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Abstract
Positivity analysis of correlation functions in axiomatic conformal quantum field
theory is a nontrivial issue. The partial wave analysis provides a powerful tool
to test for positivity, however, the computation of partial waves remains difficult.
Recent advances in the method of intertwining operators make this computation
feasible even in four spacetime dimensions. In this thesis we outline basics of the
theory of intertwining operators and develop the necessary computer algebra tools
to calculate partial waves. We then apply them to an exotic four-point structure
of currents found by Yassen Stanev that cannot arise in free theories, making it
an interesting candidate for an interacting theory provided its positivity. We finally
show that it is not positive on its own and give certain bounds on combined theories
of the exotic, free Dirac and free Bose currents to form a possibly positive theory.
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Nomenclature

L The rank of a tensor field.

d The scaling dimension of a tensor field.

2κ The twist of a field, 2κ := d− L.

[F ](i,j) The symmetrization of F under the exchange of i↔ j

η The Minkowski metric η = diag(1,−1,−1,−1).

ιxx1,x2 The evaluation map setting x1 = x2 and calling the result x. If x is
omitted, the result is called x1.

〈A〉 Short notation for the inner product 〈Ω, AΩ〉.

bac The integer part of a.

M The Minkowski space M := R1,3.

S(M) The Schwartz space of functions on M.

∇i The derivative w.r.t. yi.

∇vi The derivative w.r.t. wi.

Ω The distinct vacuum state.

M The conformally compactified Minkowski space.

ρij ρij := (xi − xj − 0ie0)2.

ϕ(v, x) The tensor field vµ1,µ2,...ϕ
µ1,µ2,... at spacetime position x.

a · b The product aµbνηµν .
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J Conserved current of representation κ = 1, L = 1.

wi The derivative ∂vi w.r.t. vi.

x ∧ y Wedge product of the Lorentz vectors x and y, x ∧ y := xµyν − xνyµ.

yi The derivative ∂i w.r.t. xi, considered as a variable of the polynomial
intertwining operator E.

viii



1 Introduction

The theory of quantum fields (QFT) has been developed in the 1940s and 1950s
as an attempt to fix several conceptional flaws of quantum mechanics. The facts
that QM is a necessarily non-relativistic theory, that concepts like the Dirac sea are
needed to explain anti particles and that it cannot describe creation and annihilation
processes of particles are just a few examples of the theorie’s weaknesses. The former
makes it impossible to describe massless particles like the common photon, which
behaves necessarily relativistic.
Today, the theory of quantum fields has been applied to many fields of physics,

featuring most prominently particle physics, leading to the development of the Stan-
dard Model, where it is used to describe three of the four fundamental forces of
nature. As a result, the development of this theory is still vivid today and of great
importance not just in particle physics, but also in statistical mechanics, condensed
matter physics, cosmology and many more.
However, ever since quantum field theories have been used, most predictions were

derived using a perturbative approach that gives rise to many divergent integrals, for
example UV and IR divergences. To circumvent them, one can drop the concept of
Lagrangians, which make the use of renormalization theory inevitable, and instead
work with the assumption that the quantized fields are given, fulfilling a basic set of
axioms to ensure important physical properties like Lorentz invariance. From this
setting, it is possible to derive powerful results like the LSZ formula, which allows
the calculation of scattering amplitudes in terms of vacuum expectation values of
products of fields, called correlation functions.
In axiomatic quantum field theory the knowledge of all correlation functions allows

the reconstruction of the whole theory, including the Hilbert space and therefore its
inner product; a sound theory of course implies that the inner product is positive.
Whether this is the case is a nontrivial issue and subject to recent research.
In conformal quantum field theory, where the symmetry group is enlarged to all

transformations that leave orientation and angles invariant, the structure of corre-
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1 Introduction

lation functions of products of n fields is fixed and well understood, the problem of
positivity of two-point functions reduces to the determination of its sign. This en-
courages expressing higher functions in terms of two-point functions, which is done
by partial wave analysis: A positive n-point function is positive if this holds for all
its partial two-point functions too.
However, determining the partial waves is nontrivial. In lower space time dimen-

sions, using Casimir operators is a common way of approaching this problem, but
is getting far too complicated in 4D.
Instead, Rehren, Wallenhorst and Neumann found another method of so

called intertwining differential operators [6] to determine the partial waves. Within
this thesis we will use the intertwining method to investigate the positivity of an
exotic four-point structure of four current fields found by Stanev in [12], which is
of high interest as it cannot arise in non interacting theories and all valid theories
found so far in four dimensional QFT correspond to free fields.
Within this thesis we will proceed as follows: The first part of chapter 2 will de-

scribe the basic axiomatic setup in which we will work and will collect the necessary
implications of the conformal symmetry for quantum field theories with a focus on
the structure of correlation functions. The second part will consider the partial wave
analysis as a tool to reduce the general n-point functions to n−1-point functions and
introduces the correlation function of interest along with the four-point functions of
the free Bose and Dirac currents for later comparison.
Chapter 3 introduces the method of intertwining differential operators and roughly

sketches the origin of this method. The differential equation that generates the
intertwining operators is derived and finally we summarize the possible positivity
tests used later in the application of the method on the exotic four-point structure.
The necessary computer tools to apply the method are developed and presented

in chapter 4. Their applications and positivity tests are conducted in chapter 5.
The thesis is summarized in chapter 6 and concludes with an outlook.
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2 General framework

The “usual” approach to QFT, following the historical path of the development of
quantized field theories, results in a great number of problems, including the lack of a
consistent mathematical description of quantum fields. In order to work with a solid
mathematical foundation, we will use the axiomatic framework instead: Proposing
basic features on the theory and its quantum fields, one can derive mathematically
sound theories. These basic features normally include locality and positivity fea-
tures, to prevent violation of causality and to allow a probability interpretation of
observables. Additionally one requires at least a symmetry of the Poincaré group to
ensure observation of the same physical rules by every spectator.
Within this thesis, we will use the Wightman axioms [13], formulated by A. S.

Wightman in 1950. Throughout this chapter we will use the metric tensor η =
diag(1,−1,−1,−1) and natural units ~ = c = 1.

2.1 Wightman Axioms
Instead of formulating the axioms for the fields ϕ themselves, it is in this case more
appropriate to consider the equivalent formulation for the correlation functions, or
Wightman functions, defined as the vacuum expectation value of a product of fields.
The reconstruction theorem [11] then allows to recover the whole QFT from the
correlation functions. We will however stick to correlation functions, because they
will be of importance in the later chapters.
As a basis for our theory, we will need

• a separable Hilbert space H,

• the (distinct) normalized vacuum state Ω ∈ H, which is invariant under the
action of

• a covering group P of the Poincaré group (as we want to enlarge the symmetry
later on) and U(g), a unitary representation for g ∈ P , acting on H,
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2 General framework

• the set of fields {ϕi}i=1...N and their adjoints {ϕ?i }i=1...N , where ϕi : S(M)→
O(H) are operator valued distributions. Here, S(M) denotes the Schwartz
space of functions on Minkowski space and O(H) is the set of all operators
on H that are defined on a dense linear subset D ⊂ H with Ω ∈ D. D shall
be invariant under the action of P and all operators in O(H) shall project
vectors of D to D again. We need to treat the fields as distributions, as e.g.,
commutation relations of the fields yield δ-distributions and can therefore not
be treated as mere functions. However, most of the time we will ignore this
fact and work with the fields ϕ(x) as if they were functions unless the distinc-
tion becomes necessary. Equations involving ϕ(x) are then to be thought of
multiplied by a test function and integrated over.

Definition 1. In order to work with correlation functions, we define the n-point
correlation function (or Wightman function) Wϕi1 ...ϕin

(x1, . . . , xn) of a subset of
fields {ϕi}i∈I as

Wϕi1 ...ϕin
(x1, . . . , xn) := 〈Ω, ϕi1(x1) . . . ϕin(xn)Ω〉 ,

where 〈·, ·〉 denotes the inner product of H. If the involved fields are arbitrary, we
omit them from the notation. Again, the Wightman function W is to be thought of
as a tempered distribution W (f1, . . . , fn) with test functions f1, . . . , fn.

We can now define our QFT:

Definition 2. The set of all correlation functions and the data given above are
called a Wightman QFT, if they fulfill the following axioms [10, 13]:

Hermiticity For all correlation functions Wϕi1 ...ϕin
(x1, . . . xn) holds

Wϕi1 ...ϕin
(x1, . . . , xn) = Wϕ?in ...ϕ

?
i1

(xn, . . . , x1).

This is needed to ensure hermiticity of the reconstructed inner product, given
by the reconstruction theorem for vectors ϕi1(f1) . . . ϕin(fn)Ω as

〈ϕi1(f1) . . . ϕin(fn)Ω, ϕj1(g1) . . . ϕjn(gn)Ω〉
:= Wϕ?in ...ϕ

?
i1
ϕj1 ...ϕjn

(f̄n, . . . , f̄1, g1, . . . , gn).
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2.1 Wightman Axioms

Locality If xi and xi+1 are separated spacelike, i.e. (xi − xi+1)2 < 0 using η =
diag(1,−1, . . .), for any correlation function W holds

W (. . . , xi, xi+1, . . .) = W (. . . , xi+1, xi, . . .),

as the underlying fields ϕ(xi) and ϕ(xi+1) do commute at spacelike distances:

[ϕ(x1), ϕ(x2)] = 0. (2.1.1)

Covariance The correlation functions are covariant under the action of g ∈ P ;

W (x1, . . . , xn) = W (g ◦ x1, . . . , g ◦ xn).

As the translations are part of P , the correlation functions depend only on
relative coordinates, since they are Lorentz and translation invariant. As a
result, one can write

W (x1, . . . , xn) = W ′(x2 − x1, . . . , xn − xn−1).

Spectrum Condition The Fourier transformations ofW ′(x2−x1, . . . , xn−xn−1) are
tempered distributions and have their support only on the future light cone.
This feature admits only positive energy solutions.

Positivity Let ϕ be any field of the QFT and {fi}i∈I a set of test functions, then

∑
i,j∈I

ˆ
fi(x1, . . . , xi)Wϕ?...ϕ?,ϕ,...,ϕ(xi, . . . , x1, y1, . . . , yj)

·fj(y1, . . . , yj)dx1 . . . dxidy1 . . . dyj ≥ 0 (2.1.2)

must hold to ensure positivity of the reconstructed inner product. To verify
this property for certain correlation functions will be the main concern of this
thesis.

Cluster Decomposition Property For spacelike a ∈M holds

lim
λ→∞

W (x1, . . . , xi, xi+1 + λa, . . . , xn + λa) = W (x1, . . . , xi)W (xi+1, . . . , xn),
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2 General framework

which is another aspect of locality ensuring operators to behave independently
at spacelike separated distances.

To shorten the notation, we will write for the vacuum expectation value

〈Ω, AΩ〉 ≡ 〈A〉

from now on.

2.2 Polarization vectors

In the following, we will often have to consider tensor fields T µ1...µn(x). In order
to simplify the calculations, i.e. avoid Lorentz indices in computer algebra systems
(CAS), we use so called polarization vectors v1 . . . vn ∈ M and consider the quasi
scalar field

T (v, x) := v1,µ1 . . . vn,µnT
µ1...µn(x)

instead. The original field can be recovered by

T µ1...µn(x) = ∂µ1
v1 . . . ∂

µn
vn T (v, x).

If T µ1...µn(x) is totally symmetric, a single polarization vector suffices and from

T (v, x) := vµ1 . . . vµnT
µ1...µn(x)

T can be recovered by

T µ1...µn(x) = 1
n!∂

µ1
v . . . ∂µnv T (v, x).

A trace of a rank 2 tensor can be written as

T µµ = 1
2∂

2
vT (v, x). (2.2.1)

2.3 Conformal invariance

To make decent predictions on the admissible theories, the Poincaré group is enlarged
to the conformal group, which consists of all transformations that leave orientations
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2.3 Conformal invariance

and angles invariant, including dilations; in two space time dimensions one could
think of Möbius transformations to visualize the conformal group. Even though we
know, due to e.g. masses of particles, that reality is by no means invariant under
such transformations, the conformal field theories (CFT) are useful for applications
in statistical mechanics due to scale invariance at phase transitions and in string
theory, where the AdS/CFT correspondence is a prominent example.

In order to answer the question whether the Wightman axioms are too strict
to allow interacting theories, the study of CFTs is indeed useful due to the easier
structure they imply on the correlation functions.

In terms of the metric tensor, the conformal transformations can be expressed as
all mappings x 7→ x′ which leave the tensor invariant up to a scale Λ(x) [5]. Those
mappings can be classified as [1]

• Poincaré transformations xµ 7→ Λµ
νx

ν and xµ 7→ xµ+aµ for any Lorentz matrix
Λ and a ∈M,

• Dilations xµ 7→ λxµ with λ ∈ R+,

• Special conformal transformations xµ 7→ xµ−x2bµ

1−2b·x+b2x2 with bµ ∈M.

Additionally the fields ϕ(x) (scalar or tensor fields) will transform, e.g.

• ϕ(x) 7→ LΛϕ(Λ−1x) for Lorentz transformations with a matrix LΛ if ϕ is a
tensor field, ϕ(x) 7→ ϕ(x− a) for translations,

• ϕ(x) 7→ λdϕ(λx) for dilations where d denotes the scaling dimension of ϕ, an
important quantum number in later considerations.

From these one can derive the generators Mµν of the Lorentz group, D of the di-
lations, Pµ of the translations and Kµ of the special conformal transformations,
their commutation relations with the (contracted symmetric, traceless tensor) fields
ϕ(v, x), given by [5, 14]

7



2 General framework

i[Pµ, ϕ(v, x)] = ∂µϕ(v, x), (2.3.1)
i[D,ϕ(v, x)] = (x · ∂ + d)ϕ(v, x), (2.3.2)

i[Mµν , ϕ(v, x)] = (xµ∂ν − xν∂µ + vµ∂
v
ν − vν∂vµ)ϕ(v, x)

≡ (x ∧ ∂ + v ∧ ∂v)ϕ(v, x), (2.3.3)
i[Kµ, ϕ(v, x)] = (2xµ(x · ∂)− x2∂µ + 2dxµ

+2vµ(x · ∂v)− 2(x · v)∂vµ)ϕ(v, x), (2.3.4)

and the commutation relations among the generators which define the conformal
Lie algebra [5]:

i[Pµ, D] = Pµ, (2.3.5)
i[Kµ, D] = −Kµ, (2.3.6)
i[Kµ, Pν ] = 2(Mµν − ηµνD), (2.3.7)

i[Kρ,Mµν ] = ηρνKµ − ηρµKν , (2.3.8)
i[Pρ,Mµν ] = ηρνPµ − ηρµPν , (2.3.9)

i[Mµν ,Mρσ] = ηµρMνσ + ηνσMµρ − ηνρMµσ − ηµσMνρ. (2.3.10)

Vanishing commutators are not listed. Here, x ∧ y means xµyν − xνyµ.

Note that the special conformal transformations give rise to singularities, i.e. they
map certain spacetime points to infinity. One therefore has to treat the compactified
Minkowski space

M =
{
z = (z1, z2, z3, z4) ∈ C4 | z = z̄

z̄2

}
instead to include these points, leading to globally conformal invariant theories. A
detailed definition and analysis is given in [7] and [8].

