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10 CHAPTER 1. INTRODUCTION AND CONCEPTS

1.1 Introduction

This lecture is intended as an introduction to the theory of physical fields. The
idea of fields as physical objects is an old one. It has always been considered
“dual” (in some vague sense) to the idea that point-like objects (“atoms”) make
up the world. In the times of flourishing of Newtonian mechanics, the reduc-
tion of physical theories to the mechanics of point particles was considered
the ultimate possibility of understanding nature. Fields (like force fields) were
just a tool of description, and did not possess physical reality of their own.
Nevertheless there were a number of very useful field theories around (for ex-
ample hydrodynamics, optics ,..) which produced important results. But the
idea of a physical field remained vague and people thought that ultimately all
these phenomenological theories could be explained by the mechanics of point
particles.

With the advent of electromagnetic theory, most notably with the work of Fara-
day and Maxwell, fields were back as physical objects, although many people
thought, that this was only an intermediary step towards the ultimate, mech-
anistic explanation of electrodynamics. As we know today, this was a miscon-
ception – fields remained. On the other hand, the phenomenon of light, which
was thought to be a wave phenomenon beyond doubt after demonstrating in-
terference of light by Fresnel regained some aspects of particles with Einstein’s
work on the photoelectric effect. The “wave-particle” duality lead to the de-
velopment of quantum mechanics. The analysis of problems arising from the
electrodynamics of moving bodies lead Einstein to modifications of Newto-
nian mechanics (the theory of special relativity), which – among many other
things – implied that a consistent theory of interacting particles requires fields.
A disturbance of one particle cannot be felt immediately by another distant
particle, because all effects of this disturbance can at most travel with the ve-
locity of light. Therefore there has to be some physical object, which carries
the disturbance (its energy, its momentum etc.) in between. Disturbances of
charged particles travel as electromagnetic waves. Another most important
consequence of the theory of special relativity has been that there is no conser-
vation law of mass, like in Newtonian mechanics. Mass is just a special form
of energy, the energy of a body at rest.

Modern physics tries to combine relativity and quantum physics. As we have
learned in Quantum Mechanics II, one of the first results was that relativistic
quantum theories cannot be single particle theories. In relativistic quantum
theory, arbitrarily many particles can be generated and destroyed (provided
conservation laws of energy, momentum, spin etc. are obeyed). Such processes



1.1. INTRODUCTION 11

are very common in the realm of “elementary particles”. Therefore physicists
are trying to build theories of elementary particles and elementary interactions
as field theories of quantum objects or quantum field theories.

Modern physics also considered the old problem of connecting “phenomeno-
logical” field theories, like hydrodynamics, with the underlying molecular dy-
namics. Surprisingly it turned out that this problem is in many important as-
pects equivalent to the construction of quantum field theories. In fact, the par-
tition function of classical (non-quantum, non-relativistic) fields, which fluctu-
ate due to thermal motion, contains all the information of a relativistic quan-
tum field theory. This connection has become one of the most fruitful “theoret-
ical laboratories” of modern physics, because it allows to transport ideas and
findings between two completely different physical regimes. Today you will
find identical methods (like the renormalization group) and identical concepts
(spontaneous breaking of symmetries, topological defects) both in the theory
of condensed matter and in the theory of quantum fields and elementary in-
teractions.

Even this rough scetch must have given you the impression that there is an
enormous amount of material to be covered, especially if you lack important
pre-knowledge like the theory of special relativity, the phenomenological field
theories, an advanced course of electrodynamics and an introductory course
on elementary particle physics. It is exactly for this audience that this lecture
has been designed. So the aims will be modest. I cannot give you all of the
highlights, which have been obtained from field theoretic concepts. Rather
I will try to put you in a position, to read many of the excellent textbooks
available on the diverse subtopics.

The lectures are divided into two parts. The fist part is about “phenomeno-
logical” non-relativistic field theories: Ginzburg-Landau Theory from thermo-
physics, the theory of deformable media with the most important specializa-
tions, i.e. elastic media and hydrodynamics. I do not have the feeling that
these theories are “old stuff”. They still produce lots of research results and
they form a basis, without which you will not be able to grasp elaborate mod-
ern theories on quantum gravity, critical phenomena or cosmology, to name
but a few.

The second part is about non-quantum relativistic field theories. In fact, it
starts out with an introductory part on the theory of special relativity, which –
strictly speaking – is not about fields. The aim of this part is twofold: first, we
will discuss the most prominent example of a classical, relativistic field theory,
which is Maxwell’s theory. Here we will start from an undergraduate level
and end with the Lagrangian formulation of Maxwell’s theory as a manifestly
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Lorentz covariant field theory. Second, we will introduce the Lagrangian for-
mulation of field theories and give the important connection between symme-
tries and conservation laws (Noether’s Theorem) on the level of field theories.
Equipped with these tools, we will take a look into the theory of gravitation
and have a glance at the structures of modern theories of elementary interac-
tions.

You may wonder where the quantum field theories will appear. In fact, they
already did appear in the lecture Quantum Mechanics II, in particular in the
context of the relativistic extensions of Schrödinger’s wave theory. There we
learned, that “all one has to do” is to replace the wave functions by the proper
field operators. More precisely, one can use the Lagrangian formalism for
fields to apply the route via Feynman’s path integrals to set up a proper quan-
tum field-theory. However, any application going beyond the discussion of free
particles – which we extensively did last term in Quantum Mechanics II – re-
quires a lecture on its own. Therefore, I dropped this subject here to invest the
time in a thorough treatment of the classical stuff. Once you have gained a
feeling for the concepts here, the step towards quantum fields is possibly cum-
bersome from a mathematical point of view, but the physical ideas remain the
same.

1.1.1 Basic Concepts

The basic idea of field theories is that physical properties are ”smoothly” dis-
tributed in space and time.

Let us give some examples of classical (non-quantum) fields

a) mass (or charge) density ρ(r, t). Densities can be defined for all addi-
tive physical quantities (momentum, energy, ...). Let V be some region
in space; then

∫
V ρ(r, t)d3r = Q(V ) is the mass (charge or whatever ad-

ditive quantity) inside V

b) v(r, t), the velocity field of a streaming fluid

c) h(x, y, t), the height profile of e.g. water in a swimming pool

d) Ψ(r, t), the complex wave function of a quantum particle

Although the last example seems to be a “quantum field”, it is not. It is only the
interpretation of the wave function, which connects it to quantum mechanics.
“Quantum fields”, on the other hand are – very roughly speaking – fields of
quantum operators (see Quantum Mechanics II).
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The notion of a field implies that there is a”field object space” F (like R or a
Euclidean vector space R3, or a group like the rotations O(3) or the complex
numbers C or whatever else) and that you pick an element of this space for
each point in “physical space” (or “physical space-time”) P . So a field may be
considered as a map (mathematicians like that point of view)

P → F

F and P may be completely unrelated or related such that transformations
performed in the physical space affect the field map. As an example, think of
the density field ρ(r) and the velocity field v(r) of a fluid. Let us perform a
rotation R̂ of the physical system (i.e. of the streaming fluid), which changes
r → R̂r, and introduce ρR() and vR() the transformed functions (maps), which
may or may not be identical to the original functions. For the density you
easily see that

ρR(R̂r) = ρ(r)

whereas for the velocity
vR(R̂r) = R̂v(r)

the transformed map has changed, because the direction of the velocity is af-
fected by the rotation. There are also vector fields, which are not affected by
rotations. As an example, consider the complex field Ψ = Ψ1 + iΨ2 as a two-
dimensional vector field with components Ψ1 and Ψ2. Obviously, ΨR(R̂r) =
Ψ(r). Physical properties, corresponding to elements of vector spaces, groups
etc., which are not affected by space-time transformations are also called in-
ternal. In internal spaces, there may also be physical transformations. As an
example think of the multiplication of Ψ by a phase factor, which is equivalent
to a rotation in a two-dimensional, internal space.
If you look at our examples, you see that it is very natural in physics to require
the field map P → F to be smooth. If not stated otherwise, we will always
assume “smooth fields” in the sense that they are continuously differentiable
with respect to the space-time arguments as often as we need it.
The idea, which is “dual” to physical fields is that physical properties are con-
centrated in point-like objects. In classical physics, point particles may be de-
scribed as idealizations of smooth densities and vice versa. The passage from
a smooth density to a point like object involves a limit of a sequence of smooth
densities ρn, which become more and more localized around some point r0 as
n increases, while the total amount of physical property Q represented by the
density (be it mass, charge or whatever) remains constant, i.e.

∫
dV ρ(r) = Q.

Briefly, this can be stated as follows: The density of a point like object is a delta
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function
ρ(r) = Qδ(r − r0) .

The reverse operation, i.e. constructing smooth fields from point-like objects,
can become a very subtle task, but some steps are quite straightforward. You
start from the unsmoothed density of point-like objects

ρ(r) = q
∑
i

δ(r − ri)

A smoothing operation may result from one of several distinct physical mech-
anisms.
An obvious possibility of smoothing results from the measuring process. The
measuring apparatus will in general have a finite resolution and count all par-
ticles inside a resolution volume ∆V (r) around r. If there are M particles
inside the volume, the apparatus attaches the density ρ(r) = M/∆V (r) to
the volume element located at r. Replacing a collection of point particles by
a density in this way will be an appropriate approximation, if there are many
particles in every measuring volume and the number of particles changes little
between neighboring volume elements.
There is a more physical smoothing process in condensed matter, which results
from the thermal motion of the pointlike constituents. Due to thermal fluctu-
ations, the positions of the particles become random variables and we know
from statistical mechanics, that we usually observe thermal averages. Let us
denote the averaging by

< · · · >=
∫ ∏

i

ddrip(r1, . . . , rN )(· · · )

In equilibrium we know that

p(r1, . . . , rN ) =
1
Z

exp[−H(r1, . . . , rN )/kT ]

where H is the energy of the system. Thus, the observed density will be the
smooth function

< ρ(r) >=
N∑
i=1

< δ(r − ri) >

This is a perfect smoothing operation, because it is accomplished by the sys-
tem itself. However, it also poses new problems as soon as we consider non-
linearities. We have to face the fact, that in general

< ρ(r1)ρ(r2 >6=< ρ(r1 >< ρ(r2 > .

We can get non-linear, closed equations for the density only if we can neglect
these effects of fluctuations. Remember, that statistical physics gives reliable
answers to the size of such effects.
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1.1.2 Differentiating Functionals

In a system with pointlike objects, you have to handle functions of the posi-
tions, momenta etc. of these objects. These are (usually smooth) functions of
finitely many variables. Think of forces on a particle, the energy of a many par-
ticle system etc. All the analytic calculations you perform involve functions of
finitely many variables

F (q1, q2, . . . , qN )

which you have to differentiate, integrate, etc.
In a field theory, the field objects φ at all the (continuously many) points in
space (or space-time) are degrees of freedom. We have to face the fact, that
fields are physical systems with infinitely many degrees of freedom. The ana-
logues of functions of finitely many variables are the functionals, which map
functions into the real or complex numbers. We denote them by

F [φ] .

The form of the brackets indicates that F maps functions. This notation does
not contain information about the nature of the functions φ. If we want to
indicate, that φ are functions mapping, for example, position vectors, we will
also use

F [φ(r)] .

You should remember that the notation implies, that the function is mapped
and not (what might be suggested) the value of the function at position r. If
φ has several components, for example φα, we use a list notation: {φα} =
φ1, φ2, . . .. A functional may also be a function of one or several additional
variables t1, · · · , tn. To describe such objects we use the notation

F [{φα}; t1, · · · , tn] .

Functional differentiation is the analogue of differentiation of a smooth function.
Thus, it has to be performed quite often in physical calculations. The first
time you will have encountered a derivative of a functional was in the context
of theoretical mechanics. Mechanics can be formulated as an extreme value
problem in function space, an approach, which is known as the principle of least
action, Hamilton’s principle. The action functional is a special functional of the
trajectories of a system of point particles, {qα(t)}:

S[{qα(t)}] =
∫ t2

t1

dtL({qα(t), dqα/dt}) ,

where L({qα(t), dqα/dt}) is the Lagrange function of the mechanical system.
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We define the derivative by considering the change of S under small changes
of the trajectories {qα} → {qα + εδqα} to linear order in ε. We consider S as a
functional, which maps trajectories connecting a fixed initial point {qα(t1)} to
a fixed final point {qα(t2}. Therefore the δqα have to vanish at t1 and t2. From
the usual Taylor expansion of the Lagrange function L one gets

L({qα(t) + εδqα, dqα/dt+ εdδqα/dt})− L({qα(t), dqα/dt}) =

+ε
∑
α

[(
∂L

∂qα

)
δqα +

(
∂L

∂dqα/dt

)
dδqα
dt

]
+O(ε2) .

Inserting the expansion into S and performing a partial integration (using the
“boundary conditions”) one finds

δS[qα] =
∫ t2

t1

dt
∑
α

[(
∂L

∂qα

)
− d

dt

(
∂L

∂dqα/dt

)]
δqα .

Nothing prevents us to generalize this calculation to functions φα(r), which
depend on several variables r instead of one variable t. For simplicity of nota-
tion, let us consider a one component field φ(x) living on d-dimensional space.
We consider functionals of the form

F [φ(x)] =
∫
ddxf(φ(x),∇φ)

Repeating the above arguments we get the first variation of F

δF [φ] =
∫
ddx

[
∂f

∂φ(x)
−

d∑
i=1

∂

∂xi

(
∂f

∂(∂φ/∂xi)

)]
δφ(x)

Note that we have performed a partial integration and have to require that the
small deviations δφ(r) have to vanish on the boundary of the x-integration.
To approach the concept and calculus of partial differentiation, which you are
used to for functions of finitely many variables, remember that such a calculus
is based to a large extent on the linear change of a function given in the form

f({qi + δqi}) = f({qi}) +
N∑
i=1

∂f

∂qi
δqi

Can we generalize partial differentials to functionals, such that

F [φ+ δφ] = F [φ] +
∫
ddx

δF

δφ(x)
δφ(x)?

The answer is yes. We are not interested in mathematical details here, rather
we are interested in a physical heuristics.
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Imagine that you divide x space into small cells of volume ∆V (xi), centered at
the discrete positions xi. Then from the functional F we may define a function
F̃ such that

F̃ ({φi}) = F [φ]

where
φi =

∫
x∈∆V (xi)

φ(x)ddx.

If we consider sequences of refined cells, we can approximate any reasonable
field configuration to any desired precision. For the function F̃ we can perform
a conventional Taylor expansion

F̃ ({φi + δφi} = F̃ ({φi}) +
∑
i

∂F̃

∂φi
δφi

+
1
2

∑
i,j

∂2F̃

∂φi∂φj
δφiδφj + · · ·

Now we want to consider the limit of increasing refinements ∆V → 0. If
everything is nicely behaved we can view the sums in the terms of the Taylor
expansion as approximants of integrals and F̃ as our original functional F ,
thus replacing ∑

i

∆V →
∫
ddx

For the first order term we then obtain∑
i

∆V
1

∆V
∂F̃

∂φi
δφi →

∫
ddx

δF

δφ(x)
δφ(x)

with
δF

δφ(x)
= lim

∆V→0
lim
δφi→0

F̃ (φ1, . . . , φi + δφi, . . .)− F̃ ({φi})
∆V δφi

(1.1)

This is our (heuristic) generalization of partial differentials of functions to
functionals. The object (1.1) is called functional derivative. The most impor-
tant thing about our heuristics is that it allows to transfer many well-known
rules of usual calculus to functional calculus. The most important rule, which
you will use over and over again is

δφ(x)
δφ(y)

= δd(x− y)
(

from
∂φi
∂φj

= δij

)

Furthermore, from the chain rule of differentiation we get

∂χ(φ(x))
∂φ(y)

=
∂χ

∂φ

δφ(x)
δφ(y)

=
∂χ

∂φ
δd(x− y)
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Finally, linearity of functional differentiation is obvious, in particular

δ

δφ(y)

∫
ddxG[φ;x] =

∫
ddx

δG[φ;x]
δφ(y)

These rules are sufficient for a powerful calculus. As an example, consider our
functional F [φ] =

∫
ddxf(φ,∇φ). By mechanistic application of the 2 rules,

you easily recover the result from above

δF

δφ(y)
=

∫
ddx

(
∂f

∂φ(x)
δφ(x)
δφ(y)

+
∑
i

∂f

∂(∂iφ(x))
∂i
δφ(x)
δφ(y)

)

Replacing the functional derivatives of φ(x) by δ-functions and performing a
partial integration (boundary terms required to vanish), we can finally inte-
grate over x to get

δF

δφ(y)
=

∂f

∂φ(y)
−∇ · ∂f

∂(∇φ(y))

Note that it is almost trivial to extend the definition of the first functional
derivative to higher order functional derivatives. So we may also transfer the
whole idea of a Taylor expansion to functionals, where it is called Volterra ex-
pansion. The first terms look as follows

F [φ+ δφ] = F [φ] +
∫
ddx

δF

δφ(x)
δφ(x) +

1
2

∫
ddxddy

δ2F

δφ(x)δφ(y)
δφ(x)δφ(y)
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Some common aspects of all non-relativistic field theories physics are:

• Physical space is a space of geometrical points, which has the structure of
a 3-dimensional, affine, Euclidean space E3. The associated vectorspace
V 3 is isomorphic toR3.

• a field configuration φ takes on values in a set F and may be considered
as a map

φ : E3 −→ F

with φ(r) denoting the value of this map at a point r ∈ E3.

• Time dependent field configurations are maps φ : E3 × R −→ F with
values φ(r, t).

• If F ⊂ R, the field is called a (real) scalar field. Examples are temperature
or pressure fields.

• If F is a vector space, φ is called a vector field. Sometimes, the term “vector
field” is only used in the narrower sense: if the vector space F equals
V 3 (the vector space associated to the affine space of geometric points).
Think of a force field F (r) or an electric or magnetic field. The vectors of
such fields have a direction in the physical geometric space!

• Vector fields in the narrower sense have special transformation rules un-
der rotations and translations. Suppose we actively rotate all points of
the space r → R̂r. (For example, if there is only a charged capacitor
in space, we take this capacitor and rotate it.) Then we get a new field
configuration ϕR, such that

ϕR(R̂r) = R̂ϕ(r)

This means that the field at the image of r under rotation (R̂r) is calcu-
lated by rotating the value of the field at r. If we insert y = R̂r we can
also write this as

ϕR(y) = R̂ϕ(R̂−1y)

So the new field map is constructed from the old one by the composition

ϕR = R̂ ◦ϕ ◦ R̂−1

This way of writing transformation of fields should remind you of the
way transformations were implemented in Quantum Mechanics!
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2.1 Ordered States of Matter

A ferromagnet is an ordered state of matter. It is characterized by a spontaneous
magnetization, i.e. a magnetic moment, which appears at vanishing magnetic
field in thermal equilibrium. If the temperature is increased above the so called
Curie temperature Tc, the spontaneous magnetization vanishes and the material
is in the paramagnetic or disordered state. In a real, ferromagnetic material,
the magnetic moment varies in space (forming magnetic domains etc). Let
M(r) be the thermal average of the total magnetic moment of a small volume
element ∆V (r) located at r and let m(r) = M(r)/∆V (r). This field is an
example of a (smoothed) order parameter field. Its presence signals a particular
ordered state of the material. Other examples of such ordered states are

• the ferroelectric state, signaled by a non-vanishing spontaneous electric
moment

• the anti-ferromagnetic state, signaled by a non-vanishing periodic struc-
ture of the microscopic magnetic moments.

• the crystalline state, signaled by a non-vanishing periodic density on
atomic scales.

• the superconducting state, signaled by a non-vanishing condensate order
parameter, which indicates a special electronic correlation (pairing).

In general, the order parameter of a ferromagnet is a vectorM . There are vari-
ants of a ferromagnetic state with simpler order parameters. For example, in
an easy axis ferromagnet, the magnetization is always directed parallel to a fixed
axis (ez), so that the order parameter is completely characterized by a single
number M = M · ez .
Studying ordered states of matter (and discovering new ones) makes up a large
part of modern condensed matter physics. Therefore a question of central im-
portance is:

How can we determinem(r)?

Ginzburg and Landau remarked that we have a very powerful theorem (from
thermodynamics) at hand, which provides an excellent starting point to an-
swer the question:

If x is an unconstrained variable and F (x, . . .) is a thermodynamic
potential at fixed x, the equilibrium value of xwill be the one, which
minimizes F (x, . . .).
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So we can findm(r), if we know the form of the (constrained) thermodynamic
potential F [m(r);T,H], i.e. the magnetic free energy, calculated at a fixed profile
of the magnetization1.

2.2 The Ginzburg Landau Expansion at Work

Two very powerful assumptions and a symmetry constraint (item 3.) lead
Ginzburg and Landau to general principles fixing the form of F [m(r);T,H]
in terms of very few phenomenological parameters:

1.) F [m;T,H] is an analytic function of m, so that F may be expanded in
powers of the order parameter, and may be approximated by the first
few terms of the expansion whenever the order parameter is small. In
particular, this is the case in the vicinity of a continuous phase transition.

2.) For short range interactions, field configurations m(r) with small F are
smooth and thus we may expand F in terms of increasing orders of spa-
tial derivatives ∂imj (gradient expansion).

3.) F is a scalar quantity and thus the possible terms of the expansions of F
are limited by symmetry.

First, let us illustrate the Ginzburg Landau expansion for the simple case of an
easy axis ferromagnet. We only consider magnetic fields, which are parallel to
the easy axis, H = Hez . In general F [m(r), T,H] is a functional of the field
m(r).
The analyticity assumption (1.) tells us, that the Volterra expansion of F makes
sense:

F [m(r), T ] = F0(T,H) +
∫
ddr1a1(r1, T,H)m(r1) +

+
1
2

∫
ddr1

∫
ddr2a2(r1, r2, T,H)m(r1)m(r2) +

...+
1
n!

∫
ddr1 · · ·

∫
ddrnan(r1, · · · , rn, T,H)m(r1) · · ·m(rn) +

+ higher order terms (2.1)

Now let us explore the consequences of symmetry. Note that all the coefficient
functions of the Volterra expansion are functional derivatives of F at vanishing

1Don’t get confused by the fact that this function depends both on magnetization and on
magnetic field. If you do get confused, consult a good textbook on thermodynamics!
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magnetic moment (i.e. in the paramagnetic state), for example:

a2(r1, r2, T,H) =
δ2F

δm(r1)δm(r2)

∣∣∣∣
m=0

Therefore the coefficients must respect the symmetries of the paramagnetic
state, in particular

1.) translation symmetry

2.) ez → −ez combined with H → −H ,

3.) rotations around z-axis

The following statements thus follow from symmetry arguments:

• Due to translation symmetry, the coefficients an can only depend upon
differences of position vectors. In particular, a1 has to be independent of
r1.

• If H = 0, symmetry 2) implies that the expansion can only contain even
powers of m (because F has to be invariant under m→ −m).

