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1 Introduction

Quantum field theory describes in a special relativistic framework elementary particles in
Heisenberg picture as excited states of the underlying field. In this thesis we will deal with
large time limits of a finite number of interacting bosonic particles in scattering processes.
We will show, that there is an interpretation of such large time limits as freely propagating
particles, described by the Klein-Gordon equation. These interpretations are the content of
scattering theory.

We will give a short review on the Haag-Ruelle theory in the framework of the Gårding-
Wightman axioms, which can be looked up in [RS75, Section IX.8, X.7] and [RS79, Section
XI.16] or [Spr13]. We will then complete the covariance proof in this framework following
[Jos65], which incorporates the fundamental physical statement on scattering.
We will then turn to another approach on Haag-Ruelle theory in the context of algebraic
quantum field theory. We will encode the physical terms of the Gårding-Wightman
axioms in algebraic statements on local algebras. In this setting we will try to develop
a scattering theory without the strong restrictions on the mass spectrum made in the
Gårding-Wightman setting, where we follow the sketchy and conceptual description in
[BS05].

We use a stability condition stated by Herbst [Her71] and also used by Dybalski [Dyb05]1,
this will be a fundamental improvement compared to the work done before. Due to an
error in computation, which was found only very late in the process of this thesis, we will
still have to consider the absence of massless particles, or rather the vacuum should be an
isolated point in the mass-spectrum, because we lacked time to recapture the techniques
needed for this generalization. The theorems 3.15 and 3.16 are still valid in the presence of
massless particles as it was shown by Dybalski.

1 Which is the source for Buchholz and Summer’s article in the relevant section, though Buchholz supplied
Dybalski with some results of his work on that field
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1 Introduction

We will then derive the creation operator of the scattering theory and will show funda-
mental properties. Thereafter we use the stationary phase method to derive asymptotic
commutativity, which will be key to everything following. The next important step is to
derive the lemma we stated as clustering property, mostly this is only stated for asymptotic
states. This is the only time we need the restriction of absence of massless particles. The
proceeding in the work of Dybalski is different from ours and involves an important
lemma by Buchholz, where the problems we faced in our computation are relocated in
deriving the strong limit of At( f )∗At( f )Ω.

With the clustering property theorem 3.15, the existence and properties of asymptotic states,
is proven in an easy way. With proposition 3.17 we can still use the clustering property for
the proof of theorem 3.16, the covariance of the asymptotic states.

2



2 Review on Haag-Ruelle Theory in
Gårding-Wightman setting

In the first three sections of this chapter I will give a short review on the contents of [Spr13]
being important for the proof of theorem 2.20.

2.1 Definitions

A Hermitian scalar quantum field theory is a quadruple (H , U(·), φ(·), D) satisfying the
following eight axioms.

Definition 2.1 (Property 1, relativistic invariance of states). H is a separable Hilbert space
with dim H 6= 1 and U : P↑

+ → U (H ) is a strongly continuous unitary representation
of the restricted Poincaré group1.

Definition 2.2 (Property 2, spectral condition). The projection valued measure correspond-
ing to our representation U(a) := U(a, 11) of R4, i.e., the projection valued-measure EΣ

such that

〈ϑ, U(a)ψ〉 =
∫

R4
eia·λ̃d 〈ϑ, Eλψ〉 (2.1)

has support in the closed forward light cone V+. This is the closure of the set V+ = {x ∈
R4|x · x̃ > 0, x1 > 0}.

Definition 2.3 (Property 3, existence and uniqueness of the vacuum). There exists a unique
1-dimensional subspace of fix points of U(a) := U(a, 11), ∀a ∈ R4. Call some unit vector
of this subspace the vacuum and denote it by Ω.

1 see [Cor84] chapter 17.7-8 (p.706ff) for a definition and representation properties

3



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

Definition 2.4 (Property 4, invariant domains of fields). D is a dense subspace of H , and
φ is a map from S (R4) to the closable operators on H satisfying

1. For each f ∈ S (R4), D ⊆ dom(φ( f )), D ⊆ dom((φ( f ))∗) and (φ( f ))∗|D = (φ( f̄ ))|D ,

2. Ω ∈ D and φ( f )D ⊆ D∀ f ∈ S (R4),

3. ∀ψ ∈ D, the map f 7→ φ( f )ψ is linear.

Definition 2.5 (Property 5, regularity of fields). For any ψ and ϑ in D the map f 7→
〈ψ, φ( f )ϑ〉 is a tempered distribution.

Definition 2.6 (Property 6, Poincaré invariance of fields). Let (a, Λ) ∈ P↑
+, f ∈ S (R4)

and ψ ∈ D. Then U(a, Λ)D ⊆ D and one has

U(a, Λ)φ( f )U(a, Λ)−1ψ = φ ((a, Λ) ◦ f )ψ, (2.2)

where P↑
+ acts naturally on S (R4) by

(a, Λ) ◦ f (x) = f (Λ−1(x− a)).

Definition 2.7 (Property 7, microscopic causality or local commutativity). If f , g ∈ S (R4)

have spacelike separated support, i.e., ∀x ∈ supp f , ∀y ∈ suppg one has (x− y) ˜(x− y) < 0.
Then for every ψ ∈ D

[φ( f ), φ(g)]ψ = 0. (2.3)

Definition 2.8 (Property 8, cyclicity of the vacuum). The set

D0 =
〈
{φ( f1) · · · φ( fn)Ω|n ∈N0, f1, . . . , fn ∈ S (R4)}

〉
C−span

is dense in H .

For a detailed discussion of the physical content of the axioms and some of their direct
consequences see [Spr13, Chapter 2] or [RS75, Section IX.8].
Now define the functionals

Wn( f1, . . . , fn) = 〈Ω, φ( f1) · · · φ( fn)Ω〉 ,

4



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

which we will denote the Wightman distributions. By nuclear theorem this multilinear
functional extends to a unique tempered distribution on S (R4n) which we will denote by
Wn also.

Definition 2.9 (truncated expectation). Let C1, . . . , Cn be operator valued distributions.
We define the truncated expectation 〈Ω, C1, . . . , CnΩ〉T by the following recursive formula

〈Ω, C1( f1) · · ·Cn( fn)Ω〉 = ∑
P∈Pn

∏
J∈P

〈
Ω, CJ1( f J1) · · ·CJk(J)

( f Jk(J)
)Ω
〉

T
. (2.4)

Especially define 〈Ω, φ( f1) · · · φ( fn)Ω〉T = Wn,T( f1, . . . , fn) and call this truncated vacuum
expectation values (TVEV).

2.2 Preliminary facts

An abundance of theorems is necessary for the following brief discussion of the results on
the Haag-Ruelle Scattering.

Definition 2.10. A distribution H ∈ S ′(Rkn) is called Rk-translation invariant or only Rk

invariant iff H( f ) = H(a ◦ f ) for every a ∈ Rk with a ◦ f (x1, . . . , xn) = f (x1− a, . . . , xn− a)
the natural continuous representation of Rk on S (Rkn).

Proposition 2.11. Let H ∈ S ′(R4n) be R4 invariant. Then there exists a unique tempered
distribution h ∈ S (R4n−4), which we will also refer as A(H), such that

H( f ) =
∫

R4
h( f(x))dx , where

f(x)(ξ1, . . . , ξn−1) = f (x, x− ξ1, x− ξ1 − ξ2, . . . , x− ξ1 − · · · − ξn−1).

We apply this on the Wightman distributions and the TVEV and denote A(Wn) by Wn and
A(Wn,t) by Wn,T.

From the Bochner-Schwartz theorem and a classification of Lorentz invariant polynomially
bounded measures supported in V+ one can develop the Källén-Lehmann representation
of W2.

5



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

Theorem 2.12 (Källén-Lehmann representation). Let W2 be the two point function of a field
obeying the Wightman axioms and also the property that 〈Ω, φ( f )Ω〉 = 0 for all f ∈ S (R4).
Then there exists a measure ρ of at most polynomially growth such that for every f ∈ S (R4) one
has:

W2( f ) =
∫ ∞

0

∫
Hm

f̂ dΩmdρ(m)

The Källén-Lehmann representation of the free field of mass m0 is – up to a normalization
constant – ρ(m) = δ(m − m0). dΩm is the up to scalar multiplication unique Lorentz
invariant measure on Hm.
With the Källén-Lehmann representation one is ready to state two more properties one
needs to establish a scattering theory.

