 1
(tlm)µ1...µlYlm(x̂)r2−D−l ,

�� ��D.1.16

which we show to be valid now. First observe that

∂µi =
∂r

∂xµi

∂

∂r
=
xµi
r

∂

∂r
.

�� ��D.1.17

Successive application of this relation yields

(−1)l∂µ1 · · · ∂µlr
2−D = (−1)l

xµ1

r
· · · xµl

r
(2−D) · (−D) · · · (4− 2l −D)r2−D−l .

�� ��D.1.18

From eq. D.1.11 one can easily derive (as also noted in eq. 3.1.20)

x{µ1
· · ·xµl} = c−1

l (tlm)µ1...µlr
lYlm(x̂) .

�� ��D.1.19

Substitution of this formula into eq. D.1.18 and simple algebraic manipulation gives the pro-
claimed result.
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D.2 3-dimensional Euclidean space

Having discussed the special functions appearing in the analysis of spherical symmetries in an
Euclidean space of arbitrary dimension D in the previous section, we from here on focus on the
case D = 3, which describes the space our toy model of section 3 lives on. First, some of the
above general results are repeated in the special D = 3 version, before we come to additional
group theoretic results familiar from the analysis of angular momenta in quantum mechanics.

Let us rewrite the central formulas of the previous section for D = 3. First, the space Yl(D)
of spherical harmonics of degree l has dimension N(l, 3) = 2l + 1. The basis elements Ylm of
this space are parametrized by m ∈ Z, with −l ≤ m ≤ l. Further, Yl(D) is an irreducible,
O(3)-invariant, space of functions for any l, and the spherical harmonics are complete in C(S2).
In the following, we omit the label D and implicitly assume D = 3, e.g. we write Ylm(x̂) instead
of Ylm(3; x̂). The addition theorem then takes the form

l∑
m=−l

Ylm(x̂1)Ylm(x̂2) =
2l + 1

4π
Pl(x̂1 · x̂2)

�� ��D.2.1

l∑
m=−l

Slm(x̂1)Slm(x̂2) = Pl(x̂1 · x̂2) ,
�� ��D.2.2

where

Slm(x̂) =
(

4π
2l + 1

)1/2

Ylm(x̂) .
�� ��D.2.3

Here Pl is the usual Legendre polynomial with generating function (see [31])

(
1

1 + x2 − 2xt

)1/2

=


∞∑
l=0

xlPl(t) for |x| < min |t± (t2 − 1)1/2|
∞∑
l=0

x−l−1Pl(t) for |x| > max |t± (t2 − 1)1/2|
.

�� ��D.2.4

As mentioned in section 3.2, we chose a toy model on 3-dimensional Euclidean space, because
the representation theory of the corresponding symmetry group is comparably simple and famil-
iar from the quantum mechanics of angular momentum [33, 45, 46], where spherical harmonics
are the eigenfunctions of the operator of orbital angular momentum. In the remainder of this
section, we will be concerned with the decomposition of products of spherical harmonics into
irreducible parts. By this procedure, we can put our OPE coefficients into a convenient form
that simplifies the differential equations 3.2.8.

For this purpose, let us briefly recall the addition (or coupling) of angular momenta from
quantum mechanics. Given two systems with angular momentum quantum numbers (j1,m1) and
(j2,m2) and corresponding eigenstates |j1m1〉 and |j2m2〉 of the angular momentum operators
J2

1, J1z and J2
2, J2z, there are different ways to express the combined system. On the one hand,

one may use the direct product |j1m1〉 ⊗ |j2m2〉 = |j1j2m1m2〉 of the constituent states, which
is an eigenstate of all four operators J2

1, J1z, J2
2 and J1z. It is easy to see that this product state

is reducible, despite the irreducibility of both |j1m1〉 and |j2m2〉. Alternatively, one may choose
the system to be described by eigenstates |j1j2JM〉 of the operators J2

1, J2
2, J2 = (J1 + J2)2

and Jz = J1z + J2z. Contrary to the direct product case above, these states are also eigenstates
of the total angular momentum operator J2 and hence irreducible. It is an important fact for
quantum mechanics that there exists a unitary transformation between the two mentioned sets
of states describing the coupled system, which has the form
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|j1j2JM〉 =
∑

m1,m2

|j1j2m1m2〉 〈j1j2m1m2|j1j2JM〉

|j1j2m1m2〉 =
∑
J,M

|j1j2JM〉 〈j1j2JM |j1j2m1m2〉
�� ��D.2.5

where the expansion coefficients 〈j1j2m1m2|j1j2JM〉 = 〈j1j2JM |j1j2m1m2〉 are called Clebsch-
Gordan coefficients (CG coefficients). For the sake of brevity, we will often use the notation
〈j1j2m1m2|JM〉 instead. The Wigner 3j-symbol defined by

〈j1j2m1m2|J −M〉 = (−1)j1−j2−M (2J + 1)1/2

(
j1 j2 J
m1 m2 M

) �� ��D.2.6

is also widely used because of its additional symmetry properties. Let us briefly recall some
basic features of CG coefficients:

• CG coefficients satisfy the orthogonality relations∑
m1m2

〈j1j2JM |j1j2m1m2〉〈j1j2m1m2|j1j2KQ〉 = δJKδMQ

�� ��D.2.7∑
JM

〈j1j2m1m2|j1j2JM〉〈j1j2JM |j1j2m′1m′2〉 = δm1m′1
δm2m′2

�� ��D.2.8

• they vanish unless the triangle inequality

|j1 − j2| ≤ J ≤ j1 + j2
�� ��D.2.9

and the condition m1 +m2 = M are fulfilled

Before we come to the desired relation transforming a product of spherical harmonics into
irreducible parts, we study the rotation matrices DJ

MM ′(α, β, γ) defined by

ψJM (x′) =
∑
M ′

DJ
MM ′(α, β, γ)ψJM ′(x)

�� ��D.2.10

where ψJM is the wavefunction of a quantum mechanical system with angular momentum quan-
tum numbers J and M , and x′ is obtained from x by a rotation of the coordinate system by
the Euler angles (α, β, γ). Thus, rotating the coordinate system on both sides of eq. D.2.5 by
ω = (α, β, γ) and using orthogonality of the states, we arrive at the Clebsch-Gordan series

Dj1
m1n1

(ω)Dj2
m2n2

(ω) =
∑
JMN

〈j1j2m1m2|JM〉DJ
MN (ω) 〈JN |j1j2n1n2〉

�� ��D.2.11

and equivalently

DJ
MN (ω) =

∑
m1,m2,n1,n2

〈JM |j1j2m1m2〉Dj1
m1n1

(ω)Dj2
m2n2

(ω) 〈j1j2n1n2|JN〉 .
�� ��D.2.12

Now let us draw the connection to the coupling of spherical harmonics and consider the rotation

∑
m

Dl
m0(φ1,Θ1, 0)Ylm(φ2,Θ2) = Yl0(Θ, 0) =

(
2l + 1

4π

)1/2

Pl(cos Θ) ,
�� ��D.2.13

where the second equality is a standard identity from the theory of special functions. Comparing
this equation to the addition formula D.2.2, we immediately obtain

Dl
m0(φ1,Θ1, 0) =

(
4π

2l + 1

)1/2

Ylm(φ1,Θ1) .
�� ��D.2.14
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Substituting this connection between rotation matrices and spherical harmonics into eqs. D.2.11
and D.2.12 we finally arrive at the desired coupling rule for spherical harmonics with the same
argument.