Now we turn to the gradient expansion. a2 is the first coefficient, which de-
pends on position vectors, so we consider the corresponding contribution to
F , which we write in the form, which already makes use of translation invari-
ance: ∫

ddr

∫
ddxa2(x, T,H)m(r)m(r + x)

For simplicity, let us first restrict the discussion to H = 0.
What is the physical meaning of a2? Suppose you change the magnetization
around r1 a little bit. This will lead to a change in free energy

∆F ∝ δF

δm(r1)

a2 contains the following information: How is the change ∆F modified fur-
ther by an additional change of the magnetization around r2? Now imagine
a paramagnet being divided into a number of volume elements containing
enough degrees of freedom for a sensible thermal average (e.g. 100-1000 out
of 1023 spins). Then the properties of each volume element are statistically
independent of the state of the other volume elements2. Stated otherwise:

In a disordered state of matter, correlations between order param-
eter fluctuations are of microscopic range.

2In case you forgot: This a cornerstone of statistical mechanics
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This implies that a2(x) decays on “microscopic” scales, whereas the interest-
ing (low F !) configurations of the order parameter field are smooth and only
change significantly on much larger length scales. As a consequence, we may
expand

m(r + x) = m(r) +
∑
i

∂im(r)xi +
1
2

∑
i,j

∂i∂jm(r)xixj +O(x3)

and insert the expansion into the contribution to F . Note that the x integra-
tions then no longer involve the magnetization. The term∫

ddxxia2(x, T )

has to vanish and ∫
ddxxixja2(x, T ) = −ξ2δi,j

due to symmetry (change xi → −xi within the integration). In addition let us
define

a(T ) =
∫
ddxa2(x, T )

Thus the contribution to F is (up to second order of spatial derivatives):∫
ddr

a(T )
2

m2 − ξ2

2
m∇2m

This term is the leading contribution to F [m;T,H = 0] for weak spatial varia-
tion ofm(r) and smallm(r) (the 2 small parameters, which control the Ginzburg
Landau expansion). The next terms will be O(m4) and O(∇4m2).
Let us slightly rewrite the leading term by performing a partial integration:

F (T )− F0(T ) ≈
∫
ddr

a(T )
2

m2 +
ξ2

2
(∇m)2

The boundary terms vanish for a piece of ferromagnet embedded in free space.

2.3 Continuous Phase Transition

Now you have seen the Ginzburg Landau expansion at work and you can
work out all the higher order terms for yourself. But an important question
remains: when shall we stop?
Let us examine the leading order term more closely and try to find the configu-
ration of minimal F . Here we have to face a problem: If the coefficient a < 0 or
ξ2 < 0 F is not bounded from below. You can get arbitrarily small F by either
making m larger (a < 0) or by making m rougher (increasing ∇m if ξ2 < 0).
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On the other hand, if both a and ξ2 are positive, the absolute minimum of F
is the trivial solution m = 0 (corresponding to the paramagnetic state). Thus,
the leading order terms are obviously not sufficient to study the ferromagnetic
phase.
Both from physical plausibility and from results on correlations of model sys-
tems we know that ξ2 > 0 for simple ferromagnets: If ξ2 would be negative, the
minimum of F would be a non-homogeneous structure, which is not compati-
ble with a simple ferromagnet3. Thus we only need additional terms of higher
orders in m, but without spatial derivatives of m. Without magnetic field (i.e.
the symmetry m → −m) the next contribution comes from the fourth-order
term in (2.1). According to the introductory remarks, derivatives of m(r) can
be neglected here, i.e. we may replace

m(r1)m(r2)m(r3)m(r4)→ m(r1)4 .

If we now substitute r1 = r, r2 = r + x2, r3 = r + x3, r4 = r + x4 and use
translational invariance, the next order term can be written as

u(T )
4!

∫
ddrm(r)4

with

u =
∫
ddx2

∫
ddx3

∫
ddx4a4(x2,x3,x4) .

The standard Ginzburg Landau equation of the easy axis ferromagnet thus
becomes:

FGL = F − F0 =
1
2

∫
ddr[a(T )m2 +

u

12
m4 + ξ2(∇m)2] (2.2)

The temperature dependence of a(T ) is the important feature, which selects
paramagnetic or ferromagnetic state as the minimum of F .
Let now assume that there exists a critical Temperature Tc with m(T > Tc) = 0.
Provided that u(T ) > 0 (which actually is required by global stability4) we
necessarily must have a(T > Tc) > 0 to stabilize the paramagnetic state. When
we lower the temperature, the paramagnetic state looses its stability at Tc and
a homogeneous ferromagnetic state appears. The transition is called continuous,
because the order parameter m vanishes continuously for T ↗ Tc. As the state
of minimal F is homogeneous on both sides of Tc, we conclude that ξ2 stays
positive. On the other hand a(T ) has to change sign.

3Even if we allow for magnetic domains like in real ferromagnets, the magnetization within
a macroscopic domain usually is homogeneous.

4Global stability of F is required because we consider stable systems.



2.3. CONTINUOUS PHASE TRANSITION 27

To see this clearly, we note that from minimizing (2.2), homogeneous states
have to obey the relation

[a(T ) +
u

6
m2]m = 0

Clearly, a solution m 6= 0 requires a(T ) < 0.

For T > Tc, m = 0 is the absolute minimum of F (see Fig. 2.1). For T < Tc,
m = 0 is a local maximum, whereas m̄ = ±√6|a|/u are the absolute minima.

0

m

0

F

T>T
c

T=T
c

T<T
c

Figure 2.1: Schematic behavior of F [m] for T > Tc, T = Tc and T < Tc.

As a(T ) is a property of the paramagnetic system we may safely assume that
it is smooth in the vicinity of Tc and thus, close to Tc it should have the form

a(T ) = a0(T − Tc) +O([T − Tc]2)

This implies a very interesting and quantitative result: Within Ginzburg-Landau
theory, the spontaneous magnetization in the vicinity of Tc behaves like

m(T ) ∝ Θ(Tc − T )(Tc − T )1/2

Thusm vanishes with a square root singularity (infinite slope!). Many more in-
teresting and quantitative thermodynamic results can be obtained from Ginzburg-
Landau theory, which you may look up in [11].
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2.4 Interface Solution

Let us now consider spatially inhomogeneous states. They have to obey the
Ginzburg Landau (field) equation:

δF

δm(r)
= 0 = a(T )m(r) +

u

6
m3(r)− ξ2∇2m(r)

As specific example consider a magnetic wall or interface. Suppose that in a large
system m̄ = −√6|a|/u for z → −∞, whereas m̄ = +

√
6|a|/u for z →∞ is en-

forced. This situation idealizes magnetic domains. Asymptotically, the values
of the spontaneous magnetization thus correspond to the two possible equi-
librium values. Now we ask for the profile m(z) of the order parameter field,
which is the structure of the interface between coexisting ordered states. Due
to symmetry, the profile will only depend on z and the GL equation simplifies
somewhat:

ξ2d
2m

dz2
= a(T )m+

u

6
m3

Before we proceed to actually solve this equation, let us point out an illumi-
nating analogy, which helps you to find wall-like solutions in many (more
complicated) situations. Note that the equation for the order parameter field
looks like a Newtonian equation of one-dimensional motion, if we identify z
with time, ξ2 with mass and the right-hand side with a force. The force is
conservative with a potential

U = −a
2
m2 − u

24
m4

this analogy tells us that a wall like solution corresponds to a motion from
one maximum of U to the other maximum in infinite time. You should have
enough experience with classical mechanics by now to draw a rough sketch of
this particular motion immediately.

If you look for solutions of a field equation, it is always a good idea to first
rescale variables into a dimensionless form. So let us rescale m with the posi-
tive equilibrium solution:

ξ2

|a|
d2(m/m̄)
dz2

= −
[
1− m2

m̄2

]
m

m̄

Next we rescale lengths by introducing y = z/(ξ/
√|a|) = z/ξ(T ). With m̂ =

m/m̄ the rescaled equation takes on the form

d2m̂

dy2
= − [1− m̂2

]
m̂
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It is easy to check that
m̂(y) = tanh(y/

√
2)

is the solution, which obeys the required boundary conditions for z → ±∞.
This corresponds to the unscaled solution

m(z) = m̄ tanh
(

z√
2ξ(T )

)
The length scale

ξ(T ) ≈ ξ0 · (Tc − T )−1/2 nearTc

characterizes the width of the interface. This width diverges as the tempera-
ture approaches the critical temperature Tc from below.
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3.1 Displacement, Distortion and Strain Tensor

Consider a deformable medium in an undistorted state. In a spatially fixed
Cartesian coordinate system (independent of the medium) a specific material
point of this medium is characterized by the position vector R. Note that we
may use the position vectors in the undistorted state to index the material
points of the medium.1 Now suppose that we distort the medium, so that the
location of the material point R is transformed into x(t,R) at time2 t. After
the distortion is completed (at time T ) the new position of the material point
is

x(T,R) =: x(R) = R+ u(R)

u is called the displacement vector. A homogeneous displacement u(R) = u

corresponds to a rigid translation of the entire body and will not change the
internal state of the medium (in particular its internal energy) at all.

Now consider two neighboring material points R and R + dR in the undis-
torted state, so that their distance is dR =

√
(dR) · (dR). In the distorted state,

the distance is changed to dx =
√

(dx) · (dx) with dx = x(R+ dR)−x(R). In
Cartesian components

dxi = dRi +
∑
j

∂ui
∂Rj

dRj +O(dR2
i )

The field

Dij = ∂jui =
∂ui
∂Rj

is called distortion tensor. It contains the information about infinitesimal local
distortions in the sense, that vectors between neighboring material points in
the distorted state are considered as linear functions of the vectors in the undis-
torted reference state.

Note: In the following we will use a Cartesian summation convention. It says,
that every Cartesian index appearing twice in an expression has to be summed
over, for example

(∂iaij)bjl =
∑
i

∑
j

(
∂aij
∂xi

)bjl

This saves a lot of
∑

signs.

1Imagine, that a particular material point, located at r is marked by a little spot of colored
ink. Even if the position of the material point will change later on, we will always refer to the
marked point as “the material point that once was at R”. In this sense, position vectors are
indices for material points.

2Note that x(t = 0,R) = R
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3.1.1 Physical Interpretation of Distortion

The distortion tensor contains information about those small displacements of
a deformable medium, which are not homogeneous translations:

dui = dxi − dRi = DijdRj

We can learn more about the distortion tensor if we split it into its symmetric
and its anti-symmetric part

Dij =
Dij −Dji

2
+
Dij +Dji

2
= ωij + εij

The action of the anti-symmetric part may be written as a cross product

ωijdRj = [φ× dR]i

with φ1 = ω32, φ2 = ω13, φ3 = ω21. From mechanics (rigid body) we know that
this corresponds to a rotation of dR with angle |φ| around the φ axis (passing
throughR).
The symmetric part εij may be diagonalized by changing to a rotated coor-
dinate system with basis eα, α = 1, 2, 3, which are the principle axes of the
tensor. In this system dR = R̂αeα and the action of ε on R̂i is particularly
simple; it just corresponds to the multiplication with the corresponding eigen-
value ε(α) as εαβ = ε(α)δαβ .
Such a simple rescaling of length in 3 directions corresponds to a deformation
of infinitesimal volume elements around R. This type of motion transforms
a cube oriented parallel to the principle axis into a general rectangular box
without changing the direction of the axes of the cube. A deformation will
in general change the volume of a volume element. For a pure deformation
(ωij = 0) we have from du = dx− dR:

dxα = (1 + ε(α))dRα

(no summation over α here!) and thus for an infinitesimal volume element

dVdeformed = dx1dx2dx3 = (1 + ε(1))(1 + ε(2))(1 + ε(3))dR1dR2dR3

This relation can only hold to first order in ε as we only considered this order
in defining the distortion tensor. Thus

dVdeformed = (1 + ε(1) + ε(2) + ε(3))dV

Remember that the trace of a second rank tensor is invariant under rotations,
so that the sum over eigenvalues may also be replace by Tr(ε) = εii and we
may write in coordinate-free notation

dVdeformed = [1 + Tr(ε)]dV .
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Deformations, which do not change volume elements are called shear defor-
mations. Every deformation can be decomposed into a shear and an isotropic
compression (characterized by a diagonal deformation tensor εij = εδij). The
decomposition looks as follows

εij =
(
εij − Tr(ε)

3
δij

)
+

Tr(ε)
3

δij

To remember:

An arbitrary infinitesimal displacement field of a deformable medium
can be locally decomposed into

• a translation

• a rotation

• a deformation

This decomposition is unique.

3.1.2 The Strain Tensor

Interactions between material points (atoms!) depend upon distances between
these points. The change in distance between neighboring points may be writ-
ten as

dx2 − dR2 = 2(∂jui)dRidRj + (∂iuk)(∂juk)dRidRj

Note that in the second term on the right hand side, it is only the symmetric
part of the distortion tensor that actually enters as

(∂iuj)dRidRj = (∂jui)dRidRj

by renaming of summation indices. Therefore

dx2 − dR2 = 2EijdRidRj

with
Eij =

1
2

[∂iuj + ∂jui + (∂iuk)(∂juk)]

Eij is called the (Lagrangian) strain tensor.
In many cases of practical importance (the overwhelming majority, in fact),
deformations are small enough to safely neglect the term quadratic in distor-
tions. A “small deformation” is one, for which all elements of the distortion
tensor are small compared to 1 everywhere (|∂iuj | � 1) In these case

Eij ≈ εij
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We will use this approximation in the rest of this chapter.
For situations with flow, the choice of Eulerian coordinates has many advan-
tages. In an Eulerian description, we try to express everything in terms of
locations x of the distorted body in a fixed laboratory frame. The connection
to Lagrangian coordinates is given by the relation

R = x− u(R(x))

R is the Lagrangian coordinate indexing a material point in the undistorted
body. If we consider a point x in our laboratory frame, the material point
sitting there is just the one which started out from x − u in the undistorted
body. Note that the relation implies that

dRi = dxi − ∂ui
∂xj

dxj

and therefore the change of local length scales are given by

dx2 − dR2 = [∂jui + ∂iuj − (∂iuk)(∂juk)]dxidxj

Thus we may also introduce an Eulerian strain tensor in analogy to the La-
grangian strain tensor:

Eij =
1
2

(
∂ui
∂Rj

+
∂uj
∂Ri

+
∂uk
∂Ri

∂uk
∂Rj

)
Lagrangian

EEulerij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂uk
∂xi

∂uk
∂xj

)
Eulerian

For small deformations, we get

Eij ≈ 1
2

(
∂ui
∂Rj

+
∂uj
∂Ri

)
as well as

EEulerij ≈ 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
which shows that we do not have to bother about the differences of Lagrangian
and Eulerian coordinates in this approximation.

3.2 The Stress Tensor

If a material body is undistorted, its molecules or atoms are in thermody-
namic equilibrium, which implies that they are in mechanical equilibrium.
Thus there are no forces on an arbitrary volume element (finite or infinitesi-
mal) within the body. On the other hand, in a distorted body, there will be
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forces acting between volume elements within the body. If the interactions
between the molecules or atoms do only depend on relative distances, these
forces will only appear for deformations, not for rotations or translations. Such
internal forces due to deformations are called stresses.

Here we first encounter an important concept in field theory, which
is inherent in nearly all field theories of practical importance, rela-
tivistic or not, classical or quantum. It is the principle of locality. In
the field theories of deformable media, it appears as the statement:
All microscopic forces between the material points are short ranged, their
action extends over microscopic distances only

Consider the resulting force on a certain volume V within the material. It is
the linear superposition of all the forces acting on all the “material points” or
infinitesimal volume elements, which may be expressed as an integral over a
force density field according to our general remarks on classical fields:

F V =
∫
V
ddrf(r)

Note that forces between material points within a given volume have to bal-
ance to zero because of Newton’s actio=reactio. Thus a resulting nonzero force
has to emerge from interactions between material points outside the considered
volume with material points inside this volume. Due to the short (microscopic)
range of molecular forces, this means that non-zero forces on a volume ele-
ment result entirely from forces located within a microscopic distance of its
surface. Thus, every component F Vi must be representable as an integral over
the boundary (surface) ∂V of the volume element,

F Vi =
∫
V
ddrfi =

∫
∂V
da · σi .

Here da denotes the surface element (parallel to the outward normal vector)
and we introduced σi, which has the physical dimension of a force per area.
σikdak is the i-th component of the force acting on the surface element da. For
Cartesian coordinates, the surface elements are small parts of the xy, xz and
yz planes. Thus, for example σxx denotes the x-component of force (per area)
acting on the plane, which is orthogonal to the x-axis. Thus, σxxdydz is the
force acting normal to the y-z plane element. The components σyxdydz and
σzxdydz are components of the tangential force.
From Gauss law we obtain∫

∂V
σida =

∫
V
ddr∇ · σi =

∫
V
ddr∂kσik .
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Thus the force density f must be representable as

fi = ∂kσik .

The tensor σij , which contains all the information about stress in a material is
called the (Lagrangian) stress tensor.
Finally, we can include external force fields acting on the material. These volume
forces act via a given force density f ext and equilibrium requires that f+f ext =
0 everywhere inside the material. Thus

∂kσik + fexti = 0

3.2.1 Torque and the Symmetry of the Stress Tensor

Let us now consider the torque acting on a volume V inside a material body

Mik =
∫
V
ddr(fixk − fkxi)

which may be written using the stress tensor as

Mik =
∫
V
ddr[(∂jσij)xk − (∂jσkj)xi]

=
∫
V
ddr∂j(σijxk − σkjxi)−

∫
V
ddr(σij∂jxk − σkj∂jxi) .

In the second line, we have produced a divergence term in the first integral,
which can be transformed into a surface integral by Gauss law. Using ∂jxi =
δji the torque may be written as the sum of a surface and a volume term

Mik =
∫
∂V
daj(σijxk − σkjxi) +

∫
ddr(σik − σki)

At this point, we distinguish between 2 types of material:

• material without internal structure for which the torque on each volume
is produced from contributions at the boundary. In other words, there
are no intrinsic properties of the material, which could produce volume
densities of torque.

• material with internal structure, where torque may also have volume den-
sity contributions. We will not consider those materials in our lecture.

For materials without internal structure, the second integral has to vanish.
This is obviously the case, if the stress tensor is symmetric

σik = σki
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However, this sufficient condition is not necessary. In fact, if the antisymmetric
part is itself a divergence, the second integral may also be converted into a
surface integral. Thus we only have to require

σik − σki = 2∂jbikj

(Note that bikj = −bkij by definition.)
One can even go one step further and show that the stress tensor can be given
in a symmetric form for every material without internal structure (Martin, Par-
odi and Pershan 1972). This observation relies o the fact, that the defining
relation fi = ∂kσik does not fix the stress tensor completely. The tensor

σ̃ik = σik + ∂jχikj

leads to the same forces, if the additional term ∂k∂jχikj vanishes, which is
always fulfilled if χikj = −χijk. Martin et. al. showed that if the antisymmetric
part of a tensor is a divergence, then the tensor can be made symmetric by a
transformation of the above type. Explicitly

σ̃ik = σik + ∂j(bkji + bijk − bikj)
First let us check that σ̃ is symmetric. This can be seen by slightly rewriting
the right-hand side. The last term −∂jbikj = (σki − σik)/2 and thus

σ̃ik = σik +
σki − σik

2
+ ∂j(bkji + bijk)

In this form, symmetry is obvious.
Now we check that the additional term has the required symmetry

χikj = (bkji + bijk − bikj) = −χijk
by direct inspection.
To remember:

The stress tensor of a material without internal structure can al-
ways be made symmetric, although it may not appear symmetric
in the form it is obtained from some calculation.

To finish this discussion of fundamental notions let me present the three most
important special cases of stresses: isotropic pressure, shear stress and tension.
The corresponding forms of the stress tensor are:

σij = −pδij for pressure
σij = σ0(δiyδjz + δizδjy) for a shear stress
σij = Tδiyδjy for tension

It is important to note that the pressure pmeans the force per unit area exterted
by the environment on the medium (see also Eq. 5.6 in section 5.1.2).
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3.3 The Stress-Strain Relation

The relation between an applied stress and the resulting strain (or applied
strain and resulting stress) characterizes a particular material. In the next two
chapters we will study two simple but important types of material in detail:
linear elastic solids and simple fluids.

3.3.1 Elastic Solids

A solid is characterized by the fact that all static stresses cause finite static
strains. In a fluid, on the other hand, the application of a static shear stress
causes the fluid to flow indefinitely and no finite static strain emerges3. In an
elastic solid, the application of external forces (stresses) leads to a static strain
field of the body, such that the undistorted state is reestablished after removing
the external forces. In contrast to elastic materials, a material is called plastic, if
there remain deformations after removal of the external forces.
If we perform quasistatic (i.e. the system always stays in thermal equilibrium),
infinitesimally small deformations (located in a finite volume), characterized
by the displacement field δui(r), we can easily calculate the work done during
the the deformation:

δW =
∫
V
ddrfiδui =

∫
V
ddr(∂jσij)δui

We perform a partial integration

δW =
∫
∂V
da · ejσijδui −

∫
V
ddr(∂jδui)σij

and discard the boundary term by considering an integration volume with
δui = 0 on its boundary. As the stress tensor is symmetric, we can rewrite the
volume term as

δW = −1
2

∫
V
ddrσij [∂jδui + ∂iδuj ] = −

∫
V
ddrσijδεij

So the density of work δw(r) for this process is

δw(r) = −σijδεij
Thermodynamically, the internal energy of a simple elastic material depends
only upon strain and entropy. More precisely, the (infinitesimal) change of the
density of internal energy e(r) at point r due to quasistatic processes changing
work and heat is given by

de(r) = Tds− δw = Tds(r) + σij(r)dεij(r)
3Note that the application of a static pressure causes finite strains in both fluids and solids.



40 CHAPTER 3. KINEMATICS OF DEFORMABLE MEDIA

The total internal energy of the body is given by

E =
∫
V
ddre(r)

Let us show that for homogeneous, hydrostatic pressure σij = −pδij , this relation
reduces to the well known form of internal energy for simple fluids or gases
dE = TdS−pdV , which you have learned in the introductory thermodynamics
course. For a pure pressure term, δW = −pdεii. Remember that εii = Trε is
the relative change of volume elements dVdeformed(r) = (1 + Trε(r)))dV (r).
Integrating over the entire body gives4 Vdeformed − V =

∫
V d

drTrε = dV .
Since E(S, ε) constitutes a thermodynamic potential for simple elastic solids,
we may change to any other thermodynamic potential by Legendre transfor-
mations. For example,

df(r) = −s(r)dT + σij(r)dεij(r)

is the differential of the free energy density and

dg(r) = −s(r)dT − εij(r)dσij(r)

is the Gibbs free enthalpy density of simple elastic solids. Stress and strain are
related to thermodynamic potentials via

σij(r) =
(
∂f(r)
∂εij(r)

)
T

and
εij(r) = −

(
∂g(r)
∂σij(r)

)
T

so that a thermodynamic potential of an elastic material also fixes the stress-strain
relation.