Definition 3. A Wightman QFT on Minkowski space is called globally confor-
mal invariant (GCI) if for any conformal transformation g and all sets of points
(x1, . . . , xN) with xi ∈ M and g ◦ xi ∈ M holds that all correlation functions
W (x1, . . . , xN) are invariant under g [7].
In fact, any well defined GCI QFT can be extended to M [14].
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2.4 Correlation functions in CFT

GCI gives rise to more restrictions on the fields and their correlation functions.
One of them is the so called Huygens principle

[ϕ(x), ϕ(y)] = 0

for (x − y)2 6= 0, as special conformal transformations can map spacelike points to
timelike points and vice versa and fields commute at spacelike distances by (2.1.1).
This means that information is only transferred on the light cone and all masses are
zero.
The scaling dimension d together with the two spin quantum numbers j1 and j2

of the Lorentz representation characterize the irreducible unitary representations.
It follows from global conformal invariance, that d and j1 + j2 = L, the rank of a
tensor field, have to be integer [7].
A result given in [3] states that all irreducible unitary positive weights are lowest

weight representations, giving restrictions on admissible quantum numbers, called
the unitarity bound. They can be classified as follows:

• d = j1 = j2 = 0,
• j1 6= 0, j2 6= 0, d ≥ j1 + j2 + 2,
• j1 · j2 = 0, d ≥ j1 + j2 + 1. (2.3.11)

Representations below this bound manifestly violate positivity.

2.4 Correlation functions in CFT

The high symmetry of the conformal group gives rise to many constraints on admis-
sible correlation functions in a conformal field theory and fixes the 1-point, 2-point
and 3-point functions of scalar fields up to a normalization constant [1].

1-point functions

Due to translation invariance, for all a ∈M holds Wϕ(x) = Wϕ(x+a) and therefore
all 1-point-functions have to be constant. As the conformal group also contains
dilations, Wϕ has to be homogeneous in x: The only scale invariant constant is 0

9



2 General framework

and therefore all 1-point functions vanish:

Wϕ(x) = 0.

2-point functions

The 2-point functions of fields ϕ and ϕ′ are zero, unless (d, j1, j2) = (d′, j′2, j′1). In
case of scalar fields (j1 = j2 = 0) the function is fixed by conformal invariance and
is given in by

Wϕ,ϕ′(x1, x2) = δd,d′
C

ρd12
, (2.4.1)

with the common abbreviation ρij := (xi − xj − 0ie0)2 where e0 = (1, 0, 0, 0) ∈M.
For general symmetric, traceless tensor fields ϕ(v, x1), ϕ′(v′, x2) holds [2]

Wϕ,ϕ′(x1, x2) = δd,d′δj1,j′2δj2,j′1C
[
(vµ1 vν2Rµν(x12))L

]
00

(
−1
ρ12

)d−L
(2.4.2)

where

Rµν(x12) := 1
ρ2

12
(ηµνρ12 − 2x12,µx12,ν) (2.4.3)

is the primitive covariant and
[A(v1, v2)]00

denotes the traceless part, i.e. the harmonic part of A w.r.t. to v1 and v2, that is
(c.f. (2.2.1)),

∂2
v1 [A(x1, x2)]00 ≡ �v1 [A(x1, x2)]00 = 0 = �v2 [A(x1, x2)]00 .

Note that the harmonic decomposition of a complex power series is unique [9].
The two-point function (2.4.2) is conserved iff for scaling dimension d and rank L

hold
d− L = 2.

Therefore it is useful to define the twist of a field:

Definition 4. The twist 2κ of a tensor field of rank L and scaling dimension d is
defined as

2κ := d− L.

10



2.4 Correlation functions in CFT

The Reeh-Schlieder theorem then implies that correlation functions are conserved
in the spacetime variables of twist-2 fields [9].

3-point functions

The 3-points function of scalar fields are determined by the scaling dimensions di of
the involved fields ϕi and read [14]

Wϕ1,ϕ2,ϕ3(x1, x2, x3) = C

ρ
1
2 (d1+d2−d3)
12 ρ

1
2 (d1−d2+d3)
13 ρ

1
2 (−d1+d2+d3)
23

.

For general fields there is no known explicit form. However, GCI gives further
restrictions on the twists as only fields with even twist give rational three-point
functions and are therefore admissible [6].

n-point functions

Due to globally conformal invariance, n-point functions for arbitrary n are rational
[7], for scalar fields ϕi of scaling dimension di it follows that [7]

Wϕ1...ϕn(x1, . . . , xn) =
∑
µ

Cµ
∏
i<j

ρ
µij
ij , (2.4.4)

where µ denotes the multi-index µ = {µij}i<j, obeying the sum rule

∑
i

µij = −dj

in order to ensure the scaling properties.
The unitarity bounds (2.3.11) can be expressed in terms of the coefficients {µij}i<j

as [7]

µij ≥ −
⌊
di + ji,1 + ji,2 + dj + jj,1 + jj,2 − (1− δji,1jj,2δji,2jj,1δdidj)

2

⌋
, (2.4.5)

which will be one of the positivity tests to be conducted later. bac denotes the
integer part of a. These bounds do also imply that the set of multi-indices is finite,
thus the sum in (2.4.4) has a finite number of terms.
For non-scalar fields, an additional tensor valued polynomial occurs.
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2 General framework

2.5 Positivity problem and Operator Product
Expansion

An important and complicated task is the determination whether the inner product
of the reconstructed Hilbert space from the known correlation functions is admissi-
ble. While all other properties are easy to check, the positive-definiteness is com-
plicated and almost impossible to accomplish: One has to make sure, that for all
vectors

ϕ(f) =
ˆ

d4x1 . . . d4xn f(x1, . . . , xn)ϕ1(x1) . . . ϕn(xn)Ω

of fields ϕi the resulting norm ‖ϕ(f)‖2, which coincides with the axiom (2.1.2), is
positive for all test functions and vectors [8]. Positivity is therefore a feature of the
correlation functions. This and the fact that they are determined for small number
of fields in the GCI case as shown above is the reason why we chose the correlation
function description of the Wightman axioms in the first place.
An important tool to analyze the positivity of a correlation function is the operator

product expansion of two fields. It exploits the proposition that products of fields
are reducible representations, while fields themselves are irreducible. Assuming that
the product is expandable in a Laurent series, one may define:

Definition 5. The operator product expansion (OPE) of two local (for now scalar)
quantum fields ϕ1(x) and ϕ2(y) (operator valued distributions) of scaling dimension
d is the expansion of the product of the fields in a series around (x− y) in terms of
a complete set of local fields {ϕi}, i.e. [15]

ϕk(x)ϕl(y) =
∑
i

Ci(x− y)ϕi(y),

with functions Ci(x− y) depending on k and l. In GCI, C(x− y) is a Laurent series
in x− y.

These expansion in general only exist in small regions around y. In GCI, the set of
fields consists of fields carrying an irreducible representation of the conformal group.
One may rearrange the power series by the twist of the involved fields. Considering
the general two-point function (2.4.2), it can be seen that the most singular contri-
bution is the twist-0 (vacuum) contribution, proportional to ρ−d12 , which can easily
be identified within the correlation function and therefore can be neglected. Hence
it is useful to consider the OPE without vacuum contribution and make it regular

12



2.5 Positivity problem and Operator Product Expansion

by multiplying with ρd−1
12 to write it as

U(x, y) := ρd−1
12 (ϕ1(x)ϕ2(y)− 〈ϕ1(x)ϕ2(y)〉) (2.5.1)

= V1(x, y) + ρ12V2(x, y) + . . . . (2.5.2)

where Vκ is the twist-2κ contribution to the OPE.
It can be shown using the conservation laws for twist-2 fields and explicit forms

of the OPE that the harmonic part of (2.5.1) is the twist-2 contribution V1 [9], i.e.

�xV1(x, y) = �yV1(x, y) = 0.

Since the harmonic decomposition of a polynomial is unique, there are two rules
to obtain V1 from U . This condition can be refactored to a PDE that the leading
contribution to V1 has to fulfill. All solutions to this condition can be classified
according to the poles of V1:

• Either V1 has single poles in ρ1k with k ∈ {3, . . . , n}, that is, V1 ∝ 1
ρa1k

with
a > 0 for just one k

• or V1 has double poles in ρ1k and ρ1l, k ∈ {3, . . . , n}, l ∈ {3, . . . , n}, l 6= k and
no other poles ρ1m with m 6= k and m 6= l may occur

and the same for x2. This gives restrictions on admissible correlation functions of
all kinds of fields in GCI.
In fact, the twist-2 contributions to currents of free fields, which we will study in

2.8, do never exhibit double poles. Consider for example the free Bose current

Jµ(x) = i : ϕ?(x)
↔
∂µϕ(x) : = ιxx,x′ ◦ (∂µ − ∂′µ)i : ϕ?(x′)ϕ(x) :

≡ Dx : ϕ?(x′)ϕ(x) :

with Dx = ιxx,x′ ◦ (∂µ − ∂′µ)i and the operator product Jµ(x1)Jν(x2) ≡ J1J2. Using
Wick’s theorem, one gets

J1J2 = 〈J1J2〉+Dx1Dx2 (〈ϕ(x1)ϕ?(x′2)〉 : ϕ?(x′1)ϕ(x2) :
+ 〈ϕ?(x′1)ϕ(x2)〉 : ϕ(x1)ϕ?(x′2) : ) + . . .

where the middle terms are the twist-2 contributions and 〈ϕ?(x′1)ϕ(x2)〉 ∝ ρ−1
12 .

13



2 General framework

All further contractions of the twist-2 part with other fields will exhibit only
one additional two-point function of the form 〈ϕ(x1)ϕ(xk)〉 and 〈ϕ(x2)ϕ(xl)〉 with
k, l > 2, thus no double poles can occur. The same argument also holds for Dirac
currents. Any correlation function exhibiting double poles can therefore not arise in
free theories and indicates, provided it obeys the Wightman axioms, an interacting
theory.

2.6 Partial Wave Analysis

In order to test for positivity, the operator product expansion can be used to write
improper vectors of the form

ϕ1ϕ2Ω

within correlation functions as a linear combination of single quantum fields of dif-
ferent representations λ, using projectors Πλ, which satisfy ∑λ Πλ = 1:

ϕ1(x)ϕ2(y)Ω =
∑
λ

Πλϕ1(x)ϕ2(y)Ω ≡
∑
λ

ˆ
K(λ, x, y, z)ϕλ(z)Ωdz,

where K(λ) denotes a suitable integration kernel.
Thus the n-point correlation functions can be reduced to n− 1-point correlation

functions in the corresponding vector norm by projecting with Πλ to the partial wave
of the representation λ of the correlation functions. Each of these partial waves has
to be positive on its own.
The canonical approach on determining the partial waves is by using Casimir

operators C [14]. The Lemma of Schur tells us that every irreducible representation
space is an eigenspace of a Casimir operator, i.e.

CΠλϕ1ϕ2Ω = cλΠλϕ1ϕ2Ω, (2.6.1)

holds with cλ ∈ C. As C commutes with the projector and can be expressed as a
linear combination of the generators of the algebra, the commutation relations with
the fields are known (eqn. (2.3.1)-(2.3.4)) and C can be commuted past the fields.
Using that Ω is invariant under the action of the group, one can write

CΠλϕ1ϕ2Ω = D12Πλϕ1ϕ2Ω, (2.6.2)

14



2.7 The exotic four-point structure

where D12 is a differential operator acting on the fields.
Identifying (2.6.1) with (2.6.2), an eigenvalue equation is obtained, which one

might be able to solve. However, the conformal Lie algebra in four spacetime di-
mensions possesses three Casimir operators, where the simplest is [14]

C = 1
2 (K · P + P ·K)−D2 + 1

2MµνM
µν ,

giving eigenvalue equations that are almost impossible to solve. The other two
operators are even cubic and quartic in the generators. As a consequence we need
to use another method to determine the partial waves.

2.7 The exotic four-point structure

While analyzing the general four-point function of conserved currents J (κ = 1,
L = 1) in [12], Yassen S. Stanev found, apart from the two free field functions of
Bose and Dirac currents, a third admissible correlation, which might be part of an
interacting theory, provided that it is (or in a certain combination with the free field
functions) positive.
Recalling the definition of the primitive covariant R given in (2.4.3), this four-

point structure can be expressed as

〈J1J2J3J4〉 = v1,α1v2,α2v3,α3v4,α4εα1µ1ν1ρ1εα2µ2ν2ρ2εα3µ3ν3ρ3εα4µ4ν4ρ4

×Rµ1µ2(x12)Rν1ν3(x13)Rρ1ρ4(x14)Rρ2ρ3(x23)Rν2ν4(x24)Rµ3µ4(x34). (2.7.1)

Here, the vi correspond to the polarization vectors of the four resp. currents Ji
and ε denotes the totally antisymmetric tensor. The structure is by construction
conserved in all four currents.
The graphical representation in fig. 2.1 reveals the high symmetry of this struc-

ture, showing that it is invariant under the exchange of any two xi, where

• every vertex i corresponds to one εαi...-tensor and the spacetime point xi,

• every line ending in that vertex corresponds to one of the Lorentz indices of ε,

• an internal line connecting vertices i and j corresponds to a primitive covariant
R...(xij) with Lorentz indices given by the line endings,

15



2 General framework

Figure 2.1: A graphical representation of the exotic four-point structure. Every
vertex represents an ε-tensor and every line a primitive covariant.

• an external line connected to vertex i stands for vi,αi .

Of great interest is the pole structure of (2.7.1), given by

1
ρ2

12ρ
2
13ρ

2
14ρ

2
23ρ

2
24ρ

2
34
.

Note that the exponents of ρ2
13 and ρ2

14 are both positive, thus this correlation
function cannot be realized by currents of free fields as seen in chapt. 2.5, motivating
the term exotic.

2.8 The free Bose and Dirac currents in CFT
We will later need to combine the exotic structure with the free Dirac and Bose
current four-point structure to compensate for occurring positivity violations and
therefore need to determine them.
Consider primarily the free Bose current Jµ of a complex scalar field ϕi = ϕ(xi)

of scaling dimension d = 1. By conformal invariance the two-point function is fixed
as (c.f. (2.4.1))

〈ϕ1ϕ
?
2〉 = 〈ϕ?1ϕ2〉 = −1

ρ12
.

The current is given by

Jµ = i : ϕ?
↔
∂µϕ :
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2.8 The free Bose and Dirac currents in CFT

which can be rewritten to make Wick’s theorem applicable as

Jµ = ιx,x′ ◦ (∂µ − ∂′µ)i : ϕ?(x′)ϕ(x) : .

Using the abbreviation 〈A′B〉 = 〈ϕ?(x′A)ϕ(xB)〉 = −1
ρA′B

one can then calculate using
Wick’s theorem

〈Jµ1
1 Jµ2

2 Jµ3
3 Jµ4

4 〉Bose = V µ1µ2µ3µ4(〈1′3〉 〈13′〉 〈2′4〉 〈24′〉+ 〈1′3〉 〈14′〉 〈2′4〉 〈23′〉
+(6 similar terms) + 〈1′2〉 〈12′〉 〈3′4〉 〈34′〉). (2.8.1)

Here, V µ1µ2µ3µ4 = i4ιx1,x′1
◦ ιx2,x′2

◦ ιx3,x′3
◦ ιx4,x′4

◦ (∂µ1
1 − ∂

′µ1
1 ) . . . (∂µ4

4 − ∂
′µ4
4 ).

The last term in (2.8.1) corresponds to the vacuum contribution with highest
singularities and will be neglected. The highest singularity in x12 of the remaining
expression is proportional to 1

ρ3
12
.

Consider now free Dirac fields ψi and their two-point functions

〈
ψ1,aψ̄2,b

〉
= i/∂ab

−1
ρ12

= 2i
/x12,ab

ρ2
12

=:
〈
1a2̄b

〉
and 〈

ψ̄1,aψ2,b
〉

= 2ix12,µγ
µ
ba

ρ2
12

=:
〈
1̄2
〉
.

The current is defined as Jµ =: ψ̄γµψ : =: ψ̄Aψa : γµAa. Using again Wick’s theo-
rem for fermionic fields, one gets

〈Jµ1
1 Jµ2

2 Jµ3
3 Jµ4

4 〉Dirac =
〈

: 1̄A1a : : 2̄B2b : : 3̄C3c : : 4̄D4d :
〉
γµ1
Aaγ

µ2
Bbγ

µ3
Ccγ

µ4
Dd

= (
〈
1̄A3c

〉 〈
1a3̄C

〉 〈
2̄B4d

〉 〈
2b4̄D

〉
± (7 similar terms)

+
〈
1̄A2b

〉 〈
1a2̄B

〉 〈
3̄C4d

〉 〈
3c4̄D

〉
)γµ1
Aaγ

µ2
Bbγ

µ3
Ccγ

µ4
Dd.