Sl1m1(x̂)Sl2m2(x̂) =
∑
l

〈l1l2m1m2|lm〉〈l0|l1l200〉Slm(x̂)

Slm(x̂)〈l1l200|l0〉 =
∑

m1,m2

〈lm|l1l2m1m2〉Sl1m1(x̂)Sl2m2(x̂)

�� ��D.2.15

Here we used the unnormalized spherical harmonics for convenience. The CG coefficient with
magnetic quantum numbers equal to zero, i.e. the coefficient of the form 〈l1l200|l0〉, is sometimes
called parity coefficient in the literature (see e.g.[46]), because it vanishes unless the sum of its
entries is an even number, i.e.

〈l1l200|l0〉 = 0 if l1 + l2 + l = 2n+ 1 with n ∈ N .
�� ��D.2.16

Further, this coefficient is related to the Legendre polynomials by

〈l1l2 00|J0〉2 =
2J + 1

2

∫ 1

−1
dyPJ(y)Pl1(y)Pl2(y) ,

�� ��D.2.17

and explicitly takes the values

〈l1l2 00|J0〉 = (−1)
l1+l2+3J

2

(
2J + 1

2π
Γ( l1+l2−J+1

2 )Γ( l1−l2+J+1
2 )Γ( l2−l1+J+1

2 )Γ( l1+l2+J
2 + 1)

Γ( l1+l2−J
2 + 1)Γ( l1−l2+J

2 + 1)Γ( l2−l1+J
2 + 1)Γ( l1+l2+J+3

2 )

)1/2

�� ��D.2.18
Eqs. D.2.15 are the central formulae of this section. It is obvious that by successive application
of these equations, one may decompose products of any number of spherical harmonics.

Sl1m1(x̂)Sl2m2(x̂) · · ·Slnmn(x̂) =
n∏
i=2

∑
l12...i

〈l12...(i−1)lim12...(i−1)mi|l12...im12...i〉〈l12...i0|l12...(i−1)li00〉

× Sl12...nm12...n(x̂)

=:
∑
J

T [−(l1m1),−(l2m2), . . . ,−(lnmn)]JM SJM (x̂) �� ��D.2.19

where we defined the coupling tensor

T [−(l1m1),−(l2m2), . . . ,−(lnmn)]JM =〈l12...(n−1)lnm12...(n−1)mn|JM〉
n−1∏
i=2

∑
l12...i

〈l12...(i−1)lim12...(i−1)mi|l12...im12...i〉〈l12...i0|l12...(i−1)li00〉 .�� ��D.2.20

Products containing complex conjugate (or contragredient) spherical harmonics may be treated
analogously. We choose the so called Condon-Shortley phase convention

Slm(x̂) = (−1)mSl(−m)(x̂) =: Slm(x̂)
�� ��D.2.21

and write
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Sl1m1(x̂) · · ·Slama(x̂)Sla+1ma+1(x̂) · · ·Slbmb(x̂) =∑
J

T [+(l1m1), . . .+ (lama),−(la+1ma+1), . . . .− (lbmb)]JM SJM (x̂)�� ��D.2.22

with

T [+(l1m1), . . .+ (lama),−(la+1ma+1), . . . .− (lbmb)]JM =
(−1)m1+...+maT [+(l1(−m1)), . . .+ (la(−ma)),+(la+1ma+1), . . . .+ (lbmb)]JM

�� ��D.2.23



E
The characteristic differential equation

As we discussed in section 3.2, our iterative scheme for the construction of OPE coefficients
consists basically of two steps: Perform infinite sums of the form of eq. 3.2.16 to determine all
coefficients at a given order and use the field equation, or more precisely eq. 3.2.8, to proceed to
the next perturbation order. As mentioned in that section, most calculational effort goes into
the former step, i.e. the infinite sums. In the present section we show how to perform the latter
step, i.e. solving the differential equation

�Yi(ϕ, x) = Yi−1(ϕk, x)
�� ��E.1

for any i, k ∈ N and in arbitrary spacetime dimension D. We assume that any left representative
takes values in the ring of functions

Y(x) = CJr, r−1, log rK⊗ {Yn(x̂;D)} ⊗ End(V ) .
�� ��E.2

Thus, an arbitrary element Yi(|v〉, x) ∈ Y is of the form

Yi(|v〉, x) ∈ Y =
∑

Ai,d,q,J,M (|v〉)rd(log r)qYJM (x̂, D)
�� ��E.3

with Ai,d,q,J,M ∈ End(V ). Note that this assumption is consistent with our free theory results.
Now in order to find a solution to the differential equation E.1 we define a right inverse to the
Laplacian, i.e. an operator �−1 ∈ End(Y) satisfying

� ◦�−1 = id .
�� ��E.4

A solution to the differential equation is then simply found by the application of this operator
on Yi−1(ϕk, x). This can be seen from

�Yi(ϕ, x) = Yi−1(ϕk, x) = �
[
�−1Yi−1(ϕk, x)

] �� ��E.5

and therefore

Yi(ϕ, x) = �−1Yi−1(ϕk, x)
�� ��E.6

is the desired solution. Our explicit choice for �−1 is

�−1
[
rdYJM (x̂;D)(log r)p

]
= rd+2YJM (x̂;D)(log r)p ·Dp(d+ 2, J, r)

�� ��E.7
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with

D(p)(d, J, r) =


p∑
i=0

(−1)i p!(log r)1−i

(p+1−i)!(2d+1)i+1 for J = min{|d|, |d+D − 2|}
p∑
i=0

i∑
n=0

(−1)i p!(log r)−i

(p−i)!(d−J)n+1(d+D−2+J)i−n+1 otherwise �� ��E.8
and

�−1 (0) = 0 .
�� ��E.9

Expressing the Laplace operator in spherically symmetric form, i.e. using the form of � given
below def.D.4, one can check by straightforward calculation that this definition does indeed yield
a right inverse to the Laplacian. Note however that this choice is not unique, since we may add
any A ∈ Y with A ∈ ker � and would again obtain a right inverse. These functions A are the
harmonic polynomials in x with values in End(V ).

In the computations of section 3.4 we will need the explicit form of D(p)(d, J, r) in D = 3
dimensions and for p ∈ {0, 1}, which are

D(0)(d, J, r) =: D(d, J, r) =


1

d(d+1)−J(J+1) for min{|d|, |d+ 1|} 6= J

log r
2d+1 for min{|d|, |d+ 1|} = J

�� ��E.10

and

D(1)(d, J, r) =


(

log r
2(2d+1) −

1
(2d+1)2

)
for J = min{|d|, |d+ 1|}(

1
d(d+1)−J(J+1) −

(2d+1)(log r)−1

[d(d+1)−J(J+1)]2

)
otherwise

.
�� ��E.11



F
The characteristic sum

Due to the iterative nature of the construction described in section 3, one expects certain patterns
to appear in the calculation of OPE coefficients. In this section we analyze one such expression,
which characteristically shows up in first order calculations. Namely, as we saw in section 3.4,
sums of the general form

S(l1, l2; a) :=
l1+l2∑

J=|l1−l2|
J 6=a

〈l1l2 00|J0〉2

a(a+ 1)− J(J + 1)

�� ��F.1

with l1, l2, a ∈ N are typically present at first perturbation order. The denominator is familiar
from the solution of the differential equation relating the coefficients of the free theory to the
first order coefficients, see eq. E.10 while the CG coefficient results from the coupling of angular
momenta as discussed in appendix D.2. In the following we will first give some general simpli-
fications of this sum, and afterwards distinguish different special cases of the parameters. This
analysis is based on the results of [39, 47, 48] and [40].

First note that we may extend the summation limits arbitrarily, as the CG coefficients auto-
matically vanish if the triangular inequality D.2.9 is not satisfied. Thus we may write

S(l1, l2; a) :=
∞∑
J=0
J 6=a

〈l1l2 00|J0〉2

a(a+ 1)− J(J + 1)
.