Definition 2.13 (Property 9, upper and lower mass gap). Let Pµ be the generators of
the subgroup U(a, 11) and EΣ be the projection valued measure corresponding to our
representation of R4, i.e., it fulfills (2.1). Then for some m > 0 and some ε > 0 one has the
following strengthening of Property 2

suppEΣ ⊆ {0} ∪ Hm ∪Vm+ε,+

further one has that the set S of eigenvectors of P2
1 − P2

2 − P2
3 − P2

4 to the eigenvalue m2 is
non empty and there is a cyclic vector for the action of U(a, 11) on S.

S should describe the single particle states of spinless bosons of mass m.

Definition 2.14 (Property 10, coupling of the vacuum to the one particle states). The
spectral weight dρ of the Källén-Lehmann representation (Theorem 2.12) has the form:

dρ(s) = δ(s−m) + ρ̃(s)

where ρ̃ has support in [m + ε, ∞]

An important tool for the main theorem are the following estimates on regular wave
packets.

6



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

Definition 2.15 (regular wave packets and regular positive energy solutions). We call a
solution φ(x, t) of the Klein-Gordon equation

∂2
t φ(t,~x) = ∆φ(t,~x)−m2φ(t,~x) (2.5)

a regular wave packet for the Klein-Gordon equation or just regular wave packet if there
are functions φ̃+, φ̃− ∈ D(R3)

φ∧(~x)(t,~p) = e−i
√

~p2+m2
φ̃+(~p) + ei

√
~p2+m2

φ̃−(~p)

Additionally for m = 0 we require that 0 /∈ suppφ+ and 0 /∈ suppφ−. For simplicity of
notation we will sometimes write ωm(~p) for

√
~p2 + m2 and mostly drop the m.

If φ̃− = 0 we call φ a regular positive energy wave packet or a regular positive energy solution.
We then write φ̃ instead of φ̃+. We will call supp φ̃ the momentum support of φ.

Theorem 2.16 ([RS79, XI.17 & Corollary, p.43f]). If φ is a regular wave packet for the Klein-
Gordon equation with m 6= 0, then there are constants C, d > 0 such that the following estimates
hold true

a)
∫

φ(x0,~x)d~x ≤ C(1 + |x0|)3/2,

b) |φ(x0,~x)| ≤ d(1 + |x0|)−3/2.

2.3 The main Theorem

Having a (Hermitian scalar) quantum field A obeying the eight Wightman axioms and
the properties nine and ten one can construct a scattering theory by the following process.
First define a new operator valued distribution B by

B(g) = Ǎ
(

h(p2)ĝ(p)
)

for some chosen function h ∈ C∞
0 (R, [0, 1]) with supp(h) ⊆ (0, m2 + ε), which is con-

stantly 1 on some neighbourhood of m2. By some simple analysis one can show, that
this distribution B is smooth in t, i.e. one can naturally apply test functions of the
form ∂m

∂t δ(t − t0) · f (~x), where f ∈ S (R3) such that the following definition makes
sense.

7



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

Definition 2.17. Let f ∈ C∞(R4) with f (·, t), ∂t f (·, t) ∈ S (R3) for all t ∈ R, then define

the symbol
↔
∂ by

( f
↔
∂ B)(t) = Ḃ( f (·, t), t)− B(∂t f (·, t), t)

This construction allows the formulation of the main theorem of Haag-Ruelle theory.

Theorem 2.18. Let A be a Hermitian scalar quantum field theory obeying the Gårding Wightman
axioms (Properties 1-8) and also Property 9 and Property 10. Define B in dependence of h as above.
For any regular wave packets f (1), . . . , f (n), the strong limits

s− lim
t→±∞

(
f (1)
↔
∂ B
)
(t) · · ·

(
f (n)
↔
∂ B
)
(t)Ω ≡ η in

out

(
f (1), . . . , f (n)

)
(2.6)

exist.

We now want to extract some major part of the proof - exercised in [Spr13, Thm. 4.24] - as
a lemma.

Lemma 2.19. Let B be the operator valued distribution defined above, gi be regular wave packets
for the Klein-Gordon equation, pi be polynomials in space and Di constant coefficient differential
operators. Define the operators

Ci(t) =
∫

x0=t
p(~x)gi(x)DiB(x)dx3

then there is a constant C such that

|〈Ω, C1(t) · · ·Cm(t)Ω〉T| ≤ C(1 + |t|)−3/2(m−2)

2.4 Asymptotic freeness

We now want to derive the covariance and the Fock-structure of the ranges of η in
out

.

Theorem 2.20. Let again A be a Hermitian scalar quantum field theory obeying the Gårding
Wightman axioms (Properties 1-8) and also Property 9 and Property 10.

8



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

1. Define Hin and Hout to be the closed span of ηin and ηout respectively. Then these two
subspaces are invariant under U(·) the representation of P↑

+ of the theory.

2. There are operator valued distributions φin and φout such that (Hin, U(·), φin) and
(Hout, U(·), φout) are unitary equivalent to the free field of mass m and one has:

η in
out

(
f (1), . . . , f (n)

)
=

(
f (1)
↔
∂ φ in

out

)
· · ·
(

f (n)
↔
∂ φ in

out

)
Ω

Proof. Let ’ex’ be either ’in’ or ’out’. It is clearly sufficient to satisfy that the action of U(·)
is proper on the total subspace im(ηex) since U(·) is a unitary operator. It is also clear, that
the subgroup generated by translations and rotations satisfy such a proper acting,

U(x, V)ηex( f ) = lim
t→±∞

(
n

∏
k=0

U(x, V)(Ḃ( f (k)(·, t), t)− B(∂t f (k)(·, t), t))U−1(x, V)

)
Ω

= lim
t→±∞

(
n

∏
k=0

Ḃ((~x, V) ◦ f (k)(·, t), t + x0)− B((~x, V) ◦ ∂t f (k)(·, t), t + x0)

)
Ω

= lim
τ→±∞

(
n

∏
k=0

Ḃ((~x, V) ◦ f (k)(·, τ − x0), τ)− B(∂t(~x, V) ◦ f (k)(·, τ − x0), τ)

)
Ω

= lim
t→±∞

(
n

∏
k=0

Ḃ((x, V) ◦ f (k)(·, t), t)− B(∂t(x, V) ◦ f (k)(·, t), t)

)
Ω = ηex((x, V) ◦ f )

which follows by Property 6 on A which is passed to B. So it remains to show, that such a
proper acting holds also for boosts. We want to show the corresponding identity

U(Λ)ηex( f ) = ηex(Λ ◦ f ) ⇐⇒ ηex( f ) = U(Λ−1)ηex(Λ ◦ f )

Let Λ = exp
(
−c · (xs∂0 − x0∂s)

)
then the claim is∥∥∥ηex( f )−U(Λ(c)−1)ηex(Λ(c) ◦ f )

∥∥∥ = 0 (2.7)

Now we will observe d
dc

∣∣∣
c=0

we achieve

d
dc

∣∣∣∣
c=0

U(Λ(c)−1)ηex(Λ(c) ◦ f )

=
d
dc

∣∣∣∣
c=0

lim
t→±∞

n

∏
k=0

∫
x0=t

∂0B(Λ−1x) f (k)(Λ−1x)− B(Λ−1x)∂0 f (k)(Λ−1x)dx3Ω

9



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

Since the estimates in the main theorem can be chosen uniformly in dependence on c with
respect to t we can interchange limiting and derivation and apply product rule. So we are
interested in(

∂cB
↔
∂ f
)
(t) :=

d
dc

∣∣∣∣
c=0

∫
x0=t

∂0B(Λ−1x) f (Λ−1x)− B(Λ−1x)∂0 f (Λ−1x)dx3

we now suppress the non mixing components in the calculation therefor one has

d
dc

∣∣∣∣
c=0

∫
x0=t

∂0B

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
f

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)

−B

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
∂0 f

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
dx3

=
d
dc

∣∣∣∣
c=0

∫
x0=t

cosh cḂ

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
f

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)

− sinh c(∂sB)

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
f

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)

− cosh cB

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
ḟ

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)

+ sinh cB

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
(∂s f )