3.3.2 Fluids

For fluids, the action of hydrostatic pressure produces isotropic compression,
which is reversible. So the situation is the same as for elastic solids and this
part of the stress strain relation is not qualitatively different from solids, Tr(ε)δij(p)
is a function determined by thermostatics. Static shear stresses, however, cause
flow and drives the fluid from its rest state forever. To describe flow kinemat-
ically, we have to introduce the velocity of a material point, which is given by
the time derivative of the displacement,

dx(t,R)
dt

=
du(t,R)

dt
.

4Do not confuse dV (r) (the volume element at point r) with dV (the infinitesimal change in
the total volume of the body
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Note that the velocity field of a flow is given somewhat implicitly by

v(R+ u, t) =
du(t,R)

dt

in Lagrangian coordinates (for whichR indicates the initial position of a flow-
ing material point). If the velocities of the material points change with time,
the acceleration of a material point is given by

dv(t,x = R+ u(t,R))
dt

=
∂v

∂t
+
∂v

∂xi
vi =

[
∂

∂t
+ (v ·∇)

]
v (3.1)

The operator in brackets is known as the comoving time derivative or substantial
time derivative.
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4.1 Linear Elasticity

4.1.1 Hooke’s Law

For small deformations, we may expand the internal energy or the free energy1

in terms of ε. The first terms in this expansion appear at order ε2:

f = f0 +
1
2
εijKij,klεkl

The 4th order tensorK is called the tensor of elastic modules. As εij is symmetric,
the tensor has the following symmetry properties

Kij,kl = Kji,kl = Kji,lk = Klk,ji

You can figure out that from the 81 components of K, only 21 are independent
due to these symmetries. If the material has no further symmetries (as is the
case for crystals with triclinic symmetry) you need to know all the 21 modules
to describe the linear elastic behavior of the material. In the following, we
will consider isotropic materials, which are described by only 2 independent
modules.
In general, the stresses of linear elastic bodies are connected to the strains by

σij =
∂f

∂εij
= Kij,klεkl

This stress-strain relation is the generalization of Hooke’s law you all know
from elementary mechanics.
Let us turn to isotropic materials. As f is a scalar (density) it must be a lin-
ear combination of all terms of second order in ε, which are invariant under
rotations. The coefficients of these terms must be scalars, because they only de-
pend on intrinsic properties of the undeformed medium, where all directions
are equivalent. We can form 2 independent invariants of 2nd order:

ε2ii, εijεij = εijεji

Note that it is very easy to construct invariants under rotation from products
of tensor elements: You just have to “pair” all the indices, so that no “free”
indices remain, which would turn the thing into a tensor again. For example,
for 3rd order you have to “pair” indices in εijεklεmn in all possible ways.

1We only consider situations with a homogeneous temperature T . The undeformed state
ε = 0 is the thermodynamic equilibrium, if external forces are absent and the temperature
remains unchanged. The last condition should not be overlooked (think of the effects of thermal
expansion)
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Thus, the most general form of f becomes

f = f0 +
λ

2
ε2ii + µεijεij

These elastic modules of an isotropic medium are known as Lame coefficients.

As we already saw, it is very convenient for many purposes to decompose εij
into pure shear deformations, which do not change the volume, and an isotropic
or hydrostatic compression ∝ δij . For the decomposition we obtained

εij =
(
εij − 1

3
Tr(ε)δij

)
+

1
3

Tr(ε)δij = ε̂ij +
1
3

Tr(ε)δij (4.1)

By definition Tr(ε̂) = 0.

Using this decomposition in f leads to

f = f0 + µε̂ij ε̂ij +
K

2
Tr(ε)2

The quantity

K = λ+
2
3
µ

is called the compression module, µ is referred to as the torsion module.

For an isotropic linear elastic medium, the stress-strain relation becomes

σij =
∂f

∂εij
= K · Tr(ε)δij + 2µε̂ij (4.2)

We can also express the deformations by the stresses, because taking the trace
of the above relation leads to

Tr(ε) =
1

3K
Tr(σ)

Thus we see that relative volume changes in an isotropic linear elastic medium
can only be caused by hydrostatic pressure. If we now express all the Tr(ε)
terms by Tr(σ) in the stress-strain relation (4.2) and use (4.1) (with Tr(ε) also
replaced by Tr(σ)) to express ε̂, it is easy to invert (4.2) into a strain-stress rela-
tion

εij =
1

9K
(Trσ)δij +

1
2µ
σ̂ij

with

σ̂ = σ − 1
3

Tr(σ) .
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4.1.2 Static Field Equation for Displacements

Now we want to calculate the displacement field u(r) for linear elastic media
in the presence of external forces. Obviously this is a question of much tech-
nical relevance (Think of deformations of buildings!) as well as of principle
concern in the theory of condensed matter (Think of the deformations caused
by a defect in a material). We start from the balance of forces

∂jσij + fexti = 0

and insert the stress-strain relation

∂j [K(Trε)δij + 2µε̂ij ] + fexti = 0

Now we express the strain tensor by the displacement field, 2εij = ∂iuj +∂jui,
to find the following partial differential equation for the displacements fields:(

K − 2
3
µ

)
∂j(∂lul) + µ∂j(∂iuj + ∂jui) + fexti = 0 . (4.3)

This equation may also be written in vector form, where it is even a little bit
more compact:

(K +
1
3
µ)∇(∇ · u) + µ∇2u+ f ext = 0 (4.4)

In many important cases, all the forces acting on the body are located at its
boundary, so that f ext can be expressed via boundary conditions and does not
have to appear explicitly in the balance equation. Then we can get two simpler
balance equations. Taking the divergence of 4.3 gives

∇2(∇ · u) = 0

and applying the Laplace operator to 4.3, using the above relation for the first
two terms, gives

∇2(∇2u) = 0

Functions obeying this equation are called biharmonic.

4.1.3 Dynamic Field Equation and Elastic Waves

If the parts of a linear elastic body are not in mechanical equilibrium, the vol-
ume elements will move. The equation of motion for a volume element is just
Newton’s equation, which we now want to set up for a linear elastic medium.
Let us suppose, that we have a medium with a homogeneous distribution of
identical material points everywhere. If you want to apply this concept to
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real solids, like for example, crystals, you have to be careful. It applies to
a monoatomic ideal crystal lattice (no vacancies, no interstitials). Then the
displacement vector u(r) may be identified with the displacements of all the
material points at r and ∂tu(r, t) is the velocity of these material points. Let
the mass density of the points be ρ, then ρ∂tu is the momentum density and
Newton’ law of motion can be written as

ρ∂2
t ui = fi = ∂jσij + fexti (4.5)

If, however, you have more microscopic structure like, for example, vacancies
and interstitials, you may have mass and momentum transfer, which is not
described by ρ∂tu. Luckily, for most experimental conditions, the density of
the point defects is too small or their motion is too slow to modify the main
results obtained from the simplified theory presented here. Keep in mind,
however, that additional microscopic structures, which may carry momentum
will lead to additional field degrees of freedom.
Let us insert the stress-strain relation to obtain a differential equation for the
displacement field:

ρ∂2
t u = µ∇2u+ (λ+ µ)∇(∇ · u) ,

where we have used K + 2µ/3 = λ+ µ.
The physical implications of this equation become much more transparent, if
we decompose the displacement field into a divergence free or transverse part
ut and a rotation free or longitudinal part ul. It is a general theorem of vector
analysis that the decomposition

u = ul + ut with

0 = ∇× ul

0 = ∇ · ut

is unique [10]. Let us insert this decomposition into the field equation

∂2
t (ul + ut) =

µ

ρ
∇2(ul + ut) +

λ+ µ

ρ
∇(∇ · ul)

and then take the divergence and the rotation of the equation, respectively.
Applying the divergence leads to

∇ · (∂2
t u

l − c2
l∇2ul) = 0

with c2
l = (λ+ 2µ)/ρ, whereas taking the rotation gives

∇× (∂2
t u

t − c2
t∇2ut) = 0
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with c2
t = µ/ρ. Note that that not only the divergence but also the rotation of

the first expression in brackets vanishes (due to ∇ × ul = 0). A vector field
with vanishing rotation and divergence has to vanish identically due to the
above mentioned decomposition theorem. Applying an analogous argument
to the rotation part of the field equation, we conclude that the field equation is
equivalent to the following set of two wave equations:

∂2
t u

l − c2
l∇2ul = 0

∂2
t u

t − c2
t∇2ut = 0

If we consider monochromatic plane wave solutions

u(r, t) = u(k) exp(ikr − iωt)

we find that

ω = ±cl|k| forul(k)× k = 0

ω = ±ct|k| forut(k) · k = 0

From these relations you see that the vector u(k), called the polarization vector
of the monochromatic plane wave is directed parallel to k for a longitudinal mode
and orthogonal to k for a transverse mode.
Remember that relative changes in volume (dilations) are described by Tr(ε) =
∂iui = ∇ · u. Therefore longitudinal wave modes imply volume changes,
whereas transverse modes do not.
Note that the polarization vector of a monochromatic plane wave solution for
a crystal with a tensor of elastic modules Kij,kl has to obey

[ρω2δim −Kij,lmkjkl]um(k) = 0

by a simple generalization (see exercise). This is a 3 × 3 homogeneous linear
system. The solvability condition

det[ρω2δim −Kij,lmkjkl] = 0

leads to the dispersion relations ω2 = ω2
α(k) for the three eigenmodes (which are

no longer longitudinal and transverse). However, the direction of polariza-
tions of the three eigenmodes are still orthogonal, because they are the eigen-
vectors of a real symmetric matrix.
Physically, elastic waves correspond to sound waves with sound velocities ct and
cl. Note that the velocity of longitudinal sound waves is lager than those of
transverse sound waves from the definitions.
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5.1 Hydrodynamics

A simple fluid consists of a single, homogeneous substance (think of a liquid
or gas), which may be in macroscopic motion1. Our task now is to set up a
closed system of field equations for simple fluids.

5.1.1 Balance Equation

Let %M (r, t) denote the mass density of the fluid. How does %M change with
time? We define the vector field mass current density jM (r, t) as the mass flow-
ing across a plane with normal vector n parallel to jM at r per time and per
area.
More precisely, let MA(t2, t1) be the total mass, which flows through an arbi-
trary surface A from time t1 to time t2. It is given by

MA(t2, t1) =
∫ t2

t1

µA(t)dt

with µA denoting the mass flow across A (in direction of the surface normal).
In terms of the mass current density, we can express the mass flow as the sum
(or rather integral) of all mass flows crossing all the area elements da of the
arbitrary surface A:

µA(t) =
∫
A
da · jM (r, t)

Consider now a volume V bounded by the surface ∂V . The normal vectors of
the closed surface ∂V are chosen to point outwards.
The important law of conservation of mass implies that the mass inside of V
only changes due to mass flow across the boundary of V . Thus

dMV (t)
dt

=
∫
V
d3r

∂%M (r, t)
∂t

= −
∫
∂V
da · jM (r, t)

Here we apply Gauss‘s Law∫
∂V
da · jM (r, t) =

∫
V
d3r∇ · jM (r, t)

As the relations between the integrals hold for arbitrary volumes, they must
hold for the integrands. This leads to the continuity equation

∂%M

∂t
+∇ · jM = 0 . (5.1)

1We use the term macroscopic to distinguish this type of motion from the random thermal
motion of the material points making up the substance on microscopic scales.
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Obviously, this is a field equation connecting the mass density and the mass
current density. But the same reasoning applies to every conserved quantity.
This is an important and general concept, which helps to set up field equations.

Continuity equations hold for the densities of all the physical quan-
tities, which are additive and conserved (for example, mass, charge,
momentum, energy,...).

If a quantity is not only transported by fluxes, but may also be created in
sources or destroyed in sinks, the field equation takes on the more general
form

∂%(r, t)
∂t

+∇ · j(r, t) = q(r, t) (5.2)

where q is the term describing sources and sinks. It has to be specified from
other principles. Field equations of this type are called balance equations.
Although we have found a field equation, it is not closed. It just connects two
fields. So we have to continue by either expressing one field by the other, or
by finding another field equation connecting the 2 fields.
First note that from simple physical reasoning, mass is transported via a cur-
rent, which is simply given by

jM (r, t) = %M (r, t)v(r, t) . (5.3)

For other additive and conserved quantities, the connection between its cur-
rent density j, its density % and the velocity of the fluid v may be much
more complicated because transport can be accomplished in two very different
ways:

• via convection, which just means that the quantity in each volume ele-
ment is transported passively with the motion of the volume element, so
that j = %v

• via conduction, which is a form of transport, which may be present even
if either v or % (or both) vanishes. As two prominent examples, consider
electric currents in regions, where the electric charge density vanishes,
and heat conduction in a fluid, which is macroscopically at rest.

5.1.2 Momentum Balance and Angular Momentum Balance

A very interesting and illuminating example of a balance equation and of a
transport involving both convection and conduction is that of momentum. In a
simple fluid, the momentum density is given by

ρP = %Mv
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Thus momentum density is exactly equal to the mass current density, ρP =
jM ! Therefore, the balance equation of momentum may lead to a closed set of
equations for the simple fluid.
Generally, momentum is a vector quantity and therefore we have three com-
ponent densities, which make up momentum density:

ρPi i=1,2 or 3

The continuity equations of momentum density are closely related to Newton’s
equations of motion, because both express the time change of momentum. In
the language of continuity equations, we would write

∂ρPi
∂t

+ ∂kj
P
ik = 0 (5.4)

for a closed system. The momentum current densities jPik form the components
of a second rank tensor.
In the language of Newton’s equation, we would read this equation analogous
to the equation (4.5), as we may identify ρpi = %Mv = %M∂tu in a simple fluid.
Thus the momentum current density is the exact analogue of the object we
called the stress tensor in a deformable medium. This makes sense, since force
is momentum per time and

jPi . · da
is the i-th component2 of momentum per time flowing across da. This is nothing
but the i-th component of force, exerted by the fluid on the surface element da.
Thus you should keep in mind that

momentum current density and stress tensor are just two names for
the same physical concept

In hydrodynamics, one likes to split the convective part of the momentum
current density from the stress tensor and only calls the conductive part hydro-
dynamic stress tensor σ

jPik = ρPi vk + σik = %Mvivk + σik (5.5)

This is a very useful convention, because we have to remember that the con-
vective velocity field v(r, t) depends on the choice of a Galilean frame of ref-
erence. A fluid at rest in one frame may become a streaming fluid with homo-
geneous velocity in another frame. Splitting of the convection thus makes the

2 Note that jPi . = (ji1, ji2, ji3) is the current density of the i-th momentum component,
whereas jP. k = (j1k, j2k, j3k) is the current density of the momentum vector, transported in
the direction of the k-th Cartesian unit vector ek. At first sight, these two vectors seem to be
unrelated, but see below!
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hydrodynamic stress tensor an intrinsic property of the material. We will come
back to the usefulness of the decomposition in the next subsections.
Traditionally one splits off one further term of the stress tensor, which is present
in any simple fluid at rest, the hydrostatic pressure p

σik = pδik + σ̂ik . (5.6)

Note that, in contrast to elasticity, the hydrostatic pressure here is defined as
the force per unit area a volume element of the fluid exerts on its environment!
We will analyze the stress tensor in more detail in the next subsection.
Finally, we may extend the balance equation of momentum density to situa-
tions with external forces by simply replacing the right hand side of Eq. (5.4)
by fexti .
Let us now consider the balance equation of angular momentum density. At
first sight the situation looks very similar to the case of momentum density:
we have a three component vector density ρL, the balance equations take the
form

∂ρLi
∂t

+ ∂kj
L
ik = di (5.7)

and the sources of angular momentum are described by a torque density d.

However, for simple fluids there is neither internal angular momentum
nor internal torque! It is a material without internal structure as we
encountered in section 3.2.1.

Consequently, the angular momentum is simply given by L = r × p and the
torque exerted on a small fluid element is determined by the force acting on it
asD = r × F . Therefore

• ρL(r) = r × ρP (r)

• jL. k(r) = r × jP. k(r)

• d(r) = r × f
The first and third of these relations are pretty obvious. The meaning of the
second relation is: the angular momentum current in any direction equals the
cross product of position and of momentum current in the same direction!
Given these connections it is clear that there is no independent balance equa-
tion of angular momentum for simple fluids. Instead, there is an additional
constraint on the tensor of momentum current density, which is easily derived,
if we insert the special forms of angular momentum density and current den-
sity into the balance equation Eq. (5.7)

r × ∂ρP

∂t
+ ∂k(r × jP. k) = r × f
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The spatial derivatives give us two terms, which we regroup as follows

r ×
(
∂ρP

∂t
+ ∂kj

P
. k − f

)
+

∂r

∂xk
× jP. k = 0

The balance equation of momentum implies that the terms in brackets vanish.
Let us write down explicitly the first component of the remaining term (the
other two are completely analogous)

3∑
k=1

(
∂x2

∂xk
jP3k −

∂x3

∂xk
jP2k

)
= jP32 − jP23 = 0 .

Thus conservation of angular momentum in a simple fluid implies that the
tensor of momentum current density is symmetric,

jPik = jPki . (5.8)

We will make use of this property in the next subsection.

5.1.3 Ideal Fluids, Viscosity and the Navier-Stokes Equation

We now return to our main task: to derive a closed set of field equations for a
simple fluid. We have seen already that the momentum current density con-
tains a convective part and a stress term, which is again split into pressure and
a rest σ̂. What we need to find for a closed set of field equations is a stress-
strain relation. As such a relation depends on the material, we have to specify
material properties.
Let us start with a very simple case, the so called ideal fluid, where there are no
internal forces apart from hydrostatic pressure.

A simple fluid with σ̂ = 0 is called an ideal fluid.

For an ideal fluid, the balance equation for momentum becomes

∂%

∂t
vi + %

∂vi
∂t

+ ∂k(%vivk + pδik) = fi

which may be rewritten as

∂%

∂t
vi + %

∂vi
∂t

+ vi∂k(%vk) + %vk∂kvi + ∂ip = fi

The first and the third term add up to zero due to the continuity equation of
mass. Using this simplification, the balance equation of momentum takes on a
form called Euler’s equation

%

(
∂v

∂t
+ (v ·∇v)

)
+∇p = f (5.9)
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The term in brackets and the whole equation have a very intuitive interpreta-
tion. Note that for every field defined on the moving fluid,

lim
∆t→0

1
∆t

(F (t+ ∆t, r + v(t, r)∆t)− F (t, r)) =
(
∂F

∂t
+ (v(r, t) ·∇)F

)
.

As already mentioned in connection with Eq. (3.1), the left hand side is called
the comoving time derivative or substantial time derivative. It contains the tem-
poral changes of a quantity in a frame of reference, which moves along with
the fluid. Sometimes an extra symbol for such a time derivative is introduced,
for example DF/Dt. In particular we see that the bracketed term in equation
(5.9) corresponds to the comoving derivative of the velocity field itself. Euler’s
equation takes on the very simple form

%
Dv

Dt
= f −∇p

which is just a form of Newton’s second law.
Let us rediscover some elementary results about fluids, which you should al-
ready know. First suppose that the forces are conservative f = −∇φ and the
velocity field is stationary ∂tv = 0. Euler’s equation reduces to

%(v ·∇)v = −∇(φ+ p)

Furthermore, assume that the fluid is incompressible, i.e.

%(r, t) = %0

If you make use of the identity from vector analysis

v × (∇× v)) =
1
2
∇(v2)− (v ·∇)v

you see that Euler‘s equation may be written in the form

∇
(%0

2
v2 + p+ φ

)
= %0v × (∇× v)

If the velocity field does not contain circulation, i.e. ∇ × v = 0, we recover
Bernoulli’s law

%0

2
v2 + p+ φ = const

which expresses energy conservation. If the fluid is at rest, Euler’s equation
(5.9) reduces to the well known equilibrium condition of hydrostatics

∇p = f

At this point it is a good exercise, to try to derive Archimedes law of buoyancy
and admire its simplicity!
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We proceed now and consider another class of materials, called Newtonian flu-
ids. They are characterized by the fact that the stresses σ(r, t) depend only on
the strain rates at the same point and at the same time:

σ̂(r, t) = F̂

(
∂ε(r, t)
∂t

)
Let us explain some physics behind this type of stress-strain relations, by in-
troducing the most important special case of a Newtonian fluid, the simple
viscous fluid. First note, that σ̂ must depend on spatial derivatives , ∂ivk, of the
streaming velocity, because it has to vanish for v = const (a fluid, in which
all parts move with constant velocity is physically equivalent to a fluid at rest,
- by Galilean transformation). So the stress is a function σ̂(∂ivk, ∂i∂jvk, · · · ).
For smooth velocity profiles we neglect higher order derivatives and for small
velocity gradients we expand σ̂ to leading order,

σ̂kl = ηij,kl∂ivj + · · ·

These are the approximations leading to a linear stress-strain relation, which
is the Navier-Stokes fluid. The tensor ∂ivj may be decomposed into a symmetric
and an antisymmetric part ∂ivj ± ∂jvi. If the whole fluid is rotating, there is
no relative motion of fluid elements, i.e. the stress σ̂ vanishes. On the other
hand, the velocity profile corresponding to a uniform rotation is given by v =
ω×r. For this profile, the antisymmetric part of the tensor ∂ivj does not vanish
(whereas the symmetric part does!). Thus we conclude that σ̂ can only depend
on the symmetric combinations of ∂ivk. Now we can proceed in close analogy
to our arguments we used to fix the stress-strain relation of an isotropic, linear
elastic solid. The most general linear relation between stress and strain-rate
for an isotropic fluid thus becomes

σ̂ij = a(∂ivj + ∂jvi) + b(∂kvk)δik

In analogy to linear elasticity, it is very convenient to write this expression in a
slightly different form

σ̂ = η

(
∂ivj + ∂jvi − 2

3
(∂kvk)δij

)
+ ζ(∂kvk)δij (5.10)

In this decomposition, the first term is traceless and the second term is propor-
tional to the local volume change∇ · v.
η and ζ are called viscosities. For most simple fluids, they are constants (inde-
pendent on pressure and temperature) to a good approximation. The stress
enters the balance equation of momentum in the form (see Eqs. (5.4) and (5.5))

∂kσ̂ik = η(∂k∂kvi) +
(
ζ +

η

3
∂i(∂jvj)

)
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Using this result we can finally write the balance equation of momentum as

%

[
∂v

∂t
+ (v ·∇)v

]
= −∇p+ η∇2v + (ζ + η/3)∇(∇ · v) + f (5.11)

This equation is known as the Navier-Stokes Equation of a compressible fluid.
Together with the continuity equation we thus have four equations for the five
fields (v, %, p) to be determined. We still need one more equation. The missing
equation comes from thermodynamics as an equation of state in the form

p = p(%, T )

Note that this equation depends on the particular material under considera-
tion and is no longer universal for all simple fluids. Furthermore, it will close
our system of equations only if we can consider the temperature as constant
throughout the fluid. If this is not the case, we need another equation, which
tells us, how heat is transported within the fluid.
Many simple fluid are (to a good approximation) incompressible, i.e.