�� ��F.2

Further, we may express the CG coefficients through an integral over Legendre polynomials by
eq. D.2.17, which yields

S(l1, l2; a) =
1
2

∞∑
J=0
J 6=a

2J + 1
a(a+ 1)− J(J + 1)

∫ 1

−1
dyPJ(y)Pl1(y)Pl2(y) .

�� ��F.3

In order to get rid of the sum over J we would now like to apply Dougall’s formula (see [31])

∞∑
k=0

2k + 1
ν(ν + 1)− k(k + 1)

Pk(y) =
π

sin(πν)
Pν(−y) (ν /∈ Z) ,

�� ��F.4

but as a ∈ Z, this is clearly not possible at this stage. Hence, we first have to use the little trick
of writing our sum as the limit
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S(l1, l2; a) =
1
2

lim
ν→a

[∫ 1

−1
dy

(
∂

∂ν
(ν − a)

∞∑
J=0

2J + 1
ν(ν + 1)− J(J + 1)

Pν(y) +
1

2a+ 1
Pa(y)

)
Pl1(y)Pl2(y)

]
.�� ��F.5

Here we may use eq. F.4, and after carrying out some derivations and the limit we arrive at the
convenient form

S(l1, l2; a) =
1
2

∫ 1

−1
dyPl1(y)Pl2(y)

[
(−1)a

∂Pν(−y)
∂ν

∣∣∣
ν=a

+
1

2a+ 1
Pa(y)

]
.

�� ��F.6

The derivative of the Legendre function with respect to its degree has been discussed in [40],
where the explicit form

∂Pν(x)
∂ν

∣∣∣
ν=n

= Pn(x) log
1 + x

2
+Rn(x)

�� ��F.7

was derived. Here Rn is a polynomial defined as

Rn(x) := 2[ψ(2n+ 1)− ψ(n+ 1)]Pn(x) + 2
n−1∑
k=0

(−1)n+k 2k + 1
(n− k)(n+ k + 1)

Pk(x) ,
�� ��F.8

where ψ is the digamma function [31, 32]

ψ(n+ 1) = −γ +
n∑
k=1

1
k

�� ��F.9

with the Euler-Mascheroni constant γ. Using this explicit form of the derivative in eq. F.6, we
obtain yet another expression for our sum.

S(l1, l2; a) =
1
2

∫ 1

−1
Pl1(y)Pl2(y)

(
2

a−1∑
k=|l1−l2|

2k + 1
(a(a+ 1)− k(k + 1))

Pk(y)+

+Pa(y)
[
log

1− y
2

+ ψ(2a+ 2) + ψ(2a+ 1)− 2ψ(a+ 1)
])

dy�� ��F.10

This concludes our discussion of the general form of the sum S, and we will now use these results
in order to further simplify the sum for special choices of the parameters l1, l2 and a.

F.1 The cases a < |l1 − l2| and a > l1 + l2

Let us first consider the case a < |l1 − l2| in eq. F.10. First we note that there is no sum over k
in this case. Further, all expressions containing the integral

∫ 1
−1 Pl1(y)Pl2(y)Pa(y)dy vanish, as

the triangle inequality D.2.9 is not satisfied. Therefore, only the term containing the logarithm
remains.

S(l1, l2; a < |l1 − l2|) =
1
2

∫ 1

−1
Pl1(y)Pl2(y)Pa(y) log(1− y) dy

�� ��F.1.1

Similarly, the integral
∫ 1
−1 Pl1(y)Pl2(y)Pa(y)dy also vanishes if a > l1 + l2. In this case, the sum

over k in eq. F.10 goes from |l1 − l2| to l1 + l2. Recalling the original form of our sum S from
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eq. F.1, we notice that the sum over k is just 2 · S in the case at hand. Subtracting 2 · S on
both sides of equation F.10 and multiplying with (−1), we obtain the simple form

S(l1, l2; a > l1 + l2) = −1
2

∫ 1

−1
Pl1(y)Pl2(y)Pa(y) log(1− y) dy .

�� ��F.1.2

F.2 The case a + l1 + l2 = odd

If the sum of the parameters l1, l2 and a is an odd number, the sum S simplifies drastically. This
is also the case that has been studied most extensively in the literature (see [39, 47, 48]). The
simplification is most easily derived from the form F.6 of our sum. To begin with, note that the
second summand, i.e. the term without the derivative, vanishes, due to the parity requirement
of the CG coefficients D.2.16 (alternatively, one may deduce this result from the fact that we
integrate over a function of odd degree). Additionally, as we will show in the following, the
derivative of the Legendre function in the remaining term may be written in a convenient form
in the underlying case.

With the help of the identity (see e.g.[31] or [32])

Pρ(−x) = cos ρπPρ(x)− 2
π

sin ρπQρ(x) ,
�� ��F.2.1

where Qρ is the Legendre function of the second kind, and the special case Pn(−x) = (−1)nPn(x)
for the Legendre polynomial, we may perform the following simple transformations

∫ 1

−1

(
∂

∂ν
Pν(−x)

)
ν=a

Pl1(x)Pl2(x)dx =
∫ 1

−1

∂

∂ν

(
cos νπPν(x)− 2

π
sin νπQν(x)

)
ν=a

Pl1(x)Pl2(x)dx

=
∫ 1

−1

[
(−1)a

(
∂

∂ν
Pν(x)

)
ν=a

+ 2 · (−1)a+1Qa(x)
]
Pl1(x)Pl2(x)dx

=
∫ 1

−1

[
(−1)a+l1+l2

(
∂

∂ν
Pν(x)

)
ν=a

Pl1(−x)Pl2(−x) + 2 · (−1)a+1Qa(x)Pl1(x)Pl2(x)
]

dx

=−
∫ 1

−1

(
∂

∂ν
Pν(−x)

)
ν=a

Pl1(x)Pl2(x)dx+ 2 ·
∫ 1

−1
Qa(x)Pl1(x)Pl2(x)dx . �� ��F.2.2

In the last step we used the fact that a + l1 + l2 is odd by assumption. Comparing both sides
of this series of equations, we observe that in the underlying case we may simply replace

(−1)a
∂

∂ν
Pν(−y)

∣∣∣
ν=a
→ −Qa(y)

�� ��F.2.3

under the integral in eq. F.6. In summary, we have just found the simple result

S(l1, l2; a|l1 + l2 + a = odd) = −1
2

∫ 1

−1
dy Pl1(y)Pl2(y)Qa(y) .

�� ��F.2.4

It was shown in [39] that this integral vanishes for |l1 − l2| ≤ a ≤ l1 + l2, which means

S(l1, l2; a|l1 + l2 + a = odd, |l1 − l2| ≤ a ≤ l1 + l2) = 0 .
�� ��F.2.5

If the parameter a does not lie within this range, the solutions
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−
∫ 1

−1
Pl1(y)Pl2(y)Ql1+l2+2j+1(y) dy =

∫ 1

−1
Pl1(y)Ql2(y)Pl1+l2+2j+1(y) dy =

=
Γ(j + 1

2)Γ(j + l1 + 1)Γ(j + l2 + 1)Γ(j + l1 + l2 + 3
2)

2Γ(j + 1)Γ(j + l1 + 3
2)Γ(j + l2 + 3

2)Γ(j + l1 + l2 + 2)�� ��F.2.6

with j ∈ N are obtained (see [47] and [48]).



G
Proofs

Here we gather some lengthy, more involved computations for the sake of readability of the main
text.