(
x0 cosh c− xs sinh c
xs cosh c− x0 sinh c

)
dx3

=
∫

x0=t
−xsB̈ f − x0(∂sḂ) f − xsḂ ḟ − x0Ḃ(∂s f )− (∂sB) f

+xsḂ ḟ + x0(∂sB) ḟ + xsB f̈ + x0B(∂s ḟ ) + B(∂s f )dx3

=
∫

x0=t
−xsB̈ f − 2(∂sB) f + xsB f̈ dx3

=
∫

x0=t
−xsB̈ f − 2(∂sB) f + xsB(∆−m2) f dx3

=
∫

x0=t
−xs f (∂2

0 + m2)B− 2(∂sB) f + (∆xsB) f dx3

=
∫

x0=t
−xs f (∂2

0 + m2)B− 2(∂sB) f + (∆xsB) f dx3

=
∫

x0=t
−xs f (∂2

0 + m2)B− 2(∂sB) f + 2(∂sB) f + (∆B) f dx3

=
∫

x0=t
−xs f (�+ m2)Bdx3

10



2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

In order to show (2.7), we expand the limiting term through product rule.∥∥∥∥ d
dc

η(t)
∥∥∥∥2

= ∑
i

〈
Ci1(t) · · ·Cin(t)Ω, Cin+1(t) · · ·Ci2n(t)Ω

〉
= ∑

i

〈
Ω, C∗in(t) · · ·C

∗
i1(t)Cin+1(t) · · ·Ci2n(t)Ω

〉

Where each Ci is either a ∂cB
↔
∂ f or a B

↔
∂ f and in each summand exactly two derivatives

occur. Now each such scalar product is expanded by equation (2.4) into a sum of products
of truncated expectations. The summands with only quadratic truncated expectations
disappear since BΩ is a solution of the Klein-Gordon equation and two Operators of the

form ∂cB
↔
∂ f (k) appear i.e.〈

Ω, Ci(t)
(

∂cB
↔
∂ f (k)

)
(t)Ω

〉
T
=

〈
C∗i (t)Ω,

∫
x0=t
−xs f (k)(�+ m2)BΩdx3

〉
= 0〈

Ω,
(

∂cB
↔
∂ f (k)

)
(t)Ci(t)Ω

〉
T
=

〈∫
x0=t
−xs f (k)(�+ m2)BΩdx3, Ci(t)Ω

〉
= 0

in at least one factor.
Therefore summands with factors, where at least one TVEV’s of at least degree 3 appears,
are the only contributions to our term, but from lemma 2.19 these contributions do vanish
in great time limits, which shows that the term in (2.7) is constant, since the cases c 6= 0
can be achieved by changing the functions f via Λ(c). Obviously the equation (2.7) is true
for c = 0 and this yields part 1 of the theorem.

Now consider Φm the free field of mass m on some auxiliary Hilbert space H, which might
be the usual Fock-space representation. Then of course Hex = H. Then we define the linear
map Ωex : Hex →Hex (the Møller operator) which continues(

f (1)
↔
∂ Φm

)
· · ·
(

f (n)
↔
∂ Φm

)
Ω 7→ ηex

(
f (1), . . . , f (n)

)
Our claim is that Ωex is a unitary operator2. We consider the time limit of〈

ηex

(
f (1), . . . , f (n)

)
, ηex

(
g(1), . . . , g(m)

)〉

2 In deed we show, that Ωex defined on the total set is isometric, from this follows that its extension is
well-defined and from definition of Hex unitary
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2 Review on Haag-Ruelle Theory in Gårding-Wightman setting

in form of TVEV’s and obtain that by lemma 2.19 again only the summands with only
quadratic TVEV’s give a non vanishing contribution. By property 10 the two point function
of B which is the restriction of A on mass m agrees with the two point function of the
free field of mass m so Ωex is unitary. If we now construct the field Aex as the pullback of
the field Φm under Ωex one directly has the unitary equivalence to the free field and with
the proof of part 1 of the theorem one has the corresponding transformation laws. The
deserved identity is obvious from definition of Ωex.
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3 Scattering in algebraic quantum field
theory

3.1 Local algebras

Instead of considering a complete theory of a quantum field obeying all the Wightman
axioms stated in chapter 2 one can often use the term of local algebras1 to achieve the
results one wants a quantum field to yield. The content of the theory of local algebras is an
algebra valued assignment (indeed a net)

O 7→ A(O)

where O is some open bounded region of spacetime. A(O) is a ∗-subalgebra of the closed
operators on H , which we will consider to be a C∗-subalgebra. An element A ∈ A(O)
will be called a local operator.

This algebra should be thought as physical operations in the given space time region or –
coming from the Gårding-Wightman case – as the field A smeared with functions f having
support in O. The usage of bounded operators instead of unbounded operators as one
would suggest from the Gårding-Wightman axioms marks a distinction between the two
axiomatic systems. There are certain mathematical difficulties in the step going from the
algebra generated by the A( f ) to a bounded algebra. The physical reason, why bounded
operators are sufficient, is due to a relation of the norm of an operator to the energy needed
to carry out the physical operation described by the operator, which should always be
finite.

1 Local is meant in a topological sense not in the algebraic definition of rings concerning maximal ideals
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3 Scattering in algebraic quantum field theory

3.1.1 The Haag-Kastler axioms

Properties A-C describe very the same conditions on U(·) and H concerning vacuum and
mass spectrum as the Gårding Wightman axioms and can be adopted.

Definition 3.1 (Property D, additivity property). Having two open bounded space time
regions O1 and O2 the algebra assigned by O1 ∪O1 is generated by A(O1) ∪A(O1) as an
algebra.

Definition 3.2 (Property E, Poincaré invariance). The algebras transform as sets by

U(a, Λ)−1A(O)U(a, Λ) = A((a, Λ) ◦ O)

Definition 3.3 (Property F, microscopic causality). Having two spacelike separated regions
O1 and O2 any two elements of the corresponding algebras commute.

Then there are some versions of completeness properties growing in strength.

Definition 3.4 (Property G1, completeness). Taking the union of all local algebras yields a
dense set in L(H ), i.e. its commutant2 is the trivial algebra.

Definition 3.5 (Property G2, Time-slice-axiom). Taking the union of all local algebras in a
Time-slice yields a dense set in the above sense. It means the union over all

O ⊆ Ot,ε = {x ∈ R4|‖x0 − t‖ ≤ ε}.

Definition 3.6 (Property G3, Reeh-Schlieder property). Taking any nonempty bounded
open regionO one has thatA(O)Ω is dense in the Hilbert space concerning norm topology.

This finishes the basic axioms of algebraic quantum field theory, though one can express the
most of it in a more abstract and algebraic way, where only the existence of a representation
on some Hilbert space analogously to the representation on H is needed, the group
acting of P↑

+ is then encoded in algebraic properties of the abstract assignment of C*-
algebra.

2 The commutant of an algebra is the set of all operators in L(H ) commutating with all operators of the
algebra
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3 Scattering in algebraic quantum field theory

3.1.2 Stability condition and isolated vacuum

Since we only consider large time limits in scattering theory it is clear, that we can only
observe stable particles as scattering states. And the easiest stability condition would
be definition 2.13. In our following computation we will assume some weaker stability
condition instead.

Definition 3.7. Let m > 0 and H1 be a subspace of H such that U|H1
is a representation3 of

mass m, let η > 0. Denote the projection onto H1 by P1 and by E(m)
Σ the spectral projection

of the mass operator with (a∓ b) denoting the interval (a− b, a + b). Then ∀O ⊂ R4 open
bounded, call an operator A ∈ A(O) with P1AΩ 6= 0, regular, if ∃C > 0,

‖E(m)
(m∓µ)

(1− P1)AΩ‖ ≤ Cµη (3.1)

for all µ sufficiently small.

We make the following assumption on the spectrum of the momentum-energy operator,
i.e. we assume that the vacuum is isolated.

Definition 3.8 (Isolated vacuum). Let EΣ be the projection valued measure corresponding
to the representation of R4 on H . Then we call the vacuum isolated if ∃ε > 0

EBε(0) = E{0}

3.2 Asymptotic creation operators

Let 1/(1 + η) < κ < 1 and g some Schwartz-function, which integrates to 1 and whose
Fourier transform has compact support, say within [−1, 1]. This will deal as a cutoff
function similar to the construction in the Wightman setting.
Let A be a regular operator as in the stability condition and f be a regular positive energy
solution, recall definition 2.15. Denote U(x)AU(−x) by A(x) and define for t 6= 0 the
operator

At( f ) =
∫

g
(

x0 − t
|t|κ

)
f (x)A(x)

dx
|t|κ

3 We do not demand this representation to be irreducible
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3 Scattering in algebraic quantum field theory

For simplicity of notation denote g
(

x0−t
|t|κ
)

/|t|κ by gt(x0). By stretching the function g
we will effectively compress its Fourier transform and end up with a cutoff in energy-
momentum space in great time limit.