Again, the last term is the neglected vacuum contribution. Note that all terms give
rise to a trace of either four or eight γ-matrices which can be calculated by the
recursion formula for even n:

tr(γµ1 . . . γµn) =
n∑
k=2

(−1)kηµ1µktr(γµ2 . . . γµk−1γµk+1 . . . γµn).
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3 Reduction of n-point functions

The differential equations obtained in the last chapter are too complicated to be
solved in 4D. We will instead use special differential operators to project n-point
functions to contributions to the OPE of two fields, yielding n− 1-point functions.
All contributing lower correlation functions must then be positive on their own in
sense of (2.1.2).
Furthermore, we restrict ourselves in the analysis of correlation functions to the

modified functions by subtracting the most singular twist-0 vacuum contribution,
as it can always be identified as the most singular contribution.

3.1 Intertwining property
This new approach on determining the partial waves in a correlation function is given
in [6] and uses operators Dλ on vectors ϕ1ϕ2Ω, which eliminate any contribution of
representations λ′ 6= λ, and thus within correlation functions

ιxx1,x2 ◦Dλϕ1(x1)ϕ2(x2)Ω = ϕλ(x)Ω, (3.1.1)

where ιxx1,x2 ≡ ιx denotes equating x1 = x2 = x. The operators are therefore similar
to inserting a projection Πλ. It is a very recent result [6] that such operators are
differential operators for integer scaling dimensions as it is the case in GCI theories.
In terms of representation theory, the statement (3.1.1) can be expressed as follows.

Definition 6. A linear operator T : V1 → V2 is called intertwining operator for
two representations α1 : A → End(V1) and α2 : A → End(V2) of an algebra A, if
for all a ∈ A holds

T ◦ α1(a) = α2(a) ◦ T ,

thus it leaves the action of A invariant.

Postulating the intertwining property for Dλ allows to derive partial differential
equations which the operators have to satisfy, as it implies that T commutes with
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3 Reduction of n-point functions

all generators X of A and thus T [X,ϕ] = [X,Tϕ]. Using this, one gets

ιx ◦Dλ 〈[X,ϕ1ϕ2]ϕλ〉 = 〈[X, ιx ◦Dλϕ1ϕ2]ϕλ〉 = 〈[X,ϕλ]ϕλ〉

for any generatorX. The commutators are known and depend on the representations
λ1 of ϕ1, λ2 of ϕ2 and λ of ϕλ , therefore we can write

i[X,ϕ1ϕ2] = (∆λ1 + ∆λ2)ϕ1ϕ2,

where ∆λi denotes the corresponding differential operator from eq. (2.3.4), acting
only on ϕi.

3.2 Derivation of a partial differential equation for
the operators

We are now using the quantum numbers λ = (κ, L), as defined above. Thus we
restrict ourselves to contributions of weights j1 = j2 = L

2 , which corresponds to
symmetric and traceless tensor fields. It is known that these are the only fields
contributing to the OPE of two scalar fields [4]. As we will examine tensor fields,
we will probably only see part of the contributions.
Demanding the intertwining property of Dλ

ιx ◦Dλ ◦ (∆λ1 + ∆λ2) 〈ϕ1ϕ2ϕλ〉
!= ∆λ ◦ ιx ◦Dλ 〈ϕ1ϕ2ϕλ〉

not just for this three-point function, but also for the operators, i.e.

ιx ◦Dλ ◦ (∆λ1 + ∆λ2) != ∆λ ◦ ιx ◦Dλ, (3.2.1)

one can determine PDEs for the ansatz Dλ = Eλ(v, y1, y2, w1, w2, x1 +x2)◦ρn12. Here,
yi ≡ ∂i and wi ≡ ∂vi , where vi is the polarization vector of ϕi and v the polarization
vector of ϕλ. n has to be chosen large enough to eliminate poles in x12 and make the
correlation function regular; in the case of the exotic and the free Dirac structure,
n ≥ 2, the free Bose structure requires n ≥ 3.
Additionally, there is no dependence on x1− x2 because Dλ is always followed by

the evaluation x1 = x2. Note that due to GCI n ≤ d1+d2
2 . Our derivation follows

that of Wallenhorst in [14].
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3.2 Derivation of a partial differential equation for the operators

We start by commuting the factor ρn past (∆λ1 + ∆λ2) on the left hand side of
(3.2.1) by using

[∆λ(∂i), xi] ◦ P (xi) = (∇i∆λ(∂i)) ◦ P (xi)

where ∇i denotes the derivative w.r.t. ∂
∂(∂i) and P (xi) is any function depending on

xi.

1. For X = Pµ we obtain ∆λi = ∂i,µ, hence

ιx ◦ Eλ ◦ ρn12 ◦ (∂1,µ + ∂2,µ)
= ιx ◦

(
Eλ ◦ (∂1,µ + ∂2,µ) ◦ ρn12 − Eλ ◦ (2nρn−1

12 x12,µ − 2nρn−1
12 x12,µ)

)
= ιx ◦ ((∂1,µ + ∂2,µ) ◦ Eλ ◦ ρn12 − (∂1,µEλ + ∂2,µEλ) ◦ ρn12)
!= ∂µ ◦ ιx ◦ Eλ ◦ ρn12

⇒ (∂1,µEλ + ∂2,µEλ) = 0.

In the second line we commuted (∂1,µ + ∂2,µ) past Eλ and in the third line we
compare the LHS with the RHS of (3.2.1), exploiting that

ιx ◦ (∂1,µ + ∂2,µ) = ∂x,µ ◦ ιx.

We can conclude that Eλ does not depend on x1 +x2 thence neither on x1 nor
on x2.

For further calculations, we need the following lemma:

Lemma. Let E(∂1, . . . , ∂n) be a (formal) power series in the derivatives ∂1, . . . , ∂n

and P (x1, . . . , xn) a sufficiently nice behaved1 power series in every x1, . . . , xn. Then

E(∂1, . . .) ◦ P (x1, . . .) = P (x1 +∇1, . . . , xn +∇n) ◦ E(∂1, . . .) (3.2.2)

where ∇i = ∂
∂(∂i) is the derivative w.r.t. the derivative ∂i.

Proof. We choose w.l.o.g. n = 1, for greater n we could use the Taylor expansion in
every variable separately. Let E(∂1) = ∑

m bm∂
m
1 . Then

E(∂1) ◦ x1 =
∑
m

bm∂
m
1 ◦ x1 =

∑
m

bm
(
∂m−1

1 x1∂1 + ∂m−1
1

)
= . . . =

∑
m

bm
(
x1∂

m
1 +m∂m−1

1

)
1We ignore potential difficulties due to convergence.
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3 Reduction of n-point functions

= x1 ◦ E(∂1) +∇1E(∂1).

Using this repeatedly yields

E(∂1) ◦ xm1 =
m∑
k=0

(
m

k

)
xk1∇n−k

1 E = (x1 +∇1)mE.

Hence writing P (x1) = ∑
m amx

m
1 , we can compute

E(∂1) ◦ P (x1) =
∑
m

amE ◦ xm1

=
∑
m

am(x1 +∇1)mE

= P (x1 +∇1) ◦ E.

Note that for linear P = a1x1 + a0, the statement simplifies to

E ◦ P (x1) = P (x1)E + a1∇1E.

2. If X = D we have ∆λ = (x · ∂ + d), yielding

ιx ◦ Eλ ◦ ρn12 ◦ (x1 · ∂1 + x2 · ∂2 + d1 + d2)
= ιx ◦ Eλ ◦ (x1 · ∂1 + x2 · ∂2 + d1 + d2 − 2n) ◦ ρn12

= ιx ◦ ((x1 · ∂1 + ∂1 · ∇1) + (x2 · ∂2 + ∂2 · ∇2)) ◦ Eλ ◦ ρn12

+ιx ◦ Eλ ◦ (d1 + d2 − 2n)ρn12
!= (x · ∂ + d) ◦ ιx ◦ Eλ ◦ ρn12

⇒ (∂1 · ∇1 + ∂2 · ∇2)Eλ = (d+ 2n− d1 − d2)Eλ,

where in the second line we used the lemma from above, respecting that the
derivative ∇i is acting on the partial derivative within the operator, not the
polynomial. Thus, Eλ is homogeneous of degree d+ 2n− d1− d2 in ∂1 and ∂2.

3. If X = Mµν , the resulting condition on Eλ is

(∂1 ∧∇1 + ∂2 ∧∇2 + v ∧ ∂v + ∂v1 ∧∇v1 + ∂v2 ∧∇v2)Eλ = 0,
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where again x ∧ y = xµyν − xνyµ. This implies that Eλ is either a Lorentz
pseudo scalar or a Lorentz scalar, as free indices aµ would exhibit nonzero
contributions under application of a ∧ ∂a.

4. To avoid confusion regarding the derivatives, we write yi for ∂i and wi for ∂vi

as variables of Eλ. Considering X = Kµ and combining the condition on Eλ
with the previous results gives the final PDE [14]

[2(y1 ·∇1)∇1,µ−y1,µ∇2
1+2∇ν

1(w1,ν∇v1,µ−w1,µ∇v1,ν)+2(d1−n)∇1,µ](1,2)Eλ = 0,
(3.2.3)

where ∇i means the derivative w.r.t. yi, ∇vi the derivative w.r.t. wi, di the
scaling dimension of the field ϕi and [·](i,j) the symmetrization of [·] under
exchange of i and j. Apart of solving eq. (3.2.3), Eλ must be homogeneous of
degree L (the rank of ϕλ) in v to contract ϕλ completely, hom. of deg. Li in wi,
in order to get the unpolarized field ϕi and hom. of deg. 2κ+L+2n−d1−d2 =
d + 2n − d1 − d2 in y1 and y2 simultaneously. Moreover, we consider only
contributions of traceless tensor fields, which means thatEλ has to be harmonic
in v. These homogeneities add up to an even number if the twist 2κ is even,
as it is required by GCI. Otherwise, the constituents of the operator could not
be contracted to form a scalar or pseudo scalar.

To summarize: if we find an admissible differential operator Eλ that complies with
these restrictions, we can reduce the n-point function 〈ϕ1ϕ2ϕ3 . . . ϕn〉 to the con-
tributing n − 1-point function 〈ϕλϕ3 . . . ϕn〉 by applying Eλ ◦ ρn12 and substituting
x1 = x2 = x, i.e.

〈ϕλϕ3 . . . ϕn〉 = ιxx1,x2 ◦ Eλ ◦ ρ
n
12 〈ϕ1ϕ2ϕ3 . . . ϕn〉 .

3.3 Positivity tests
Finally we summarize the possible positivity tests and how we will apply them by
briefly outlining the procedure to analyze the exotic four-point structure.

1. Pick a representation (κ, L) and compute the intertwining operator E(κ,L) by
writing down an ansatz consisting of all possible contractions of vectors yi, wi
and v according to the homogeneity conditions and solving the PDE.
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3 Reduction of n-point functions

2. Reduce 〈J(x1)J(x2)J(x3)J(x4)〉exotic to the contribution
〈
φ(κ,L)(x1)J(x3)J(x4)

〉
by applying the operator and setting x1 := x1 = x2.

3. Check for pole bound violations (eq. (2.4.5)).

4. If κ = 1 (twist-2), check for violation of conservation.

5. Reduce further to
〈
φ(κ,L)(x1)φ(κ,L)(x4)

〉
, check the sign.

If the sign in the last step turns out to be negative for all representations, the
four-point function −〈JJJJ〉 is positive.
If the sign is indefinite, the four-point structure has to be combined with multiples

of the free Bose and Dirac structures to derive restrictions on these coefficients.
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4 Development and description of
used CAS tools

Writing down an ansatz and solving the PDE proves to be challenging even for small
quantum numbers κ and L. We therefore automated the process to form a software
library for the computer algebra system software Maple1. The software consists of
two parts; a tool to derive the intertwining operators for given source and target
representations and to translate the result into a valid operator to be used in the
second part, which does the actual reduction.

We will first describe the used techniques of each component and then give exam-
ples on how to load and use the library in Maple. The whole package can be found
at http://www.theorie.physik.uni-goettingen.de/~nikolai.wyderka.

4.1 Operator derivation

To avoid differentiations with indices, we rearrange the terms of the differential
equation (3.2.3) such that operations with the uncontracted index µ are conducted
last by commuting them to the left:

[2(∇1,µ(y1 · ∇1)−∇1,µ)− y1,µ∇2
1 + 2∇v1,µ(w1 · ∇1)

−∇1,µ − 2w1,µ(∇1 · ∇v1)) + 2(d1 − n)∇1,µ](1,2)Eλ = 0.

Within Maple, we will represent contracted terms like yi · yj in the ansatz by
the variable yy[i, j] and similarly combinations of the variables vi, wi and yi, there-
fore, starting with an ansatz E(vv, vw, vy, ww,wy, yy), we can write the differential

1http://www.maplesoft.com
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4 Development and description of used CAS tools

operator y1 · ∇1 in the following way:

ya · ∇a ◦ E =
m∑
i=1

vy[i, a]∂vy[i,a]E +
m∑
i=1

wy[i, a]∂wy[i,a]E

+
m∑
i=1

yy[i, a]∂yy[i,a]E +
m∑
i=1

yy[a, i]∂yy[a,i]E. (4.1.1)

Here, m is the number of affected space time variables; m = 2 for scalar intertwiners
reducing fields ϕ(x1) and ϕ(x2) and m = 4 for pseudo scalar intertwiners reducing
in all four fields simultaneously due to restrictions covered in 4.2.2.
For higher derivatives and easy identification of equal terms it is convenient to in-

troduce the following arrangement convention: all occurring factors vv[i, j], ww[i, j]
and yy[i, j] must obey i ≤ j. We can then write for a = 1, 2

∇a · ∇va ◦ E = 4∂wy[a,a]E +
m∑
i=1

m∑
j=1

vw[j, i]∂ww[a,i]∂vy[j,a]E

= +
m∑
i=1

m∑
j=1

vw[j, i]∂ww[i,a]∂vy[j,a]E

= +
m∑
i=1

m∑
j=1

ww[i, j]∂ww[a,i]∂wy[j,a]E + . . . .

After applying such operators, the arrangement convention has to be restored.
Similarly, the derivatives yi · ∇i, ∇2

i , wi · ∇i have to be defined. The set of single
derivatives involving indices µ adds a pseudo index µ to the expression which is
only relevant to identify linearly dependent terms. The full expressions for these
derivatives are listed within the sources in appendix B.2.
The resulting set of conditions on the coefficients of E making the result vanish

has then to be extracted and solved. This is done by an external2 script to which
we will refer to as solver. It takes the result of the PDE applied to an operator and
forms the coefficients of linearly independent terms to a set of equations that are
solvable by Maple. The resulting conditions are then applied to the ansatz.
In order to get trace free operators, the same process has to be repeated to make

the ansatz solve
∂2
v1E = 0.

2We distinguish between internal scripts which are written in the Maple script language and
external scripts which are executed by Maple but written in Python as Maple lacks important
programming features like regular expressions and efficient string manipulation.
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4.2 Generating the ansatz

The function buildop located in the file diffsolver.mpl generates the ansatz, solves
the PDE and returns the intertwining operator in a raw form. In order to generate
the ansatz, it uses the tool described in the next chapter.