G.1 Proof of result 3.4.4

Translating the corresponding diagrams into an explicit equation using the rules of section 3.3,
we arrive at the formula

x x

+(R1)ϕ2(x) = 5
( )

= Y0(ϕ, x)Y1(ϕ, x) + Y1(ϕ, x)Y0(ϕ, x)

= 5
∞∑

d=−∞

∞∑
j=0

rd+1Sjm(x̂)Y0(ϕ4, x; d)jm×

+
∞∑
l=0

 l+j∑
J=|l−j|
J 6=m(l+d)

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

log r
2(l + d) + 5

〈jl 00|m(l + d) 0〉2

+
l+j∑

J=|l−j|
J 6=m(l−d−1)

〈jl00|J0〉2

(d+ 1− l)(d+ 2− l)− J(J + 1)
+

log r
2(d− l) + 3

〈jl 00|m(d− l − 1) 0〉2


�� ��G.1.1

where the identity D.2.15 was used to couple the spherical harmonics and with m(d) defined as

m(d) := min(|d+ 2|, |d+ 3|) .
�� ��G.1.2

We are especially interested in the sum over the contraction index l, since only this sum may
contain infinite expressions after taking matrix elements. Therefore we omit the first line of
the above equation in the following calculations and may easily restore it in the end. By a
straightforward computation one can check that if we replace d+2→ −d−2, then the expression
in brackets stays the same except for the sign in front of the logarithmic term in the last line,
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which then becomes a minus. Thus, it is sufficient to consider only the case d+ 2 ≥ 0, since the
other values of d can then simply be determined by the mentioned symmetry.

The logarithmic terms

Let us first focus on the logarithmic terms in eq. G.1.1. With the assumption d + 2 ≥ 0 we
can deduce

m(l + d) = l + d+ 2
�� ��G.1.3

and

m(d− l − 1) =
{
l − d− 2 for l ≥ d+ 2
d+ 1− l for l < d+ 2

�� ��G.1.4

and perform the following manipulations

log r

[ ∞∑
l=0

〈jl 00|(l + d+ 2) 0〉2

2(l + d) + 5
+

d+1∑
l=0

〈jl 00|(d+ 1− l) 0〉2

2(d− l) + 3
−

∞∑
l=d+2

〈jl 00|(l − d− 2) 0〉2

2(l − d)− 3

]

= log r

[ ∞∑
l=0

(
j l (l + d+ 2)
0 0 0

)2

+
d+1∑
l=0

(
j l d+ 1− l
0 0 0

)2

−
∞∑

l=d+2

(
j l (l − d− 2)
0 0 0

)2
]

= log r
d+1∑
l=0

(
j l d+ 1− l
0 0 0

)2

, �� ��G.1.5

which is clearly finite for given d and j. Because of the mentioned antisymmetry around d = −2,
the result for arbitrary d is

log r
∞∑
l=0

(
〈jl 00|m(l + d) 0〉2

2(l + d) + 5
+
〈jl 00|m(d− l − 1) 0〉2

2(d− l) + 3

)
=

sign(d+ 2)
|d+2|−1∑
l=0

(
j l |d+ 2| − 1− l
0 0 0

)
log r ,

�� ��G.1.6

just as we claimed in eqs. 3.4.58 and 3.4.59. Note that this expression is zero when d+j = even,
since in this case the 3j-symbol vanishes due to the parity condition.

The remaining expressions in eq. G.1.1 are of the typical form discussed in appendix F, where
it was observed that sums of this type behave very differently for varying choices of parameters
l, j and d (corresponding to l1, l2 and a in eq. F.1). For that reason, we distinguish different
cases in the analysis of the above formula: The case d+2 > j, the case d+2 ≤ j and d+j = odd
and the case d + 2 ≤ j and d + j = even (still assuming d + 2 ≥ 0). These cases are related to
the number q of annihilation operators in the left representative of eq. G.1.1, as we will see in
the following.
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The case q 6= 2

The fact that the result for (R1)ϕ2(q 6= 2) is much simpler than for (R1)ϕ2(q = 2) is related
to the following lemma, which cannot be applied in the latter case.
Lemma 4

∞∑
l=0

 l+j∑
J=|l−j|
J 6=m(l+d)

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

l+j∑
J=|l−j|

J 6=m(l−d−1)

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)



=


|d+2|−1∑
l=0

l+j∑
J=|l−j|
denom. 6=0

〈jl00|J0〉2
(l−|d+2|)(l−|d+2|+1)−J(J+1) if |d+ 2| > j or d+ j = odd

0 if |d+ 2| > j and d+ j = even �� ��G.1.7

Proof : We assume d+ 2 > 0 for convenience (recall that the results for negative values of d+ 2 may
be obtained from the symmetry around d = −2). Let us first consider the case d+ 2 > j. Then also
l + d+ 2 > l + j, which according to eq. F.1.2 yields the simplification

∞∑
l=0

l+j∑
J=|l−j|

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
= −1

2

∞∑
l=0

∫ 1

−1

Pl(y)Pj(y)Pl+d+2(y) log(1− y) dy�� ��G.1.8
for the first sum we want to discuss. Note that here the denominator does not vanish for any value
of J due to our assumption for d. Now let us come to the second sum and first consider only the case
l ≥ d+2 neglecting the remaining finite sum. Then it is evident, that the inequality l−d−2 < |l−j|
holds, so that we can apply eq. F.1.1 in order to obtain

∞∑
l=d+2

l+j∑
J=|l−j|

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)
=

1
2

∞∑
l=d+2

∫ 1

−1

Pl(y)Pj(y)Pl−d−2(y) log(1− y) dy

=
1
2

∞∑
l=0

∫ 1

−1

Pl+d+2(y)Pj(y)Pl(y) log(1− y) dy .�� ��G.1.9

Comparing the two equations above, we see that these infinite sums cancel

∞∑
l=0

 l+j∑
J=|l−j|

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

l+j∑
J=|l−j|

J 6=d+1−l

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)


=

d+1∑
l=0

l+j∑
J=|l−j|

J 6=d+1−l

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)
, �� ��G.1.10

which together with the symmetry around d = −2 confirms the first statement of our lemma.
We proceed with the case d + j = odd, which is just the type of sum considered in section F.2

of the appendix. Therefore we may now use eq. F.2.4, which leads to the following simplifications
(again assuming d+ 2 > 0 for the moment):



108 APPENDIX G. PROOFS

∞∑
l=0

l+j∑
J=|l−j|

J 6=l+d+2

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
= −1

2

∞∑
l=0

∫ 1

−1

Pl(y)Pj(y)Ql+d+2(y) dy
�� ��G.1.11

∞∑
l=d+2

l+j∑
J=|l−j|

J 6=l−d−2

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)
=− 1

2

∞∑
l=d+2

∫ 1

−1

Pl(y)Pj(y)Ql−d−2(y) dy

=− 1
2

∞∑
l=0

∫ 1

−1

Pl+d+2(y)Pj(y)Ql(y) dy .

�� ��G.1.12

As mentioned in the appendix, these integrals vanish if the triangle inequality is satisfied by the
parameters (see eq. F.2.5), and they cancel each other if this inequality is not satisfied (see eq.
F.2.6). Therefore, also in this case we observe that the infinite sums cancel and we again obtain the
result G.1.7 as claimed in the lemma.

It remains to show that the sum under investigation vanishes if |d + 2| > j and d + j =even. In
view of the previous results, this suggests that we have to show

|d+2|−1∑
l=0

l+j∑
J=|l−j|

denom. 6=0

〈jl00|J0〉2

(l − |d+ 2|)(l − |d+ 2|+ 1)− J(J + 1)
= 0

�� ��G.1.13

if |d+ 2| > j and d+ j =even. Let us again assume d+ 2 > 0 for convenience. Since d+ j+ 1 =odd,
we may apply eq. F.2.4 obtaining

d+1∑
l=0

l+j∑
J=|l−j|

denom.6=0

〈jl00|J0〉2

(d+ 2− l)(d+ 1− l)− J(J + 1)
=

d+1∑
l=0

∫ 1

−1

dy Pj(y)Pl(y)Qd+1−l(y)
�� ��G.1.14

According to eq. F.2.5 this integral vanishes if the inequality

|l − j| ≤ d+ 1− l ≤ l + j
�� ��G.1.15

is satisfied. This implies that only two partial sums remain:

d+1∑
l=0

∫ 1

−1

dy Pj(y)Pl(y)Qd+1−l(y) =

 d−j
2∑

l=0

+
d+1∑

l= d+j
2 +1

∫ 1

−1

dy Pj(y)Pl(y)Qd+1−l(y)

=

d−j
2∑

l=0

(∫ 1

−1

dy Pj(y)Pl(y)Qd+1−l(y) +
∫ 1

−1

dy Pj(y)Ql(y)Pd+1−l(y)
)

= 0

�� ��G.1.16

The second line follows if we change the summation index l→ d+ 1− l, and in the last equality we
used eq. F.2.6. Thus, the proof of the lemma is complete.