3.2.1 One-particle states

Proposition 3.9. The operator At( f ) acts on Ω in creating a particle in H1 for great time limits,
i.e.

s− lim
t→±∞

At( f )Ω = P1A( f )Ω := P1

∫
R3

f (0,~x)A(0,~x)Ωd~x

Furthermore we have At( f )∗Ω = 0 for |t| > m−1/κ, even for a general A, i.e. it need neither be
regular nor local.

Proof. We remember

U(x) =
∫

e−ix·λ̃dEλ =
∫

eix0λ0−i~x·~λdEλ = (2π)2E∨(λ0)∧(~λ)(x)

Having this in mind, we now compute lim
t→±∞

At( f )Ω using the notation d̄Eλ = (2π)2dEλ

∫
gt(x0) f (x)U(x)AΩdx =

∫
g
(

x0 − t
|t|κ

)
e−ix0
√

~p2+m2
f̃ (~p)U∨(~x)(x0,~p)AΩ

dx0

|t|κ d~p

=
∫

eitξ ǧ(|t|kξ) f̃ (~p)U∧(x0)∨(~x)(ξ +
√
~p2 + m2,~p)AΩdξd~p

=
∫

eitξ ǧ(|t|kξ) f̃ (~p) d̄E
ξ+
√

~p2+m2,~p AΩ

=
∫

eitξ ǧ(|t|kξ) f̃ (~p)(1− P1) d̄E
ξ+
√

~p2+m2,~p AΩ

+
∫

eitξ ǧ(|t|kξ) f̃ (~p)P1 d̄E
ξ+
√

~p2+m2,~p AΩ

We start with estimating the first term, respect that Eµ is a (projection-valued) measure,
and suppǧ ⊆ [−1, 1] and moreover supp f̃ is also compact.∥∥∥∥∫ eitξ ǧ(|t|kξ) f̃ (~p)(1− P1) d̄E

ξ+
√

~p2+m2,~p AΩ
∥∥∥∥

≤ sup
∣∣∣ǧ(|t|kξ) f̃ (~p)

∣∣∣ · ∥∥∥∥∫
(m∓|t|−κ)

(1− P1) d̄E(m)
µ AΩ

∥∥∥∥
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3 Scattering in algebraic quantum field theory

≤C · ‖E(m)
(m∓|t|−κ)

(1− P1)AΩ‖ ≤ C′|t|−κ·η t→±∞−−−→ 0

Since U(·) provides a m > 0 representation by restriction onto H1, we have that
suppP1Eµ AΩ ⊆ Hm and since it is a (finite vector-valued) measure the expression is
invariant under a change of the integrand, leaving the values on the support invariant4.
The second term therefore equals

∫
R4

f̃ (~p)√
2π

P1 d̄E
ξ+
√

~p2+m2,~p AΩ =
∫

R4

f̃ (~p)√
2π

P1 d̄Eξ,~p AΩ

=
∫

R3
e−i0·
√

m2+~p2
f̃ (~p)P1

(∫
R

ei0·ξ
√

2π
Û(ξ,~p)AΩdξ

)
d~p

= P1

∫
R3

f (0,~x)U(0,~x)AΩd~x

Before proving the second part, first note that A(x)∗ = (U(x)AU(−x))∗ = U(x)A∗U(−x)
and then we analogously compute lim

t→±∞
At( f )∗Ω

∫
gt(x0) f (x)U(x)A∗Ωdx =

∫
g
(

x0 − t
|t|κ

)
f̃ (−~p)eix0

√
~p2+m2

U∨(~x)(x0,~p)A∗Ω
dx0

|t|κ d~p

=
∫

eitξ ǧ(−|t|kξ) f̃ (−~p)U∧(x0)∨(~x)(ξ −
√
~p2 + m2,~p)A∗Ωdξd~p

=
∫

eitξ ǧ(−|t|kξ) f̃ (−~p) d̄E
ξ−
√

~p2+m2,~p A∗Ω
|t|�0
= 0

Since the support of ǧ shrinks the support of the integrand for |t| > m−1/κ to ξ ≤ |t|−κ < m
and therefore ξ−

√
~p2 + m2 < 0 and Eλ is not supported in regions of negative energy.

3.2.2 Asymptotic commutativity

Before continuing with multi-particle states, we have to derive an important lemma on
asymptotic properties of solutions to Klein-Gordon with disjoint momentum support
using stationary phase method. We outline here that the results we achieve by stationary
phase method can be vastly generalized.

4 Contrary to a general distribution, where the change should leave the values on a neighbourhood of the
support invariant
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3 Scattering in algebraic quantum field theory

Definition 3.10 (Velocity support). Let f be a regular positive energy solution. Define the
velocity support Γ f by

Γ f =

{
∇ω(~p) =

~p√
~p2 + m2

∣∣∣∣∣~p ∈ supp f̃

}

Lemma 3.11. Let f be a regular positive energy solution, a(x) a polynomially bounded function
and A ⊆ R3 be a closed set with A ∩ Γ f = ∅. Then for every p ∈ [1, ∞]

‖a(t) · f (t)‖t·A,p := ‖a(t, ·) f (t, ·)|t·A‖p

is rapidly decreasing in t.

Proof.

f (t,~vt) =
∫

R3
eit~v·~pe−it

√
~p2+m2

f̃ (~p)d~p =
∫

R3
eit(~v·~p−

√
~p2+m2) f̃ (~p)d~p

Introduce h~v(~p) = ~v · ~p−
√
~p2 + m2, we then have that ∇h~v(~p) = ~v− ~p√

~p2+m2
. And since

Γ f and A are disjoint for ~p ∈ supp f̃ we have ∇h~v(~p) ∈ A− Γ f , which is closed and does
not contain 0, ∃ε > 0 such that ‖∇h~v(~p)‖ > ε. Let u ∈ D(R3) and h ∈ C∞(R3). Observe
the following calculation5

∫
u(~p) · eith(~p)d~p = ∑

j

∫ u · (∂jh)
‖∇h‖2 (∂jh)eithd~p

= (−it)−1
∫

∑
j

(
∂j

u · (∂jh)
‖∇h‖2

)
eithd~p

Using this equation, by induction one sees that for all k there are polynomials Pβ,γ
j,α with

only finitely many of them different from 0, such that∫
u(~p) · eith(~p)d~p

=(−it)−k
∫

∑
j≥k
‖∇h‖−2j ∑

α,β,γ
|β|+|γ|≤j

∂αu(∇h)β(∇h)γPβ,γ
j,α

({
∂µh, ∂µh

∣∣∣ |µ| ≥ 2
})

eithd~p

5 Idea from [Hör83, Thm 7.7.1]
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3 Scattering in algebraic quantum field theory

Plugging in our h~v and f̃ , fortunately the unknown (but existent) polynomials Pβ,γ
j,α do not

depend on ~v so in order to estimate | f (t,~vt)| we can take

Cβ,γ
j,α = sup

{∣∣∣Pβ,γ
j,α

∣∣∣ ({∂µh~v(~p), ∂µh~v(~p)
∣∣∣ |µ| ≥ 2

})∣∣∣~p ∈ supp f̃
}

independent on ~v. Therefore we get, suprema taken over the support of f̃ :

| f (t,~vt)| =
∣∣∣∣∫ eith~v f̃ d~p

∣∣∣∣ ≤ t−kλ(supp f̃ ) ∑
j≥k

∑
α,β,γ

|β|+|γ|≤j

sup |∂αu|‖∇h~v‖|β|+|γ|−2jCβ,γ
j,α

. t−k ∑
j≥k

∑
l≤j

Cj,l sup ‖∇h~v‖l−2j ≤ t−k ∑
j≥k

∑
l≤j

Cj,l sup ‖∇h~v‖l−2j
∥∥∥∥∇h~v

ε

∥∥∥∥j−l

≤ t−k ∑
j≥k

Cj sup ‖∇h~v‖−l ≤ t−k ∑
j≥k

Cj sup ‖∇h~v‖−j
∥∥∥∥∇h~v

ε

∥∥∥∥j−k

. t−k sup ‖∇h~v‖−k

We already have sup ‖∇h~v‖−k ≤ ε−k, which yields an L ∞ estimate for f . Since Γ f is
compact, we also have the estimate sup ‖∇h~v‖−k ≤ (‖v‖ − C)−k for ‖v‖ > C + 2. Since q
is polynomially bounded, there is a N ∈N0 such that for |t| > 1

q(t,~vt) . (t · 〈~v〉)N = tN(1 + ‖~v‖2)N/2

Now estimating on ~v ∈ BC+2(0), we get

a(t,~vt) f (t,~vt) . tN−k(1 + (C + 2)2)N/2ε−k

also we have outside this ball

a(t,~vt) f (t,~vt) . tN−k 〈~v〉N

(‖~v‖ − C)k

For k > N this terms are bounded, thus we find an overall L ∞ estimate. For k > N + 3
both parts are integrable. Due to the stretching of ~v by t, we receive tN+3−k as decay only.
By L p interpolation this yields the claim.6

6 Note that we haven’t make use of any specific property of
√
~p2 + m2, it is therefore valid also for general

C∞ propagators.
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From this fundamental Lemma, which has the physical interpretation as a momentum-
velocity relation for regular positive energy solutions, we will derive using microscopic
causality an asymptotic commutativity relation.