4.2 Generating the ansatz

4.2.1 Scalar intertwiners

Writing down an ansatz is applicable for small quantum numbers but tedious for
large numbers that give rise to hundreds of possible combinations of the involved
differentiations and polarization vectors. Consider for example the scalar operator
ET2
JJ in the case n = 2 for a reduction of two currents ((κ1,2, L1,2) = (1, 1)) to the

contribution of the twist 2 tensor of (κ, L) = (1, 2). According to section 3.2, ET2
JJ

consists of two v1, one w1, one w2 and 2κ+L+ 2n− d1− d2 = 2 derivatives yi. The
ansatz for ET2

JJ would then be

ET2
JJ = Ai,j(v1 · v1)(w1 · w2)(yi · yj) +Bi,j(v1 · w1)(v1 · w2)(yi · yj)

+ Ci,j(v1 · v1)(w1 · yi)(w2 · yj) +Di,j(v1 · w1)(v1 · yi)(w2 · yj)
+ Ei,j(v1 · w2)(v1 · yi)(w1 · yj) + Fi,j(w1 · w2)(v1 · yi)(v1 · yj)

where i, j ∈ {1, 2} are summed over, skipping identical terms as (yi · yj) = (yj · yi)
and similar identities, giving a total of 22 terms. To automate the generation of this
ansatz, we use the following procedure to combine a list of vectors to all possible
contractions. In the case above, the initial list of vectors would consist of v1, v1,
w1, w2, y, y. The assignment of the derivation targets 1 and 2 to the y vectors will
be conducted later. We then take the first entry and iterate over all possibilities
to contract it with the latter entries. For each such contraction3, we clone the list,
removing the two contraction partners and contract the rest recursively. The result
is sorted by some arbitrary condition to identify equal terms.

Finally, we assign derivation targets to the vectors y and assign a coefficient to
each term. The relevant algorithms can be found in the file combinator.py.

3By convention, a contraction wivj for example will be written as vjwi and similarly for yivj and
yiwj , and the arrangement condition from above applies.
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4 Development and description of used CAS tools

4.2.2 Pseudo scalar intertwiners

The generation of pseudo scalar intertwiners is similar to that of the scalar inter-
twiners, except for an additional ε-tensor in each term of the ansatz, contracting
four of the vectors. It has to be considered that the contraction of two identical
vectors with the full antisymmetric tensor gives zero and thus only different vectors
may be contracted.
To avoid the calculation with ε-terms and the resulting uncontracted vectors,

we restrict ourselves in the case of pseudo scalars to combined reductions in both
variable pairs x1, x2 and x3, x4 simultaneously by multiplying both operators and
contract the product of the two asymmetric tensors by using the identity

εµ1µ2µ3µ4 · εν1ν2ν3ν4 = −

∣∣∣∣∣∣∣∣∣


ηµ1ν1 . . . ηµ1ν4

... . . . ...
ηµ4ν1 . . . ηµ4ν4


∣∣∣∣∣∣∣∣∣ . (4.2.1)

The minus sign is due to the Minkowski metric.
The resulting expression of Lorentz vectors and η-terms can be contracted using

the algorithm in pacman.py. The coefficients of this pseudo scalar are then deter-
mined to solve the PDE in both pairs x1, x2 and x3, x4 and to be traceless in v1 and
v2.
The ansatz is generated by the script combinator2.py.

4.3 Representation and differentiation of the
correlation functions

All correlation functions can be written in contracted form using the contractions
vi · vj, vi · xij and ρij where xij = xi − xj. Therefore, occurrences of xij · xkl are
rewritten in terms of ρ by using

ρij = x2
ij = x2

i + x2
j + 2xi · xj

and

xij · xkl = xi · xk − xi · xl − xj · xk − xj · xl = 1
2(ρil + ρjk − ρik − ρjl).
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4.4 Documentation and manual

The intertwining operator derived beforehand can then be written similarly to
(4.1.1), vc · yi translates to

vc · yi ◦ F (vv, vx, ρ) =
m∑
k=1

 n∑
j=i+1

vv[k, c] · ∂vx[k,i,j] −
i−1∑
j=1

vv[k, c] · ∂vx[k,j,i]


+2

n∑
j=i+1

vx[c, i, j] · ∂ρ[i,j] − 2
i−1∑
j=1

vx[c, j, i] · ∂ρ[j,i].

For technical reasons, vector products ai · bj are again written as ab[i, j]. The full
set of derivatives and how they translate to Maple syntax can be found in appendix
B.3.
The functions translate_op_12, translate_op_34 and translate_op_56 in the

file diffsolver.mpl take the result of a buildop call and return the corresponding
applicable operator which then can be used to reduce the correlation functions.
To avoid problems due to derivatives w.r.t. v1 and v2 within the operator, the po-

larization vector v of the target field is given a higher index, which can be controlled
by the second parameter of the translate_op functions. A derivation of a four-point
correlation function would therefore require the assignment of v5 to a target field.
After any reduction, we evaluate the involved spacetime points xi and xj at equal

position xi = xj. This implies that we are left in the four-point case reducing in x1

and x2 case with an expression where the polarization vector v5 is associated with
the position x1.
As linear dependencies among the xij are not known to Maple and might therefore

disguise vanishing contributions, we test this case by rewriting them as xi−xj using
another function.

4.4 Documentation and manual
Due to lack of space, the documentation of the software together with a listing
of the Maple functions and the external scripts written can be found in appendix
A. A manual of usage, as well as the scripts themselves, can be found at http:
//www.theorie.physik.uni-goettingen.de/~nikolai.wyderka.

29

http://www.theorie.physik.uni-goettingen.de/~nikolai.wyderka
http://www.theorie.physik.uni-goettingen.de/~nikolai.wyderka




5 Applications and results

Having collected the necessary tools we will now apply them to the exotic four-point
structure and test for positivity. We will show that the structure is not positive on
its own, but can be made positive by particular combinations of the exotic structure
with the free bosonic and fermionic four-point functions.
We begin by giving a detailed example of the reduction of the exotic function

to show the general scheme of our proceeding. We will then state general results
derived for the exotic correlation function and proceed to the calculation of two-point
contributions to the free and exotic structures.
Unless stated otherwise, we are using only scalar operators. To get further re-

strictions, we will later consider certain pseudo scalar contributions.

5.1 Treating the exotic structure

While the form of the exotic structure given in (2.7.1) is rather compact, it is not very
useful for CAS calculations due to the four ε-tensors. One can either express them
as 24 · 24 η-products by (4.2.1) and contract them, giving rise to an expression of a
total of 9216 terms as a function of vi ·vj, vi ·xij and ρij as demanded above. Another
possibility is the usage of the compact form and operators for single derivatives, with
space time indices like ∂1,µ. The advantage is that they can be written in a very
compact form and the calculations are a lot faster, while the resulting expression
consist of many more terms, which do require much more space in the computer’s
memory.
However, it turned out that memory size rather than computation time is the main

concern, and therefore we did indeed use the contracted, 9216 terms long expression
for further calculations. The other framework has been used to cross check some of
the results we obtained, but has been omitted from the package linked above.
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5 Applications and results

5.2 Contributions of representations κ = 3, L = 0 and
κ = 4, L = 0

To calculate the contribution of a field φ(3,0) of representation (κ, L) = (3, 0) to
Stanev’s function, we start by determining the operator E(3,0)

JJ for n = 2, as the
highest pole is of degree 2. The ansatz, which we can generate painlessly using our
automated ansatz generator, consists of all possible contractions of four differentia-
tions ∂i and the differentiations ∂v1 and ∂v2 , according to section 3.2. Remember that
these differentiations will be written as yi and wi respectively. The ansatz gives

E
(3,0)
JJ = Ai,j,k,l · (yi · yj)(yk · yl)(w1 · w2) +Bi,j,k,l · (yi · yj)(w1 · yk)(w2 · yl)

where i, j, k, l ∈ {1, 2} are again summed over skipping identical terms, giving 18
different summands.
Applying the PDE yields many restrictions, leaving only three independent coef-

ficients A, B and C:

E
(3,0)
JJ = A

(
(y1 · y1)2(w1 · w2) + 2(y1 · y1)(y1 · y2)(w1 · w2)

−8(y1 · y1)(y2 · y2)(w1 · w2)− 4(y1 · y1)(w1 · y1)(w2 · y1)
−6(y1 · y1)(w1 · y1)(w2 · y2)− 6(y1 · y1)(w1 · y2)(w2 · y1)
+4(y1 · y2)(w1 · y1)(w2 · y1) + 8(y2 · y2)(w1 · y1)(w2 · y1))
+B (−8(y1 · y1)(y2 · y2)(w1 · w2) + 2(y1 · y2)(y2 · y2)(w1 · w2)
+(y2 · y2)2(w1 · w2) + 8(y1 · y1)(w1 · y2)(w2 · y2)
+4(y1 · y2)(w1 · y2)(w2 · y2)− 6(y2 · y2)(w1 · y1)(w2 · y2)
−6(y2 · y2)(w1 · y1)(w2 · y2)− 6(y2 · y2)(w1 · y2)(w2 · y1)
−4(y2 · y2)(w1 · y2)(w2 · y2))
+C ((y1 · y1)(y2 · y2)(w1 · w2)− (y1 · y1)(w1 · y2)(w2 · y2)
+(y1 · y2)(w1 · y1)(w2 · y2)− (y2 · y2)(w1 · y1)(w2 · y1)) .

Note that due to the symmetry of the PDE, each operator can be written as a linear
combination of a set of (in this case three) symmetric and antisymmetric operators
under exchange of y1 ↔ y2, w1 ↔ w2. As the exotic structure is invariant under
exchange of any two spacetime points, antisymmetric operators applied to it vanish.
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5.2 Contributions of representations κ = 3, L = 0 and κ = 4, L = 0

A classification of the solution space of these operators is therefore useful but hard,
especially for operators with a greater solution space. We therefore did not conduct
the classification. Nevertheless, the number of symmetric constituents can later be
recovered from the number of non-vanishing eigenvalues in the coefficient matrix.
Applying this operator to the exotic four-point structure and setting x1 := x1 = x2

yields a long and difficult three-point contribution, where the denominator is

〈
φ

(3,0)
1 J3J4

〉
∝ 1
ρ4

13ρ
4
14ρ

2
34
,

thus the pole bounds (2.4.5) are not violated. Further reduction in x3 and x4 and
renaming the coefficients to A′, B′ and C ′ yields the two-point contribution

〈
φ

(3,0)
1 φ

(3,0)
4

〉
∝ − 1

ρ6
14

(8A+ 8B − C)(8A′ + 8B′ − C ′).

The resulting coefficient matrix 
64 64 −8
64 64 −8
−8 −8 1



is positive semi definite with the only non vanishing eigenvalue
∥∥∥(8 8 −1

)∥∥∥2
due

to the fact that the coefficients of both applications factorize as it is the case.1 The
minus sign, however, requires that the structure is either indefinite or negative. If
the latter would be the case, we could still use the negation of the structure as a
candidate for a positive theory.
However, doing the same derivations for (κ, L) = (4, 0) yields a two parametric

operator and thus 〈
φ

(4,0)
1 J3J4

〉
∝ 1
ρ5

13ρ
5
14ρ

2
34
,

where again no pole bound violation occurs and the two-point function is the positive
function

〈
φ

(4,0)
1 φ

(4,0)
4

〉
∝ 1
ρ8

14
AA′.

It is therefore not sufficient to change the sign.

1A proof for this uses basic linear algebra.
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5 Applications and results

5.3 Combining the exotic with the free bosonic and
fermionic structure

We now switch to n = 3 as the most divergent pole in the free bosonic structure is of
degree 3. There are two strategies to compare the results of n = 3-derivations with
those of a n = 2-operator; one can either use lemma (3.2.2) and apply (∇1 −∇2)2 to
the n = 3-operator. Comparing the coefficients gives then relations between them
that allow to compare results obtained with both operators.
However, as computation time of the considered representations is rather low

compared to the memory consumption, we will use the other possibility and use
n = 3-operators also for the free Dirac currents as well as the exotic structure. For
some higher representations, where computations were only possible with n = 2, we
switched back to n = 2 to check solely for pole bound violations and violations of
conservation, but did not compare to the free Bose structure.
Additionally, representations of κ = 0 have not been considered, as they lie below

the unitarity bound. We begin by summarizing some general results obtained during
the process:

• All regarded twist-2 contributions to the exotic and the Dirac correlation func-
tion are identical on the level of two-point functions up to a factor of 27. We
rescale the exotic structure by this factor in future computations. Albeit, on
the three point level these contributions were not the same.

• No violation of conservation of these three-point functions has been observed.

• No pole bound violation could be found.

• There are no contributions of odd scaling dimension to any of the three struc-
tures in all considered representations.

• Whenever the two-point function vanished, also the intermediate three-point
contribution had been zero. A different result here would indicate a violation
of positivity, too.

As a consequence of these results we concentrate on restrictions on the coefficients
of the expression

±27 〈J1J2J3J4〉exotic + AD 〈J1J2J3J4〉Dirac + AB 〈J1J2J3J4〉Bose

34



5.3 Combining the exotic with the free bosonic and fermionic structure

by examining the signs of the two-point functions. As the exotic structure is indef-
inite, we have to work with both assumptions for its sign.
The following tables show the eigenvalues of the coefficient matrices of the dif-

ferent representations, sorted by twist-2κ. Whenever there appears just one eigen-
value, we write the coefficient matrix as a product of the corresponding eigenvector.
If there are more, we list the eigenvalues as a diagonalized matrix. The expres-
sion (κ, {L1, L2, . . .}) is to be understood as summarized results for representations
(κ, L1), (κ, L2), . . .. Common prefactors have been neglected.
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5 Applications and results

R
epresentation
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Solution
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5.3 Combining the exotic with the free bosonic and fermionic structure
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5 Applications and results

R
epresentation
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5.3 Combining the exotic with the free bosonic and fermionic structure
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5 Applications and results
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5.4 Conclusions

5.4 Conclusions
Due to the restrictions, we have to reject the assumption that the exotic structure
might have a negative sign.
For the positive case, fig. 5.1 shows the excluded area in the configuration space

of AD and AB. Considering more representations would possibly give more restric-
tions. However, as the conditions seem to get weaker with higher quantum numbers,
it seems unlikely to get a manifest violation of positivity pursuing this method. Nev-
ertheless, further investigation of the pseudo scalar contributions might give more
interesting insights but, however, proves to be complicated due to the resource in-
tensive process of deriving higher operators.
It is rather interesting that none of the structures has contributions of fields of

odd scaling dimension.
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Figure 5.1: The allowed (white) and rejected (gray) combinations of coefficients
AD (Dirac) and AB (Bose) in 27 〈J1J2J3J4〉exotic + AD 〈J1J2J3J4〉Dirac +
AB 〈J1J2J3J4〉Bose .
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6 Summary and outlook

The positivity of correlation functions is, as we have seen, a nontrivial and interesting
aspect of quantum field theories in the axiomatic framework. Especially in conformal
invariant theories, where all correlation functions are rational, the description of field
theories through the correlation functions rather than the fields, feasible through
the reconstruction theorem, provides insight to admissible theories that fulfill the
Wightman axioms. However, until today, no non free theory could be constructed
within this setting, mainly due to the fact that positivity is hard to ensure.

We summarized the implications of global conformal invariance on the theories,
especially on the correlation functions, and described the partial wave expansion as
a tool to investigate positivity by decomposition of n-point correlation functions into
two-point correlation functions, where positivity is trivial to verify. We presented an
approach using Casimir operators to carry out these decompositions but concluded
that it is too complicated in four-dimensional spacetime. Instead, we introduced
and elucidated the recently developed method of intertwining operators.

We then developed the necessary CAS tools to apply that procedure to an exotic
four-point correlation function found by Yassen Stanev which cannot occur in free
field theories and is therefore of great interest. Using intertwining operators we
finally showed that this structure is not positive on its own, but can be combined
with certain combinations of the free Bose and Dirac structures to form a possibly
positive theory. Particularly, the sign of the exotic structure could be fixed to be
positive. However, as only a finite set of contributing representations was considered,
it is still unknown whether there is a combination of the three structures that is
positive.