%(r, t) = %0.

Incompressibility implies that all terms ∝ ∇ · v will vanish, because they cor-
respond to compressions. This is an immediate consequence of the continuity
equation of mass. Obviously, the Navier-Stokes equation simplifies to

%0

[
∂v

∂t
+ (v ·∇)v

]
= −∇p+ η∇2v + f

which has to be supplemented by the condition

∇ · v = 0

5.1.4 Similarity: The Power of Dimensional Analysis

The Navier-Stokes equation is not easy to solve, even for the simplest physical
problems. Here we like to show that dimensional analysis can be become a
very powerful, quantitative tool in field theories, even if you cannot find ex-
act solutions. Let us demonstrate this for the Navier-Stokes Equation of an
incompressible fluid, which we write in the standard form

∂v

∂t
+ (v ·∇)v =

−∇p
%0

+
η

%0
∇2v

This equation has to be supplemented by∇·v = 0 and the functions v(r, t) and
p(r, t) have to be determined from these equations. Note that the only material
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property entering the equations is η/%0 = ν, which is also called kinematic
viscosity.
A typical problem of hydrodynamics is to determine the stationary flow pat-
tern, which emerges from a rigid body moving relative to the fluid (or a resting
rigid body in a fluid streaming with constant velocity far away from the body).
Let the relative velocity (in x-direction) be u. Now consider a collection of rigid
bodies, which are generated from a prototype by homogeneous dilations. This
implies, that any linear dimension l of the bodies are scaled as λl.
Now we turn to dimensional analysis. There are three model parameters with
physical dimension:

a) the velocity u has dimension [length/time]

b) the kinematic viscosity ν has dimension [length2/time]

c) the linear dimension (any) of the rigid body has dimension [length]. This
quantity does not appear explicitly in the Navier-Stokes equation, but
enters the problem via the boundary conditions.

From these three quantities we can form a single dimensionless ratio:

Reynolds number Re =
ul

ν

Every other dimensionless parameter can be written as a function of Re. Now
let us make lengths and times in the Navier-Stokes equation dimensionless
by measuring lengths in terms of l and velocities in terms of u, R = r/l and
V = v/u. As V is dimensionless, it must by a (dimensionless) function of
dimensionless quantities, i.e. for stationary flows

v = uf(r/l, Re)

Although nothing beyond dimensional analysis was used to derived this re-
sult, it is quite powerful. It states, that flow patterns of fluids with different
viscosities flowing around bodies of different length scales are related by sim-
ilarity. This is the origin of the powerful method of experimental hydrodynamic
models, which allow to study inaccessible conditions by scaled models (scal-
ing either the linear dimensions to turn large structures small or by scaling
viscosities).
In the context of field theories, the Reynolds number is called a dimensionless
coupling. The name becomes obvious if we write the stationary Navier Stokes
equation using the dimensionless rescaled variables V andR

−
(νu
l2

)
∇2V +

u2

l
(V ·∇)V = −∇p

l%0
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(Here∇means differentiations with respect toR). Multiplying by l2

νu we get

−∇2V +Re(V ·∇)V = −
(

l

%0νu

)
∇p

For small Reynold‘s number, the second term on the left hand side can be
neglected and the Navier Stokes equations reduce to

∇2V =
Re

%0u2
∇p

Since furthermore %0u
2 has the dimension [force/length2] it can be used to

transform the pressure p into a dimensionless rescaled variable P , too, to ob-
tain

∇2V = Re∇P

Thus, the inhomogeneities of in the system, described by the local changes of
the pressure, couple to the velocity field of the fluid with a coupling strength
described by Reynold’s number Re.
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The examples for field theories like Ginzburg-Landau theory or the theory
of deformable media in part I were built on the observation, that the actual
“granular” structure of the systems on microscopic scales (individual spins
or atoms) becomes unimportant for phenomena which are characterized by
length scales much larger than the microscopic scales (but still much smaller
than the macroscopic dimensions of the specism). Therefore, the introduction
of continuously varying objects, called “fields”, related to the macroscopic
phenomena which were obtained by averaging over on a microscopic scale
large regions seems to be a possibly convenient, but by no means fundamental
physical concept. As already pointed out in the introduction, the actually first
theory, which had to introduce fields as fundamental physical objects without
any underlying microscopic structure is Maxwell’s theory of the electromag-
netic phenomena. At the same time, Maxwell’s theory is, as we will learn in
the following chapters, also the prototype of a manifestly covariant or Lorentz
invariant field theory, i.e. it is consistent with the theory of of relativity as in-
troduced by Einstein.
Thus, I will start this part with an introduction to the concepts of this funda-
mental theory before turning to the theory of electromagnetic phenomena.
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6.1 Relativity Principles

An observer B introduces a frame of reference by introducing a coordinate system,
which consists of standards of length together with a system of coordinate
lines resting with respect to B and a system of synchronized clocks, so that a
point located in space and time (event) may be represented by a quadruple
of real numbers. In an inertial frame of reference one can introduce coordinates
(the so called natural coordinates) that all mass points, which are not affected by
forces always move on a straight lines with constant velocities. A frame of ref-
erence, which is at rest with respect to the fixed stars is a good approximation
of an inertial frame of reference, if one chooses three orthonormal unit vectors
as references of length and “appropriately synchronized” clocks to measure
time (we will come back to the question of synchronization).
The existence of inertial frames is a very fundamental property of space and
time. Its importance was discovered by Galilei and the following two state-
ments are sometimes called Galilean Principle of Relativity. These statements
are valid both in Newtonian and in Einsteinian mechanics (special relativity).

(GI) Space and time are homogeneous and isotropic.Stated in mathematical lan-
guage: Space is an affine (Euclidean) three dimensional point space and
time is a one-dimensional affine point space. Thus space-time has the
structure of a four-dimensional affine point space A4.

(GII) All frames of reference, which move with constant velocity vector relative to an
inertial frame of reference are also inertial frames. All inertial frames of reference
are physically equivalent. This means that an observer, which can perform
any kind of experiment inside an inertial reference system (not looking
outside!) cannot determine, in which frame he is located. This requires
that all observable physical processes obey the same laws of nature in all
inertial frames of reference.

Important consequences of the Galilean relativity are

a) Transformation TI→I′(r, t) = (r′, t′) of events from one inertial frame I
to another inertial frame I ′ can be composed TI→J = TK→J ◦ TI→K and
T−1
I→J = TJ→I .

b) The transformations can only depend on relative motion of I with respect
to I ′ and not on properties of the motion of I or I ′ separately. If you are
sitting in a frame J there is always a frame J ′, which moves relative to
J exactly the same way that I ′ moves relative to I . Otherwise I and J

were not physically equivalent as is required by GII. Therefore we may
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state that for any three inertial frames I, I ′, J there is exactly one fourth
inertial frame J ′ such that TI→I′ = TJ→J ′ .

From a) and b) we can conclude that the transformations have to form a group.
Obviously, there is an identity TI→I and each element has an inverse. From b)
we get the extension of the composition law to arbitrary transformations TI→J
and TL→M . According to b) there is an N such that TL→M = TJ→N , so that
-according to a)- we can compose any two transformations: TL→M ◦ TI→J =
TJ→N ◦ TI→J = TI→N .
There are further restrictions on the structure of the group of transformations.
They have to take all motions with constant velocity vectors v = (r(t2) −
r(t1))/(t2 − t1) into motions with constant velocity vectors v′ = (r′(t′2) −
r′(t′1))/(t′2 − t′1). Such transformations (called affine) have the general form

r′ = Ar + vt+ r0 (6.1a)

t′ = γt+ u · r + t0 (6.1b)

HereA is a 3× 3 matrix.
Newtonian mechanics completes the two Galilean principles (GI) and (GII)
with the assumption

(NIII) Space and Time are absolute, i.e. spatial and temporal distances are inde-
pendent of the frame of reference.

This fixes γ = 1, u = 0 (obvious) andA to be a rotation matrix (corresponding
to fixed rotation of one system relative to another). This group of transforma-
tions is called Galilei group. You should know it from elementary mechanics.
Einstein chose a different completion of (GI) and (GII)

(EIII) The velocity of light in vacuum c is a universal constant of nature.

Obviously, (NIII) and (EIII) are incompatible. With (EIII), synchronization of
distant clocks is no longer a trivial process (as it is with (NIII)) and we have to
give an operative definition of “synchronous” by specifying a synchronization
procedure. This is Einstein’s version:

Consider a clock C resting at the origin of an inertial frame I
and another clock C(r) at rest in point r. As C shows time t1,
a light source at the origin emits a pulse, which is reflected at r
and returns to the origin at time t3 (shown on clock C). We call
C and C(r) synchronized, if the light pulse reaches r at time t2 =
t1 + 1/2(t3 − t1) = t1 + |r|/c.
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An inertial frame of reference with natural coordinates and a set of Einstein-
synchronized clocks, which allow to measure time at every point in space is
called a Lorentz system.

6.2 Lorentz Transformations

As it is usual in special relativity we use a coordinate x0 = ct for time. In
theR4 of quadruples characterizing events we choose the canonical basis. The
basis vectors will be denoted as follows: eµ with µ = 0, 1, 2, 3 (Indices 1,2 and 3
correspond to space, index 0 to time).The coordinates of an event are denoted
as xµ. Objects with all lower indeces are called covariant, if they carry all upper
indeces they are denoted as contravariant.
We will use Einstein’s index convention in the following. This means:

• Greek indices (small Greek letters) run from 0 to 3, Latin indices from 1
to 3.

• indices, which appear both in raised and in lowered position have to be
summed, so for example xµyµ =

∑3
µ=0 x

µyµ.

The quadruple, characterizing an event can be written as a vector in R4 , x =
xµeµ.

Now we are looking for the explicit form of transformations TI→K(xµ) be-
tween two Lorentz systems . The form Eq. (6.1a, 6.1b) can be written as follows

(x′)µ = Λµν x
ν + aµ (6.2)

The aµ correspond to shifts of the origin in space and time. In the follow-
ing we will concentrate on the Λµν . We will call these transformations general
Lorentz transformations and the transformations including aµ are called general
Poincaré transformations. Shortly, we will explain the term general. But the
reader should be warned that there is no unique denomination of these trans-
formations in the literature (whereas Lorentz and Poincaré transformations are
common, see below) The set of general Lorentz (Poincaré) transformations will
be called GL (GP ).

Now we turn to the explicit characterization of the general Lorentz transforma-
tions. Consider a light pulse, emitted at time x0/c at location r in the direction
of the 3-vector y − x. At time y0/c > x0/c the pulse will arrive at y iff

|y − x| = y0 − x0 .
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Such vectors y − x are called light-like. As (y − x)2 is the (squared) Euclidean
distance in space, light-like vectors obey

(y0 − x0)2 − (y − x)2 = 0 .

It is convenient to introduce a quadratic form in the R4 of events,

g(x , y) := gµνx
µyν (6.3)

with

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Note that the form (6.3) is not positive definite! A vector space equipped with
such a quadratic form is called a pseudo-Euclidean vector space and in particular
R4 with this quadratic form is called Minkowski space.

The Einstein relativity principle (EIII) implies, that vectors, which are light-
like in one inertial frame stay light-like in every other inertial frame. Thus the
homogeneous Lorentz transformations Λ have to obey

g(x , x ) = 0⇒ g(Λx ,Λx ) = 0 (6.4)

The important fact to remember is, that this quite lucid physical fact com-
pletely fixes the explicit matrix form of admissible Λ’s (in fact, it uniquely deter-
mines the whole symmetry group of special relativity). The mathematical result is
contained in the following Lemma (called a Lemma, because it involves math-
ematics, not physics):

Lemma: From the condition 6.4 it follows that

g(Λx ,Λy) = b(Λ)g(x , y)

with b(Λ) > 0. The proof of this lemma is rather technical and will be omitted
here.

In index notation, the lemma takes on the form

Λ ρ
µ gρλΛλν = b(Λ)gµν

The factor b(Λ) simply corresponds to a scaling transformation of all natural
coordinates,

Tb(x ) = bx .
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The scaling transformations form an obvious subgroup of all general Lorentz
transformations. Every general Lorentz transformation can be composed of a
scaling and a Lorentz transformation obeying

Λ ρ
µ gρλΛλν = gµν (6.5)

So a general Lorentz transformation is composed of a scaling and a Lorentz
transformation:

GL = R+ × L

Now we sketch the structure of the group of transformations, which are deter-
mined by this condition.

a) as det(g) = det(Λ†gΛ) = det(Λ)2 det(g) the Λ matrices must have deter-
minants

det(Λ) = ±1 .

b) As

g00 = 1 = Λ µ
0 gµνΛν0 = Λ 0

0 Λ0
0 −

3∑
i=1

Λ i
0 Λi0 = |Λ 0

0 |2 −
3∑
i=1

|Λ i
0 |2

it follows that

|Λ0
0| ≥ 1

We define 4 subsets of Lorentz transformations according to

L↑+ = {Λ ∈ L| det(Λ) = +1, Λ0
0 ≥ +1}

L↓+ = {Λ ∈ L| det(Λ) = +1, Λ0
0 ≤ −1}

L↑− = {Λ ∈ L| det(Λ) = −1, Λ0
0 ≥ +1}

L↓− = {Λ ∈ L| det(Λ) = −1, Λ0
0 ≤ −1}

It is easy to find all transformations just from L↑+ (also called restricted or-
thochronous Lorentz transformations) by applying to the Λ ∈ L↑+ the special
transformations parity

P

(
x0

r

)
=

(
x0

−r

)

and time reversal

T

(
x0

r

)
=

(
−x0

r

)
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c) The transformations, which only act on space coordinates are the same
as in the Galilei group: rotations and the parity operator. A space rotation
(around the x1 axis), represented as a matrix operation in Minkowski
space for examples looks as follows:

R̂(ϕ, e1) =


1 0 0 0
0 1 0 0
0 0 cosϕ sinϕ
0 0 − sinϕ cosϕ


As rotations keep all scalar products in Euclidean 3-space fixed, they do
not change the pseudo-Euclidean product, either.

Let us now consider the really interesting transformations, which involve both
spatial and temporal coordinates. Let us start with transformations, which
keep x2 and x3 fixed. They must be of the form

Λ0
0 Λ0

1 0 0
Λ1

0 Λ1
1 0 0

0 0 1 0
0 0 0 1


The matrix coefficients have to obey the relations following directly from Eq. (6.5)

+1 = g(Λe0,Λe0) = |Λ0
0|2 − |Λ1

0|2

−1 = g(Λe1,Λe1) = |Λ0
1|2 − |Λ1

1|2

0 = g(Λe0,Λe1) = Λ 0
0 Λ0

1 − Λ 1
0 Λ1

1

A fourth equation comes from the condition det(Λ) = 1

1 = det(Λ) = Λ0
0Λ1

1 − Λ1
0Λ0

1

A little contemplation shows that all solutions of all these four equations (to-
gether with the condition Λ0

0 ≥ 1) can be written as

Λ0
0 = Λ1

1 = cosh(θ)
Λ1

0 = Λ0
1 = − sinh(θ)

(6.6)

If you have problems with this parametrization, just remember that the formal
replacement1

t→ iτ

1This replacement is also called Wick rotation.
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transforms the pseudo Euclidean form into a Euclidean form

−g(x, x) = −(ct)2 + r2 → (cτ)2 + r2

and the Lorentz transformations become 4-dimensional rotations!
The above special Lorentz transformations (Λ1(θ)) are called boosts in 1-direction
and the parameter θ is called rapidity. This parameter has a simple, physical
interpretation, which becomes obvious if we apply Λ1(θ) to a vector x, x′ = Λx

x
′0 = x0 cosh(θ)− x1 sinh(θ)
x
′1 = x1 cosh(θ)− x0 sinh(θ)

(x
′2 = x2 and x

′3 = x3). Thus if x
′1 = 0, x1 = x0 tanh(θ) = ct tanh(θ). So the

relative velocity of origin the system I ′ relative to the origin of I is

v = c tanh(θ)

So the rapidity is just a reparametrization of the relative velocity. It is a simple
task to reexpress the transformation in terms of the relative velocity. In this
form it is usually presented in elementary texts on special relativity

x
′0 = γ(x0 − βx1)
x
′1 = γ(x1 − βx0)

with

β = v/c γ =
1√

1− β2

In analogy to rotations, boosts are characterized by a direction n and a rapid-
ity θ (Λ1(θ) can alternatively be referred to as Λ(n = e1, θ)). The action of
a general boost Λ(n, θ) on a 4-vector x can be read-off from the special case
Eq. (6.6).

x
′0 = γ(x0 − βnx)
x
′

|| = γ(x|| − βnx0)

where x|| = n(n · x) is the projection of x onto the direction of the boost. The
components of x perpendicular to n do not change under the boost.

6.3 Time Dilation and Length Contraction

Here we discuss two immediate, albeit much discussed consequences of Lorentz
transformations between inertial frames: time dilation and length contraction.
Time dilation
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Consider a periodic clock with period ∆t resting at rc in the frame I . Consider
the two 4-vectors x = (ct, rc) and y = (ct + c∆t, rc) corresponding to identi-
cal states of the clock. Let us introduce the difference 4-vector between these
events ∆x = y − x = (c∆t,0), which encodes that the intervals in time and
space between identical states of the clock are ∆t and 0, respectively. Now we
analyze the clock and its readings from an inertial frame I ′, which is obtained
from I by a boost with velocity −v = −vn̂. The velocity of the clock in I ′ is
v = βcn̂. We transform ∆x to find out the distances in space and time between
identical states of the clock:

c(∆t)′ = γc(∆t)

∆r′|| = −γβc∆tn̂

The first of these relation tells us that the time interval between identical states
of the clock has become

∆t′ =
∆t√

1− v2/c2
> ∆t

An immediate consequence is that that the period of every clock is shortest in
the frame of reference, in which the clock is at rest. This is called Eigenzeit.
Length Contraction
Consider a bar at rest in frame I . The two events x = (ct,x) and y = (ct,y)
mark the simultaneously measured positions of the ends of the bar. It is im-
portant that we define the physical length of the bar as the spatial distance of
simultaneous events at its ends. The effect of length contraction does only apply
if this definition is used. One can, of course, imagine other definitions. For
example, suppose you make a photograph of the bar. Then the light pulses
emerging from its ends will travel different distances until they reach the pho-
tographic plate at the same time. Therefore, the photograph does not show si-
multaneous events at both ends! The difference is very important and a source
of misunderstandings. As your eyes are based on the principles of photog-
raphy, you will not “see” the Lorentz contraction but rather a bar rotated by
φ = arctan(v/c) (exercise).
According to our definition, we consider the difference vector ∆x = (0,y −
x) = ∆l · (0, ê), with ∆l denoting the length of the bar in I .
Now perform a boost with velocity −v to system I ′, in which the bar moves
with velocity v = βcn̂. Note that the transformed events, which appeared
simultaneously in I are no longer simultaneous in I ′, but rather are separated
by the time interval

c(∆t)′ = β
∆l√

1− v2/c2
(n̂ · ê)
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The length intervals calculated from applying the boost transformation to ∆x
are therefore not appropriate to calculate the length of the bar in I ′. Rather
we have to find simultaneous events in I ′ and therefore we first transform two
non-simultaneous events in I , located at the ends of the bar and then require that
they have been chosen such that two simultaneous events in I ′ will result:

(x0)′ = γ(x0 + βn̂ · x) (y0)′ = γ(y0 + βn̂ · y)

x′|| = γ(x|| + βn̂x0) y′|| = γ(y|| + βn̂y0)

x′⊥ = x⊥ y′⊥ = y⊥

The requirement of simultaneity in I ′ , (x0)′ = (y0)′ leads to

y0 − x0 = −βn̂ · (y − x) = −β∆l(n̂ · ê)

so that

y′|| − x′|| = γ[(y|| − x||) + β(y0 − x0)n̂]

= γ[∆l(ê · n̂)n̂− β2∆l(n̂ · ê)]

= γ(1− β2)∆l(ê · n̂)n̂

The spatial distance between simultaneous events at the ends of the bar in I ′

is

(∆l)′ =
√

(y′|| − x′||)2 + (y′⊥ − x′⊥)2

Note that only the length scale parallel to the boost velocity is affected. The
quantitative expression becomes particularly simple, if the boost velocity is
parallel to the bar: v||ê:

∆l′ = ∆lγ(1− β2) = ∆l
√

1− v2/c2

As the length scales perpendicular to v remain unaffected, a volume element
will change with the same scale factor as a bar:

(∆V )′ = ∆V
√

1− v2/c2

Consequently, the length of bars and the volumes are largest in the frame, in
which they are at rest.

Addition of velocities

In non-relativistic mechanics, velocities add linearly. Consider a point mov-
ing with constant velocity u in frame I , now perform a −v-boost to I ′. For
simplicity, let us first study the case u||v = −cβn̂.The Lorentz transformation
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from I to I ′ affects both the length and the time intervals traveled by the point
and the velocity of the point in I ′ is given by

u′ = c
∆r′

∆(x0)′
= c

∆r − βc∆tn̂
c∆t− β∆r · n̂

Inserting ∆r = u∆t we get

u′ =
u+ v

1 + (u · v)/c2

If u and v are not parallel, we can split u = u|| + u⊥ in analogy to the argu-
ments on length contraction. As ∆r⊥ remains unaffected by the Lorentz boost,
we find the general law of transformation of velocities

u′|| =
u|| + v

1 + (u · v)/c2

u′⊥ =
√

1− v2/c2u⊥ .

Note that this law implies that velocities can never exceed the velocity of light.

6.4 A second look at vectors, tensors and summation con-
ventions

Before we proceed with physics, we will briefly consider some geometrical
concepts. We have learned that events are elements (points) of a Minkowski
space, which is a R4 vector space equipped with a pseudo-Euclidean bilinear
form

g(x, y) = x0y0 − x1y1 − x2y2 − x3y3 .