We are now ready to prove our results for (R1)ϕ2(q 6= 2), eqs. 3.4.58 and 3.4.57. Let us
start with the case q ∈ {0, 4}, i.e. in G.1.1 we consider only the contribution including four
creation or four annihilation operators, b±l1 · · ·b±l4 . The specific form of the left representative
Y0(ϕ4, x) =: (Y0(ϕ, x))4 : then suggests that the power of r in these contributions is d =
l1 + . . .+ l4 for the contribution containing only creation operators, and d = −l1 − . . .− l4 − 4
for the part including four annihilation operators. Further, coupling of the spherical harmonics
Sl1m1 · · ·Sl4m4 restricts the possible values of the spin j in eq. G.1.1 to j = l1 + . . . + l4 − 2k
for k ∈ N (due to the parity condition and the triangle inequality satisfied by the intertwiners).
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Hence, for q ∈ {0, 4} we have |d + 2| > j and d + j = even, which implies that the logarithmic
contribution vanishes (see discussion below eq. G.1.6) and that also the remainig sums vanish
by lemma 4. Thus, (R1)ϕ2(d, j, q ∈ {0, 4}) = 0.

Analogously, we find for q ∈ {1, 3} that either d = l1 + . . .+l3−l4−1 or d = l1−l2− . . .−l4−3,
while j takes the same values as before. Thus, we are adealing with the case d+ j =odd, which
means that we find eq. G.1.6 for the logarithmic contribution and that we may apply the first
case in lemma 4 for the remaining sums. The result is eq. 3.4.58.

The case q = 2

It remains to verify our result for (R1)ϕ2(q = 2), which appears to be more complicated
than the two previous ones. Here lemma 4 can not be applied, since |d + 2| > j does not
hold in general. Therefore we have to analyze eq. G.1.1 in its original form, i.e. without
any simplifications. Nevertheless, also in the case at hand we are able to show that infinities
do indeed cancel. Consider the part of eq. G.1.1 with l > j. We can perform the following
algebraic manipulations:

∞∑
l=j

 l+j∑
J=|l−j|
J 6=l+d+2

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

l+j∑
J=|l−j|
J 6=l−d−2

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)


=
∞∑
l=0

l+2j∑
J=l

J 6=l+d+j+2

〈j (l + j)00|J0〉2

(l + j + d+ 2)(l + j + d+ 3)− J(J + 1)

+
∞∑
l=0

l+2j∑
J=l

J 6=l+j−d−2

〈j (l + j)00|J0〉2

(l + j − d− 2)(l + j − d− 1)− J(J + 1)

=
∞∑
l=0

j∑
J=0

J 6=(d+j+2)/2

〈j (l + j)00|(2J + l)0〉2

2(2J + l) + 1

(
1

j + d+ 2− 2J
− 1

2l + j + d+ 2 + 2J + 1

)

+
∞∑
l=0

j∑
J=0

J 6=(j−d−2)/2

〈j (l + j)00|(2J + l)0〉2

2(2J + l) + 1

(
1

j − d− 2− 2J
− 1

2l + j − d− 2 + 2J + 1

)
�� ��G.1.17

Here we simply changed the summation limits of the sums over l and J and expanded partial
fractions in the last step. In the last equation we also made use of the parity condition on the
Clebsch-Gordan coefficient, which restricts the sum over J to even values. We can now express
the Clebsch-Gordan coefficient explicitly through gamma functions by eq. D.2.18 and write the
resulting infinite sum as a hypergeometric series (see Appendix C) , which leads us to the rather
messy formula
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∞∑
l=j

 l+j∑
J=|l−j|
J 6=l+d+2

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

l+j∑
J=|l−j|
J 6=l−d−2

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)


=

j∑
J=0

J 6=(d+j+2)/2

Γ(J + 1
2)2Γ(j − J + 1

2)Γ(J + j + 1)
Γ(J + 1)2Γ(j − J + 1)Γ(J + j + 3

2)

×

− 4F3

[
1,J+ 1

2
,J+j+1,J+ j+d+3

2

J+1,J+j+ 3
2
,J+ j+d+5

2

; 1
]

2J + j + d+ 3
+

3F2

[
1,J+ 1

2
,J+j+1

J+1,J+j+ 3
2

; 1
]

j + d+ 2− 2J


+

j∑
J=0

J 6=(j−d−2)/2

Γ(J + 1
2)2Γ(j − J + 1

2)Γ(J + j + 1)
Γ(J + 1)2Γ(j − J + 1)Γ(J + j + 3

2)

×

− 4F3

[
1,J+ 1

2
,J+j+1,J+ j−d−1

2

J+1,J+j+ 3
2
,J+ j−d+1

2

; 1
]

2J + j − d− 1
+

3F2

[
1,J+ 1

2
,J+j+1

J+1,J+j+ 3
2

; 1
]

j − d− 2− 2J


�� ��G.1.18

This form, despite its complicated appearance, allows us to analyze the divergent behavior of the
infinite series by simply investigating the parameters of the hypergeometric functions involved.
As mentioned in the appendix, hypergeometric series of the general form

p+1Fp

[
α1, . . . , αp+1

β1, . . . , βp
; 1
] �� ��G.1.19

converge for
∑

j βj −
∑

i αi =: k > 0. Thus, we immediately see that the hypergeometric
functions 4F3 in eq. G.1.18 are convergent, as they are 1-balanced, i.e. k = 1. The series of the
type 3F2, on the other hand, are 0-balanced, and should thus not be expected to converge. The
precise divergent behavior can be analyzed with the help of eq. C.6 from the appendix, which
tells us that these hypergeometric series approach infinity as

Γ(α1)Γ(α2)Γ(α3)
Γ(β1)Γ(β2) 3F2

[
α1, α2, α3

β1, β2
; 1− ε

]
= 2ψ(1)− ψ(α1)− ψ(α2)− log ε

+
(β1 − α3)(β2 − α3)

α1α2
4F3

[
1, 1, β1 − α3 + 1, β2 − α3 + 1

2, α1 + 1, α2 + 1
; 1
]

+O(ε)

�� ��G.1.20

if the series on the left is zero balanced and if Re(α3) > 0. Applying this formula to eq. G.1.18
and extracting just the divergent part (i.e. the part proportional to the logarithm), we obtain

lim
ε→0

 j∑
J=0

J 6=(j+d+2)/2

Γ(J + 1
2)Γ(j − J + 1

2)
Γ(J + 1)Γ(j − J + 1)

log ε
j + d+ 2− 2J

+
j∑

J=0
J 6=(j−d−2)/2

Γ(J + 1
2)Γ(j − J + 1

2)
Γ(J + 1)Γ(j − J + 1)

log ε
j − d− 2− 2J

 = 0

�� ��G.1.21

Thus, we have indeed verified that all infinities cancel without the need of any exterior renor-
malization procedure. However, we do not obtain a result as simple as eq. G.1.7 in this case, as
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the remaining hypergeometric functions of the type 4F3 in eq. G.1.18 do not seem to cancel in
general, leading to the complicated result