Taking into account more representations, especially using pseudo scalar opera-
tors, might reveal more information. Additionally, we did not calculate contributions
of non-symmetric tensor fields, as there has not yet been derived a PDE for such
operators, which could be done in future work.
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6 Summary and outlook

A great issue of using CAS systems to derive operators for higher quantum num-
bers is the exponentially increasing complexity, consuming both computer memory
and CPU time. As a consequence, we could not derive non zero pseudo scalar
operators of representation other than (κ, L) = (1, 1) and (κ, L) = (2, 1).
As all calculations involve only derivations of polynomials, it would be achievable

to carry out these calculations completely writing custom software using regular
expressions rather than using the software Maple. This would presumably increase
computation speed and reduce memory usage significantly.
Sticking to CAS software, packages for treating ε-tensors could be used to derive

pseudo scalar operators for single rather than simultaneous reductions to also verify
pole bounds in these calculations.
Another possibility is to consider multiple bosonic and fermionic free fields, re-

sulting in more parameters to derive restrictions for and would allow to give bounds
on the field content of a theory involving the exotic correlation function.
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A Documentation

This section briefly describes the different tools written for this thesis.

A.1 Maple scripts

A.1.1 utils.mpl

The file utils.mpl is included by any other Maple file and increases the stack limit
and creates necessary temporary folders which are used by other parts of the system.
The incrementation of the stack limit is crucial to allow collecting for a great amount
of variables and a low stack size limits the number of recursive function calls. No
subfunctions are defined within this file.

A.1.2 diffsolver.mpl

diffsovler.mpl contains all functions to derive scalar and pseudo scalar intertwining
operators. The important functions are

buildop(kappa1,L1,kappa2,L2,n,kappa,L) Generates the raw version of intertwin-
ing operator E to reduce two fields of representations (κ1, L1) and (κ2, L2) to
(κ, L) within a correlation function of maximum pole degree n.

buildpseudoop(kappa1,L1,kappa2,L2,n,kappa,L) Same as buildop, but for pseudo
scalars. Note that buildpseudoop generates the raw version of a combined
intertwiner for two reductions at once.

translate_op_12(F,voffset) Takes as argument F the raw version of an operator
and translates it to an actual operator which acts on x1 and x2. To use the
operator, the file diffops.mpl must be loaded. voffset denotes the index minus
one(!) of the polarization vector the resulting field is assigned to. As the
returned operator sets x1 = x2 and calls the result x1 again, the result of

45



A Documentation

the operator acting on a four-point structure will be confusing by containing
the variables x1,x3 and x4 and the polarization vectors v3,v4 and vvoffset+1,
where the latter is the polarization of the field x1. This is due to technical
difficulties concerning the differentiation targets. There are similar functions
called translate_op_34 and translate_op_56, which reduce in other variable
pairs.

translate_pseudo_op(F,voffset) The same as translate_op, but for pseudo scalar
operators. At the moment this function is only applicable for the simultaneous
reduction in x1 to x4, assigning new polarization vectors vvoffset+1 to x1 and
vvoffset+2 to x4.

DoDiff(E,d1,d2,n,kappa,L,a,b,mu) Applies the PDE (3.2.3) to expression E in xa
and xb. µ is a pseudo index assigned to not contracted derivatives within the
PDE and is used internally to identify linearly dependent terms.

diffcollect(F) Collects within expression F all identical derivative terms to reduce
the size of an operator. For example, the expression A · vv[a, b] · vw[c, d] +B ·
vv[a, b] · vw[c, d] would be translated to (A+B) · vv[a, b] · vw[c, d].

epsilontoeta(F) Takes expression F and rewrites products of ε-tensors in terms of
24 η-tensors, which can then be contracted using

pacman(F) Contracts all indices in expression F if possible. This expression might
contain vectors of the form x[mu[i]], v[mu[j]], w[mu[k]] or y[mu[l]] with arbi-
trary integers i, . . . , l and ε-tensors of the form eta[mu[a],mu[b],mu[c],mu[d]].

diffmagic(E) Rearranges terms vv[i, j], ww[i, j] and yy[i, j] to ensure that i ≤ j.

A.1.3 diffops.mpl

This file contains the basic differential operators that are used by the operators
returned by the function tranlsate_op. In order to work properly, the variables m
and n have to be set correctly. n is the number of spacetime variables x1, . . . , xn

within a target correlation function, m is the number of polarization vectors.
Reducing a four-point structure, it is generally a good idea to set n = 4 and

m = 6, as the operators are likely to introduce polarization vectors v5 and v6.
Apart of the basic operators themselves, the file contains the following functions:
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A.2 External scripts

magic(E) Rearranges terms vv[ij], vx[k, i, j] to ensure that i ≤ j and sets vx[k, i, i] =
0 and rho[i, i] = 0 for all i.

magic2(E) Replaces vx[k, i, j] and rho[i, j] by auxiliary variables x[i] and x[j] to
check whether the expression E vanishes. This is necessary due to linear
dependencies among the xij = xi − xj.

setequal(F,a,b) Replaces all occurrences of xb by xa.

swap_indices(F,a,b) Swaps all occurrences of xa with xb and va with vb.

A.2 External scripts

Many functions of the Maple scripts above call external scripts, as Maple lacks many
basic programming features as well as speed. The following scripts are used:

collect.py Renames the operators within a raw operator expression such that Maple
can collect them. This script is used within the method diffcollect.

collect2.py Inverts the renaming from collect.py after the collection is done. This
script is used as well within the method diffcollect.

combinator.py Generates an ansatz for a scalar operator for given representations
and saves it to a file. Used within the buildop method.

combinator2.py Generates an ansatz for a pseudo scalar operator for given repre-
sentations and saves it to a file. Used within the buildpseudoop method.

epsilontoeta.py Searches in an expression for a product of two ε-tensors and rewrites
them as 24 η-tensors. Used by buildpseudoop.

gammatrace.py Calculates the trace of a product of 2n γ-matrices with Lorentz
indices µ1 to µ2n.

optranslate_files.py Translates the raw version of an operator to a real Maple
operator. Used within the translate_op methods and to calculate the free
Dirac structure.

pacman2.py Script that contracts Lorentz vectors and η-tensors. Used to contract
the exotic structure and within buildpseudoop.
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A Documentation

solve.py Rewrites the result of the application of the PDE to a set of linear equa-
tions of the coefficients that can be solved by Maple. Used by buildop and
buildpseudoop.
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B Sources

B.1 utils.mpl
1 i f not as s i gned (INTERTWINER_PATH) then
2 error " Please ␣ s e t ␣ the ␣ va r i ab l e ␣INTERTWINER_PATH␣ to ␣ the ␣ c o r r e c t ␣path ! ␣Thank␣you . " ;
3 end i f ;
4
5 ke rne l op t s ( s t a c k l im i t =2^20) ;
6
7 with ( F i l eToo l s ) ;
8
9 HOMEDIR := ke rne l op t s ( homedir ) ;

10 SCRIPTPATH := " " | | INTERTWINER_PATH | | " / s c r i p t s " ;
11 USERNAME := kerne l op t s ( username ) ;
12 TMPPATH := " /tmp/ " | | USERNAME | | " _ inte r tw ine r s / " ;
13
14 i f not Exi s t s (TMPPATH) then
15 MakeDirectory (TMPPATH) ;
16 end i f ;

B.2 diffsolver.mpl
1 i f not as s i gned (INTERTWINER_PATH) then
2 error " Please ␣ s e t ␣ the ␣ va r i ab l e ␣INTERTWINER_PATH␣ to ␣ the ␣ c o r r e c t ␣path ! ␣Thank␣you . " ;
3 end i f ;
4
5 read " " | | INTERTWINER_PATH | | " / u t i l s . mpl " ;
6 with ( SolveTools ) ;
7
8 m := 4 ;
9

10 #t h e d i f f o p Nabla_x_a , mu
11 Nablaamu := (E, mu, a ) −>
12 add( d i f f (E, vy [ i , a ] ) ∗ v [ i ] [mu] , i =1. .m )
13 + add( d i f f (E, wy [ i , a ] ) ∗ w[ i ] [mu] , i =1. .m)
14 + add( d i f f (E, yy [ a , i ] ) ∗ y [ i ] [mu] , i =1. .m)
15 + add( d i f f (E, yy [ i , a ] ) ∗ y [ i ] [mu] , i =1. .m) ;
16
17 #t h e d i f f o p Nabla_v_a , mu
18 Nablavamu := (E, mu, a ) −>
19 add( d i f f (E, vw [ i , a ] ) ∗ v [ i ] [mu] , i =1. .m )
20 + add( d i f f (E, wy [ a , i ] ) ∗ y [ i ] [mu] , i =1. .m)
21 + add( d i f f (E, ww[ a , i ] ) ∗ w[ i ] [mu] , i =1. .m)
22 + add( d i f f (E, ww[ i , a ] ) ∗ w[ i ] [mu] , i =1. .m) ;
23
24 #t h e d i f f o p Nabla_xa Nabla_xa
25 NablaaNablaa := (E, a ) −>
26 add( add( d i f f (E, vy [ i , a ] , vy [ j , a ] ) ∗ vv [ i , j ] , i =1. .m)
27 + add( d i f f (E, wy [ i , a ] , vy [ j , a ] ) ∗ vw [ j , i ] , i =1. .m)
28 + add( d i f f (E, yy [ a , i ] , vy [ j , a ] ) ∗ vy [ j , i ] , i =1. .m)
29 + add( d i f f (E, yy [ i , a ] , vy [ j , a ] ) ∗ vy [ j , i ] , i =1. .m)
30 , j =1. .m)
31 + add( add( d i f f (E, vy [ i , a ] , wy [ j , a ] ) ∗ vw [ i , j ] , i =1. .m)
32 + add( d i f f (E, wy [ i , a ] , wy [ j , a ] ) ∗ a lb ( i , j ) ∗ ww[ i , j ] , i =1. .m)
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33 + add( d i f f (E, wy [ i , a ] , wy [ j , a ] ) ∗ agb ( i , j ) ∗ ww[ j , i ] , i =1. .m)
34 + add( d i f f (E, wy [ i , a ] , wy [ j , a ] ) ∗ kde l ( i , j ) ∗ ww[ i , i ] , i =1. .m)
35 + add( d i f f (E, yy [ a , i ] , wy [ j , a ] ) ∗ wy [ j , i ] , i =1. .m)
36 + add( d i f f (E, yy [ i , a ] , wy [ j , a ] ) ∗ wy [ j , i ] , i =1. .m)
37 , j =1. .m)
38 + add( add( d i f f (E, vy [ i , a ] , yy [ a , j ] ) ∗ vy [ i , j ] , i =1. .m) , j =1. .m)
39 + add( add( d i f f (E, vy [ i , a ] , yy [ j , a ] ) ∗ vy [ i , j ] , i =1. .m) , j =1. .m)
40 + add( add( d i f f (E, wy [ i , a ] , yy [ a , j ] ) ∗ wy [ i , j ] , i =1. .m) , j =1. .m)
41 + add( add( d i f f (E, wy [ i , a ] , yy [ j , a ] ) ∗ wy [ i , j ] , i =1. .m) , j =1. .m)
42 + add( add( d i f f (E, yy [ a , i ] , yy [ a , j ] ) ∗ yy [ i , j ] , i =1. .m) , j =1. .m)
43 + add( add( d i f f (E, yy [ i , a ] , yy [ a , j ] ) ∗ yy [ i , j ] , i =1. .m) , j =1. .m)
44 + add( add( d i f f (E, yy [ i , a ] , yy [ j , a ] ) ∗ yy [ i , j ] , i =1. .m) , j =1. .m)
45 + add( add( d i f f (E, yy [ a , i ] , yy [ j , a ] ) ∗ yy [ i , j ] , i =1. .m) , j =1. .m)
46 + 8∗ d i f f (E, yy [ a , a ] ) ;
47
48 #t h e d i f f o p Nabla_xa Nabla_va
49 NablaaNablava := (E, a ) −>
50 4∗ d i f f (E, wy [ a , a ] )
51 + add( add( d i f f (E, ww[ a , i ] , vy [ j , a ] ) ∗ vw [ j , i ] , i =1. .m) , j =1. .m)
52 + add( add( d i f f (E, ww[ i , a ] , vy [ j , a ] ) ∗ vw [ j , i ] , i =1. .m) , j =1. .m)
53 + add( add( d i f f (E, ww[ a , i ] , wy [ j , a ] ) ∗ ww[ i , j ] , i =1. .m) , j =1. .m)
54 + add( add( d i f f (E, ww[ i , a ] , wy [ j , a ] ) ∗ ww[ i , j ] , i =1. .m) , j =1. .m)
55 + add( add( d i f f (E, vw [ i , a ] , vy [ j , a ] ) ∗ vv [ i , j ] , i =1. .m) , j =1. .m)
56 + add( add( d i f f (E, vw [ i , a ] , wy [ j , a ] ) ∗ vw [ i , j ] , i =1. .m) , j =1. .m)
57 + add( add( d i f f (E, vw [ i , a ] , yy [ a , j ] ) ∗ vy [ i , j ] , i =1. .m) , j =1. .m)
58 + add( add( d i f f (E, vw [ i , a ] , yy [ j , a ] ) ∗ vy [ i , j ] , i =1. .m) , j =1. .m)
59 + add( add( d i f f (E, wy [ a , i ] , vy [ j , a ] ) ∗ vy [ j , i ] , i =1. .m) , j =1. .m)
60 + add( add( d i f f (E, wy [ a , i ] , wy [ j , a ] ) ∗ wy [ j , i ] , j =1. .m) , i =1. .m)
61 + add( add( d i f f (E, wy [ a , i ] , yy [ a , j ] ) ∗ yy [ i , j ] , i =1. .m) , j =1. .m)
62 + add( add( d i f f (E, wy [ a , i ] , yy [ j , a ] ) ∗ yy [ i , j ] , i =1. .m) , j =1. .m)
63 + add( add( d i f f (E, ww[ a , i ] , yy [ a , j ] ) ∗ wy [ i , j ] , i =1. .m) , j =1. .m)
64 + add( add( d i f f (E, ww[ i , a ] , yy [ a , j ] ) ∗ wy [ i , j ] , i =1. .m) , j =1. .m)
65 + add( add( d i f f (E, ww[ i , a ] , yy [ j , a ] ) ∗ wy [ i , j ] , i =1. .m) , j =1. .m)
66 + add( add( d i f f (E, ww[ a , i ] , yy [ j , a ] ) ∗ wy [ i , j ] , i =1. .m) , j =1. .m) ;
67
68 #t h e d i f f o p y_a Nabla_x_a
69 yaNablaa := (E, a ) −>
70 add( d i f f (E, vy [ i , a ] ) ∗ vy [ i , a ] , i =1. .m )
71 + add( d i f f (E, wy [ i , a ] ) ∗ wy [ i , a ] , i =1. .m)
72 + add( d i f f (E, yy [ a , i ] ) ∗ yy [ a , i ] , i =1. .m)
73 + add( d i f f (E, yy [ i , a ] ) ∗ yy [ i , a ] , i =1. .m) ;
74
75 #t h e d i f f o p w_a Nabla_x_a
76 waNablaa := (E, a ) −>
77 add( d i f f (E, vy [ i , a ] ) ∗ vw [ i , a ] , i =1. .m )
78 + add( d i f f (E, wy [ i , a ] ) ∗ a lb (a , i ) ∗ ww[ a , i ] , i =1. .m)
79 + add( d i f f (E, wy [ i , a ] ) ∗ agb (a , i ) ∗ ww[ i , a ] , i =1. .m)
80 + add( d i f f (E, wy [ i , a ] ) ∗ kde l ( a , i ) ∗ ww[ a , a ] , i =1. .m)
81 + add( d i f f (E, yy [ a , i ] ) ∗ wy [ a , i ] , i =1. .m)
82 + add( d i f f (E, yy [ i , a ] ) ∗ wy [ a , i ] , i =1. .m) ;
83
84 #a u x i l i a r y f u n c t i o n s
85 kde l := ( r , s )−> 1−abs ( signum ( r−s ) ) ;
86 agb := ( r , s )−>(signum ( r−s )+1)/2 ∗ abs ( signum ( r−s ) ) ;
87 alb := ( r , s )−>(signum ( s−r )+1)/2 ∗ abs ( signum ( r−s ) ) ;
88
89 #d i f f o p d/dv_e d/dv_c , used f o r g u a r a n t e e i n g t r a c e l e s s n e s s
90 OpPartvPartv := (F, e , c ) −>
91 add( add( d i f f (F , vv [ c , d ] , vv [ e , f ] ) ∗ vv [ f , d ] , d=c . .m) , f=e . .m)
92 + add( add( d i f f (F , vv [ c , d ] , vv [ f , e ] ) ∗ vv [ f , d ] , d=c . .m) , f =1. . e )
93 +4∗alb ( c , e ) ∗ d i f f (F , vv [ c , e ] ) + 4∗agb ( c , e ) ∗ d i f f (F , vv [ e , c ] ) + 8∗ kde l ( c , e ) ∗ d i f f (F , vv [ c , e ] )
94 +add( add( d i f f (F , vv [ d , c ] , vv [ e , f ] ) ∗ vv [ f , d ] , d=1. . c ) , f=e . .m)
95 + add( add( d i f f (F , vv [ d , c ] , vv [ f , e ] ) ∗ vv [ f , d ] , d=1. . c ) , f =1. . e )
96 +add( add( d i f f (F , vw [ c , i ] , vv [ e , f ] ) ∗ vw [ f , i ] , i =1 . .4 ) , f=e . .m)
97 +add( add( d i f f (F , vw [ c , i ] , vv [ f , e ] ) ∗ vw [ f , i ] , i =1 . .4 ) , f =1. . e )
98 +add( add( d i f f (F , vw [ c , i ] , vw [ e , j ] ) ∗ ww[ i , j ] , i =1 . .4 ) , j =1 . .4 )
99 +add( add( d i f f (F , vw [ c , i ] , vy [ e , j ] ) ∗ wy [ i , j ] , i =1 . .4 ) , j =1 . .4 )