Let us draw some analogies to Euclidean geometry. In an Euclidean vector
space (dimension n), you may define a metric tensor after you have chosen a
particular set of base vectors bi, i = 1, 2, . . . n by making use of the Euclidean
scalar product

gij = bi · bj
Note that the metric tensor is symmetric by definition. Here, we will not as-
sume, that the base vectors are orthogonal, so they define a oblique, rectilin-
ear coordinate system. For such situations, the Einstein-type summation con-
vention becomes a very elegant and helpful tool in calculus (originally due to
Ricci). A vector is written as

x = xibi

and the scalar product between 2 vectors may be written using the metric ten-
sor:

x · y = xiyjgij
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To the chosen set of base vectors (called covariant base in this context) we may
construct a second set (called contravariant base) and denoted by bi, i = 1 . . . n
if we require

bi · bj = δ ji

with δ ji denoting the Kronecker symbol. A vector may be expanded in either
of the two bases

x = xibi = xib
i

and the components xi (xi) are called contravariant components (covariant com-
ponents). You may have guessed by now that the metric tensor gij is called
covariant metric tensor and that

gij = bibj

is the contravariant metric tensor. Of course, we may also expand covariant base
vectors in terms of contravariant base vectors. Such an expansion looks as
follows: bi = Aijb

j . Multiplying by bk we easily see that (bk ·bi) = Aijbk ·bj =
Aijδ

j
k = Aik So we get

bi = gijb
j

Analogously, we obtain
bi = gijbj

Inserting such an expansion into the representation x = xibi = xigijb
j we see

that the metric tensor may be used to raise and lower indices

xj = gjix
i

(gij = gji has been used here). Analogously

xj = gjixi

Finally, the covariant and the contravariant metric tensors are inverses of each
other, as you may easily check from the fact, that first expanding the bi in terms
of bj and afterwards expanding the bj in terms of bk must lead you back to the
original expression. This leads to

gijg
jk = δ ki

What we have briefly presented here is the algebraic part of Ricci’s calculus.
Note that all differences between co- and contravariant coordinates vanish for
an orthonormal system, where the covariant and the contravariant base vec-
tors become identical.
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Let us now switch back to the pseudo-Euclidean Minkowski space and note,
that we may easily transfer Ricci’s calculus. We define a set of base vectors
eµ, µ = 0, 1, 2, 3 such that the pseudo-Euclidean products give 2

g(eµ, eν) = gµν

with
g00 = 1 gii = −1

and all other elements vanishing. We may call gµν the covariant, pseudo-
Euclidean metric tensor. Although it is diagonal, it is not proportional to the
unit tensor, and therefore, a distinction between co- and contravariant coor-
dinate systems remains. The pseudo-Euclidean product between two vectors
may be written as

g(x,y) = xµxνgµν = x0y0 − x1y1 − x2y2 − x3y3

The contravariant set of base vectors eµ have to obey

g(eµ, eν) = δ ν
µ

and from the orthogonality of co- and contravariant metric tensors , gµνgνλ =
δ λ
µ you can trivially read off

g00 = 1 gii = −1

i.e the elements of co- and contravariant metric tensor are identical.
Now we may use the g tensors to raise and lower indices:

xµ = gµνx
ν

xµ = gµνxν

Thus contravariant 4-vector

(x0, x1, x2, x3)

has the covariant components

(x0, x1, x2, x3) = (x0,−x1,−x2,−x3)

Finally, let us discuss, how partial derivatives of co- and contravariant coordi-
nates transform. Consider the total differential of a scalar function f(x):

df(x) =
3∑

µ=0

∂f

∂xµ
dxµ

2 Here we will temporarily denote 4 vectors by bold face symbols, because we need both
base vectors, which have an index and components, which have an index. Shortly, we can
return to our leaner notation used outside of this subsection
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As the total differential of a scalar function is again a scalar we conclude that
the partial differentials with respect to contravariant coordinates are covariant
components (and vice versa). Therefore we define

∂

∂xµ
= ∂µ

∂

∂xµ
= ∂µ

Note that

∂0 = ∂0 and ∂i = −∂i

so that

� := ∂µ∂
µ =

1
c2
∂2
t −∇2

becomes the wave operator (D’Alembert-Operator). Let us sum up the relations
between vectors and their co- or contravariant components:

∂µ = ∂/∂xµ → (c−1∂t,+∇) xµ = (ct,+r)
∂µ = ∂/∂xµ → (c−1∂t,−∇) xµ = (ct,−r)

(6.7)

6.5 World Lines, 4-Velocity, 4-Acceleration

A point particle in non-relativistic mechanics moves along a trajectory r(t).
Obviously, this is not a Lorentz invariant concept. In special relativity, we re-
place the trajectory by the sequence of events (x0(σ),x(σ)), which correspond
to the presence of the particle at a point x in space at time x0. The sequence
of these events is a curve in Minkowski space, called a world line, which can
be parametrized by an arbitrary parameter σ (Note that σ has no particular
physical significance). For convenience, let us only consider parametrizations,
for which σ increases with increasing time

dx0

dσ
> 0

Such parameters are also called topological time. As the velocity of the particle
can never exceed the velocity of light, all world lines have to obey an important
constraint: ∣∣∣∣dxdt

∣∣∣∣ ≤ c
Making use of the parametrization, this condition is equal to∣∣∣∣dxdσ

∣∣∣∣ ≤ dx0

dσ
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or in an equivalent, manifestly Lorentz invariant form

dxµ

dσ

dxµ
dσ
≥ 0

In Minkowski space, world lines have to stay within the so called light cone
(see Fig. 6.1), which can be constructed around any arbitrary event (chosen as
the origin without loss of generality) and is bounded by |x| = ct = x0. Points
with x0 > 0 lie in the future of the chosen event and points with x0 < 0 in its

Past

t

Future

Figure 6.1: The light-cone of an event in Minkowski space.

past.

The chosen event can only be a consequence of events, which oc-
curred in its past light cone and it can only influence events in its
future light cone. This is a Lorentz invariant formulation of causal-
ity.

Events x, y with g(x, y) > 0 (i.e. x is in the light-cone of y and vice versa) are
called time-like. Events with g(x, y) = 0 (on the boundary of the light-cone)
are called light-like and events with g(x, y) < 0 are called space-like. Space-like
pairs of events are not causally connected.
The arclength of a world line

τ12 =
1
c

∫ σ2

σ1

dσ

√
dxµ

dσ

dxµ
dσ
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is obviously Lorentz invariant (a scalar under Lorentz transformations). It has
a simple and important physical meaning. As

dxµ

dσ

dxµ
dσ

= c2(
dt

dσ
)2 − (

dx

dσ
)2

we may factor dt/dσ, use dσ = dt(dσ/dt) and get

τ12 =
∫ t2

t1

dt

√
1− v(t)2

c2
=
∫ t2

t1

dtγ−1(v(t))

This corresponds to adding up small time intervals seen on clocks in inertial
frames, which have the same velocity as the point particle at the time t of mea-
surement (local rest frame or tangential frame). To give a more explicit explana-
tion of this important physical interpretation, consider an observer sitting in
an inertial frame I and a clock moving around. At each moment of time, we
can introduce the local rest frame I ′, which is an inertial frame rigidly tight to
the moving clock for an infinitesimal time interval.
In our (global) inertial frame I , the moving clock proceeds a distance

√
(dr)2

during an infinitesimal time interval dt (as measured in I), whereas in I ′, the
clock is momentarily at rest, so that dr′ = 0. As space-time intervals are in-
variant under a Lorentz transformation (connecting I and I ′), we have

ds2 = c2dt2 − dr2 = c2(dt′)2

Note that (dt)′ corresponds to an infinitesimal interval of the Eigenzeit of the
moving clock. It may equivalently be written as

dt′ =
ds

c
= dt

√
1− v2

c2

with v = dr/dt denoting the velocity of the moving clock observed in I .
The Eigenzeit may be read off from moving clocks, which are not influenced
by accelerations3. Note that

τ12 ≤
∫ t2

t1

dt

so the Eigenzeit can never be longer than the time observed in any global iner-
tial frame (“moving clocks go more slowly”). This leads to the famous Zwill-
ingsparadoxon. Note the local relation between time and Eigenzeit reads

dτ

dt
=

1
γ(v(t))

.

Given a world line

x(σ) =

(
x0(σ)
x(σ)

)
3Biological clocks of people moving in space ships may be a reasonable approximation.
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how can we characterize the kinematic elements of motion in a Lorentz invari-
ant way? The worldline contains useful kinematic information, if we parametrize
it by the Eigenzeit τ , which is a scalar under Lorentz transformations. The
quantity

u =
dx

dτ

is called 4-velocity and it is obviously a 4-vector. Its components are

u =
dx

dt

dt

dτ
= γ(v(t))

(
c

v

)
(6.8)

In the non-relativistic limit |v � c| the spatial components of the 4-velocity are
the usual velocity of a particle. Note that the the square of the 4-velocity is
constant for all trajectories

uµuµ = γ2(c2 − v2) = c2

We may also define a 4-acceleration

a =
du

dτ
=
du

dt

dt

dτ
= γ(v)

du

dt
(6.9)

The time derivative may be performed straightforwardly and the result may
be written using the 3-acceleration a = dv/dt

aµ = γ(v)2

(
0
v̇

)
+
γ(v)4v · v̇

c2

(
c

v

)
Note that in a local rest frame

a(t) =

(
0
a(t)

)
, a(t) = v̇(t)

so that the 4-acceleration coincides with the “usual” acceleration. Note fur-
thermore, that

u2 = c2 → d (uµuµ)
dτ

= 2uµ
duµ
dτ

= 2g(u, a) = 0

We should note that in order to construct the 4-velocity and the 4-acceleration,
we only need the usual velocity and the usual acceleration. The additional
component of the 4-vectors is not free due to the constraints uµuµ = c2 and
uµaµ = 0. We have just constructed a manifestly Lorentz invariant kinematics
without adding any further ingredients.
Now that we have found kinematic quantities as 4-vectors it is tempting to set
up a generalization of Newtonian mechanics to the regime of special relativity.
We might, for example, simply define a 4-vector of momentum

pµ = muµ
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and a generalized law of motion

maµ = Fµ

introducing a 4-vector of force4. Obviously, this generalization is in accor-
dance with the requirements of Lorentz invariance. Furthermore, the law of
motion implies that Newton’s second law remains unchanged in a local rest
frame (see above). It is possible to show that the above relations contain the
usual definition of momentum and Newton’s second law as limiting cases in
the non-relativistic regime. However, we will construct relativistic mechanics
from the point of view of Lagrangian mechanics, for reasons we explain on the
way.

6.6 The Principle of Least Action

In the Theoretical Mechanics course you have learned that classical mechan-
ics with conservative forces can be formulated as the solution of a variational
problem. Let us very briefly recall this approach.
The physical trajectory r(t) of a point particle is the one, which is the stationary
point of the action functional

S =
∫ t2

t1

dtL(r, dr/dt)

where the Lagrange function L = T − V is the difference between kinetic and
potential energy. In Cartesian coordinates

L =
m

2
(
dr

dt
)2 − V (r)

The stationary condition
δS

δr(t)
= 0

leads to the Euler-Lagrange equation,

∂L

∂r
− d

dt

∂L

∂(dr/dt)
= 0

which exactly reproduces Newtons law of motion.
The value of this approach is twofold:

• it is coordinate free, so it is comparatively easy to treat complicated coor-
dinate systems, as arise, for example, in problems with holonomic con-
straints

4Note that pµFµ = 0 due to the constraint uµaµ = 0.
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• the connection between symmetries and conservation laws is particu-
larly transparent

Both properties make it an ideal tool in the study of relativistic theories, both
particle theories and field theories. Let us briefly introduce relativistic particle
mechanics using the principle of least action.
Consider a single material point in free space without any forces. The action S
is a functional of the world line of the point and it must be independent of the
frame of reference, so it must be a Lorentz scalar.

S =
∫ σ2

σ1

dσL(x(σ), dx/dσ)

The Lagrange function cannot depend on higher order derivatives, because
we require that the physical state is fixed by x and first order derivatives. The
only scalar of this type is the arclength of the world line connecting to events
x1 and x2.

S = −α
∫ x2

x1

ds = −α
∫ τ2

τ1

√
uµuµdτ ,

where we used ds =
√
uµuµdτ in the last step. The constant of proportionality

−α remains undetermined at present. We can express the Eigenzeit integral in
the middle as a time integral (see above) using uµuµ = c2 and get

S = −αc
∫ t2

t1

dt
√

1− v2/c2

where v = dr/dt is the particle velocity. Thus we read off the following form
of the Lagrange function for a free relativistic particle

L(r, ṙ, t) = −αc
√

1− v2/c2

In the nonrelativistic regime, this should become the Lagrange function of a
free, non-relativistic particle. Expanding in powers of v/c leads to

L(r, ṙ, t) = −αc+
αv2

2c

The first term is just an unimportant constant. From the second term we iden-
tify

α = mc

so that
L(r, ṙ, t) = −mc2

√
1− v2/c2

or
L(x, u) = −mc√uµuµ (= −mc2) . (6.10)
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Now we approach the question of definitions of momentum and energy from
a point of view, which can easily be transferred to the more complex situation
of field theories. We define momentum and energy as conserved quantities
emerging from symmetries, in particular:

• Momentum is the quantity, which is conserved due to translational sym-
metry.

• Energy is the quantity, which is conserved due to time translational sym-
metry

The technique to determine a conserved quantity from a (continuous) symme-
try group is called Noether’s Theorem. You should know it from the Theoretical
Mechanics course, but we will rephrase what is needed for our purposes. We
do this to convince you that there is nothing in Noether’s theorem, which re-
duces its applicability to non-relativistic mechanics.
So consider infinitesimal space-time translations

(xµ)′ = xµ + δxµ

Such transformations are obviously symmetry transformation for a free par-
ticle, as they transform every world line solution for the particle into another
world line solution for this particle.
Let us first calculate the variation of the action functional under an infinites-
imal variation δxµ of the wordline under the constraint δxµ = 0 at the end
points of the world line:

δS = −mc
∫ x2

x1

(
√
d(xµ + δxµ)d(xµ + δxµ)− ds)

= −m
∫ x2

x1

uµdδxµ

= −m
∫ s2

s1

uµ
dδxµ
ds

ds

where uµ = cdxµ/ds = dxµ/dτ is the 4-velocity we introduced before. Now we
perform a partial integration and use that δxµ = 0 at the end points to obtain

δS =
∫ s2

s1

d

ds
(muµ) δxµds

From the stationary condition δS = 0 and the arbitrariness of δxµ the equation
of motion

maµ = m
duµ

dτ
= 0 (6.11)

for a free particle follows. This is exactly what we would have expected, be-
cause it implies that the 4-velocity (and thus also the usual velocity) is constant.
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On the other hand, the Lagrange function (6.10) is surely invariant under ho-
mogeneous translations

x′µ = xµ + ξµ =: hµ(x, ξ)

in space-time. Note that these translations comprise spatial as well as temporal
translations, i.e. if we find a conservation law it will give us combined energy-
momentum conservation!
Going through exactly the same algebra as in classical mechanics, one arrives
at the conclusion that if L is invariant under such a transformation, the quan-
tity

Iµ(x, u) =
∂L(x, u)
∂uν

∂hν(x, ξ)
∂ξµ

∣∣∣∣
ξ=0

= − mcuµ√
uµuµ

= −muµ

is a constant of motion with respect to τ . In the last step, we again used uµuµ =
c2. The quantity muµ appearing in the equation of motion (6.11) thus indeed
constitutes the energy-momentum 4-vector

pµ = muµ =

(
E/c

p

)
= mγ

(
c

v

)
(6.12)

of relativistic mechanics. The non-relativistic limit for

p =
mv√

1− v2/c2
→ mv

and for

E =
mc2√

1− v2/c2
→ mc2 +

mv2

2

correspond to the Newtonian definitions as is required5. The additional term
in the energy looks like an uninteresting shift of the zero of energy, but in spe-
cial relativity it acquires important physical significance, which we will discuss
in the next subsection.
From the constraint uµuµ = c2 we get

pµpµ = m2c2

or
E2 = c2p2 +m2c4

This energy-momentum relation replaces the formula from Newtonian mechan-
ics, which reads E = p2/(2m).
You should keep in mind that the definitions of generalized momenta and of
energy and Hamiltonian you learned in the Theoretical mechanics course need

5The first component of the 4-vector is E/c, because the we considered shifts of x0 = ct
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not be replaced. We presented the above arguments in a way, which makes the
connection to space-time symmetries obvious. But you will easily check that
the definition of momentum

p =
∂L

∂v

still holds if you use L = −mc2
√

1− v2/c2. Furthermore, the energy may still
be obtained by

E = p · v − L

as you have learned. This is the beauty of a coordinate free formulation.

6.7 Physical Relevance of Rest Energy: Mass Defect

Let us consider a body consisting of many (interacting) particles. We may
study the motion of the body as a whole. If it is at rest, its energy must be
E0 = mc2 Thus applying special relativity to composite bodies leads us to a
new operative definition of mass.

Mass is the energy of a body at rest, divided by c2

Note that this energy will in general contain kinetic energies of the constituent
particles and the interaction energies between these particles. This concept
of mass differs completely from the Newtonian picture, where the mass of a
composite body is just the sum of masses of its constituents m =

∑
αmα and

mass is always conserved.

In Einsteinian mechanics, mass is not a conserved quantity.

The difference between the mass of the composite body and the sum of masses
of its constituents is called the mass defect.

∆m = m−
∑
α

mα

Let us suppose that a composite body at rest spontaneously decomposes into
two parts with masses m1,m2 and velocities v1, v2 (as an example, think of
nuclear fission). Conservation of energy requires

mc2 =
m1c

2√
1− v2

1/c
2

+
m2c

2√
1− v2

2/c
2

Note that this equation can only be fulfilled if m > m1 + m2, so that the mass
defect must be positive ∆M > 0. This is a necessary condition for fission.
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6.8 Particles in Fields

In Newtonian mechanics, interactions between particles can be described by
force fields, which are just a mode of description. We may imagine that a
mass creates a gravitational field, which is experienced by other masses, but
we can also eliminate this field from our description and stick to the action
at a distance force law of Newton. In special relativity, this concept has to be
revised completely. A change in position of one mass can be sensed by other
bodies only after a lapse of time, sufficient to transport the disturbance with
velocity of light. We can no longer speak of direct interaction between particles
at a distance. The field, as a medium of carrying the disturbances emerging
from one body and being sensed by another one, acquires physical reality. An
interaction process is decomposed into local interactions between particles and
fields and the dynamics of the fields themselves.
Therefore, relativistic mechanics requires fields and you will not see a lot of ex-
amples with point particles moving around under the influence of static forces.
Here we extend the principle of least action to situations, where charged par-
ticles interact with an electromagnetic field. We will study the dynamics of the
field in the next chapter.
Without much ado, let us just give the action functional and then show that
it produces the results you all know. The coupling between point particles of
charge q and the electromagnetic field is expressed via a 4-vector field Aµ =
(φ,A), known as the 4-vector potential

S = −
∫ x2

x1

(
mcds+

q

c
Aµdxµ

)
Note that this a manifestly Lorentz invariant action. If we parametrize the
world lines by time, the same action looks as follows

S =
∫ t2

t1

(
−mc2

√
1− v2/c2 +

q

c
A · v − qφ

)
dt

In the non-relativistic limit, this reduces to the form of the action functional
known from the Theoretical Mechanics course.
However, from the above discussion you should be aware now, that this ac-
tion is not complete. A charged particle does not only experience electromag-
netic fields, it also creates such fields. So we cannot, in general, derive valid
equations of motion from this action. Nevertheless, in some situations it is a
reasonable approximation to consider given electromagnetic fields and neglect
the back-action of the charge. Obviously, the charge should be small enough.
We will not give precise conditions here, but rather take the approximation for
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granted. Then it is straightforward to derive the equation of motion for the
point particle. It is just the Euler equation

∂

∂t

(
∂L

∂v

)
− ∂L

∂r
= 0

Let us consider the terms separately. The term ∂L/∂v gives the generalized
momentum

P = γmv +
q

c
A = p+

q

c
A

Now consider ∂L/∂r =∇L:

∇L =∇(A(r, t) · v)− q∇φ

These terms are reshuffled a bit. First we use the identity from vector analysis

∇(A(r) · v) = (v ·∇)A+ v × (∇×A)

so that the Euler Lagrange equation takes on the form

d

dt

(
p+

q

c
A
)

=
q

c
(v ·∇)A+

q

c
v × (∇×A)− q∇φ

Now we insert
dA

dt
=
∂A

∂t
+ v ·∇A

and find a form of the equation of motion, you may already know

dp

dt
= −q

c

∂A

∂t
− q∇φ+

q

c
v × (∇×A)

You easily identify two parts of the electromagnetic force, one which is inde-
pendent of velocity. This force (per unit charge) is called electric field

E =
1
c

∂A

∂t
−∇φ

The factor of v/c (per unit charge) is called magnetic field

B =∇×A

This leads to the well known Lorentz force

dp

dt
= qE +

q

c
v ×B

Although this looks exactly like the formula you might remember from New-
tonian mechanics, do not forget that p = γmv and that this equation of motion
holds for all velocities, not just for small ones.
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Chapter 7

Maxwell‘s Field Theory
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7.1 Static Fields

Electric charge is a fundamental property of matter (like mass). Particles with
electric charge interact, i.e. exert forces onto each other (in the sense of mechan-
ics, i.e. they appear in the equations of motion). Electric charges in relative
motion to each other correspond to electric currents. Electric currents exert
forces onto each other, which cannot be reduced to forces between charges.
These additional forces are called magnetic. Electromagnetic theory (Maxwell
Theory) provides exact and quantitative relations between sources (i.e. charges
and currents) and fields, i.e. forces. I will discuss these relations in three steps:

a.) Forces between static charges. Electric fields

b.) Forces between currents. Magnetic fields

c.) Generalizations

Furthermore, I will assume that you are familiar with the fundamental exper-
iments on classical electrodynamics as well as the basic concepts of electro-
and magnetostatic as presented in the base level courses in physics. Last, but
not least, I shall in general study electromagnetic phenomena in vacuum, i.e. I
shall not distinguish between electric field and dielectric displacement or mag-
netic field and magnetic induction. This distinction becomes important in the
presence of polarizable media, and will be touched briefly in section 7.3.2.

7.1.1 Coulomb’s Law and the electric field

Consider two point particles in vacuum, located at r1 and r2, with charges
q1 and q2. Experiment tells us that the force F1→2, which particle 2 exerts on
particle 1, is given by

F2→1(r1 − r2) = kel q1 q2
r1 − r2

|r1 − r2|3 (7.1)

This force, called the Coulomb force, has the same functional form as the New-
ton’s gravitational force.
The constant kel is traditionally and conveniently put to

kel = 1/(4πε0).

The dielectric constant of the vacuum, ε0, depends upon the system of units. In
cgs units (Gaussian system) kel = 1, i.e. ε0 = 1/4π. There is no independent unit
of charge, rather

[q] = 1 cm dyn1/2
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as derived from the force law. (see standard texts on electrodynamics for
MKSA units). We will reconsider the question of units in electromagnetic the-
ory later.
The Coulomb force obeys two most important “axioms” of Newtonian forces:

a) Newton’s third law: F1→2 = −F2→1

b) the superposition law, i.e. the force exerted by fixed point charges q2, · · · , qN
onto point charge q1 is given by

F2...N→1 =
q1

4πε0

N∑
i=2

qi
r1 − ri
|r1 − ri|3 (7.2)

Note that the forces on q1 are always proportional to q1. Therefore it is conve-
nient to introduce the force on a unit test charge. This force (per charge) is called
electric field.