∞∑
l=0

 l+j∑
J=|l−j|
J 6=j+d+2

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

l+j∑
J=|l−j|

J 6=m(d−l−1)

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)


=

j−1∑
l=0

 l+j∑
J=|l−j|
J 6=j+d+2

〈jl00|J0〉2

(l + d+ 2)(l + d+ 3)− J(J + 1)
+

l+j∑
J=|l−j|

J 6=m(d−l−1)

〈jl00|J0〉2

(l − d− 2)(l − d− 1)− J(J + 1)



−
j∑

J=0
J 6=(j+d+2)/2

Γ(J + 1
2)2Γ(j − J + 1

2)Γ(J + j + 1)
Γ(J + 1)2Γ(j − J + 1)Γ(J + j + 3

2)

4F3

[
1,J+ 1

2
,J+j+1,J+ j+d+3

2

J+1,J+j+ 3
2
,J+ j+d+5

2

; 1
]

2J + j + d+ 3

−
j∑

J=0
J 6=(j−d−2)/2

Γ(J + 1
2)2Γ(j − J + 1

2)Γ(J + j + 1)
Γ(J + 1)2Γ(j − J + 1)Γ(J + j + 3

2)

4F3

[
1,J+ 1

2
,J+j+1,J+ j−d−1

2

J+1,J+j+ 3
2
,J+ j−d+1

2

; 1
]

2J + j − d− 1

+
j∑

J=0

(
4F3

[
1, 1, J + 1, J + j + 3

2

2, J + 3
2 , J + j + 2

; 1

]
J(J + j + 1

2)
(J + 1

2)(J + j + 1)
+ 2ψ(1)− ψ(J +

1
2

)− ψ(J + j + 1)

)

×
Γ(J + 1

2)Γ(j − J + 1
2)

Γ(J + 1)Γ(j − J + 1)

(
1

j + d+ 2− 2J

∣∣∣
J 6= j+d+2

2

+
1

j − d− 2− 2J

∣∣∣
J 6= j−d−2

2

)
=: R(q=2)(d, j) �� ��G.1.22

This completes the proof of result 3.4.4.

It should be noted that the above discussion, especially eq. G.1.22, holds in general, i.e. in
all three cases we distinguished, since we did not put any restrictions on d or j. Thus, we could
have shown finiteness for all choices of j and d in just this one step. However, the particularly
simple result G.1.7 does not seem to follow so easily from eq. G.1.22. Furthermore, we wanted
to emphasize the contrast between the calculational simplicity of the first two cases (due to the
identities of sections F.1 and F.2) and the complicated expressions needed in the analysis of the
last case.

G.2 Proof of result 3.4.7

Translating the three diagrams in eq. 3.4.96 into an equation, we find
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x y x y

+ +
x y

− log |x− y|Y0(ϕ3, x)
]

=(R1)ϕ3(x) = 20 lim
y→x

[

20
∞∑

l,l′=0

∞∑
J1,J2=0
M1,M2

∞∑
d=−∞

∑
j

(2J1 + 1)(2J2 + 1)
(
j l′ J1

0 0 0

)2(
J1 l J2

0 0 0

)2

Y0(ϕ3, x; d)jm rdSjm(x̂)

×
( ηl

′+1

(l + l′ + d+ 2)(l + l′ + d+ 3)− J2(J2 + 1)

∣∣∣
J2 6=m(l+l′+d)

+
ηl
′+1 log ry

2(l + l′ + d) + 5
δJ2,m(l+l′+d)

+
ηl
′+1

(l′ − l + d+ 1)(l′ − l + d+ 2)− J2(J2 + 1)

∣∣∣
J2 6=m(d+l′−l−1)

+
ηl
′+1 log ry

2(l′ − l + d) + 3
δJ2,m(d+l′−l−1)

+
ηl+l

′+2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
J2 6=m(d−l−l′−2)

− ηl+l
′+2 log rx

2(l + l′ − d)− 1
δJ2,m(d−l−l′−2)

)
− 20 log |x− y|Y0(ϕ3, x) �� ��G.2.1

with η := |y|/|x|. Here we used the coupling rules for the spherical harmonics (eq. D.2.15) and
inserted the specific form of the factor D (eq. 3.4.16), which is obtained at the vertex in the
diagrams. In the intermediate steps of the following calculation we omit the sums over d and
j and the expression Y0(ϕ3, x; d)jm rdSjm(x̂), since this is independent of the contraction index
l and we are mainly interested in the sum over this index. We can easily restore the omitted
expressions at the end of the calculation.

The logarithmic terms

Let us start our inspection of eq. G.2.1 with the terms containing logarithms. Replacing
d → l′ + d in eq. G.1.5, we obtain just the first two logarithmic terms of the formula above
(neglecting some prefactors independent of l). This suggests

∞∑
l=0

(
〈J1l 00|m(l + l′ + d) 0〉2 ηl

′+1 log ry
2(l + l′ + d) + 5

+ 〈J1l 00|m(d+ l′ − l − 1) 0〉2 ηl
′+1 log ry

2(l′ − l + d) + 3

)

= sign(l′ + d+ 2)
|l′+d+2|−1∑

l=0

(
J1 l |l′ + d+ 2| − 1− l
0 0 0

)2

ηl
′+1 log ry �� ��G.2.2

Let us assume d + 1 ≥ 0 for the moment. Then the partial sum with l + l′ ≥ d + 1 over the
logarithmic term in the last line of eq. G.2.1 becomes

−
∞∑

l,l′=0
l+l′≥d+1

∑
J1

〈jl 00|J1 0〉2〈J1l
′ 00|(l + l′ − d− 1) 0〉2 ηl+l

′+2 log rx
2(l + l′ − d)− 1

= −
∞∑

l,l′=0
l′≥d+1−l

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ l + l′ − d− 1
0 0 0

)2

ηl+l
′+2 log rx

= −

(
d+1∑
l=0

∞∑
l′=d+1−l

+
∞∑

l=d+2

∞∑
l′=0

)∑
J1

〈jl 00|J1 0〉2
(
J1 l′ l + l′ − d− 1
0 0 0

)2

ηl+l
′+2 log rx

�� ��G.2.3
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Further, under this assumption equation G.2.2 takes the form

∞∑
l′=0

l′+d+1∑
l=0

∑
J1

〈jl 00|J1 0〉2〈J1l
′ 00|(l′ + d+ 1− l) 0〉2 ηl

′+1 log ry
2(l′ − l + d) + 3

=

d+1∑
l=0

∞∑
l′=0

+
∞∑

l=d+2

∞∑
l′=l−(d+1)

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ l′ + d+ 1− l
0 0 0

)2

ηl
′+1 log ry

�� ��G.2.4

Comparing the two equations above it is easy to verify that these sums cancel in the limit η → 1
(i.e. y → x), so that only the finite sum

20
l+l′≤d∑
l,l′=0

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ d− l − l′
0 0 0

)2

log rx
�� ��G.2.5

remains. Note that the sum of the three logarithmic series in eq. G.2.1 is antisymmetric around
d = −3/2. Hence, for d < −1 we may simply multiply our result by sign(d+ 3/2) and replace d
with |d+ 3/2| − 3/2. Thus

20
∞∑

d=−∞

∑
j=0

Y0(ϕ3, x; d)jm rdSjm(x̂)
∞∑

l,l′=0

∑
J1

〈jl′ 00|J1 0〉2 log rx

×
(
〈J1l 00|m(l + l′ + d) 0〉

2(l + l′ + d) + 5
+
〈J1l 00|m(d+ l′ − l − 1) 0〉

2(l′ − l + d) + 3
− 〈J1l 00|m(d− l − l′ − 2) 0〉

2(l + l′ − d)− 5

)
= 20

∞∑
d=−∞

∑
j=0

sign(d+ 3/2)Y0(ϕ3, x; d)jmrdSjm(x̂)

×
l+l′≤|d+ 3

2
|− 3

2∑
l,l′=0

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ |d+ 3

2 | −
3
2 − l − l

′

0 0 0

)2

log rx �� ��G.2.6

which is in accordance with the logarithmic terms in eqs. 3.4.105 and 3.4.106.