100 +add( add( d i f f (F , vy [ c , i ] , vv [ e , f ] ) ∗ vy [ f , i ] , i =1 . .4 ) , f=e . .m)
101 +add( add( d i f f (F , vy [ c , i ] , vv [ f , e ] ) ∗ vy [ f , i ] , i =1 . .4 ) , f =1. . e )
102 +add( add( d i f f (F , vy [ c , i ] , vw [ e , j ] ) ∗ wy [ j , i ] , i =1 . .4 ) , j =1 . .4 )
103 +add( add( d i f f (F , vy [ c , i ] , vy [ e , j ] ) ∗ yy [ i , j ] , i =1 . .4 ) , j =1 . .4 )
104 +add( add( d i f f (F , vv [ c , i ] , vw [ e , j ] ) ∗ vw [ i , j ] , i=c . .m) , j =1 . .4 )
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B.2 diffsolver.mpl

105 +add( add( d i f f (F , vv [ c , i ] , vy [ e , j ] ) ∗ vy [ i , j ] , i=c . .m) , j =1 . .4 )
106 +add( add( d i f f (F , vv [ i , c ] , vw [ e , j ] ) ∗ vw [ i , j ] , i =1. . c ) , j =1 . .4 )
107 +add( add( d i f f (F , vv [ i , c ] , vy [ e , j ] ) ∗ vy [ i , j ] , i =1. . c ) , j =1 . .4 ) ;
108
109 #non−pseudo ops only , used t o r e d u c e d i f f o p s from n t o n−1
110 Nabla1Nabla2 := E −>
111 add( add( d i f f (E, vy [ i , 2 ] , vy [ j , 1 ] ) ∗ vv [ i , j ] , i =1. .m)
112 + add( d i f f (E, wy [ i , 2 ] , vy [ j , 1 ] ) ∗ vw [ j , i ] , i =1 . .2 )
113 + d i f f (E, yy [ 1 , 2 ] , vy [ j , 1 ] ) ∗ vy [ j , 1 ]
114 + 2∗ d i f f (E, yy [ 2 , 2 ] , vy [ j , 1 ] ) ∗ vy [ j , 2 ]
115 , j =1. .m)
116 + add( add( d i f f (E, vy [ i , 2 ] , wy [ j , 1 ] ) ∗ vw [ i , j ] , i =1. .m)
117 + add( d i f f (E, wy [ i , 2 ] , wy [ j , 1 ] ) ∗ ww[ j , i ] , i =1 . .2 )
118 + d i f f (E, yy [ 1 , 2 ] , wy [ j , 1 ] ) ∗ wy [ j , 1 ]
119 + 2∗ d i f f (E, yy [ 2 , 2 ] , wy [ j , 1 ] ) ∗ wy [ j , 2 ]
120 , j =1 . .2 )
121 + add( d i f f (E, vy [ i , 2 ] , yy [ 1 , 2 ] ) ∗ vy [ i , 2 ] , i =1. .m)
122 + add( d i f f (E, wy [ i , 2 ] , yy [ 1 , 2 ] ) ∗ wy [ i , 2 ] , i =1 . .2 )
123 + d i f f (E, yy [ 1 , 2 ] , yy [ 1 , 2 ] ) ∗ yy [ 1 , 2 ]
124 + 2∗ d i f f (E, yy [ 2 , 2 ] , yy [ 1 , 2 ] ) ∗ yy [ 2 , 2 ]
125 + 2∗add( d i f f (E, vy [ i , 2 ] , yy [ 1 , 1 ] ) ∗ vy [ i , 1 ] , i =1. .m)
126 + 2∗add( d i f f (E, wy [ i , 2 ] , yy [ 1 , 1 ] ) ∗ wy [ i , 1 ] , i =1 . .2 )
127 + 2∗ d i f f (E, yy [ 1 , 2 ] , yy [ 1 , 1 ] ) ∗ yy [ 1 , 1 ]
128 + 4∗ d i f f (E, yy [ 2 , 2 ] , yy [ 1 , 1 ] ) ∗ yy [ 1 , 2 ]
129 + 4∗ d i f f (E, yy [ 1 , 2 ] ) ;
130
131 #b r i n g s terms i n r i g h t order , t o be c a l l e d a f t e r e v e r y d i f f o p from above
132 d i f fmag i c := proc (E)
133 l o c a l tmp , i , j ;
134
135 tmp := E;
136 for i from 1 to m do
137 for j from 1 to i−1 do
138 tmp := subs ( vv [ i , j ] = vv [ j , i ] , tmp) ;
139 end do ;
140 end do ;
141
142 for i from 1 to m do
143 for j from 1 to i−1 do
144 tmp := subs (ww[ i , j ] = ww[ j , i ] , tmp) ;
145 end do ;
146 end do ;
147
148 for i from 1 to m do
149 for j from 1 to i−1 do
150 tmp := subs ( yy [ i , j ] = yy [ j , i ] , tmp) ;
151 end do ;
152 end do ;
153
154 tmp ;
155 end proc ;
156
157 #s h o r t f o r t h e f u n c t i o n above
158 dmv := F −> di f fmag i c (F) ;
159
160 #c o n t r a c t s a l l v e c t o r s w i t h i n d i c e s , i f p o s s i b l e
161 pacman := proc (F)
162 l o c a l tmp ;
163 tmp := expand (F) ;
164
165 save tmp , " " | | TMPPATH | | " maplecontract . txt " ;
166 ssystem ( " python␣ " | | SCRIPTPATH | | " /pacman2 . py␣ " | | TMPPATH | | " maplecontract . txt ␣ " | |

TMPPATH | | " maplecontracted . txt " ) ;
167 read " " | | TMPPATH | | " maplecontracted . txt " ;
168
169 tmp := %;
170 tmp ;
171 end proc ;
172
173 #c o l l e c t s f o r same o p e r a t o r terms t o r e d u c e t h e s i z e o f o p e r a t o r s
174 d i f f c o l l e c t := proc (F)
175 l o c a l tmp ;
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176 tmp := expand (F) ;
177 save tmp , " " | | TMPPATH | | " map l e co l l e c t . txt " ;
178 p r in t ( " python␣ " | | SCRIPTPATH | | " / c o l l e c t . py␣ " | | TMPPATH | | " map l e co l l e c t . txt ␣ " | | TMPPATH

| | " map l eco l l e c t ed . txt " ) ;
179 ssystem ( " python␣ " | | SCRIPTPATH | | " / c o l l e c t . py␣ " | | TMPPATH | | " map l e co l l e c t . txt ␣ " | | TMPPATH

| | " map l eco l l e c t ed . txt " ) ;
180 p r in t ( " done " ) ;
181 read " " | | TMPPATH | | " map l e co l l e c t ed . txt " ;
182 tmp := %;
183 pr in t ( " c o l l e c t i n g . . . " ) ;
184 tmp := c o l l e c t ( expand (tmp) , map leco l l e c t t e rms ) ;
185 pr in t ( " c o l l e c t e d ! " ) ;
186
187 save tmp , " " | | TMPPATH | | " map l e co l l e c t2 . txt " ;
188 p r in t ( " python␣ " | | SCRIPTPATH | | " / c o l l e c t 2 . py␣ " | | TMPPATH | | " map l e co l l e c t2 . txt ␣ " | | TMPPATH

| | " map leco l l e c t ed2 . txt " ) ;
189 ssystem ( " python␣ " | | SCRIPTPATH | | " / c o l l e c t 2 . py␣ " | | TMPPATH | | " map l e co l l e c t2 . txt ␣ " | |

TMPPATH | | " map leco l l e c t ed2 . txt " ) ;
190 p r in t ( " done " ) ;
191 read " " | | TMPPATH | | " map leco l l e c t ed2 . txt " ;
192 tmp := %;
193
194 tmp ;
195 end proc ;
196
197 #r e d u c e s a non−pseudo op from n t o n−1
198 DoReduce := F −> dmv(Nabla1Nabla1 (F)−2∗Nabla1Nabla2 (F)+Nabla2Nabla2 (F) ) ;
199
200 #t h e a c t u a l a p p l i c a t i o n o f t h e PDE t o an e x p r e s s i o n
201 DoDiff := (E, d1 , d2 , n , kappa , L , a , b , mu) −> 2 ∗ (Nablaamu( d i f fmag i c ( value ( yaNablaa (E, a ) ) ) ,

mu, a ) − Nablaamu(E, mu, a ) ) − y [ a ] [mu] ∗ NablaaNablaa (E, a ) + 2∗(Nablavamu( d i f fmag i c ( value
(waNablaa (E, a ) ) ) , mu, a ) − Nablaamu(E, mu, a ) − w[ a ] [mu] ∗ NablaaNablava (E, a ) ) + (2∗d1 −
2∗n) ∗ Nablaamu(E, mu, a )

202 + 2 ∗ (Nablaamu( d i f fmag i c ( value ( yaNablaa (E, b) ) ) , mu, b) − Nablaamu(E, mu, b) ) − y [ b ] [mu] ∗
NablaaNablaa (E, b) + 2∗(Nablavamu( d i f fmag i c ( value (waNablaa (E, b) ) ) , mu, b) − Nablaamu(E, mu
, b) − w[ b ] [mu] ∗ NablaaNablava (E, b) ) + (2∗d2 − 2∗n) ∗ Nablaamu(E, mu, b) ;

203
204 #r e w r i t e s p r o d u c t s o f two e p s i l o n−t e n s o r s as sum o f p r o d u c t s o f eta−t e n s o r s
205 ep s i l o n t o e t a := proc (F)
206 l o c a l tmp ;
207 tmp := expand (F) ;
208 save tmp , " " | | TMPPATH | | " map leeps i l ontoe ta . txt " ;
209 ssystem ( " python␣ " | | SCRIPTPATH | | " / ep s i l o n t o e t a . py␣ " | | TMPPATH | | " map leeps i l ontoe ta . txt ␣ "

| | TMPPATH | | " map leeps i l ontoeta2 . txt " ) ;
210 read " " | | TMPPATH | | " map leeps i l ontoe ta2 . txt " ;
211 tmp := %;
212
213 tmp ;
214 end proc ;
215
216 #b u i l d s t h e a c t u a l non−pseudo o p e r a t o r t o r e d u c e from r e p r e s e n t a t i o n kappa1 , L1 and kappa2 , L2

t o kappa and L f o r s i n g u l a r i t i e s up t o d e g r e e o f n
217 bui ldop := proc ( kappa1 , L1 , kappa2 , L2 , n , kappa , L)
218 l o c a l numv , numw1, numw2, numy , tmp , subsme , ansatz2 , ansatz3 , ansatz4 ;
219 #b u i l d a n s a t z
220 numv := L ;
221 numw1 := L1 ;
222 numw2 := L2 ;
223 numy := 2∗kappa + L + 2∗n − 2∗kappa1 − L1 − 2∗kappa2 − L2 ;
224 pr in t ( " python␣ " | | SCRIPTPATH | | " / combinator . py␣ " | | numv | | " ␣ " | | numw1 | | " ␣ " | | numw2 | |

" ␣ " | | numy | | " ␣ " | | TMPPATH | | " maplecombinate . txt " ) ;
225 ssystem ( " python␣ " | | SCRIPTPATH | | " / combinator . py␣ " | | numv | | " ␣ " | | numw1 | | " ␣ " | | numw2

| | " ␣ " | | numy | | " ␣ " | | TMPPATH | | " maplecombinate . txt " ) ;
226 read " " | | TMPPATH | | " maplecombinate . txt " ;
227
228 pr in t ( " Ansatz␣and␣ f a c t o r s : " ) ;
229 p r in t ( used_factors ) ;
230 p r in t ( ansatz ) ;
231
232 tmp := c o l l e c t ( s imp l i f y ( expand (dmv( DoDiff ( ansatz , 2∗kappa1+L1 , 2∗kappa2+L2 , n , kappa , L , 1 , 2 ,

mu) ) ) ) , used_factors ) ;
233 save tmp , " " | | TMPPATH | | " mapleops . txt " ;
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234 pr in t ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "
mapleops2 . txt " ) ;

235 ssystem ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "
mapleops2 . txt " ) ;

236 read " " | | TMPPATH | | " mapleops2 . txt " ;
237
238 subsme := Linear ( solveme , i nde t s ( solveme ) ) ;
239 #p r i n t ( subsme ) ;
240 ansatz2 := s imp l i f y ( expand ( subs ( subsme , ansatz ) ) ) ;
241 p r in t ( " Solved ␣PDE . . . " ) ;
242 #p r i n t ( a n s a t z 2 ) ;
243 tmp := c o l l e c t ( s imp l i f y ( expand (dmv(OpPartvPartv ( ansatz2 , 1 , 1) ) ) ) , used_factors ) ;
244 i f tmp <> 0 then
245 save tmp , " " | | TMPPATH | | " mapleops . txt " ;
246 pr in t ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "

mapleops2 . txt " ) ;
247 ssystem ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | |

" mapleops2 . txt " ) ;
248 read " " | | TMPPATH | | " mapleops2 . txt " ;
249
250 subsme := Linear ( solveme , i nde t s ( solveme ) ) ;
251 pr in t ( "Made␣ t r a c e l e s s . . . " ) ;
252 ansatz3 := s imp l i f y ( expand ( subs ( subsme , ansatz2 ) ) ) ;
253 e l s e
254 ansatz3 := ansatz2 ;
255 end i f ;
256
257 ansatz4 := expand ( ansatz3 ) ;
258 #uncomment t o make o p e r a t o r s m a l l e r
259 #a n s a t z 4 := d i f f c o l l e c t ( expand ( a n s a t z 3 ) ) ;
260
261
262 tmp := s imp l i f y ( expand (dmv( DoDiff ( ansatz4 , 2∗kappa1+L1 , 2∗kappa2+L2 , n , kappa , L , 1 , 2 , mu) ) ) )