E(r) = Ftest/qtest (7.3)

The electric field may be considered as being created by sources of electric charge,
because it only depends on these charges. A test charge then experiences this
field by coupling to it via its own electric charge. This view of sources creating
fields and coupling to these fields by some physical property is a very general
one in all sorts of field theories, both classical and quantum.
Following the strategy described in section 1.1, we can also introduce charge
densities. The electric charge in an infinitesimal volume element is dq = ρ(r)d3r

and by superposition we get

E(r) =
1

4πε0

∫
d3r1 ρ(r1)

r − r1

|r − r1|3 (7.4)

From the force law (7.2) it furthermore follows that

electrostatic forces are conservative.

This important property becomes obvious by noting that

r − r1

|r − r1|3 = −∇r
1

|r − r1| .

Inserting this relation into Eq. (7.4), we see thatE may be written as the gradi-
ent of a scalar potential

E(r) = −∇φ(r) (7.5)

with
φ(r) =

1
4πε0

∫
d3r1

ρ(r1)
|r − r1| (7.6)
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7.1.2 Field Equations of Electrostatics

Now we can easily set up differential equations, which determine the electric
field of static charge distributions. First, as E is a gradient, it must obey

∇× E = 0 (Homogeneous Maxwell E) (7.7)

A second equation, which connects the electric field to its sources is obtained,
if we use the relation1

∆r
1

|r − r1| = −4πδ3(r − r1) , (7.8)

which when applied to Eq. (7.6) leads to

∆rφ(r) =
1

4πε0

∫
d3r1ρ(r1)∆r

1
|r − r1|

= − 1
ε0
ρ(r) (7.9)

The equation

∆rφ(r) = − 1
ε0
ρ(r) (7.10)

is called the Poisson equation; for vanishing charge density ρ(r) = 0 it is
called Laplace equation. Using Eq. (7.5), we may rewrite it as a field equation
for E:

∇ ·E(r) =
1
ε0
ρ(r) Inhomogeneous Maxwell E (7.11)

The Poisson (or Laplace) equation (7.10) has to be supplemented by boundary
conditions. As these problems have been treated extensively in the undergrad-
uate courses, I will not discuss them here but ask those interested to study the
detailed presentation in the standard textbooks on electrodynamics.

7.1.3 The Law of Biot-Savart

We have built a theory of electrostatics starting from point charges. Now we
want to study time independent electric current densities j(r) and the forces
they exert on charges and on each other (magnetostatics), using an analogous
idealization for currents, the infinitesimal current filament. From experiment we
know that the electric charge is a strictly conserved quantity, i.e. the charge
density has to obey a continuity equation of the form

∂ρ

∂t
+∇ · j = 0 .

1see e.g. Jackson “Electrodynamics”.
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In static situations ∂ρ/∂t has to vanish and thus the admissible current densi-
ties have to obey

∇ · j = 0 .

Note that j-field lines of magnetostatics have to be closed: Every field line
starting in a volume element dV transports current out of this volume element,
so it has to return to dV in order to cancel the net flux through the surface of
the volume as is required by∇ · j = 0 in conjunction with Gauss’ law.

da

j

dV

dl

1

Figure 7.1: The law of Biot-Savart: An infintesimal current filament.

Let us imagine a current distribution to be composed of filaments j(r) =
j(r)t(r), where t(r) denotes the unit vector in the direction of j(r). An in-
finitesimal part of such a filament is the analogue of a point charge in electro-
statics. The current flowing through an area element da is I = j · da = jda

and this current has to be transported within the current filament, see Fig. 7.1.
Thus we have to put

jdV (r) = jt(r)dlda = jdadl = Idl . (7.12)

If I is finite, the current density has to be singular (just like a charge density
representing a point charge has to be singular). On the other hand, this for-
mula allows us to consider every current density as a collection of (infinitesi-
mal) parts of current filaments with infinitesimal currents (just like a continu-
ous charge distribution can be represented by as a collection of infinitely many
infinitesimal point charges).
The analogue of Coulomb’s law is the force exerted by a line element dl2 (at r2)
of a current filament with current I2 onto a line element dl1 (at r1) of a current
filament with current I1. Experiment tells us that it is given by

F2→1 = kmagn I1I2 dl1 ×
(
dl2 × (r1 − r2)

|r1 − r2)|3
)

. (7.13)

The constant kmagn is conveniently written as

kmagn =
κ2µ0

4π
.
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The reason for introducing an extra constant κ will become clear in section
7.2.3.
We will call this law the force law of Biot-Savart2, since, like Coulomb’s law,
it contains the complete information about forces due to currents and can be
generalized to distribution of currents similar to (7.2).
We can separate the force into a factor, which depends on the source (dl2) and
one, which depends on the “test” current filament (dl1) and in this way intro-
duce the magnetic field

B(r) =
κµ0

4π
I2
dl2 × (r − r2)
|r − r2|3 . (7.14)

Thus the force onto an element of a current filament I1dl1 is

F2→1 = κI1dl1 ×B(r) .

Let us now generalize this result to arbitrary current densities by using Eq. (7.12)
and the important property that the magnetic forces obey the superposition law:

B(r) =
κµ0

4π

∫
d3r2 j(r2)× r − r2

|r − r2|3 . (7.15)

Finally, we may also combine many current filament elements I1dl1 = j(r)d3r

to obtain the force of a magnetic fieldB on an arbitrary current density :

F = κ

∫
d3rj(r)×B(r) . (7.16)

On the other hand, if we specialize to a moving point charge (charge density
ρ(r, t) = qδ(r − r(t)) and current density j(r) = qvδ(r − r(t))) we arrive at
the Lorentz force

F = κqv ×B(r(t)) . (7.17)

From Eq. (7.15), it is easy to see that B may be written as the rotation of a
vector field (analogous to E being represented as a gradient of a scalar field).
Just use

j(r2)× r − r2

|r − r2|3 = ∇r ×
(
j(r2)
|r − r2|

)
and you get

B = ∇×A (7.18)

with
A(r) =

κµ0

4π

∫
d3r2

j(r2)
|r − r2| . (7.19)

A is called the vector potential (of magnetostatics).

2Conventionally, integrated forms of Eq. (7.13) are called the Biot-Savart law.
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7.1.4 Field Equations for Magnetostatics

We can now derive the field equations for the magnetic field. B can be ex-
pressed as the rotation of a vector field, so its divergence has to vanish

∇ ·B = 0 Homogeneous Maxwell B . (7.20)

Second, take the rotation of Eq. (7.15) and use

∇× [∇× c(r)] = ∇[∇ · c(r)]−∆c(r)

with c(r) = j(r2)/|r − r2|.
The first term vanishes in magnetostatics. This can be seen, if we use

j(r2) ·∇ 1
|r − r2| = −j(r2) ·∇2

1
|r − r2|

and then perform a partial integration to let the partial derivatives act on j(r2).
This produces a∇2 · j(r2), which vanishes in magnetostatics.
In the second part the Laplacian is applied to |r− r2|−1, which leads to a delta
function (see Eq. (7.8)) and thus produces

−
∫
d3r2∆

j(r2)
|r − r2| = 4πj(r) ,

so that we find

∇×B = κµ0 j Inhomogeneous Maxwell B . (7.21)

7.2 Dynamics

All static electric and magnetic phenomena are contained in the equations

∇ ·E(r) = ρ(r)/ε0 ∇×E(r) = 0
∇×B(r) = κµ0j(r) ∇ ·B(r) = 0 .

(7.22)

To generalize these equations to dynamic phenomena, we have to take into
account one more basic experimental finding.

7.2.1 Faraday’s Law of Induction

Faraday’s law of induction can be stated as follows:

If there is a time dependent magnetic flux Φ(t) =
∫
A(t) da ·B(t)

through a surface A(t) bounded by a (possibly time dependent)
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conducting loop γ(t) = ∂A(t), there is an electromotive force or in-
duced voltage, Uind, for charges moving in γ, which is proportional
to the time derivative of the magnetic flux:

Uind = −kdΦ
dt

.

The minus sign is not a convention but is again dictated by experiment, which
tells us that the reaction of the charges is opposite to the field change (Lentz’s
rule). The voltage Uind is defined as the (virtual) work per charge necessary to
move a unit charge once around γ, i.e. if F denotes the electromagnetic force
acting on the charge q

qUind =
∮
γ

dx · F .

First, a remark to avoid confusion. Although it may seem, that Faraday’s law
involves surfaces, bounded by conducting loops, it is only about loops! Note
that there are infinitely many surfaces bounded by a given loop. If we consider
two of them, sayA1 andA2, the unionA1∪A2 encloses a finite volume. Using
Gauss’ law and the Maxwell equation (7.21), we see that the flux across A1

must be equal to the flux across A2. So the magnetic flux is only a property of
the loop and you can choose any surface you like (as long as it is bounded by
the loop) to compute the flux integral.
To turn Faraday’s law into a field equation, let us first consider the situation
of a fixed, time-independent loop, which is penetrated by a time dependent
magnetic field. The time derivative of the flux then acts only on the B-field.
The force per unit charge fixed to the loop is given by an electric field (per
definition F = qE) so that∮

∂A
dl ·E = −k

∫
A
da · ∂B

∂t
.

Here we use Stokes theorem to transform the line integral into a surface inte-
gral, so that ∫

A
da · ∇ ×E = −k

∫
A
da · ∂B

∂t

and as this has to hold for arbitrary loops, the integrands must be equal. This
leads to the field equation

∇×E = −k∂B
∂t

(7.23)

which appears as a generalization of Eq. (7.7).
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It seems that this equation is still not complete, because we assumed that the
conducting loop was at rest. We will now show that this is not the case. In fact,
analyzing the situation of a time dependent loop γ(t) only fixes the constant
of proportionality in the field equation, which still remained undetermined so

γ(t0)

γ(t1)

S(t0)

S(t1)

M(t0, t1)

V (t0, t1)

1

Figure 7.2: Sketch of a time-dependent loop.

far. Let us analyze this situation in detail. Consider a surface S(t0), bounded
by the loop γ(t0) = ∂S(t0). As time proceeds from t0 to t1, the loop spans a sur-
faceM(t0, t1). This surface corresponds to the mantle of a deformed cylinder
with volume V (t0, t1), which is completed by S(t0) and S(t1). The situation is
shown in Fig. 7.2. For the following argument, keep t0 and t1 fixed. Then we
may introduce parametrizations

a) of the loops γ(t) = {r(t, τ), 0 ≤ τ ≤ τm}with a curve parameter τ .

b) of the surfaces S(t) = {r(t, τ, σ), 0 ≤ τ ≤ τm, 0 ≤ σ ≤ σm}

c) of the mantle surface M(t0, t1) = {r(t, τ), 0 ≤ τ ≤ τm, t0 ≤ t ≤ t1}

so that the locations within the volume of the deformed cylinder are within
the parametrized set {r(t, τ, σ)|0 ≤ τ ≤ τm, 0 ≤ σ ≤ σm, t0 ≤ t ≤ t1}.
Consider the magnetic flux through S(t). Its time derivative is given by

d

dt

∫
S(t)

da ·B(t) =
∫
S(t)

da · ∂B
∂t

+
d

dt′

∫
S(t′)

da ·B(t)

∣∣∣∣∣∣∣
t′=t

.

In the second term on the right hand side, the time differentiation only acts on
the time dependence of the integration surface.
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Let us first consider a time independent magnetic field. We apply Gauss theo-
rem to the deformed cylinder:∫

V (t0,t1)

d3r ∇ ·B =
∫
S(t1)

da ·B +
∫

M(t0,t1)

da ·B −
∫
S(t0)

da ·B .

Since no magnetic charges exist3, the left hand side has to vanish and we get

d

dt1

∫
S(t1)

da ·B = − d

dt1

∫
M(t0,t1)

da ·B .

Now we use the introduced parametrization∫
M(t0,t1)

da ·B =

t1∫
t0

dt

τm∫
0

dτ

(
∂r(t, τ)
∂τ

× ∂r(t, τ)
∂t

)
·B

andX · (Y ×Z) = (Z ×X) · Y to get

d

dt1

∫
S(t1)

da ·B = −
∫

γ(t1)

dl · (v ×B)

where v = ∂r(t1, τ)/∂t1 is the velocity of a point of the loop γ(t1) and dl =
dτ(∂r/∂τ) is an element of the curve γ(t1). Note that for a time independent
magnetic field and a moving loop, the force on a test charge in this loop comes
from the motion of the loop and is in accordance with the force a magnetic
field exerts on a moving point charge (Lorentz force) if we choose the constant
of proportionality appropriately.
Finally, we can generalize our argument to time dependentB fields. We make
use the field equation −k∂B/∂t = ∇×E to treat the term arising from differ-
entiating the magnetic field with respect to time.
The complete time derivative of the flux through S(t) takes on the form

− k d
dt

∫
S(t)

da ·B(t) = k

∫
γ(t1)

dl · (v ×B) + k

∫
S(t)

da · ∂B
∂t

=
∮

γ(t1)

dl · (k v ×B +E) . (7.24)

In the last step we used Stokes’ theorem. Note that we obtained Faraday’s law
of induction in the form

−κdΦ
dt

= Uind =
∮
γ(t)

dl · F .

3Dirac has shown this experimental fact to be a direct consequence of the quantization of
electric charges. See e.g. Jackson, “Electrodynamics”.
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Thus we conclude that the field equation Eq. (7.23) implies Faraday’s Law for
arbitrarily moving loops if we use the electromagnetic force exerted by electric
and magnetic fields on a point charge and fix

k = κ.

7.2.2 Maxwell’s displacement current

We have established the field equation required by Faraday’s law of induction,
and the complete set of field equations of electromagnetism now reads

∇ ·E(r) = 1
ε0
ρ(r) ∇×E(r) = −κ∂B

∂t

∇×B(r) = κµ0j(r) ∇ ·B(r) = 0 .
(7.25)

It is easy to see that this set of equations is not compatible with the fundamen-
tal law of charge conservation. Just take the divergence of the inhomogeneous
equation forB. This gives 0 = ∇· (∇×B) = κµ0∇·j, which is in conflict with
the continuity equation ∂ρ/∂t = −∇ · j. It was Maxwell’s original idea to add
an additional current density like term: ∇ × B = κµ0(j + jM ). To reconcile
this equation with the equation of continuity, the additional term has to obey

∇ · jM =
∂ρ

∂t
= ε0

∂(∇ ·E)
∂t

and so we finally may postulate the complete form of Maxwell’s equations of
electromagnetism

∇ ·E =
1
ε0
ρ (7.26a)

∇×E = −κ∂B
∂t

(7.26b)

∇×B = κµ0j + κµ0ε0
∂E

∂t
(7.26c)

∇ ·B = 0 . (7.26d)

7.2.3 Units

We have found that Maxwell‘s theory contains 3 constants with physical di-
mensions:

ε0, µ0 and κ .

From dimensional analysis it follows that [κ2µ0ε0] = time2/length2. Let us
therefore introduce a velocity via

κ2ε0µ0 =: 1/c2 (7.27)
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which will turn out to be the velocity of light later on.
The constant κ, ε0, µ0 will change with the system of units. We distinguish two
classes of unit systems:

asymmetric units : κ = 1 ε0µ0 =
1
c2

and
symmetric units : κ = 1/c ε0µ0 = 1

The most prominent example of the first class is the international MKSA sys-
tem (SI units). Remember that in this system

ε0 =
107

4π
1
c2

[
A2

N

]
, µ0 = 4π · 10−7

[
N

A2

]
Well known examples of the second class are

Gaussian units : ε0 =
1

4π
, µ0 = 4π

and
Heaviside units : ε0 = µ0 = 1

Some of the later sections will use a particular system of units, because it is
used most frequently in the contexts under consideration and the expressions
look particularly simple in a special system of units.
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7.3 Electrodynamics and Matter

Maxwell’s equations are linear, inhomogeneous partial differential equations,
provided the charge and current densities are given. However, if we consider
charged matter, the fields created by this matter will lead to forces acting on the
very same matter and thus Maxwell’s equations cannot be considered a com-
plete description of charged matter. As soon as we take the back reaction of
the fields into account, we have to provide additional equations describing the
action of the electro-magnetic forces on charged matter. These equations will
in general be non-linear and will lead to very complicated theories. We will
consider here only simple situations, which can be treated with modest effort.
For more complicated situations, see textbooks like Landau Lifshitz Vol. 8.

7.3.1 Conductors

Conductors (metals) are characterized on a macroscopic scale as a form of con-
densed matter, which includes charge that can flow around. Thus, in static
equilibrium situations4 the charge inside metals will redistribute itself until all
the forces acting on the flowing charged particles will vanish. This implies that
the electric field inside a conductor has to vanish in static equilibrium:

Ein = 0 ,

and the Maxwell equation∇ ·E = ρ/ε0 implies that the charge density inside
the conductor also has to vanish

ρin = 0 .

Charges appearing as the reaction upon externally applied fields can only ap-
pear directly on the surface of the conductor. Such charge distributions, which
are constrained to a surface will be described by a charge suface density λ with
physical dimension [λ] = charge/length2. Note that a surface charge density
corresponds to a singular volume charge density, which contains a delta func-
tion in the direction normal to the surface5. The surface charge is not given,
but has to be calculated, which seems a complicated problem. But the prob-
lem can be stated in a much simpler form. Surface charges can float freely on
the surface of the conductor, and thus the electric field vector at the surface

4Conduction in a metal is not such a situation!
5So, if the surface is given in the form z = z(x, y), the volume charge density ρ(x, y, z)

corresponding to a surface charge density can be written in the form ρ(x, y, z) = λ(x, y)δ(z −
z(x, y)).
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must have vanishing components in directions tangential to the surface. As
∇φ = −E, this implies that

t(r) ·∇φ(r) = 0

for every vector t(r) tangential to the surface at r or, stated otherwise

φ(r) = const for all surface point r .

If the conductor fills a volume V we denote the (outwardly oriented) surface
by ∂V and state the boundary condition in the brief form

φ|∂V = 0 (Dirichlet boundary condition) . (7.28)

The standard task of electrostatics is then to find the solution to charge distri-
butions and fields in a given arrangment of conductors under the boundary
condition (7.28), which leads to the concept of capacitance and capacitors (for
more details see for example [4] or the lecture Physics II).

7.3.2 Polarizable Media

The situation is different for insulators. In these materials, charges cannot
move freely, but an applied external electric field will lead to a redistribution
of charges on a microscopic scale which will result in an induced polarization
of the medium modifying the electric field. Again, a true microscopic calcula-
tion of this effect is far beyond the scope of this lecture and in fact a research
frontier in modern solid state physics. Let us therefore invoke the concepts
already used in the theory of elastic media and try to set up a macroscopic model
for the effects of polarizable media, so-called dielectrics.
To this end we again assume that our external fields are slowly varying with
respect to the atomic length scales6. We can then, as for elastic media, divide
our sample into portions large compared to microscopic scales but still small
compared to the macroscopic dimensions of the sample and in particular small
enough so that we can assume that the fields are constant over the dimension
of the volume elements. An applied electric field will then polarize the vol-
ume elements such that positive charges will accumulate on the boundary in
the direction of the field and negative charges on the opposite boundary (see
Fig. 7.3). Obvioulsy, the field Eind induced by this charge imbalance will act
against the applied external field E.

6This is a reasonable assumption, even for electromagnetic waves up to frequencies of visible
light.
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Figure 7.3: Response of a polarizable medium to an external electric fieldE(r).

If we denote withRi the position of the i-the volume element and with 〈d〉i(r)
its (average) contribution to the dipole moment at a point r, the total polariza-
tion, i.e. the dipole moment per unit volume, is given as

P (r) =
1

Vol.

∑
i

〈d〉i(r) .

On the other hand, a dipole d(r′) at r′ produces a contribution7

δφdipol(r) = d(r′) ·∇r′
1

|r − r′|
to the potential φ(r) at r. Together with the potential produced by the true
charges we obtain

φ(r) =
∫
d3r′

{
ρ(r′)
|r − r′| + P (r′) ·∇r′

1
|r − r′|

}

P.I.=
∫
d3r′

ρ(r′)−∇r′ · P (r′)
|r − r′| .

Finally, with E = −∇φ and∇2|r|−1 = −4πδ(r) we arrive at

∇ ·E = 4π [ρ−∇ · P ] .

Comparing this result with (7.26a), we can set up a similar equation for the
effective fieldD := E+ 4πP called dielectric displacement. With this definition,

7For convenience I choose Gaussian units in the following.
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the equation (7.26a) valid in vacuum has to be replaced by

∇ ·D = 4πρ , (7.26a’)

where ρ(r) denotes the external charge density, i.e. excluding charges possibly
induced by the electric field.
With similar arguments, one finds that in the presence of a medium the equa-
tion (7.26c) must be replaced by the expression

∇×H =
4π
c
j +

1
c

∂D

∂t
, (7.26c’)

whereH := B−4πM is called magnetic field,M(r) denotes the magnetization
induced in the medium by the magnetic induction B(r) and j(r) the external
current density excluding currents induced by the varying magnetic induction.
As already mentioned it is in general an extremely complicated task to calcu-
late P (r) and M(r) for a given distribution of electric field, magnetic induc-
tion, external charges and currents from a microscopic theory. However, in
case of weak fields and isotropic and homogenous media8, one can show that
D(r) = εE(r) and B(r) = µH(r), where ε > 1 and µ > 0 are called dielectric
constant and magnetic permeability, respectively. Under these conditions, the
general equations (7.26a’) and (7.26c’) can be rewritten in terms of electric field
and magnetic induction as

∇ ·E =
4π
ε
ρ (7.26a”)

and
∇×B =

4πµ
c
j +

εµ

c

∂E

∂t
. (7.26c”)

If we specialize to harmonic temporal and spatial variations of the fields

E(r, t) = E0e
iωt−q·r

B(r, t) = B0e
iωt−q·r ,

the above relations can be generalized to

D(r, t) = ε(q, ω)E(r, t)

B(r, t) = µ(q, ω)H(r, t) .

The dielectric function ε(q, ω) is particularly interesting, because it completely
determines the optical properties of a medium.

8And in the absence of magnetic or electric ordering.
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7.4 Initial Value Problem of Maxwell’s Equations

Maxwell’s equations constitute a system of 8 partial differential equations for
2 (times 3) fields E and B. Is the system of field equations overdetermined?
We expect that for given external sources ρ and j, the equations will uniquely
determine the time evolution of a given initial field configuration E(r, t0) and
B(r, t0). Mathematical theorems guarantee the existence and uniqueness of
solutions of the initial value problem, if we only consider the two partial differ-
ential equations (7.26b) and (7.26c), which are first order in time. The other two
equations, which do not contain any time derivatives, pose constraints, which
have to be automatically fulfilled. Otherwise, Maxwell’s equations would suf-
fer from severe consistency problems. Luckily, consistency can easily be shown
as a direct consequence of charge conservation. The fields have to obey the
constraints at initial time. Let us therefore consider the time evolution

∂t(∇ ·E − ρ/ε0) = ∇ · (∂tE)− 1
ε0
∂tρ

= ∇ · ( 1
ε0
j + ∂tE)

In the last step, we used the continuity equation, which reflects charge conser-
vation. Now we may use the Maxwell equations again and replace the term in
brackets by∇ ×B/(κε0µ0). As the divergence of the rotation term vanishes,
we have shown that∇ ·E− ρ/ε0 is time independent and therefore stays zero
if it was zero initially. With the same strategy, we can show that for the other
constraint

∂t(∇ ·B) =∇ · (−∇×E/κ) = 0 ,

too, where we again made use of Maxwell’s equations in the last step.