Vanishing partial sum

Now consider the follwing partial sum of eq. G.2.1:

20
∞∑

l,l′=0

∑
J1,J2
M1,M2

ηl+1〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ + d+ 2)(l + l′ + d+ 3)− J2(J2 + 1)

∣∣∣
denom. 6=0

+20
∞∑
l=0

∞∑
l′=l+d+2

∑
J1,J2
M1,M2

ηl+1〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l′ − l − d− 2)(l′ − l − d− 1)− J2(J2 + 1)

∣∣∣
denom.6=0

,

�� ��G.2.7

As in the calculation of the remainder (R1)ϕ2 in the previous section, this expression again
behaves very differently for varying values of d and j. Hence, we again distinguish different
values of the number of annihilation operators among the three operators constituting Y0(ϕ3, x)
in eq. G.2.1, where the notation Y0(ϕ3, x; q) will be used in order to indicate this grading of the
left representative.

Let us start with the case q = 0, which implies d ≥ j and d+ j = even. Thus, we may use eq.
F.1.2 from the appendix in order to simplify
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20
∞∑

l,l′=0

∑
J1,J2
M1,M2

〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ + d+ 2)(l + l′ + d+ 3)− J2(J2 + 1)

∣∣∣
denom. 6=0

=− 10
∞∑

l,l′=0

j+l∑
J=|j−l|

〈jl 00|J 0〉2
∫ 1

−1
PJ(z)Pl′(z)Pl+l′+d+2(z) log(1− z)dz

�� ��G.2.8

and

20
∞∑
l=0

∞∑
l′=l+d+2

∑
J1,J2
M1,M2

〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l′ − l − d− 2)(l′ − l − d− 1)− J2(J2 + 1)

∣∣∣
denom. 6=0

=10
∞∑
l=0

∞∑
l′=l+d+2

j+l∑
J=|j−l|

〈jl 00|J 0〉2
∫ 1

−1
PJ(z)Pl′(z)Pl′−l−d−2(z) log(1− z)dz

=10
∞∑

l,l′=0

j+l∑
J=|j−l|

〈jl 00|J 0〉2
∫ 1

−1
PJ(z)Pl′+l+d+2(z)Pl′(z) log(1− z)dz .

�� ��G.2.9

Thus, we have found that the partial sum under consideration vanishes in the limit y → x

lim
y→x

[
20

∞∑
l,l′=0

∑
J1,J2
M1,M2

ηl+1〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ + d+ 2)(l + l′ + d+ 3)− J2(J2 + 1)

∣∣∣
denom.6=0

+20
∞∑
l=0

∞∑
l′=l+d+2

∑
J1,J2
M1,M2

ηl+1〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l′ − l − d− 2)(l′ − l − d− 1)− J2(J2 + 1)

∣∣∣
denom. 6=0

]
= 0 .

�� ��G.2.10

Note that this result is very similar in nature to the cancellation of eqs. G.1.8 and G.1.9 in
the previous section. This similarity is no surprise, since the diagrams corresponding to this
calculation of the previous section (see eq. G.1.1) are subtrees of the first two graphs in eq.
G.2.1.

Cancellation of infinities

It remains to consider the partial sum

20
∑
l,l′

∑
J1,J2
M1,M2

ηl+l
′+2〈jl 00|J1 0〉2〈J1l

′ 00|J2 0〉2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
denom. 6=0

+20
∞∑
l=0

l+d+1∑
l′=0

∑
J1,J2
M1,M2

ηl+1〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l′ − l − d− 2)(l′ − l − d− 1)− J2(J2 + 1)

∣∣∣
denom.6=0

.

�� ��G.2.11

In the first sum the identity F.2.4 from the appendix may be used for l + l′ ≥ d + 1, since
J1 + l−d− 1 = 2l+ j− 2k−d− 1 = odd (recall that d− j = even). Hence this sum simplifies to

20
∑
l,l′

l+l′≥d+1

∑
J1,J2
M1,M2

ηl+l
′+2〈jl 00|J1 0〉2〈J1l

′ 00|J2 0〉2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
denom. 6=0

= −10
∑
l,l′

l+l′≥d+1

∑
J1,M1

ηl+l
′+2〈jl 00|J1 0〉2

∫ 1

−1
PJ1(z)Pl′(z)Ql+l′−d−1(z) dz

�� ��G.2.12
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Now we consider the second sum. Here we may change the coupling order in the product of the
Clebsch-Gordan coefficients, i.e. we exchange the role of l and l′ in the intertwiners (we have
this freedom since the coupling order was arbitrary). Application of F.2.4 then yields

20
∑
l,l′

l′−l≤d+1

∑
J1,J2
M1,M2

ηl+1〈jl′ 00|J1 0〉2〈J1l 00|J2 0〉2

(l − l′ + d+ 1)(l − l′ + d+ 2)− J2(J2 + 1)

∣∣∣
denom. 6=0

= −10
∑
l,l′

l′−l≤d+1

∑
J1,M1

ηl+1〈jl′ 00|J1 0〉2
∫ 1

−1
PJ1(z)Pl(z)Ql−l′+d+1(z) dz

= −10
∞∑
l,l′

l+l′≥d+1

∑
J1,M1

ηl+l
′−d〈jl′ 00|J1 0〉2

∫ 1

−1
PJ1(z)Pl+l′−d−1(z)Ql(z) dz

= −10
∞∑
l,l′

l+l′≥d+1

∑
J1,M1

ηl+l
′−d〈jl 00|J1 0〉2

∫ 1

−1
PJ1(z)Pl+l′−d−1(z)Ql′(z) dz

�� ��G.2.13

In the last step we simply exchanged the names of the summation indices. According to eq.
F.2.5 from the appendix, the summands in eqs. G.2.12 and G.2.13 vanish for the following
constellation of parameters:

|l + j − 2k − l′| ≤ l + l′ − d− 1 ≤ l + l′ + j − 2k
�� ��G.2.14

where we wrote J1 = l + j − 2k with k ∈ {0, . . . ,min(l, j)}. Therefore we are only interested in
the cases where these inequalities are not satisfied. We first observe that the second inequality,
l + l′ − d− 1 ≤ l + l′ + j − 2k is equivalent to j − 2k + d+ 1 ≥ 0, which always holds for d ≥ j.
The second condition, however, is not satisfied in the following two cases

l+j−2k > l′ and l′ <
j − 2k + d+ 1

2
or l < l′−(j−2k) and l <

d+ 1− (j − 2k)
2�� ��G.2.15

Let us start with the latter condition, which implies

J1 + l + l′ − d− 1 < l′ ,
�� ��G.2.16

and allows us to use eq. F.2.6 for the integrals in eqs. G.2.12 and G.2.13. Note that in the
first equation, G.2.12, the index l′ is attached to a Legendre polynomial of the first kind, Pl′ ,
while in the other equation, G.2.13, it is attached a Legendre polynomial of the second kind,
Ql′ . According to eq. F.2.6 these integrals then differ by a minus sign, which tells us that eqs.
G.2.12 and G.2.13 cancel each other in the limit η → 1 if the mentioned inequality is satisfied.