;
263 i f tmp <> 0 then
264 error " Cons istency ␣ check␣ f a i l e d ! " ;
265 end i f ;
266
267 tmp := s imp l i f y ( expand (dmv(OpPartvPartv ( ansatz4 , 1 , 1) ) ) ) ;
268 i f tmp <> 0 then
269 error " Cons istency ␣ check␣ f a i l e d ! " ;
270 end i f ;
271
272 ansatz4 ;
273 end proc ;
274
275 #b u i l d s t h e a c t u a l pseudo o p e r a t o r t o r e d u c e from r e p r e s e n t a t i o n kappa1 , L1 and kappa2 , L2 t o

kappa and L f o r s i n g u l a r i t i e s up t o d e g r e e o f n
276 bui ldpseudoop := proc ( kappa1 , L1 , kappa2 , L2 , n , kappa , L)
277 l o c a l numv , numw1, numw2, numy , tmp , subsme , ansatz2 , ansatz3 , ansatz4 , ansatz5 , ansatz6 ,

ansatza , ansatzb ;
278 #b u i l d a n s a t z
279 numv := L ;
280 numw1 := L1 ;
281 numw2 := L2 ;
282 numy := 2∗kappa + L + 2∗n − 2∗kappa1 − L1 − 2∗kappa2 − L2 ;
283 pr in t ( " python␣ " | | SCRIPTPATH | | " / combinator2 . py␣ " | | numv | | " ␣ " | | numw1 | | " ␣ " | | numw2 | |

" ␣ " | | numy | | " ␣ " | | TMPPATH | | " maplecombinate . txt " ) ;
284 ssystem ( " python␣ " | | SCRIPTPATH | | " / combinator2 . py␣ " | | numv | | " ␣ " | | numw1 | | " ␣ " | | numw2

| | " ␣ " | | numy | | " ␣ " | | TMPPATH | | " maplecombinate . txt " ) ;
285 read " " | | TMPPATH | | " maplecombinate . txt " ;
286
287 pr in t ( " Ansatz␣and␣ f a c t o r s : " ) ;
288 p r in t ( used_factors ) ;
289 p r in t ( ansatz ) ;
290
291 ansatza := ep s i l o n t o e t a ( ansatz ) ;
292 #p r i n t ( a n s a t z a ) ;
293 pr in t ( " Rewritten ␣ eps i l on−products . . . " ) ;
294 ansatzb := pacman( ansatza ) ;
295 #p r i n t ( a n s a t z b ) ;
296
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297 pr in t ( " Contracted ␣ ep s i l o n s . . . " ) ;
298
299 tmp := c o l l e c t ( s imp l i f y ( expand (dmv( DoDiff ( ansatzb , 2∗kappa1+L1 , 2∗kappa2+L2 , n , kappa , L , 1 ,

2 , mu) ) ) ) , used_factors ) ;
300 save tmp , " " | | TMPPATH | | " mapleops . txt " ;
301 p r in t ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "

mapleops2 . txt " ) ;
302 ssystem ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "

mapleops2 . txt " ) ;
303 read " " | | TMPPATH | | " mapleops2 . txt " ;
304
305 subsme := Linear ( solveme , i nde t s ( solveme ) ) ;
306
307 ansatz2 := s imp l i f y ( expand ( subs ( subsme , ansatzb ) ) ) ;
308 pr in t ( " Solved ␣PDE␣ f o r ␣x1␣and␣x2 . . . " ) ;
309
310 tmp := c o l l e c t ( s imp l i f y ( expand (dmv(OpPartvPartv ( ansatz2 , 1 , 1) ) ) ) , used_factors ) ;
311 i f tmp <> 0 then
312 save tmp , " " | | TMPPATH | | " mapleops . txt " ;
313 pr in t ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "

mapleops2 . txt " ) ;
314 ssystem ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | |

" mapleops2 . txt " ) ;
315 read " " | | TMPPATH | | " mapleops2 . txt " ;
316
317 subsme := Linear ( solveme , i nde t s ( solveme ) ) ;
318 pr in t ( "Made␣ t r a c e l e s s ␣ in ␣v1 . . . " ) ;
319 ansatz3 := s imp l i f y ( expand ( subs ( subsme , ansatz2 ) ) ) ;
320 e l s e
321 ansatz3 := ansatz2 ;
322 end i f ;
323
324 tmp := c o l l e c t ( s imp l i f y ( expand (dmv( DoDiff ( ansatz3 , 2∗kappa1+L1 , 2∗kappa2+L2 , n , kappa , L , 4 ,

3 , mu) ) ) ) , used_factors ) ;
325 i f tmp <> 0 then
326 save tmp , " " | | TMPPATH | | " mapleops . txt " ;
327 pr in t ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "

mapleops2 . txt " ) ;
328 ssystem ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | |

" mapleops2 . txt " ) ;
329 read " " | | TMPPATH | | " mapleops2 . txt " ;
330
331 subsme := Linear ( solveme , i nde t s ( solveme ) ) ;
332 pr in t ( " Solved ␣PDE␣ f o r ␣x3␣and␣x4 . . . " ) ;
333 ansatz4 := s imp l i f y ( expand ( subs ( subsme , ansatz3 ) ) ) ;
334 e l s e
335 ansatz4 := ansatz3 ;
336 end i f ;
337
338 tmp := c o l l e c t ( s imp l i f y ( expand (dmv(OpPartvPartv ( ansatz4 , 2 , 2) ) ) ) , used_factors ) ;
339 i f tmp <> 0 then
340 save tmp , " " | | TMPPATH | | " mapleops . txt " ;
341 pr in t ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | | "

mapleops2 . txt " ) ;
342 ssystem ( " python␣ " | | SCRIPTPATH | | " / s o l v e . py␣ " | | TMPPATH | | " mapleops . txt ␣ " | | TMPPATH | |

" mapleops2 . txt " ) ;
343 read " " | | TMPPATH | | " mapleops2 . txt " ;
344
345 subsme := Linear ( solveme , i nde t s ( solveme ) ) ;
346 pr in t ( "Made␣ t r a c e l e s s ␣ in ␣v2 . . . " ) ;
347 ansatz5 := s imp l i f y ( expand ( subs ( subsme , ansatz4 ) ) ) ;
348 e l s e
349 ansatz5 := ansatz4 ;
350 end i f ;
351
352 ansatz6 := expand ( ansatz5 ) ;
353 #uncomment f o r s h o r t e r o p e r a t o r s
354 #a n s a t z 6 := d i f f c o l l e c t ( expand ( a n s a t z 5 ) ) ;
355
356 tmp := s imp l i f y ( expand (dmv( DoDiff ( ansatz6 , 2∗kappa1+L1 , 2∗kappa2+L2 , n , kappa , L , 1 , 2 , mu) ) ) )

;
357 i f tmp <> 0 then
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358 error " Cons istency ␣ check␣ f a i l e d ! " ;
359 end i f ;
360
361 tmp := s imp l i f y ( expand (dmv(OpPartvPartv ( ansatz6 , 1 , 1) ) ) ) ;
362 i f tmp <> 0 then
363 error " Cons istency ␣ check␣ f a i l e d ! " ;
364 end i f ;
365
366 tmp := s imp l i f y ( expand (dmv( DoDiff ( ansatz6 , 2∗kappa1+L1 , 2∗kappa2+L2 , n , kappa , L , 4 , 3 , mu) ) ) )

;
367 i f tmp <> 0 then
368 error " Cons istency ␣ check␣ f a i l e d ! " ;
369 end i f ;
370
371 tmp := s imp l i f y ( expand (dmv(OpPartvPartv ( ansatz6 , 2 , 2) ) ) ) ;
372 i f tmp <> 0 then
373 error " Cons istency ␣ check␣ f a i l e d ! " ;
374 end i f ;
375
376 ansatz6 ;
377 end proc ;
378
379
380 translate_op_12 := proc (F , v o f f s e t )
381 l o c a l tmp ;
382 global i g e l ;
383 tmp := F:
384 save tmp , " " | | TMPPATH | | " mapleoptrans late . txt " ;
385 ssystem ( " python␣ " | | SCRIPTPATH | | " / o p t r a n s l a t e_ f i l e s . py␣ " | | v o f f s e t | | " ␣1␣2␣ " | | TMPPATH

| | " mapleoptrans late . txt ␣ " | | TMPPATH | | " mapleoptrans lated . txt " ) ;
386 read " " | | TMPPATH | | " mapleoptrans lated . txt " ;
387
388 tmp := %;
389
390 return tmp ;
391 end proc ;
392
393 translate_op_34 := proc (F , v o f f s e t )
394 l o c a l tmp ;
395 global i g e l ;
396 tmp := F:
397 save tmp , " " | | TMPPATH | | " mapleoptrans late . txt " ;
398 ssystem ( " python␣ " | | SCRIPTPATH | | " / o p t r a n s l a t e_ f i l e s . py␣ " | | v o f f s e t | | " ␣4␣3␣ " | | TMPPATH

| | " mapleoptrans late . txt ␣ " | | TMPPATH | | " mapleoptrans lated . txt " ) ;
399 read " " | | TMPPATH | | " mapleoptrans lated . txt " ;
400
401 tmp := %;
402
403 return tmp ;
404 end proc ;
405
406 translate_op_56 := proc (F , v o f f s e t )
407 l o c a l tmp ;
408 global i g e l ;
409 tmp := F:
410 save tmp , " " | | TMPPATH | | " mapleoptrans late . txt " ;
411 ssystem ( " python␣ " | | SCRIPTPATH | | " / o p t r a n s l a t e_ f i l e s . py␣ " | | v o f f s e t | | " ␣6␣5␣ " | | TMPPATH

| | " mapleoptrans late . txt ␣ " | | TMPPATH | | " mapleoptrans lated . txt " ) ;
412 read " " | | TMPPATH | | " mapleoptrans lated . txt " ;
413
414 tmp := %;
415
416 return tmp ;
417 end proc ;
418
419 translate_pseudo_op := proc (F , v o f f s e t )
420 l o c a l tmp ;
421 global i g e l ;
422 tmp := F:
423 save tmp , " " | | TMPPATH | | " mapleoptrans late . txt " ;
424 ssystem ( " python␣ " | | SCRIPTPATH | | " / o p t r a n s l a t e_ f i l e s . py␣ " | | v o f f s e t | | " ␣1␣2␣ " | | TMPPATH

| | " mapleoptrans late . txt ␣ " | | TMPPATH | | " mapleoptrans lated . txt " ) ;
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425 read " " | | TMPPATH | | " mapleoptrans lated . txt " ;
426
427 tmp := %;
428
429 return tmp ;
430 end proc ;

B.3 diffops.mpl
1 i f not as s i gned (n) then
2 error " Please ␣ s e t ␣ the ␣ va r i ab l e ␣n␣ to ␣ the ␣ c o r r e c t ␣ value ␣ (number␣ o f ␣ v a r i a b l e s ␣x , ␣ in c lud ing ␣

new␣ones ) . ␣Thank␣you . " ;
3 end i f ;
4
5 i f not as s i gned (m) then
6 error " Please ␣ s e t ␣ the ␣ va r i ab l e ␣m␣ to ␣ the ␣ c o r r e c t ␣ value ␣ (number␣ o f ␣ p o l a r i z a t i o n ␣ vectors , ␣

i n c lud ing ␣new␣ones ) . ␣Thank␣you . " ;
7 end i f ;
8
9 #a u x i l i a r y f u n c t i o n s

10 kde l := (a , b)−> 1−abs ( signum (a−b) ) ;
11 agb := (a , b)−>(signum (a−b)+1)/2 ∗ abs ( signum (a−b) ) ;
12 alb := (a , b)−>(signum (b−a )+1)/2 ∗ abs ( signum (a−b) ) ;
13
14 #t o be c a l l e d a f t e r e v e r y a p p l i c a t i o n o f a d i f f o p b e l o w . B r i n g s terms i n r i g h t o r d e r and does

b a s i c s i m p l i f i c a t i o n s
15 mv := F−> expand (magic (F) ) ;
16
17 #d i f f o p w_c y_i
18 PartvPart i := (F , c , i ) −>
19 add(# c <= d
20 add( # k
21 add( d i f f (F , vx [ k , i , j ] , vv [ c , d ] ) ∗ vv [ k , d ] , j=i +1. .n)
22 − add( d i f f (F , vx [ k , j , i ] , vv [ c , d ] ) ∗ vv [ k , d ] , j =1. . i −1) ,
23 k=1. .m)
24 + 2∗add( d i f f (F , rho [ i , j ] , vv [ c , d ] ) ∗ vx [ d , i , j ] , j=i +1. . n)
25 − 2∗add( d i f f (F , rho [ j , i ] , vv [ c , d ] ) ∗ vx [ d , j , i ] , j =1. . i −1) ,
26 d=c . .m)
27 +add( # c >= d
28 add ( # k
29 add( d i f f (F , vx [ k , i , j ] , vv [ d , c ] ) ∗ vv [ k , d ] , j=i +1. .n)
30 − add( d i f f (F , vx [ k , j , i ] , vv [ d , c ] ) ∗ vv [ k , d ] , j =1. . i −1) ,
31 k=1. .m)
32 + 2∗add( d i f f (F , rho [ i , j ] , vv [ d , c ] ) ∗ vx [ d , i , j ] , j=i +1. . n)
33 − 2∗add( d i f f (F , rho [ j , i ] , vv [ d , c ] ) ∗ vx [ d , j , i ] , j =1. . i −1) ,
34 d=1. . c )
35 +add( add( #a < b
36 add ( # k
37 add( d i f f (F , vx [ k , i , j ] , vx [ c , a , b ] ) ∗ vx [ k , a , b ] , j=i +1. .n)
38 − add( d i f f (F , vx [ k , j , i ] , vx [ c , a , b ] ) ∗ vx [ k , a , b ] , j =1. . i −1) ,
39 k=1. .m)
40 + 2∗add( d i f f (F , rho [ i , j ] , vx [ c , a , b ] ) ∗ 1/2∗( rho [ a , j ] + rho [ b , i ] − rho [ a , i ] − rho [ b , j ] ) , j=i

+1. .n)
41 − 2∗add( d i f f (F , rho [ j , i ] , vx [ c , a , b ] ) ∗ 1/2∗( rho [ a , i ] + rho [ b , j ] − rho [ a , j ] − rho [ b , i ] ) , j =1. .

i −1) ,
42 b=a+1. .n) , a=1. .n)
43 +4∗add( #i < j
44 d i f f (F , vx [ c , i , j ] ) ,
45 j=i +1. .n)
46 −4∗add( #i > j
47 d i f f (F , vx [ c , j , i ] ) ,
48 j =1. . i −1) ;
49
50 #d i f f o p y_a y_i
51 Par t iPar t j := (F , a , i ) −>
52 add( # c
53 add( #a < b
54 add( # k
55 add( d i f f (F , vx [ k , i , j ] , vx [ c , a , b ] ) ∗ vv [ k , c ] , j=i +1. .n)
56 − add( d i f f (F , vx [ k , j , i ] , vx [ c , a , b ] ) ∗ vv [ k , c ] , j =1. . i −1) ,
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57 k=1. .m)
58 + 2∗add( d i f f (F , rho [ i , j ] , vx [ c , a , b ] ) ∗ vx [ c , i , j ] , j=i +1. .n)
59 − 2∗add( d i f f (F , rho [ j , i ] , vx [ c , a , b ] ) ∗ vx [ c , j , i ] , j =1. . i −1) ,
60 b=a+1. .n)
61 − add( #a > b
62 add( # k
63 add( d i f f (F , vx [ k , i , j ] , vx [ c , b , a ] ) ∗ vv [ k , c ] , j=i +1. .n)
64 − add( d i f f (F , vx [ k , j , i ] , vx [ c , b , a ] ) ∗ vv [ k , c ] , j =1. . i −1) ,
65 k=1. .m)
66 + 2∗add( d i f f (F , rho [ i , j ] , vx [ c , b , a ] ) ∗ vx [ c , i , j ] , j=i +1. .n)
67 − 2∗add( d i f f (F , rho [ j , i ] , vx [ c , b , a ] ) ∗ vx [ c , j , i ] , j =1. . i −1) ,
68 b=1. . a−1) ,
69 c =1. .m)
70 +2∗add( #a < b
71 add( # k
72 add( d i f f (F , vx [ k , i , j ] , rho [ a , b ] ) ∗ vx [ k , a , b ] , j=i +1. .n)
73 − add( d i f f (F , vx [ k , j , i ] , rho [ a , b ] ) ∗ vx [ k , a , b ] , j =1. . i −1) ,
74 k=1. .m)
75 + 2∗add( d i f f (F , rho [ i , j ] , rho [ a , b ] ) ∗ 1/2∗( rho [ a , j ] + rho [ b , i ] − rho [ a , i ] − rho [ b , j ] ) , j=i