7.4.1 Potentials and Gauge Transformations

We have found that the homogeneous Maxwell equations are constraints. These
constraints can be eliminated by the introduction of potentials. From∇ ·B = 0
we conclude B = ∇×A. A is called vector potential. With this definition, the
other homogeneous Maxwell equation can be rewritten as

∇×
(
E + κ

∂A

∂t

)
= 0

which implies that

E = −∇φ− κ∂A
∂t

.

The scalar field φ is called the scalar potential. These relations generalize the re-
lations between potentials and fields we found in electro- and magnetostatics.
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It is important to note thatE andB do not uniquely determineA and φ. Stated
otherwise, there exist gauge transformations

A′ = A+∇χ (7.29a)

φ′ = φ− κ∂χ
∂t

(7.29b)

which leave the physically measurable fields E andB unchanged.
Some mathematical relations involving potentials become particularly simple,
if special restrictions are posed on the otherwise arbitrary function χ. This is
called choosing or fixing a gauge, and the restrictions are called gauge conditions.
All gauge transformations, which are in accordance with a gauge condition are
called residual gauge transformations. Let us give the most prominent examples:

gauge condition : ∇ ·A = 0 (Coulomb gauge) (7.30)

with residual gauge transformations corresponding to functions χ which have
to obey

∇2χ = 0

and

gauge condition : (κε0µ0)∂tφ+∇ ·A = 0 (Lorentz gauge) (7.31)

with residual gauge transformations corresponding to functions χ which have
to obey

− 1
c2
∂2
t χ+∇2χ = 0

(c−2 = κ2ε0µ0).
Introducing potentials has the advantage that the four Maxwell equations re-
duce to two. However, the two remaining equations do not look particularly
simple if we express them in terms of potentials:

∇ ·E = −∇2φ− κ∇ · ∂tA = ρ/ε0

and

∇×B − κε0µ0∂tE =∇× (∇×A)− κε0µ0(−∂t∇φ− κ∂2
tA) = κµ0j .

We can replace

∇× (∇×A) = −∇2A+∇(∇ ·A)

although this does not simplify the equations immediately. In Coulomb and
Lorentz gauge, however, remarkable simplifications occur.
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Coulomb Gauge
The equations may be written in the following form:

∇2φ = − 1
ε0
ρ

which looks exactly like in electrostatics and

1
c2
∂2
tA−∇2A = κµ0jT

with
jT = j − ε0∇∂tφ .

The physical meaning of jT becomes obvious if we consider

∇ · jT =∇ · j − ε0∂t∇2φ =∇ · j + ∂tρ = 0 ,

where we have used the continuity equation in the last step. Thus jT is the
transverse, i.e. divergence free part of the current density.
Lorentz gauge
In this gauge the remaining Maxwell equations take on the most simple and
transparent form (

1
c2
∂2
t −∇2

)
φ =

1
ε0
ρ (7.32)

and (
1
c2
∂2
t −∇2

)
A = κµ0j . (7.33)

These are just 4 decoupled, linear wave equations with inhomogeneities. Ob-
viously this form of the Maxwell equations is particularly well suited to find
the general solution.
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7.5 Solution of Maxwell’s Equations and Electromagnetic
Waves

7.5.1 Waves in Vacuum

In vacuum, i.e. in regions of space without charges or currents, Maxwell’s
equations read

∇ ·E = 0 , ∇×E = −κ∂B
∂t

, (7.34a)

∇ ·B = 0 , ∇×B =
1
κc2

∂E

∂t
, (7.34b)

where we used the definition (7.27) to replace ε0 and µ0.

Instead of using the equations for the potentials in the Lorentz gauge, we can
here proceed directly from Maxwell’s equations. For example, applying ∇×
on both sides of the second equation in (7.34a) yields

∇× (∇×E) = −κ∇× ∂B

∂t
= −κ ∂

∂t
∇×B (7.34b)

= = − 1
c2

∂2E

∂t2
.

Employing further∇× (∇×E) =∇(∇ ·E)−∇2E, we end up with

�E =
(

1
c2

∂2

∂t2
−∆

)
E = 0 . (7.35)

Likewise, we obtain

�B =
(

1
c2

∂2

∂t2
−∆

)
B = 0 (7.36)

for the magnetic field. Note that the equations (7.32) and (7.33) for the poten-
tials have precisely the same form in the absence of external sources ρ = 0 and
j = 0.

The above equations are three-dimensional wave equations with plane waves

E(r, t) = E0e
−i(ωt−k·r) (7.37a)

B(r, t) = B0e
−i(ωt−k·r) (7.37b)

with ω2 = c2|k|2 as solutions for E and B. More precisely, these solutions
describe plane waves propagating with velocity c in direction k/k with angu-
lar frequency ω = ck, where k := |k|. Note that for electromagnetic waves in
vacuum, both phase and group velocity are independent of k and equal to c:

vPh :=
ω(k)
k

= c , vGr := |∇ω(k)| = c . (7.38)
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According to the discussion in section 7.4, not all solutions to (7.35) and (7.36)
can be also solutions to Maxwell’s equations. Inserting our solutions into
(7.34a) and (7.34b), one obtains the following additional conditions:

k ·E0 = 0 , k ·B0 = 0 , (7.39a)

k ×E0 = κωB0 , k ×B0 = − ω

κc2
E0 . (7.39b)

Equation (7.39a) means that electromagnetic waves in vacuum are transverse,
i.e. E and B oscillate perpendicular to the direction of propagation k/k. Fur-
thermore, equation (7.39a) follows from (7.39b) which allows to express B0

with E0 and vice versa, where for consistency reasons again ω2 = c2k2 has to
hold. Taking all these observations together we can state:

Plane wave solutions of Maxwell’s equations in vacuum have the
form (7.37a) and (7.37b) with dispersion relation ω = c|k| and κc|B| =
|E|. The vectors k, E and B form a positively oriented orthogonal
set.

The physical solutions of Maxwell’s equations of course have to be real. How-
ever, since Maxwell’s equations are real and linear, real solutions are con-
structed simply as the real part of complex solutions.
To keep the rest of the discussion simple, let us choose k = ke3. Then we have
from (7.39b)

k = ke3 , E0 = ae1 + be2 , B0 =
1
κc

(ae2 − be1)

with a, b ∈ C. If a and b have (apart from a sign) the same phase, i.e. a = |a|eiα
and b = ±|b|eiα, we say that the wave has linear polarization, because then

E1(r, t) = |a|e−i(ωt−kx3−α)

E2(r, t) = ±|b|e−i(ωt−kx3−α)

and analogous for B. This means, that both E and B oscillate along a fixed
line in the x1 − x2 plane, whose orientation with respect to the x1 and x2 axes
is given by the angle Θ = arctan(±|b|/|a|).
In general, a and bwill however be complex numbers with independent phases,
say a = |a|eiα and b = |b|eiβ . In this case one says that the wave has elliptical
polarization, because going through a little algebra one can show that the tips
of E andB move on an ellipse in the x1-x2-plane, oriented with respect to the
x1 and x2 axes by the angle

Θ =
1
2

arctan
(

2|a||b|
|a|2 − |b|2 cos(α− β)

)
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and axes

a± =
2|a|2|b|2 sin2(α− β)

|a|2 + |b|2 ∓√(|a|2 − |b|2)2 + 4|a|2|b|2 cos2(α− β)
.

A particularly important special case is |b| = |a| and β = α± π/2, i.e. b = ±ia.
In this case we speak of circular polarization, because the tips of both E and B
move on a circle in the x1-x2-plane. For the direction of the rotation the follow-
ing convention is used: If one looks opposite to the direction of propagation,
one speaks in the case of mathematically positive rotation (i.e. counter-clock
wise) of left-circular polarization or right-handedness or positive helicity. In the
other case we speak of left-handedness or right-circular polarization or negative
helicity.

The concepts of handedness or chirality are especially useful in relativistic
quantum mechanics (see also the lecture Quantum Mechanics II), where the
helicity of a massless particle is either parallel to its propagation direction
(helicity= +1) or anti-parallel (helicity= −1). We have discussed this prop-
erty in Quantum Mechanics II for the phonons.

7.5.2 Wave guides

In applications of electrodynamics one typically encounters problems like trans-
porting electromagnetic signals (such as TV or radio signals) or filtering or
creating waves within a given narrow frequency band. The first task can be
accomplished with so-called wave guides, the second set of tasks with the help
of (resonance) cavities. The latter are also employed in accelerators, because the
standing waves in cavities allow to tailor oscillating electrical fields that can be
used to accelerate charged particles.

Here we want to treat wave guides only. The calculation for cavities is very
similar, just introducing two additional boundaries, and will be given as an
exercise. For our wave guide we assume a hollow cylinder (although not nec-
essarily with a circular cross-section) extending infinitely in the x3-direction.
Therefore, the electromagnetic fields can be written as

E(r, t) = E0(x1, x2)e−i(ωt−k3x3) , B(r, t) = B0(x1, x2)e−i(ωt−k3x3)(7.40)

and the remaining task is to determine the functions E0, B0 and ω(k3) from
Maxwell’s equations and the boundary conditions due to the wave guide. For
simplicity we further assume that the mantle of our wave guide consists of a
perfect conductor, i.e. the tangential components of E on the boundary have
to vanish to avoid the induction of infinite currents. From∇×E = −κ∂B/∂t
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we obtain for the normal component Bn of the magnetic field

iκωBn = (∇×E)n = (∇×Et) · en = 0 ,

because Et = 0. Thus it follows that Bn = 0. For convenience of notation we
employ in the following the Heaviside units, i.e. κ = 1/c and ε0 = µ0 = 1.
Inside the wave guide Maxwell’s equations become

(∇×E)2 = −1
c

∂B2

∂t
→ ik3E0,1 − ∂E0,3

∂x1
= i

ω

c
B0,2 , (7.41a)

(∇×B)1 =
1
c

∂E1

∂t
→ ∂B0,3

∂x2
− ik3B0,2 = −iω

c
E0,1 (7.41b)

and a corresponding set of equations for E0,2 and B0,1. Let us define as usual
k := ω/c and k2

⊥ := k2 − k2
3 . Then, multiplying (7.41a) with −ik3 and (7.41b)

with ik and adding both equations, one obtains

k2
⊥E0,1 = ik3

∂E0,3

∂x1
+ ik

∂B0,3

∂x2
, (7.42)

while repeating the procedure with −ik for (7.41a) and ik3 for (7.41b) results
in

k2
⊥B0,2 = ik

∂E0,3

∂x1
+ ik3

∂B0,3

∂x2
. (7.43)

Again, corresponding equations hold for E0,2 and B0,1. The longitudinal com-
ponents are determined from the wave equation, resulting in(

∂2

∂x2
1

+
∂2

∂x2
2

+ k2
⊥

)
E0,3(x1, x2) = 0 , (7.44a)(

∂2

∂x2
1

+
∂2

∂x2
2

+ k2
⊥

)
B0,3(x1, x2) = 0 . (7.44b)

For k⊥ 6= 0 one can readily show (exercise), that solutions of (7.44a) and (7.44b)
also fulfill the remaining Maxwell equations.
Evidently, E0,3 and B0,3 are independent of each other. Note that, at least for
k⊥ 6= 0, one of them has to be non-zero to allow for non-trivial solutions.
Consequently one distinguishes between so-called TE-modes (transverse elec-
tric modes) with E0,3 = 0 and B0,3 6= 0 and TM-modes (transverse magnetic
modes) where B0,3 = 0 and E0,3 6= 0.
Let us now return to the boundary conditions. From (7.42), (7.43) and the
corresponding equations for the remaining components one can form

k2
⊥(E0,1e1 + E0,2e2) = ik3∇E0,3 − ike3 × (∇B0,3) , (7.45a)

k2
⊥(B0,1e1 +B0,2e2) = ik3∇B0,3 + ike3 × (∇E0,3) . (7.45b)
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Besides the normal en to the boundary and e3, we can introduce a third unit
vector ec := e3 × en. The tangential plane of the surface is then spanned by
e3 and ec. Since en and ec both lie in the x1-x2-plane, we may rewrite the
previous equations as

k2
⊥(E0,nen + E0,cec) = ik3 (en∂nE0,3 + ec∂cE0,3)−

ik (ec∂nB0,3 − en∂cB0,3)
(7.46a)

k2
⊥(B0,nen +B0,cec) = ik3 (en∂nB0,3 + ec∂cB0,3) +

ik (ec∂nE0,3 − en∂cE0,3) .

(7.46b)

On the surface, the boundary conditions requireE0,3 = E0,c = B0,n = 0, which
then leads to

k2
⊥E0,c = ik3∂cE0,3 − ik∂nB0,3 , (7.47a)

k2
⊥B0,n = ik3∂nB0,3 − ik∂cE0,3 . (7.47b)

Since E0,3 = 0, these conditions require ∂nB0,3 = 0. Thus the two fundamental
modes TM and TE are determined by the following eigenvalue problems

TM mode:
(
∂2

1 + ∂2
2 + k2

⊥
)
E0,3 = 0 , E0,3 = 0 at the surface ,(7.48a)

TE mode:
(
∂2

1 + ∂2
2 + k2

⊥
)
B0,3 = 0 , ∂nB0,3 = 0 at the surface ,(7.48b)

fixing k⊥. Finally, the dispersion law reads

ω(k3) = c
√
k2

3 + k2
⊥ . (7.49)

Before turning to the example of a wave guide with rectangular cross section
let us discuss the possibility of having both E0,3 = B0,3 = 0 (TEM modes).
Obviously, this is possible only if k⊥ = 0 or k3 = ±k. Furthermore, from
(7.41a) and (7.41b) one finds B0,2 = ±E0,1 and B0,1 = ∓E0,2. For B0,3 = 0 we
moreover conclude (∇×E)3 = 0, so that we can representE0 as gradient of a
scalar potential

E0 = −∇Φ(x1, x2) ,

which due to∇ ·E0 = 0 has to fulfill Laplace’s equation

(∂2
1 + ∂2

2)Φ = 0 .

The boundary condition Et = 0 on the mantle translates into Φ =const., i.e.
nontrivial solutions of this equation exist only in multiply connected regions
such as outside a hollow cylinder or for a coaxial wire or outside two wires.
As specific example I want to discuss the modes of a rectangular wire with
dimensions a in x1 and b in x2 directions. For the TM modes we obtain from
(7.48a) and a product ansatz E0,3(x1, x2) = f(x1)g(x2) the equation

f ′′g + g′′f + k2
⊥fg = 0 ,
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or equivalently
f ′′

f
+
g′′

g
= −k2

⊥

meaning that both f ′′/f and g′′/g have to be constants. Together with the
boundary condition E0,3 = 0 on the mantle the solutions are

E0,3(x1, x2) = E0 sin
(nπx1

a

)
sin
(mπx2

b

)
, n,m ∈ N (7.50)

and
k2
⊥ =

(nπ
a

)2
+
(mπ
b

)2
. (7.51)

For the TE modes one obtains with a corresponding ansatz and the boundary
condition ∂nB0,3 = 0

B0,3(x1, x2) = B0 cos
(nπx1

a

)
cos
(mπx2

b

)
, n,m ∈ N0 , m+ n ≥ 1 (7.52)

and expression (7.51) for k2
⊥.

7.5.3 Solution of Maxwell’s Equations

In Lorentz gauge, Maxwell’s equations become inhomogeneous wave equa-
tions for the potentials

(
1
c2

∂2

∂t2
−∇2)A = κµ0j

(
1
c2

∂2

∂t2
−∇2)φ =

ρ

ε0
.

Note that solutions have to obey the constraint posed by the gauge condition

∇ ·A+
1
κc2

∂φ

∂t
= 0 .

Now we consider the general solution of an inhomogeneous wave equation

(
1
c2

∂2

∂t2
−∇2)ψ = g .

The general strategy to solve such types of differential equations is to construct
a so-called Green’s function which obeys the differential equation

(
1
c2

∂2

∂t2
−∇2)G(r − r′, t− t′) = 4πδ(r − r′)δ(t− t′) . (7.53)

Then the solution for a general inhomogeneity is given by

ψ(r, t) =
1

4π

∫
dr′dt′G(r − r′, t− t′)g(r′, t′)
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plus an arbitrary solution of the homogeneous wave equation.
An important condition on the solution is imposed by the fundamental law of
causality. A perturbation g(t′) can only contribute to the (physical) wave field
ψ(t) at later times t > t′. The wave equation is symmetric in time direction
(t → −t) and propagates disturbances both forward and backward in time.
Thus we have to look for solutions with the special (time) boundary condition

Gret(r, t) = 0 for t < 0 .

This Green’s function is called the retarded Green’s function of the wave equa-
tion.
In general, the construction of Gret(r, 0) is a tedious task. For problems with
spatial and temporal translational invariance (as we have here) a good strategy
usually is to consider the Fourier transform of Eq. (7.53) with respect to both
space and time, which for the wave equation becomes (exercise)

(c2k2 − ω2)Ĝ(k, ω) = 4πc2 . (7.54)

The Green’s function G(r, t) is then obtained from the inverse Fourier trans-
formation, i.e.

G(r, t) = 4πc2

∫
dω

2π
d3k

(2π)3

exp(ik · r − iωt)
(ck)2 − ω2

,

which will pick the proper solution. Note that the integrand of the ω-integration
has two poles at ω = ±ck and is thus ill-defined. This is not a surprise, because
we have not yet introduced boundary conditions,
How to handle these types of integrals we have learned in the lecture “Math-
ematische Methoden der Physik”: We extend the ω-integration into the complex
plane and note that for t < 0 the integrand decays exponentially for |ω| → ∞ in
the upper half plane (=mω > 0), whereas it grows exponentially in the lower
half plane; for t > 0 the situation is reversed. Thus if we shift the integration
path slightly into the upper half-plane9, we can close the path by adding C+

for t < 0 or C− for t > 0 as shown in Fig. 7.4 without changing the value of
the integral. Since the region bounded by C = Cret ∪ C+ does not contain any
singularities of the integrand the integral vanishes for t < 0 by Cauchy’s The-
orem. In this way, we have implemented retarded boundary conditions. For
t > 0, the integral may be evaluated using the theorem of residues. Let us
concentrate on the ω dependent parts

I =
∫
C

dω
e−iωt

(ck)2 − ω2

9This is equivalent to the procedure used in “Mathematische Methoden der Physik”, where we
avoided the poles on the real axis by introducing small semicircles in the upper half plane.
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ℜe(ω)

ℑm(ω)

C
ret

C
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C
-

Figure 7.4: Complex integration paths for the ω-integral in Gret(r, t). The
crosses denote the positions of the poles on the real axis.

and use
1

(ck)2 − ω2
=

1
2ck

(
1

ω + ck
− 1
ω − ck

)
Thus the integrand possesses two poles of first order. Remember the formula
to calculate the residue at such a pole

Res(f(z)) = lim
z→z0

(z − z0)f(z)

which leads to

I = −2πi
2ck

(e−ickt − eickt) .

The minus sign takes care of the orientation of the path C = Cret ∪ C−; it is
traversed in mathematically negative direction (clockwise). and thus

Gret(r, t) = Θ(t)
ic

4π2

∫
d3k

eik·r

k
(eickt − e−ickt) .

The remaining k-integration can be easily performed by introducing polar co-
ordinates and remembering that

1
2π

∞∫
−∞

dxeikx = δ(k)

to yield

Gret(r, t) =
c

r
Θ(t)δ(r − ct) =

1
r

Θ(t)δ(t− r/c) . (7.55)
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A solution of the inhomogeneous wave equation may now be obtained from

ψ(r, t) =
1

4π

∫
d3r′dt′ Gret(r − r′, t− t′)g(r′, t′) .

Obviously, the time integration may be performed by inspection. If we intro-
duce the so-called retarded time

tret = t− |r − r′|/c

the solution may be written as

ψ(r, t) =
1

4π

∫
d3r′

g(r′, tret)
|r − r′|

We now specialize to Maxwell’s equations to obtain

φ(r, t) =
1

4πε0

∫
d3r′

ρ(r′, tret)
|r − r′| (7.56)

A(r, t) =
κµ0

4π

∫
d3r′

j(r′, tret)
|r − r′| (7.57)

for the potentials. This is a beautiful formula. The connection between sources
and potentials looks completely analogous to the corresponding formulas of
electro- and magnetostatics! However, the time argument is not simply t, but
tret(t) = t − |r − r′|/c. This actually means that changes in the source dis-
tributions at a certain point are not transported to another point with infinite
velocity! Rather they propagate with the velocity of light! Finally, we have to
show that our solution obeys the Lorentz gauge condition. This is a straight-
forward task and left as an exercise.

7.5.4 The Quasistatic Approximation

If we have a setup which is small enough that we may neglect the difference
between t and tret, we may approximate the solution to

φ(r, t) ≈ 1
4πε0

∫
d3r′

ρ(r′, t)
|r − r′|

A(r, t) ≈ κµ0

4π

∫
d3r′

j(r′, t)
|r − r′|

This is the quasistatic approximation of Maxwell’s equations, which neglects re-
tardation effects. It is the realm for most applications in electrical engineering
and the basis which allows to describe passive electric circuits as combinations
of capacitors and inductors. We already discussed capacitors in the context of
electrostatics. In the quasistatic approximation, this discussion is still valid.
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7.5.5 Generation of Waves

Let us return to the full solution and study consequences of the retardation.
For simplicity (and because it is of great practical importance) let us consider
oscillating sources, i.e.

ρ(r, t) = ρ(r)e−iωt

j(r, t) = j(r)e−iωt

located in space (i.e. ρ = 0, j = 0 outside a bounded region). The restriction
to just one frequency is not severe, because we may use the linearity of the
problem to solve more complicated time dependencies by superposition. Note
that the time dependence of potentials is then also given by

A(r, t) = A(r)e−iωt

φ(r, t) = φ(r)e−iωt

while the spatial variation is described by

A(r) =
κµ0

4π

∫
d3r′

j(r′)
|r − r′|e

iω|r−r′|/c (7.58)

φ(r, t) =
1

4πε0

∫
d3r′

ρ(r′)
|r − r′|e

iω|r−r′|/c . (7.59)

If we are interested in positions outside the charge- and current distribution,
we need only calculate the vector potential. If j(r, t) = 0, the inhomogeneous
Maxwell equation forB-fields takes on the form

∇×B =
1
κc2

∂E

∂t

and thus
E(r, t) =

i

ω
κc2∇× (∇×A(r))

How do we evaluate A? Further progress is possible, if we have a clear sepa-
ration of the following length scales:

• d: the linear dimension of the region containing the sources

• r: the distance of an observer from the sources

• λ = 2πc/ω, a length scale resulting from retardation, which turns out to
be the wavelength of emitted radiation

Here we will mainly be interested in the regime

d� λ , d� r
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i.e. the sources are well localized. This situation is the one with the broadest
range of applicability (radiating atoms). This assumptions allows us to repeat
the technique, which lead to the multipole expansion in static problems. We
use expansions in the small parameter r′/r, for example

1
|r − r′| =

1
r

+
r · r′
r3

+ · · · .