Lemma 3.12 (Asymptotic commutativity). Let f1, f2 be regular positive energy solutions with
disjoint momentum support, let further k1, k2 ∈ S (R), q1(t, x) and q2(t, x) be polynomially
bounded and A1, A2 ∈ A(O). Then∥∥∥∥[∫ q1(t, x)k1

(
x0 − t
|t|κ

)
f1(x)A1(x)

dx
|t|κ ,

∫
q2(t, x)k2

(
y0 − t
|t|κ

)
f2(y)A2(y)

dy
|t|κ

]∥∥∥∥
is rapidly decreasing in |t|. The same holds true if f1 and/or f2 is replaced by its complex conjugated.

Proof. Let K1 and K2 be disjoint compact neighbourhoods of the Γ fi . Now choose an ε > 0
with

Li = {(x0, x0 ·~v)|1− ε ≤ x0 ≤ 1 + ε,~v ∈ Ki}

spacelike separated, i.e. there is a η > 0 with

sup
x∈L1−L2

(x2
0 −~x2) < −η2 =⇒ sup

x∈t(L1−L2)

(x2
0 −~x2) < −t2η2

Especially for all |t| � 0 we have that Bdiam(O)(t · Li) are spacelike separated. And by
microscopic causality we obtain for |t| � 0 that [A1(x), A2(y)] = 0 if x ∈ tL1 and y ∈ tL2.
We can thus estimate the commutator expression by:

2‖A1‖‖A2‖
(∫

R4\tL1

|q1(t, x)k1,t(x0) f1(x)|dx ·
∫

R4
|q2(t, x)k2,t(y0) f2(y)|dy

+
∫∫

R4
|q1(t, x)k1,t(x0) f1(x)|dx ·

∫
R4\tL2

|q2(t, x)k2,t(y0) f2(y)|dy
)

W.l.o.g. we estimate only the first summand. We split the first factor into two parts. First
the integral over the region outside of the [t∓ tε] time slice, then the part inside the time
slice without L1.
Let qi(t, x) . tN 〈x0〉N 〈~x〉N for |t| > 1. In applying theorem 2.16 and lemma 3.11 with
A = R3\K1 we can estimate the spatial integration of the part outside the time slice, we
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get for |t| � 0

∫
R\[t∓tε]

CtNk1

(
x0 − t
|t|κ

)(∫
{x0}×x0K1

d(1 + |x0|)−3/2 〈x0〉N 〈~x〉N d~x +O(|x0|−q)

)
dx0

|t|κ

.
∫

R\[t∓tε]
tNk1

(
x0 − t
|t|κ

)
〈x0〉N−3/2

(
x3

0λ(K1) · (1 + sup
~v∈K1

‖x0 ·~v‖2)N/2

)
dx0

|t|κ

.
∫

R\[t∓tε]
tNk1

(
x0 − t
|t|κ

)
〈x0〉2N+3/2 dx0

|t|κ

≤ tN
∫
|z|>ε|t|1−κ

k1 (z) 〈|t|κz + t〉2N+3/2 dz

. 〈t〉3N+3/2
∫
|z|>ε|t|1−κ

k1 (z) 〈z〉2N+3/2 dz

Since k1 is a Schwartz function the integral decreases rapidly in ε|t|1−κ, i.e. in |t|.

Applying lemma 3.11 with A = R3\K1 and Hölder inequality with respect to the x0 part,
we get the estimate ‖k1‖1 ·CktN−k(1− ε)−k for the part within the time slice for any k ∈N0.
We altogether find, that for all k ∈N0 we have that∫

R4\tL1

|k1,t(x0) f1(x)|dx . t−k

for all |t| � 0.

Parallel to the estimate for the part outside of the time slice, we can estimate the second
factor by

∫
R4

q2(t, x)k2

(
y0 − t
|t|κ

)
f2(y)

dy
|t|κ . 〈t〉

3N+3/2
∫

R
k2 (z) 〈z〉2N+3/2 dz

≤ C′ 〈t〉3N+3/2
∫

R
k2(z) 〈z〉2N+3/2 dz

. 〈t〉3N+3/2

which yields the claim. Since the estimates used properties of | f (x)| they are also valid for
the complex conjugated.

The result on the estimate of the second factor we state as proposition

Proposition 3.13. Let f be a regular positive energy solution, let further k ∈ S (R), A ∈ A(O)
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and q(t, x) . 〈t〉N 〈x0〉N 〈~x〉N. Then∥∥∥∥∫ q(t, x)k
(

x0 − t
|t|κ

)
f (x)A1(x)

dx
|t|κ

∥∥∥∥ . 〈t〉3N+3/2

3.2.3 Clustering property

We want to derive a formula for large time scalarproducts of multiple creation operators
coming from regular positive energy solutions with disjoint momentum support acting on
the vacuum, which we eventually want to prove to be strongly converging to multi-particle
states.

Lemma 3.14. Let µ1, . . . , µn, ν1, . . . , νm ∈ S (R) with compactly supported Fourier-transform
and q1(t, x), . . . qn(t, x), p1(t, x), . . . , pm(t, x) be polynomials in x with polynomially bounded
coefficients in t. e1, . . . , en be regular positive energy solutions with pairwise disjoint momentum
support, and f1, . . . , fm also. Let further A1, . . . An and B1, . . . Bm be local operators.
Denote by µi,t(z) again µi(

z−t
|t|κ ) · |t|

−κ and νi,t respectively and define

B̃i,t( fi) =
∫

qi(t, xi)νi,t(y
(0)
i ) fi(yi)Bi(yi)dyi

and analogously Ãi,t(ei). Then we have for all q ∈N0〈(
n

∏
i=1

Ãi,t(ei)

)
Ω,

(
m

∏
j=1

B̃j,t( f j)

)
Ω

〉

=δm,n ∑
σ∈Sm

m

∏
i=1

〈
Ãi,t(ei)Ω, B̃σ(i),t( fσ(i))Ω

〉
+O(|t|−q) as t→ ±∞

Proof. Assume n 6= m, w.l.o.g. m = n + k.
We can find open neighbourhoods Vi, Ui of supp f̃i with Vi ⊆ Ui and Ui ∩Uj = ∅ for
i 6= j. Then split the functions ẽj into sums of test functions having either support in a Ui

or outside of all Vi. Since the creation operator is linear we can consider each case after
another and in the latter case – assume w.l.o.g. that j = 1 – due to the fact that commutators
[Ã1,t(e1)

∗, B̃i,t( fi)] are rapidly decreasing if supp ẽ1 ∩ supp f̃i ⊆ supp ẽ1 ∩Vi = ∅, and by
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3 Scattering in algebraic quantum field theory

proposition 3.13 the other operators are polynomially bounded in norm, we receive〈
n

∏
j=1

Ãj,t(ej)Ω,
n+k

∏
i=1

B̃i,t( fi)Ω

〉
=

〈
n

∏
j=2

Ãj,t(ej)Ω, Ã1,t(e1)
∗

n+k

∏
i=1

B̃i,t( fi)Ω

〉

≡
〈

n

∏
j=2

Ãj,t(ej)Ω,
n+k

∏
i=1

B̃i,t( fi)A1,t(e1)
∗Ω

〉
mod O(|t|−q)

which yields no contribution since Ãn,t(en)∗Ω is 0 after finite time from proposition 3.9.
The expression does not really apply to the proposition, the only difference is the factor
qi(t, x), being a polynomial in x, which under Fourier transform yields a differential
operator, which does not change the argumentation via disjoint support properties of the
integrand and the measure.
On the other hand, if there is a i such that supp ẽj ∩Ui = ∅ for all j we can formulate
the same argument swapping sides, since [Ãj,t(en)∗, B̃i,t( fi)] will rapidly decay. So for a
contributing term in every Ui there lies the support of a ẽj, but this is only possible if k = 0.
We conclude the claim for k 6= 0. Now assume n = m. We can further consider that
supp ẽi ⊆ Ui in our computation.