+1. .n)
76 − 2∗add( d i f f (F , rho [ j , i ] , rho [ a , b ] ) ∗ 1/2∗( rho [ a , i ] + rho [ b , j ] − rho [ a , j ] − rho [ b , i ] ) , j =1. . i

−1) ,
77 b=a+1. .n)
78 −2∗add( #a > b
79 add( # k
80 add( d i f f (F , vx [ k , i , j ] , rho [ b , a ] ) ∗ vx [ k , b , a ] , j=i +1. .n)
81 − add( d i f f (F , vx [ k , j , i ] , rho [ b , a ] ) ∗ vx [ k , b , a ] , j =1. . i −1) ,
82 k=1. .m)
83 + 2∗add( d i f f (F , rho [ i , j ] , rho [ b , a ] ) ∗ 1/2∗( rho [ b , j ] + rho [ a , i ] − rho [ b , i ] − rho [ a , j ] ) , j=i

+1. .n)
84 − 2∗add( d i f f (F , rho [ j , i ] , rho [ b , a ] ) ∗ 1/2∗( rho [ b , i ] + rho [ a , j ] − rho [ b , j ] − rho [ a , i ] ) , j =1. . i

−1) ,
85 b=1. . a−1)
86 +kdel ( a , i ) ∗8∗add( d i f f (F , rho [ i , k ] ) , k=i +1. .n) + kdel ( a , i ) ∗8∗add( d i f f (F , rho [ k , i ] ) , k=1. . i −1)
87 −alb (a , i ) ∗8∗ d i f f (F , rho [ a , i ] ) − agb (a , i ) ∗8∗ d i f f (F , rho [ i , a ] ) ;
88
89 #d i f f o p v_c y_i
90 vPart i := (F , c , i ) −>
91 add( # k
92 add( d i f f (F , vx [ k , i , j ] ) ∗ vv [ k , c ] , j=i +1. .n)
93 − add( d i f f (F , vx [ k , j , i ] ) ∗ vv [ k , c ] , j =1. . i −1) ,
94 k=1. .m)
95 + 2∗add( d i f f (F , rho [ i , j ] ) ∗ vx [ c , i , j ] , j=i +1. .n)
96 − 2∗add( d i f f (F , rho [ j , i ] ) ∗ vx [ c , j , i ] , j =1. . i −1) ;
97
98 #d i f f o p v_k w_c
99 vPartv := (F, k , c ) −>

100 add( d i f f (F , vv [ c , d ] ) ∗ vv [ d , k ] , d=c . .m)
101 + add( d i f f (F , vv [ d , c ] ) ∗ vv [ d , k ] , d=1. . c )
102 + add( add( d i f f (F , vx [ c , a , b ] ) ∗ vx [ k , a , b ] , b=a+1. .n) , a=1. .n) ;
103
104 #d i f f o p w_e w_c
105 PartvPartv := (F, e , c ) −>
106 add( add( d i f f (F , vv [ c , d ] , vv [ e , f ] ) ∗ vv [ f , d ] , d=c . .m) , f=e . .m)
107 + add( add( d i f f (F , vv [ c , d ] , vv [ f , e ] ) ∗ vv [ f , d ] , d=c . .m) , f =1. . e )
108 + add( add( add( d i f f (F , vv [ c , d ] , vx [ e , a , b ] ) ∗ vx [ d , a , b ] , d=c . .m) , b=a+1. .n) , a=1. .n)
109 +4∗alb ( c , e ) ∗ d i f f (F , vv [ c , e ] ) + 4∗agb ( c , e ) ∗ d i f f (F , vv [ e , c ] ) + 8∗ kde l ( c , e ) ∗ d i f f (F , vv [ c , e ] )
110 +add( add( d i f f (F , vv [ d , c ] , vv [ e , f ] ) ∗ vv [ f , d ] , d=1. . c ) , f=e . .m)
111 + add( add( d i f f (F , vv [ d , c ] , vv [ f , e ] ) ∗ vv [ f , d ] , d=1. . c ) , f =1. . e )
112 + add( add( add( d i f f (F , vv [ d , c ] , vx [ e , a , b ] ) ∗ vx [ d , a , b ] , d=1. . c ) , b=a+1. .n) , a=1. .n)
113 +add( add( add( d i f f (F , vx [ c , a , b ] , vv [ e , f ] ) ∗ vx [ f , a , b ] , b=a+1. .n) , a=1. .n) , f=e . .m)
114 +add( add( add( d i f f (F , vx [ c , a , b ] , vv [ f , e ] ) ∗ vx [ f , a , b ] , b=a+1. .n) , a=1. .n) , f =1. . e )
115 +add( add( add( add( d i f f (F , vx [ c , a , b ] , vx [ e , g , h ] ) ∗ 1/2 ∗ ( rho [ g , b ] + rho [ a , h ] − rho [ g , a ] − rho

[ h , b ] ) , b=a+1. .n) , a=1. .n) , h=g+1. .n) , g=1. .n) ;
116
117
118 #b r i n g s terms i n r i g h t o r d e r
119 magic := proc (F)
120 l o c a l tmp , i , j , k , l ;
121
122 tmp := F;
123
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124 for i from 1 to n do
125 for j from 1 to i−1 do
126 tmp := subs ( rho [ i , j ] = rho [ j , i ] , tmp) ;
127 for k from 1 to m do
128 tmp := subs ( vx [ k , i , j ] = −vx [ k , j , i ] , tmp) ;
129 end do ;
130 end do ;
131 end do ;
132
133 for k from 1 to m do
134 for l from 1 to k−1 do
135 tmp := subs ( vv [ k , l ] = vv [ l , k ] , tmp) ;
136 end do ;
137 end do ;
138
139 for i from 1 to n do
140 tmp := subs ( rho [ i , i ] = 0 , tmp) ;
141 for k from 1 to m do
142 tmp := subs ( vx [ k , i , i ] = 0 , tmp) ;
143 end do ;
144 end do ;
145 tmp ;
146 end proc ;
147
148 #r e p l a c e s rho and vx by t h e u n d e r l y i n g i d e n t i t i e s t o c h e c k f o r v a n i s h i n g c o n t r i b u t i o n s . Use t h i s

f o l l o w e d by ’ s i m p l i f y ’ t o c h e c k w h e t h e r an e x p r e s s i o n i s z e r o .
149 magic2 := proc (F)
150 l o c a l tmp , i , j , k ;
151
152 tmp := F;
153 for i from 1 to n do
154 for j from i+1 to n do
155 tmp := subs ( rho [ i , j ] = x [ i ] ^ 2 − 2∗xx [ i , j ] + x [ j ] ^ 2 , tmp) ;
156 for k from 1 to m do
157 tmp := subs ( vx [ k , i , j ] = vx [ k , i ]−vx [ k , j ] , tmp) ;
158 end do ;
159 end do ;
160 end do ;
161
162 tmp ;
163 end proc ;
164
165 #s e t s x_a = x_b and c a l l s t h e r e s u l t a g a i n x_b . To be used i n most c i r c u m s t a n c e s a f t e r t h e

a p p l i c a t i o n o f a i n t e r t w i n i n g o p e r a t o r .
166 s e t equa l := proc (F , a , b)
167 l o c a l i , k , tmp ;
168
169 tmp := F;
170 for i from 1 to a−1 do
171 tmp := subs ( rho [ i , a ] = rho [ i , b ] , tmp) ;
172 for k from 1 to m do
173 tmp := subs ( vx [ k , i , a ] = vx [ k , i , b ] , tmp) ;
174 end do ;
175 end do ;
176
177 for i from a+1 to n do
178 tmp := subs ( rho [ a , i ] = rho [ b , i ] , tmp) ;
179 for k from 1 to m do
180 tmp := subs ( vx [ k , a , i ] = vx [ k , b , i ] , tmp) ;
181 end do ;
182 end do ;
183
184 magic (tmp) ;
185 end proc ;
186
187 #swaps x_a and x_b i n t h e e x p r e s s i o n F
188 swap_indices := proc (F , a , b)
189 l o c a l i , j , k , tmp , aprime , bprime , d i f f e r e n c e , be f o r e ;
190
191 aprime := a + n ;
192 bprime := b + n ;
193 tmp := F;
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194 for i from 1 to 2∗n do
195 tmp := subs ( rho [ i , a ] = rho [ i , bprime ] , tmp) ;
196 for k from 1 to m do
197 tmp := subs ( vx [ k , i , a ] = vx [ k , i , bprime ] , tmp) ;
198 end do ;
199 end do ;
200
201 #p r i n t ( tmp ) ;
202
203 for i from 1 to 2∗n do
204 tmp := subs ( rho [ a , i ] = rho [ bprime , i ] , tmp) ;
205 for k from 1 to m do
206 tmp := subs ( vx [ k , a , i ] = vx [ k , bprime , i ] , tmp) ;
207 end do ;
208 end do ;
209
210 #p r i n t ( tmp ) ;
211
212 for i from 1 to 2∗n do
213 tmp := subs ( rho [ i , b ] = rho [ i , aprime ] , tmp) ;
214 for k from 1 to m do
215 tmp := subs ( vx [ k , i , b ] = vx [ k , i , aprime ] , tmp) ;
216 end do ;
217 end do ;
218
219 #p r i n t ( tmp ) ;
220
221 for i from 1 to 2∗n do
222 tmp := subs ( rho [ b , i ] = rho [ aprime , i ] , tmp) ;
223 for k from 1 to m do
224 tmp := subs ( vx [ k , b , i ] = vx [ k , aprime , i ] , tmp) ;
225 end do ;
226 end do ;
227
228 #p r i n t ( tmp ) ;
229
230 for i from 1 to 2∗n do
231 for j from 1 to 2∗n do
232 tmp := subs ( vx [ a , i , j ] = vx [ bprime , i , j ] , tmp) ;
233 tmp := subs ( vx [ b , i , j ] = vx [ aprime , i , j ] , tmp) ;
234 end do ;
235 end do ;
236
237 #p r i n t ( tmp ) ;
238
239 for i from 1 to 2∗m do
240 tmp := subs ( vv [ i , a ] = vv [ i , bprime ] , tmp) ;
241 end do ;
242 for i from 1 to 2∗m do
243 tmp := subs ( vv [ a , i ] = vv [ bprime , i ] , tmp) ;
244 end do ;
245 for i from 1 to 2∗m do
246 tmp := subs ( vv [ i , b ] = vv [ i , aprime ] , tmp) ;
247 end do ;
248 for i from 1 to 2∗m do
249 tmp := subs ( vv [ b , i ] = vv [ aprime , i ] , tmp) ;
250 end do ;
251
252
253 d i f f e r e n c e :=1;
254 while d i f f e r e n c e <> 0 do
255 be fo r e := tmp ;
256 for i from 1 to 2∗n do
257 tmp := subs ( rho [ i , aprime ] = rho [ i , a ] , tmp) ;
258 tmp := subs ( rho [ aprime , i ] = rho [ a , i ] , tmp) ;
259 tmp := subs ( rho [ i , bprime ] = rho [ i , b ] , tmp) ;
260 tmp := subs ( rho [ bprime , i ] = rho [ b , i ] , tmp) ;
261 for k from 1 to 2∗m do
262 tmp := subs ( vx [ k , i , aprime ] = vx [ k , i , a ] , tmp) ;
263 tmp := subs ( vx [ k , aprime , i ] = vx [ k , a , i ] , tmp) ;
264 tmp := subs ( vx [ k , i , bprime ] = vx [ k , i , b ] , tmp) ;
265 tmp := subs ( vx [ k , bprime , i ] = vx [ k , b , i ] , tmp) ;

59



B Sources

266 end do ;
267 for j from 1 to 2∗n do
268 tmp := subs ( vx [ aprime , i , j ] = vx [ a , i , j ] , tmp) ;
269 tmp := subs ( vx [ bprime , i , j ] = vx [ b , i , j ] , tmp) ;
270 end do ;
271 end do ;
272 for i from 1 to 2∗m do
273 tmp := subs ( vv [ i , aprime ] = vv [ i , a ] , tmp) ;
274 tmp := subs ( vv [ aprime , i ] = vv [ a , i ] , tmp) ;
275 tmp := subs ( vv [ i , bprime ] = vv [ i , b ] , tmp) ;
276 tmp := subs ( vv [ bprime , i ] = vv [ b , i ] , tmp) ;
277 end do ;
278 d i f f e r e n c e := be fo r e − tmp ;
279 end do ;
280 #p r i n t ( tmp ) ;
281
282 magic (tmp) ;
283 end proc ;
284
285 #renames i n d e x 3 t o 2 , 4 t o 3 and 6 t o 4
286 rename := proc (F)
287 l o c a l tmp ;
288
289 tmp := F;
290 tmp := subs ( rho [ 1 , 3 ] = rho [ 1 , 2 ] , rho [ 1 , 4 ] = rho [ 1 , 3 ] , rho [ 1 , 6 ] = rho [ 1 , 4 ] , rho [ 3 , 4 ] =

rho [ 2 , 3 ] , rho [ 3 , 6 ] = rho [ 2 , 4 ] , rho [ 4 , 6 ] = rho [ 3 , 4 ] , tmp) ;
291 tmp := subs ( vx [ 1 , 1 , 3 ] = vx [ 1 , 1 , 2 ] , vx [ 1 , 1 , 4 ] = vx [ 1 , 1 , 3 ] , vx [ 1 , 1 , 6 ] = vx [ 1 , 1 , 4 ] ,

vx [ 1 , 3 , 4 ] = vx [ 1 , 2 , 3 ] , vx [ 1 , 3 , 6 ] = vx [ 1 , 2 , 4 ] , vx [ 1 , 4 , 6 ] = vx [ 1 , 3 , 4 ] , vx [ 6 , 1 ,
3 ] = vx [ 4 , 1 , 2 ] , vx [ 6 , 1 , 4 ] = vx [ 4 , 1 , 3 ] , vx [ 6 , 1 , 6 ] = vx [ 4 , 1 , 4 ] , vx [ 6 , 3 , 4 ] = vx
[ 4 , 2 , 3 ] , vx [ 6 , 3 , 6 ] = vx [ 4 , 2 , 4 ] , vx [ 6 , 4 , 6 ] = vx [ 4 , 3 , 4 ] , vv [ 1 , 6 ] = vv [ 1 , 4 ] , vv
[6 ,6 ]= vv [ 4 , 4 ] , tmp) ;

292
293 magic (tmp)
294
295 end proc ;
296
297 #b u i l d s a m a t r i x from c o e f f i c i e n t f a c t o r s . Sample : Give me 3∗A∗AA −7∗A∗BB − 7∗B∗AA + 3∗B∗BB and

as f a c t o r s t h e l i s t [A, B] , and i w i l l g i v e you t h e m a t r i x ( ( 3 , −7) (−7 , 3) )
298 build_matrix := proc (A, f a c t o r s )
299 l o c a l n , res , i , j , da , db , wupps ;
300 n := nops ( f a c t o r s ) ;
301 r e s := Matrix (n , n) ;
302 for i from 1 to n do :
303 for j from 1 to n do :
304 da := f a c t o r s [ i ] ;
305 db := f a c t o r s [ j ] ;
306 db := ‘ ‘ | | db | | db ;
307 wupps := c o e f f ( c o e f f ( A, da ) , db) ;
308 pr in t ( " " | | da , " " | | db , wupps ) ;
309 r e s [ i , j ] := wupps ;
310 end do :
311 end do :
312 r e s ;
313 end proc :
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