On the other hand, the second condition in eq. G.2.15 leads to the inequality

l + 2l′ − d− 1 < J1 .
�� ��G.2.17

Again we may apply eq. F.2.6, but this time the largest index, namely J1, is attached to a
Legendre polynomial of the first kind in both of the two equations. Since an exchange of l1
and l2 does not alter the result in eq. F.2.6, the two integrals are equal, so that instead of
canceling each other, eqs. G.2.12 and G.2.13 add up in the case at hand. Summing up the
above discussion, we have found that (neglecting some prefactors ηn with constant n ∈ N, which
are irrelevant in the limit η → 1)
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−10
∑
l,l′

l+l′≥d+1

∑
J1,M1

〈jl 00|J1 0〉2ηl+l′
∫ 1

−1
PJ1(z)

(
Pl′(z)Ql+l′−d−1(z) + Pl+l′−d−1(z)Ql′(z)

)
dz

= −20

 j∑
l=0

l∑
k=0

(j−2k+d)/2∑
l′=d+1−l

+
j∑

k=0

d∑
l=j+1

(j−2k+d)/2∑
l′=d+1−l

+
j∑

k=0

∞∑
l=d+1

(j−2k+d)/2∑
l′=0

×
〈jl 00|l + j − 2k 0〉2ηl+l′

∫ 1

−1
Pl+j−2k(z)Pl′(z)Ql+l′−d−1(z) dz �� ��G.2.18

Clearly the first two triple sums in this expression are finite and it remains to search for infinities
in the third one.

−20
j∑

k=0

∞∑
l=d+1

(j−2k+d)/2∑
l′=0

〈jl 00|l + j − 2k 0〉2ηl+l′
∫ 1

−1
Pl+j−2k(z)Pl′(z)Ql+l′−d−1(z) dz

= −20
j∑

k=0

∞∑
l=0

(j−2k+d)/2∑
l′=0

〈j(l + d+ 1) 00|(l + d+ 1 + j − 2k) 0〉2

×
∫ 1

−1
Pl+d+1+j−2k(z)Pl′(z)Ql+l′(z) dzηl+l

′

= −10
π

j∑
k=0

(j−2k+d)/2∑
l′=0

Γ(k + 1
2)Γ(j − k + 1

2)Γ(d+j−2k+1
2 − l′)Γ(d+j−2k

2 + 1)

Γ(k + 1)Γ(j − k + 1)Γ(d+j−2k
2 − l′ + 1)Γ(d+j−2k+3

2 )
ηl
′

× 6F5

[
1, d+ j − 2k + 5

2 , d− k + 3
2 , d+ j − k + 2, d+j−2k−l′

2 + 1, d+j−2k+l′+3
2

d+ j − 2k + 3
2 , d− k + 2, d+ j − k + 5

2 ,
d+j−2k−l′+3

2 , d+j−2k+l′

2 + 2
; η

]

×
Γ(d+ j − 2k + 5

2)Γ(d− k + 3
2)Γ(d+ j − k + 2)Γ(d+j−2k−l′

2 + 1)Γ(d+j−2k+l′+3
2 )

Γ(d+ j − 2k + 3
2)Γ(d− k + 2)Γ(d+ j − k + 5

2)Γ(d+j−2k−l′+3
2 )Γ(d+j−2k+l′

2 + 2)�� ��G.2.19

Here we expressed the 3j-coefficient and the integral through Γ-functions with the help of eqs.
D.2.18 and F.2.6, and wrote the infinite sum over l as a hypergeometric series. Taking a
closer look at the parameters of this hypergeometric series, we find that it is zero-balanced, and
therefore logarithmically divergent in the limit η → 1, as expected. Eq. C.6 from the appendix
allows for a more detailed characterization of this divergence. We find for the prefactor of the
diverging logarithm

10
π

j∑
k=0

(j−2k+d)/2∑
l′=0

Γ(k + 1
2)Γ(j − k + 1

2)Γ(d+j−2k+1
2 − l′)Γ(d+j−2k

2 + 1)

Γ(k + 1)Γ(j − k + 1)Γ(d+j−2k
2 − l′ + 1)Γ(d+j−2k+3

2 )
log(1−η) = 20 log(1−η) .�� ��G.2.20

Finally, we have found the divergence that cancels with the logarithmic counterterm (see eq.
3.4.93). Since there is no further counterterm, and as we now have brought all expressions
into normal order without any remaining divergences, we have verified that the renormalization
procedure also works in the case at hand.

Result

Summing up all the results of the preceding discussion, we can now give the remainder for q = 0
as
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(R1)ϕ3(x; d, j, q = 0) = 20 log r

l+l′≤d∑
l,l′=0

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ d− l − l′
0 0 0

)2

− 1


+20

∑
J1,J2
M1,M2

 ∑
l,l′

l+l′≤d

+2
d∑
l=0

J1+d−l
2∑

l′=d+1−l

 〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
denom. 6=0

− 10
π

j∑
k=0

(j−2k+d)/2∑
l′=0

Γ(k + 1
2)Γ(j − k + 1

2)Γ(d+j−2k+1
2 − l′)Γ(d+j−2k

2 + 1)

Γ(k + 1)Γ(j − k + 1)Γ(d+j−2k
2 − l′ + 1)Γ(d+j−2k+3

2 )

× L5

[
1, d+ j − 2k + 5

2 , d− k + 3
2 , d+ j − k + 2, d+j−2k−l′

2 + 1, d+j−2k+l′+3
2

d+ j − 2k + 3
2 , d− k + 2, d+ j − k + 5

2 ,
d+j−2k−l′+3

2 , d+j−2k+l′

2 + 2

]
,

�� ��G.2.21

where L5 is the non-divergent part of the hypergeometric series 6F5 in eq. G.2.19, see also eq.
C.7. The first line of this result follows from eq. G.2.6. Note however that there is an additional
−1 in square brackets, which accounts for the finite contribution to the logarithmic counterterm
3.4.93. The second line contains two contributions: The first is due to the fact that in eq. G.2.12
we have only considered the partial sum with l+ l′ ≥ d+ 1, so we have to recover the remaining
partial sum. The other contribution comes from the finite sums in eq. G.2.18. Finally, the last
two lines are the finite remainder of eq. G.2.19 after the subtraction of the counterterm.

Fortunately, with this result we can find an expression for (R1)ϕ3(x; q = 3) without any
additional computational effort. For the parameters d and j the condition q = 3 essentially
means that now d ≤ −3 and |d + 3| ≥ j. We have already mentioned that the partial sums
including the logarithms in eq. G.2.1 change the sign if we replace d → −d − 3. It is easy to
see that the remaining terms in that equation are invariant under this transformation. Thus,
we simply have to change the sign in the first line of eq. 3.4.105, which leads to the result

(R1)ϕ3(x;−d− 3, j, q = 3) = −20 log r

l+l′≤d∑
l,l′=0

∑
J1

〈jl 00|J1 0〉2
(
J1 l′ d− l − l′
0 0 0

)2

+ 1


+20

∑
J1,J2
M1,M2

 ∑
l,l′

l+l′≤d

+2
d∑
l=0

J1+d−l
2∑

l′=d+1−l

 〈jl 00|J1 0〉2〈J1l
′ 00|J2 0〉2

(l + l′ − d− 1)(l + l′ − d)− J2(J2 + 1)

∣∣∣
denom. 6=0

− 10
π

j∑
k=0

(j−2k+d)/2∑
l′=0

Γ(k + 1
2)Γ(j − k + 1

2)Γ(d+j−2k+1
2 − l′)Γ(d+j−2k

2 + 1)

Γ(k + 1)Γ(j − k + 1)Γ(d+j−2k
2 − l′ + 1)Γ(d+j−2k+3

2 )

× L5

[
1, d+ j − 2k + 5

2 , d− k + 3
2 , d+ j − k + 2, d+j−2k−l′

2 + 1, d+j−2k+l′+3
2

d+ j − 2k + 3
2 , d− k + 2, d+ j − k + 5

2 ,
d+j−2k−l′+3

2 , d+j−2k+l′

2 + 2

]
, �� ��G.2.22

and finishes the proof.
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