In the next computation step, we want to use methods of tempered distributions, especially
we will make use of the Fourier transform of functions of the type

〈Ω, U(x1)A1 · · ·U(xn)AnΩ〉

Since all operators are bounded, this is a L∞ ⊆ S ′(R8n) function and therefore has a
Fourier transform as a tempered distribution. We will formally denote its Fourier transform
by

d̄n
〈

Ω, Eξ1,~p1
A1 · · · Eξn,~pn AnΩ

〉
This is somewhat misleading, because it is not a measure. The reason why we use this
expression is due to the following calculation. Let (γn)n∈N0

be an orthonormal basis, then

〈Ω, U(x1)A1 · · ·U(xn)AnΩ〉 = ∑
α∈Nn−1

0

〈Ω, U(x1)A1γα1〉 · · ·
〈
γαn−1 , U(xn)AnΩ

〉
The sum as tempered distributions is convergent. Here the Fourier-transform of each
summand is a measure, but the sum need not to be, since measures are even dense
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in S ′, so far away from being closed. In the following calculation we are able to use
common support properties of these summands, which obviously carry over to the sum.
If f (p1, . . . , pn) is supported within pi ∈ Σ, then we can also do the following calculation,∫

f (p1, . . . , pn)d̄n 〈Ω, Ep1 A1 · · · Epn AnΩ
〉

= ∑
α∈Nn−1

0

∫
f (p1, . . . , pn)d̄

〈
Ω, Ep1 A1γα1

〉
· · · d̄

〈
γαn−1 , Epn AnΩ

〉
= ∑

α∈Nn−1
0

∫
f (p1, . . . , pn)d̄

〈
γαi−1 , Epi EΣ Aiγαi

〉
d̄
〈
Ω, Ep1 A1γα1

〉
· · · d̄

〈
γαn−1 , Epn AnΩ

〉
=
∫

f (p1, . . . , pn)d̄n 〈Ω, Ep1 A1 · · · Epi EΣ Ai · · · Epn AnΩ
〉

With this techniques we start computing, note that we collect the qj(t, xj), pi(t, xi) in a
single polynomial, Pt(x), which Fourier transforms to a differential operator Pt(D).〈

Ω,

(
n

∏
i=1

Ãi,t(ei)
∗B̃i,t( fi)

)
Ω

〉

=
∫∫ 〈

Ω,
n

∏
i=1

qi(t, x2i−1)µi,t(x(0)2i−1)ei(x2i−1)pi(t, x2i)νi,t(x(0)2i ) fi(x2i)

U(x2i−1)A∗i U(x2i−2i−1)BiU(−x2i)Ω

〉
dx2n

=
∫∫ 〈

Ω, Pt(x)
n

∏
i=1

µi,t

(
2i−1
∑

j=1
y(0)j

)
ei

(
2i−1
∑

j=1
yj

)
νi,t

(
2i
∑

j=1
y(0)j

)
fi

(
2i
∑

j=1
yj

)
U(y2i−1)A∗i U(y2i)BiΩ

〉
dx2n

=
∫∫

Pt(D)
n

∏
i=1

µ̌i,t (ξ2i−1−ξ2i+ω(~p2i−~p2i−i)) ẽi (~p2i−~p2i−1)ν̌i,t (ξ2i−ξ2i+1−ω(~p2i−~p2i+1)) f̃i (~p2i−~p2i+1)

d̄2n

〈
Ω,

(
n

∏
i=1

Eξ2i−1,~p2i−1
A∗i Eξ2i,~p2i

Bi

)
Ω

〉

First it is clear that we can restrict ourselves to (ξ1,~p1) = 0 because of the support of the
distribution due to the vacuum as bra vector. By induction we can now conclude that for
(ξi,~pi)

2n
i=2 in the support of the integrand, we find

~p2i ∈
i−1

∑
j=1

(supp ẽj − supp f̃ j) + supp ẽi ~p2i−1 ∈
i−1

∑
j=1

(supp ẽj − supp f̃ j)
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3 Scattering in algebraic quantum field theory

Denote the maximal norm of ∑n−1
j=1 (supp ẽj − supp f̃ j) by r. For t sufficiently large we can

show that7 |ξ2i−1| ≤ 2r, using the support properties of ∂
ai
t µ̌i,t, ∂

bi
t ν̌i,t and the mean value

theorem. We though can change the distribution to

d̄2n

〈
Ω,

(
n

∏
i=1

Eξ2i−1,~p2i−1
EB2r(0)A∗i Eξ2i,~p2i

Bi

)〉
(3.2)

Let η be a function of compact support with {η(ε · x+ k)|k ∈ ε ·Z3} is a family of partitions
of unity, and let A = diam supp η. Now given ε > 0 split the ẽi and f̃i with respect to this
partition. Again by lemma 3.12 the summands with disjoint support in any ẽi and f̃i part
decay rapidly in |t| and yield no contribution. We find that r ≤ 2Aε for every remaining
summand.

Choosing a sufficiently small partition parameter ε – for a sufficiently large |t0| – we
can change the measure in the way described in (3.2). Now since the vacuum is an
isolated point in the energy momentum spectrum, we can take E0 = |Ω 〉〈Ω| since ε was
sufficiently small. The error we obtained by neglecting the contribution of the summands
with disjoint support in the ẽi and f̃i parts is again rapidly decreasing in |t|.
Now plugging in this identity and doing the inverse Fourier-transform, we receive

m

∏
i=1

〈
Ω, Ãi,t(ei)

∗B̃i,t( fi)Ω
〉
+O(|t|−q)

Since for every permutation σ 6= id we have a i with suppẽi ∩ supp f̃σ(i) = ∅, the remaining
summands are rapidly decreasing, we conclude.

∑
σ∈Sm

m

∏
i=1

〈
Ω, Ãi,t(ei)

∗B̃σ(i),t( fσ(i))Ω
〉
+O(|t|−q)

For a general collection of e1, . . . , en and f1, . . . , fm we get – because of linearity of the
expressions – the deserved result by recombining the partitions we made.

7 The constant 2 is by no way optimal, one can also show that this is still true for all c with 0 < q < c for
some fixed q ∈ (0, 1)

25



3 Scattering in algebraic quantum field theory

3.3 Scattering

3.3.1 Multi-particle states

It is reasonable to think of At( f ) as a creation operator in large time limit and of At( f )∗ as
an annihilation operator, which is suggested by the clustering property and for sufficiently
small κ can indeed be shown, see [Dyb05, Proposition 3.2]. To create multi-particle states
we have to act several times by creation operators, of which we know scalarproducts by
the clustering property.

Theorem 3.15. Let A1, . . . An be regular operators and f1, . . . , fn be regular positive energy
solutions with disjoint momentum support. Then there exist the strong limits

s− lim
t→±∞

A1,t( f1) · · · An,t( fn)Ω

and they do neither depend on the ordering of the Ai,t( fi), nor on the concrete Ai and fi, but only
on the corresponding one-particle states, i.e.

η in
out

(
P1A1( f1)Ω⊗ · · · ⊗ P1An( fn)Ω

)
:= s− lim

t→±∞
A1,t( f1) · · · An,t( fn)Ω

is well defined and isometric, thus they extend to isometries Ω in
out

: Fs(H1)→ H in
out

, where H in
out

is defined as the range of Ω in
out

, which are denoted as the Møller operators. We call the limits
asymptotic states.

Proof. In order to prove this we use an analogue to Cook’s method and compute

∂t A1,t( f1) · · · An,t( fn)Ω

=
n

∑
k=1

(
n

∏
j=1

(∂
δj,k
t Aj,t)

)
Ω

We use the clustering property, lemma 3.14, to estimate the summands in norm, we achieve∥∥∥∥∥
(

n

∏
j=1

(∂
δj,k
t Aj,t)

)
Ω

∥∥∥∥∥ = ∑
σ∈Sn

n

∏
j=1

〈
∂

δj,k
t Aj,t)Ω, ∂

δσ(j),k
t Aσ(j),t)Ω

〉
+O(|t|−q)
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Since for σ 6= id we have supp f̃i ∩ supp f̃σ(i) = ∅ for at least one i, these terms are rapidly
decreasing. Furthermore from proposition 3.9 the Aj,tΩ are strongly converging and are
therefore bounded in norm for t→ ±∞. We are left with estimating ‖∂t Ak,tΩ‖

∂t

∫
gt(x0) fk(x)U(x)AkΩdx

=∂t

∫
g
(

x0 − t
|t|κ

)
e−ix0
√

~p2+m2
f̃k(~p)U∨(~x)(x0,~p)AkΩ

dx0

|t|κ d~p

=∂t

∫
eitξ ǧ(|t|kξ) f̃k(~p)U∧(x0)∨(~x)(ξ +

√
~p2 + m2,~p)AkΩdξd~p

=
∫

∂teitξ ǧ(|t|kξ) f̃k(~p) d̄E
ξ+
√

~p2+m2,~p AkΩ

=
∫

ξeitξ
(

iǧ (ξ|t|κ) + κ sgn(t)|t|κ−1 ǧ′(ξ|t|κ)
)

f̃ (~p) d̄E
ξ+
√

~p2+m2,~p AΩ

The integrated functions vanish for ξ = 0 and therefore we can apply (1− P1) on the p.v.
measure. Moreover the braced part of the function is supported within (−|t|−κ, |t|−κ),
which yields a bound for ξ, and is bounded with respect to t for |t| > 1. Now using the
inequality (3.1) and Hölder again yields.

.|t|−κ
∫ |t|−κ

−|t|−κ

∥∥∥d̄E
(ξn+
√

~p2
n+m2,~pn)

(1− P1)AnΩ
∥∥∥ . |t|−κ‖E(m)

(m∓|t|−κ)
(1− P1)AnΩ‖

.|t|−κ−κ·η = |t|−κ(η+1) ∈ L1(R)

This finishes the Cook’s method proof for the existence of strong limits.

The independence on the ordering is obvious from lemma 3.12. To achieve independence
from the Ai and fi, we use independence on the ordering and assume then w.l.o.g. some
other A′n and f ′n with P1A′n( f ′n)Ω = P1An( fn)Ω. Now using the clustering property, we
get

lim
t→±∞

∥∥A1,t( f1) · · · An,t( fn)Ω− A1,t( f1) · · · A′n,t( f ′n)Ω
∥∥2

=
n−1

∏
i=1
‖P1Ai( fi)Ω‖2 ·

(
‖P1An( fn)Ω‖2 −

〈
P1An( fn)Ω, P1A′n( f ′n)Ω

〉
−
〈

P1A′n( f ′n)Ω, P1An( fn)Ω
〉
+ ‖P1A′n( f ′n)Ω‖2

)
Which is zero and by the clustering property again, we obtain isometry of the mapping
ηex, which yields the claim.
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3.3.2 Covariance

The theory established so far is strictly depending on the choice of the inertial frame. We
will first consider ourselves with the issue of non boosting transformations, and then
derive complete Poincaré invariance of 1-particle states. Finally we want to derive the
following theorem

Theorem 3.16. The set of asymptotic states is invariant under Poincaré transformations and the
states transform under the transformations. I.e.

U(Λ)η in
out

(
P1A1( f1)Ω⊗ · · · ⊗ P1An( fn)Ω

)
= η in

out

(
U(Λ)P1A1( f1)Ω⊗ · · · ⊗U(Λ)P1An( fn)Ω

)
I.e. the Møller operators intertwine the representation of P↑

+.

But first we have to show, that the tools we developed so far are available in a Poincaré
invariant manner. Therefore we consider transformed regular positive energy solu-
tions.

Proposition 3.17. If f is a regular positive energy solution, so for all (a, Λ) ∈P↑
+ is (a, Λ) ◦ f .

The momentum support is bijectively mapped under (a, Λ) transformation.

Proof. The subgroup R4 o SO(3) is trivial, one has

1√
2π

∫
R3

e−i~x~p f (x0 − a0, V−1~x−~a)d~x = e−i(x0−a0)ω(V−1~p) f̃ (V−1~p) · e−i~a(V−1~p)

= e−ix0ω(~p)
(

ei(a0ω(~p)−~a(V−1~p)) f̃ (V−1~p)
)

So we compute what’s f̃Λ for f (Λ−1x), if Λ is a boost in s−direction. We compute the full
Fourier-transform, we use the notation ~p = (ps,~pr), where ~pr is the remaining part of the
spatial vector not in s−component, furthermore use m2

~pr
= ~p2

r + m2.

f̂ (p) =
√

2πδ(p0 + ω(~p)) f̃ (~p)

⇒ f (Λ−1x)∧(x)(p) =
√

2πδ(cosh αp0 + sinh αps +
√
(cosh αps + sinh αp0)2 + m2

~pr
)

· f̃ (cosh αps + sinh αp0,~pr)
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We solve the equation coming from the delta distribution

(cosh αp0 + sinh αps)
2 = (cosh αps + sinh αp0)

2 + m2
~pr

p2
0 = p2

s + m2
~pr

=⇒ p0 = ±ω(~p)

Where from the original equation one sees, that the negative sign is to be obtained. The
derivative of the expression at the solution is

1
φ(α,~p)

:= cosh α + sinh α
cosh αps + sinh αp0√

(cosh αps + sinh αp0)2 + m2
~pr

=
cosh α(cosh αp0 + sinh αps)− sinh α(cosh αps + sinh αp0)

cosh αp0 + sinh αps

=
p0

cosh αp0 + sinh αps
=

ω(~p)
cosh αω(~p)− sinh αps

> 0

The positivity comes from cosh α > | sinh α| and the fact that ω(~p) > |ps|. This we can
insert in the above equation yielding

f (Λ−1x)∧(x)(p) =
√

2πδ(p0 + ω(~p)) f̃ (cosh αps + sinh αp0,~pr)φ(α,~p)

⇒ Λ̃ ◦ f (~p) = e−ix0ω(~p) f̃ (cosh αps − sinh αω(~p),~pr)φ(α,~p)

Using this, we can immediately deduce the following corollary.

Corollary 3.18. The lemmata 3.11, 3.12 and 3.14 are still valid for the assertions made in trans-
formed frames of references.
I.e. we can interchange the x0 dependence of the smearing functions by (Λx)0.

Proof for lemma 3.11. In the case of lemma 3.11 one has to generalize time evolution. One
takes the cone

⋃
t∈R{t} × t · A. Intersecting the cone with the hyperplanes (Λx)0 = t

gives the correct surface of definition for the Lp estimate, which will correspond8 to a
f (Λx)|t,t·A′ .

8 up to length contraction, which changes the integrals by a constant factor
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Proof for lemma 3.12 and 3.14. Respect that

‖[A, B]‖ = ‖U(Λ)[A, B]U(Λ−1)‖ = ‖[U(Λ)AU(Λ−1), U(Λ)BU(Λ−1)]‖〈
n

∏
i=1

AiΩ,
m

∏
j=1

BjΩ

〉
=

〈
U(Λ)

(
n

∏
i=1

Ai

)
U(Λ−1)Ω, U(Λ)

(
m

∏
j=1

Bj

)
U(Λ−1)Ω

〉

=

〈(
U(Λ)

n

∏
i=1

AiU(Λ−1

)
)Ω,

(
m

∏
j=1

U(Λ)BjU(Λ−1)

)
Ω

〉

Furthermore with the following calculation we are able to reduce the statements to the
lemma.

U(Λ)
∫

q(t, x)kt ((Λx)0) f (x)A(x)dxU(Λ−1)

=
∫

q(t, Λ−1y)kt (y0) f (Λ−1y)U(Λ)U(Λ−1y)AU(−Λ−1y)U(Λ−1)dy

=
∫
(Λ ◦ q)(t, y)kt (y0) (Λ ◦ f )(y)

(
U(Λ)AU(Λ−1)

)
(y)dy

We are now ready to prove the covariance theorem.

Proof of Theorem 3.16. We now want to show covariance of the construction operator for
the subgroup of rotations and translations, R3 o SO(3), i.e.

U(a, V)

(
n

∏
i=1

Ai,t( fi)Ω

)
=

n

∏
i=1

(U(a, V)AiU(a, V)−1)t(V ◦ fi)Ω

Or equivalently(
n

∏
i=1

Ai,t( fi)Ω

)
= U(a, V)−1

n

∏
i=1

(U(a, V)AiU(a, V)−1)t(V ◦ fi)Ω

=U(V−1)U(−a)
n

∏
i=1

∫
gt(x(0)i ) fi(V−1xi)U(a)U(xi)U(V)AiU(V−1)U(−xi)U(−a)dxiΩ

=U(V−1)
n

∏
i=1

∫
gt(x(0)i ) fi(V−1xi)U(V)U(V−1xi)AiU(−V−1xi)U(V−1)dxiΩ

=
n

∏
i=1

∫
gt((Vyi)

(0)) fi(yi)U(yi)AiU(−yi)dyiΩ
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From this expression it is clear, that rotations and translations obey the equation, since
they leave the time invariant.

Now we consider Λ in a one-parameter group – say boosts in s direction and we start with
a one-particle state. Consider a suitable regular positive energy solution fΛ such that

f̃Λ(~p) = f̃ (cosh αps − sinh αω(~p),~pr)

and the operator U(Λ)AU(Λ)−1: We start with

U(Λ−1)(U(Λ)AU(Λ−1))t( fΛ)Ω =
∫

gt(x0) fΛ(x)U(Λ−1x)AΩdx

=
∫

Λ−1 ◦ (gt(x0) fΛ(x))U(x)AΩdx

=
∫
(gt(x0) fΛ(x))∧(x)((Λ−1)tp)d̄E−p0,~p AΩ

=
∫

ǧt(sinh αps − cosh αp0 −ω(cosh αps − sinh αp0,~pr))

· f̃Λ(cosh αps − sinh αp0,~pr)d̄E−p0,~p AΩ

=
∫

ǧt(cosh αξ + sinh αps −ω(cosh αps + sinh αξ,~pr))

· f̃Λ(cosh αps + sinh αξ,~pr)d̄Eξ,~p AΩ

=
∫

ǧt(cosh αξ + sinh αps −ω(cosh αps + sinh αξ,~pr))

· f̃ (cosh α(cosh αps + sinh αξ)− sinh αω(cosh αps + sinh αξ,~pr),~pr)d̄Eξ,~p AΩ

Observing the integrand on the hypersurface ξ = ω(~p) one discovers

ω(cosh αps + sinh αω(~p),~pr)

=
√

cosh2 αp2
s + 2 sinh cosh αpsω(~p) + sinh2 α(p2

s + m2
~pr
) + m2

~pr

=
√

cosh2 αω(~p)2 + 2 sinh cosh αpsω(~p) + sinh2 αp2
s = cosh αω(~p) + sinh αps

Therefore the integrand equals f̃ (~p)/
√

2π on the mass shell. Using the 1 = (1− P1) + P1

identity, one achieves, that the P1 part equals P1A( f )Ω, as requested. Since f̃ and ǧt are
bounded it suffices to show, that the support w.r.t the mass shrinks to m as |t| → ∞, to
receive the deserved identity for a one-particle state through estimating the remaining part
towards zero. Define ~q = (cosh αps + sinh αξ,~pr) and ζ = cosh αξ + sinh αps, let |t| � 0
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such that ζ −ω(~q) ∈ (−ε, ε) ⊇ suppg̃t. Now one achieves

ζ ∈ (ω(~q)− ε, ω(~q) + ε)

ζ2 ∈ (ω(~q)2 − 2εω(~q) + ε2, ω(~q)2 + 2εω(~q) + ε2)

ζ2 −ω(~q)2 = ξ2 −ω(~p)2 ∈ (−2εω(~q) + ε2,+2εω(~q) + ε2)

Defining µ = ζ −ω(~q) we can observe

| cosh α(ω(~q)− µ)− sinh αω(~q)| ≥ e−|α|ω(~q)− cosh αµ

Since f̃ has compact support, we get with this expression a bound for ω(~q), which – using
3.1 – yields that

lim
t→±∞

U(Λ−1)(U(Λ)AU(Λ−1)t( fΛ)Ω = P1A( f )Ω

⇒ d
dα

lim
t→±∞

U(Λ−1)(U(Λ)AU(Λ−1)t( fΛ)U(Λ)Ω = 0

Because the clustering property yields us a uniformal estimate, we can interchange time
limiting and differentiating. We now want to derive the statement for multi-particle states.
So observe

d
dα

U(Λ−1)
n

∏
i=1

(
U(Λ)AU(Λ−1)

)
i,t
( fi,Λ)Ω

=
d

dα

n

∏
i=1

∫
gt((Λyi)

(0)) fi,Λ(Λyi)U(yi)AiU(−yi)dyiΩ

=
n

∑
j=1

n

∏
i=1

∫ ( d
dα

)δi,j

gt((Λyi)
(0)) fi,Λ(Λyi)U(yi)AiU(−yi)dyiΩ

By lemma 3.14 we can estimate the norm of a summand by a constant times the derivative
of a single particle state. Since the derivative of a single particle state vanish for large
times, the expression is constant. For Λ = 1 we have.

lim
t→±∞

U(Λ−1)
n

∏
i=1

(
U(Λ)AU(Λ−1)

)
i,t
( fi,Λ)Ω = lim

t→±∞

n

∏
i=1

Ai,t( fi)Ω

And since the left hand side is constant, this is true for every Λ, a boost in s-direction.
After combining the results on the generating subgroups, this yields the claim.
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4 Conclusions

We have constructed the scattering theory in two different formulations of quantum field
theory. First in the formulation of the Gårding-Wightman axioms, describing the field as an
operator valued distribution. Here the construction needed an abundance of mathematical
theorems about tempered distributions, Lorentz-invariant measures, multiplicators and
more, all developed or cited in [Spr13]. We though had strong restrictions on the mass
spectrum an upper and lower mass gap but there was no necessity in taking regular wave
packets with disjoint momentum support.
The second approach was the formulation of algebraic quantum field theory with the
Haag-Kastler axioms, describing the fields as local algebras. Here we could use a more
general setting, without a strictly mass gap. We used the stability condition of Herbst
[Her71] and an isolated vacuum as the assumptions on our field. The particles of the
asymptotic states should have disjoint velocity support here.

It seems that the approach of the Haag-Kastler axioms is simpler, since we did not need
an extended knowledge about tempered distributions to achieve strong results. The
key ingredient here was the disjointness of the velocity supports. With this we could
easily show asymptotic commutativity and the clustering property, which became our
primary tool for everything following thereafter. This assumption might also extend the
applications of the Gårding-Wightman framework.

The developed theorem 3.15 states that in the algebraic framework particles behave like
free particles for large times. With theorem 3.16 we see, that the formulation is Poincaré
invariant, as it should be. The same statement is derived by theorem 2.20 on the scattering
theory in the Gårding-Wightman framework.
Of course one would not expect asymptotic completeness (i.e. Hin = Hout = H ), since
we are only describing a single kind of particle yet. In the algebraic framework this can
be resolved, if one defines the analogue construction for various particles. Thus one can
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construct asymptotic states of a mixture of different particles in the previously defined
way.

Assuming asymptotic completeness, the S-matrix can be defined by

S = Ω−1
outΩin

This operator inherits the whole physical statements on scattering. Displaying it as an
integral kernel acting on multi-particle wave functions, one can read off the scattering
amplitudes whose absolute squares give rise to scattering probabilities and cross sections.
Since S is a closed unitary operator and the wave functions with disjoint velocity support
are dense one can not see the restriction of disjoint velocity support any more, thus this re-
striction is only due to the construction and has no physical relevance.

All this confirms that both formulations we made are physically meaningful, as this is,
what we observe in collider experiments, especially the Fock-space interpretation of the
asymptotic states is a key part.

In general the isolated vacuum condition can be relaxed, which was shown in [Dyb05]. We
outline here, that the stability condition, i.e. regularity of the operators was only needed for
existence of the time limits, the clustering property etc. only needed locality. Therefore a
more general approach might be possible. Dybalski also gave an example of a generalized
free field, where the regularity condition was not satisfied by a single operator, but of
course a scattering theory could be developed.
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