Furthermore

|r − r′| =
√
r2 + r′2 − 2r · r′ = r

√
1− r′2

r2
− 2

r · r′
r2

leads to the expansion

|r − r′| = r

(
1− r · r

′

r2
+ · · ·

)
which we insert in the exponential to get

ei(ω/c)|r−r′| = ei(ω/c)r e−i(ω/c)(r·r
′/r) · · · .

The exponent of the second exponential function is of the order d/λ � 1,
which is small due to the first condition for localized sources. Thus we may
expand the second exponential function. Combining all the expansions we get

eik|r−r′|

|r − r′| =
eikr

r

[
1 +

(
1
r
− ik

)
r · r′
r

+ · · ·
]
, k :=

ω

c

This may be inserted into the integral, which determines the vector potential:

A(r) =
κµ0

4π
eikr

r

∫
d3r′j(r′) +

κµ0

4π

(
1
r
− ik

)
eikr

r

∫
j(r′)

r · r′
r

+ · · · .

Further progress is still possible, if we introduce an additional separation of
length scales. Two regimes emerge:

• the near field with d� r � λ

• the far field with d� λ� r

In the near field zone (ω/c)|r− r′| � 1 and thus we may replace the exponen-
tial in the integral by 1. Then we are back to the same expressions we already
evaluated in statics! This is entirely consistent, because the near field regime is
actually where the quasistatic approximation holds, i.e. retardation effects can
be neglected.
The leading term in the far field regime is

A(r) =
κµ0

4π
eikr

r

∫
d3r′j(r′)
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which does only require well localized sources. We will now consider it in
more detail. First note, that the integral over the current density would vanish
in a static situation, as you have found in magnetostatic multipole expansion
in Physik II. This was a consequence of the continuity equation, which reduced
to ∇ · j = 0 in static situations. In dynamics, this is no longer true. Still we
may use the same trick we employed in statics to express the volume integral
of the current density in terms of divergences. First note that

∂k(xijk) = xi(∇ · j) + ji ,

so that analogous to the discussion in magnetostatics (see Physik II)∫
d3r′j(r′) = −

∫
d3r′r′∇ · j(r′) .

The left hand side is transformed using the continuity equation, which takes
on a simple form for oscillating sources:

∇ · j = −∂ρ(r, t)
∂t

= iωρ(r) .

Therefore the volume integral over j may be connected to the electrical dipole
moment p: ∫

d3r′j(r′) = −iω
∫
d3r′r′ρ(r′) = −iωp ,

and the vector potential in the far field takes on the form

A(r) = −iκµ0

4π
ωp

ei(ω/c)r

r
.

This type of radiation is called electrical dipole radiation. It will dominate the
fields in the far field regime, unless the electrical dipole moment of the sources
vanishes. Then magnetic dipoles and higher order multipole moments will
generate the far field radiation.
Finally, we can calculate the electric and magnetic field for electric dipole ra-
diation. Note that the expression for the vector potential did only require
d � r, λ and thus is valid in a larger regime. Therefore, we may also find
terms in E andB, which are not of leading order in the far field. We leave the
explicit calculations as an exercise. ForB =∇×A one finds

B(r) =
κµ0

4π
c
(ω
c

)2 ei(ω/c)r

r

(
1 + i

c

ωr

) r
r
× p .

In the far field the leading term is

Bd(r) =
κµ0

4π
c
(ω
c

)2 ei(ω/c)r

r

r

r
× p . (7.60)
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The calculation of E is a bit more clumsy but still straightforward. The result
is

E(r) =
1

4πε0
ei(ω/c)r

r

{( ω
cr

)2
[(r × p)× r] +

1
r

(
1
r
− iω

c

)[
1
r2

3r(r · p)− p
]}

.

However, the leading term in the far field is just the first term in curly brackets.
It is obviously connected to the leadingB term by

Ed(r) = κc
(
Bd(r)× r

r

)
. (7.61)

As an interesting application let us discuss the scattering of light from a small
object with dimension d � λ (such as atoms or molecules) located at r0 = 0.
We assume the incoming wave to be a plane wave with polarization ε, i.e.

E(r, t) = εE0e
−i(ωt−k·r) .

The incoming wave will lead to a periodic polarization of the object. Under
the above assumption it is justified to consider only the induction of an electric
dipolmoment

p(t) = 4πε0χ(ω)E0e
−iωtε

where the factor χ(ω) characterizes the (linear) response of the microscopic
object to the external field and is called dielectric susceptibility. The electromag-
netic radiation emitted from our object in the far-field region is then given by
Eqs. (7.60) and (7.61). In particular, we can readily read off these results that
linearly polarized incoming radiation will also produce linearly polarized ra-
diation, because with ε ∈ R3 we also have εt := (er × ε) × er ∈ R3 and Ed
oscillates in direction of εt.
Typically, we are interested in the differential cross-section

dσ

dΩ
(ω;n, ε,n′, ε′)

for the scattering of an incoming plane wave with frequency ω and polariza-
tion ε propagating along n into a solid angle element dΩ in direction n′ with
polarization ε′, which we can assume to be ⊥ n′ without loss of generality.
As usual, the differential cross section is defined as the ratio of the scattered
intensity to the incoming intensity times r2. These intensities are proportional
to |Ed · (ε′)∗|2 and |E|2, respectively. With[

(n′ × ε)× n′] · (ε′)∗ = − [(n′ · ε)n′ − (n′ · n′)ε] · (ε′)∗ = ε · (ε′)∗

we obtain the result

dσ

dΩ
(ω;n, ε,n′, ε′) =

ω4|χ(ω)|2
c4

∣∣ε · (ε′)∗∣∣2 (7.62)
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for the differential cross section. Note, that the intensity of the incoming wave
∝ E2

0 cancels, as expected.
The further discussion we restrict to the case of linearly polarized incoming
light, because all other situations can be constructed from that by suitable lin-
ear combinations of different polarization directions. Let us define the scatter-
ing angle cos Θ = n · n′ and the three orthonormal vectors

Figure 7.5: Geometry for the scattering of light.

n , n′′ :=
n′ − cos Θn

sin Θ
, n⊥ :=

n× n′
sin Θ

,

Then, we can write
ε = cosϕn′′ + sinϕn⊥

and (since ε′ ∈ R3 for linear polarization)

ε · ε′ = ± cos Θ cosϕ± sinϕ ,

where we made use of ε′ ⊥ n′, i.e. ε′ ·n = ± sin Θ, and hence ε′ ·n′′ = ± cos Θ
and ε′ · n⊥ = ±1. The differential cross section thus reads

dσ

dΩ
(ω;n, ε,n′, ε′) =

ω4|χ(ω)|2
c4

(cos Θ cosϕ± sinϕ)2 . (7.63)

If the incoming radiation is unpolarized, i.e. can be viewed as superposition of
all possible polarization angles ϕ, the resulting differential cross section is the
average over all angles ϕ and can be written as the sum of two contributions

dσ||
dΩ

:=
ω4|χ(ω)|2

2c4
cos2 Θ

and
dσ⊥
dΩ

:=
ω4|χ(ω)|2

2c4
.
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which can be interpreted as scattering with final polarizations parallel to the
scattering plane defined by n′′ and n⊥, and scattering with final polarizations
perpendicular to that plane. The total differential cross section thus is

dσ

dΩ
=
ω4|χ(ω)|2

2c4
(1 + cos2 Θ) , (7.64)

while the degree of polarization is given by

P (Θ) :=
dσ⊥ − dσ||
dσ⊥ + dσ||

=
sin2 Θ

1 + cos2 Θ
. (7.65)

Thus, for Θ = π/2 (scattering into a direction perpendicular to the propagation
of the incoming wave) we find P (π/2) = 1, i.e. the scattered light is completely
polarized, while for forward scattering or backscattering (Θ = 0 or Θ = π) we
find P = 0, i.e. completely unpolarized light.
Finally, one can calculate the total cross section by integrating over all scattering
angles Θ, yielding

σtot =
8πω4|χ(ω)|2

3c4
. (7.66)

A perfectly conducting sphere is a very primitive, but for certain purposes
nevertheless usable model for an air molecule. In this case, χ(ω) =const. and
hence

σtot ∝ 8πω4

3c4
.

This expression together with Eq. (7.65) is sufficient to explain polarization
and color of the sun light scattered by the air molecules: One finds maximal
polarization if one looks into a direction perpendicular to the axis sun-earth,
while due to σtot ∝ ω4 light with short wave-lengths (i.e. large ω = ck = 2πc/λ)
will be scattered more strongly, thus explaining the blue color of the sky.
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7.6 Maxwell meets Einstein

In the previous sections we have learned that Maxwell’s theory of electromag-
netism describes among others a variety of phenomena connected with the
propagation of electromagnetic waves. These waves propagate with a speed
we denoted as c, determined by the ε0 and µ0. If we use standard SI units (i.e.
κ = 1) and insert numbers obtained from precision measurements, we obtain
as value of c precisely the value for the speed of light, which is according to
Einstein’s postulate also the bound for any transport of information. This im-
mediately raises the question, how Maxwell’s equations fit into the framework
of Einstein’s theory of relativity.
Originally, the problem was actually seen the other way round. Before the
dawn of special relativity, it was believed that the true “microscopic” theory
was Newton’s mechanics and that Maxwell’s equations, which turned out to
violate invariance against Galilei transformations were assumed to be derived
in a very special frame of reference. It was believed that a special “substance”,
called aether, which carries the electromagnetic phenomena was at rest in this
frame of reference. As you all know, this point of view was wrong, all efforts
to find a relative motion with respect to the aether failed and the correct story
is told by the theory of special relativity. Let us now see if Maxwell’s equation
are consistent with this fundamental physical principle.

7.6.1 Maxwell’s Theory in Lorentz Covariant Form

We start from the Lorentz force acting on a particle moving with velocity v,
which in the frame of reference of a spectator at rest reads

dp

dt
= q

(
E(r, t) +

1
c
v ×B(r, t)

)
.

Note that we used p here, because we already know from section 6.6 on rel-
ativistic kinematics that the momentum of a particle moving with respect to
our rest frame is given by (6.12), i.e. p = γmv, where γ = 1/

√
1− v(t)2/c2 is

now time dependent. We can change the differentiation on the left hand side
to the Eigenzeit τ , remembering that γ dτdt = 1, to obtain

dp

dτ
= qγ

(
E(r, t) +

1
c
v ×B(r, t)

)
=
q

c

(
u0E(r, t) + u×B(r, t)

)
.

In the last step, we used the definition uµ = (γc, γv) for the 4-velocity.
The left hand side of this equation is, by definition, the space part of a 4-vector.
We can even state the corresponding time component by noting, that dp0/dt is
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the rate of change of energy, which for a moving charge is given as

dE

dt
= v · FLorentz = qv ·E = c

dp0

dt

since p0 = E/c. Again, we may replace dt by dτ to obtain

dp0

dτ
=
q

c
u ·E(r, t) .

Thus, the Lorentz force can be written in 4-vector notation as

dpµ

dτ
=
q

c
Fµνuν , (7.67)

if we define10

Fµν(xτ ) :=


0 −E1(xτ ) −E2(xτ ) −E3(xτ )

+E1(xτ ) 0 −B3(xτ ) +B2(xτ )
+E2(xτ ) +B3(xτ ) 0 −B1(xτ )
+E3(xτ ) −B2(xτ ) +B1(xτ ) 0

 (7.68)

To prove that (7.67) is indeed covariant, we have to prove two things: (i) the
quantity q is a Lorentz scalar and (ii) the tensor Fµν properly transforms un-
der the Poincaré group. The first problem is in fact the deepest. There is no
mathematical proof, because we cannot reduce the concept of “charge” to a
more fundamental one that would allow to show its Lorentz invariance. How-
ever, all experiments done so far show with extremely high precision (10−21 or
better), that

the charge q is independent of the frame of reference, i.e. a Lorentz scalar.

For a physicist, this is sufficient to use “conservation of charge” as a well-
founded working hypothesis until some culprit will prove the contrary and
thus cause a landslide like the discovery of the constancy of c did in the begin-
ning of the 20th century.
The (observational) fact, that q is a Lorentz scalar can be used to set up a further
4-vector: Let us assume that, in some Lorentz frame, we have a charge density
% at rest. The charge dq = %d3r contained in a small volume element is Lorentz
invariant, as is the volume element d4x = dx0d3r of the Minkowski space.
Consequently, the charge density must transform like the time component of
a 4-vector. Next, we know (also from experiment) that the continuity equation
must hold, i.e.

∂%

∂t
+∇ · j = 0 .

10Remember that up to now we work in a fixed reference frame, i.e. using the 4-vector nota-
tion is possibly suggestive but does not necessarily mean that we have a covariant formulation.
We still have to prove the latter!
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Obviously, the right hand side is a Lorentz scalar, i.e. the left hand side must
be a Lorentz scalar, too, which means that charge and current density form a
4-vector, the 4-current density

jµ := (cρ, j) (7.69)

so that continuity equation becomes

∂µj
µ = 0 . (7.70)

In Lorentz gauge, Maxwell’s equations can be transformed into wave equa-
tions for the potentials φ andA as11

1
c2

∂2A

∂t2
−∇2A =

4π
c
j

1
c2

∂2φ

∂t2
−∇2φ = 4π%

plus a gauge condition
1
c

∂φ

∂t
+∇ ·A = 0 .

Apparently, the right hand sides of the wave equations form the 4-current den-
sity, while the differential operator on the left hand side is � = ∂µ∂µ, i.e. a
Lorentz scalar. Consequently, the potentials must form a 4-vector, the 4-vector
potential

Aµ := (φ,A) (7.71)

and the wave equations and gauge condition can be written in the compact
form

�Aµ =
4π
c
jµ , (7.72)

∂µA
µ = 0 . (7.73)

Did you wonder where this all leads to? Well, I will use the back door to prove
that Fµν is indeed a proper 4-tensor and consistent with Maxwell’ equations.
This can now be done in two steps. First note, that the fields are related to the
potentials by

E = −1
c

∂A

∂t
−∇φ

B = ∇×A .

11I choose Gaussian units form now on.
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For example, for E1 and B1 this leads to the explicit formulas

E1 = −1
c

∂A1

∂t
− ∂φ

dx1
= −(∂0A1 − ∂1A0) ,

B1 =
∂A3

∂x2
− ∂A2

∂x3
= −(∂2A3 − ∂3A2) ,

where we used ∂µ = (∂/∂x0,−∇). Thus, the fields can be represented as a
second rank 4-tensor

Fµν = ∂µAν − ∂νAµ (7.74)

which fulfills the required transformation properties under the Poincaré group
because ∂µ andAµ do! That Fµν is indeed the tensor (7.68) is left as an exercise.
With Fµν , the homogeneous Maxwell equations read (exercise)

∂κFµν + ∂µF νκ + ∂νF κµ = 0 , , κ 6= µ 6= ν ∈ {0, 1, 2, 3} .

To complete this discussion we merely need to write down Maxwell’s equa-
tions in a covariant form. For this purpose we need the so-called dual field-
strength tensor defined by

Fµν :=
1
2
εµναβFαβ =


0 −B1 −B2 −B3

+B1 0 +E3 −E2

+B2 −E3 0 +E1

+B3 +E2 −E1 0

 (7.75)

where we have defined the totally antisymmetric fourth rank tensor

εαβγδ :=


+1 for {α, β, γ, δ} an even permutation of {0, 1, 2, 3}
−1 for {α, β, γ, δ} an odd permutation of {0, 1, 2, 3}
0 if any two indices are equal

(7.76)

which you know in R3 as Levi-Civita symbol. Maxwell’s equations then re-
duce to the beautiful compact form

∂µF
µν =

4π
c
jν (7.77a)

∂µFµν = 0 (7.77b)

One of the immediate results we get from the introduction of the tensor F is
the transformation behavior of the electric and magnetic field under Lorentz
transformation. This behavior was not at all clear from the outset, but now it
is obvious. Given a transformation Λνµ, you get the transformed field strength
tensor

(F ′)µν(x′) = ΛµρΛ
ν
κF

ρκ(x)

from which you can read off the fields (exercise).
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8.1 Lagrangian Formulation of Field Theories

First, we illustrate how to formulate a field theory of continuum mechanics by
starting from a system of mass points. To give a useful but simple example,
we consider an elastic string, which we treat as a limit of a linear chain of mass
points coupled by ideal springs.

8.1.1 Lagrangian Mechanics

Consider a classical mechanical system with N degrees of freedom. The N
generalized coordinates will be denoted as φ1, φ2, . . . , φN . In the Lagrangian
formulation of mechanics, we start from the action functional, which is deter-
mined by the Lagrange function

S =

t2∫
t1

L(φi, φ̇i) (8.1)

The equations of motion follow by finding an extremum of S (the so-called
principle of least action) subject to the boundary conditions

δφi(t1) = δφi(t2) = 0 (8.2)

From δS = 0 you will find the Euler-Lagrange equations

d

dt

∂L

∂φ̇i
− ∂L

∂φi
= 0. (8.3)

8.1.2 Linear Elastic Chain

Let us apply this formalism to a one-dimensional chain of point masses of mass
m coupled by elastic springs (spring constant k) (see Fig. 8.1), which are con-

Figure 8.1: Linear elastic chain.

nected to form a ring (periodic boundary conditions). As generalized coordinates
we use the displacements of the masses from their resting positions. Then, the
periodic boundary conditions can be expressed as

φi+N = φi (8.4)
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The Lagrangian of such a system is given by L = T − V with kinetic energy T
and potential energy V . Thus

L =
N∑
i=1

[
m

2
φ̇i

2 − k

2
(φi+1 − φi)2

]
(8.5)

The system of Euler-Lagrange equations is straightforwardly derived to be

m
d2φi
dt2

= k [(φi+1 − φi)− (φi − φi−1)] (8.6)

In fact, you can also derive these equations from Newton’s second law di-
rectly. What we will show now is, that the limit from the chain to a string
with constant mass density can be very easily obtained within the Lagrangian
formulation.

8.1.3 From an Elastically Coupled Chain to an Elastic String

Let a be the equilibrium distance between mass points. The limit to a string is
obtained by letting

a→ 0,

while at the same time keeping the equilibrium length l = Na fixed, so that
the number of mass points has to go to infinity. What we want to keep fixed is
the mass per length

m

a
→ ρ

Do we have to scale the spring constant, too?
The limit from chain to spring is most easily controlled within the Lagrangian,
which we write in the form

L = a
N∑
i=1

(
1
2
m

a
φ̇i

2 − 1
2
ka(

φi+1 − φi
a

)2

)
= a

∑
i

Li (8.7)

You see that this expression can be considered as a Riemann sum, which ap-
proaches the integral

L =

l∫
0

dxL(φ, ∂φ/∂x) (8.8)

over a Lagrangian density

L =
1
2

(
ρ(
∂φ

∂t
)2 − Y (

∂φ

∂x
)2

)
(8.9)
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provided that not only m/a→ ρ but also

ka→ Y

Y is called Young module of the elastic string. Note that the discrete index i
counting the mass points has become a continuous variable x, which is the
coordinate along the string. φ(x, t) has become a classical field, called the lon-
gitudinal displacement field of the string (we did not consider transverse dis-
placement of the mass points, which would point in directions perpendicular
to the x-axis.) The physical meaning of φ(x) is the (longitudinal) displacement
of a point on the string from its equilibrium position x.
The field equation may now be obtained from the principle of least action with
boundary conditions

δφ(x, t1) = δφ(x, t2) = 0

δφ(0, t) = δφ(l, t) (8.10)

The resulting Euler-Lagrange equation is easily obtained

∂t
∂L

∂(∂tφ)
+ ∂x

∂L
∂(∂xφ)

− ∂L
∂φ

= 0 (8.11)

This leads to the field equation

∂2φ

∂t2
− c2∂

2φ

∂x2
= 0 (8.12)

with c2 = Y/ρ.
The field equation is a one-dimensional wave equation.

8.1.4 Hamiltonian

The Hamiltonian is obtained from the Lagrangian by a Legendre Transformation.
For the chain, this means that

H({pi, φi}) =
∑
i

piφ̇i − L (8.13)

with

pi =
∂L

∂φ̇i
(8.14)

This leads to the very obvious result

H =
∑
i

(
p2
i

2m
+
k

2
(φi+1 − φi)2

)
(8.15)
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To determine the Hamiltonian of the elastic string, note that

pi = a
∂Li

∂φ̇i
= mφ̇i

so that in the continuum limit

π = lim
a→0

pi
a

=
∂L
∂φ̇

= ρφ̇ (8.16)

and

H = lim
a→0

a
∑
i

(
φ̇i
∂Li

∂φ̇i
− Li

)
=

l∫
0

(πφ̇− L) (8.17)

8.1.5 Lagrangian Field Theories

Some of the above features can be generalized to the Lagrangian formulation
of arbitrary field theories for a collection of fields φ(1), . . . , φ(n). The (non-
quantum) field theory is completely characterized by its Lagrange density

L({φ(k), ∂µφ
(k)})

The Lagrange function of this theory is given by

L =
∫
ddrL

and the action functional has the usual form

S =

t2∫
t1

dtL

Relativistically covariant field equations require relativistically invariant La-
grange densities (more precisely: L has to be a 4-scalar density). The deriva-
tion of the Euler-Lagrange equation is analogous to the derivation for particles.
We consider variations δφ(k) , which vanish on the hypersurfaces t = t1 and
t = t2. At this point, one may be worried that the variational problem might
break the Lorentz invariance because it treats the time coordinate different
from the space coordinates. We can, however, easily reformulate the problem
in a manifestly covariant way. Instead of the two hypersurfaces t = t1, t = t2

we consider a closed hypersurface ∂Σ, which contains the 2 hypersurfaces as
parts and is closed by additional parts at spatial infinity. Then we define the
action functional as

S =
∫
Σ

dd+1xL
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and consider variations, which vanish on ∂Σ.
Let us demonstrate the typical steps towards the Euler-Lagrange equation:
First we insert φ(k) + δφ(k) and expand in δφ(k). As all the δφ(k) are indepen-
dent for different k, let us pick variations for a particular field component with
k = k0 and for simplicity denote φ(k0) = φ. Then we get

δS =
∫
Σ

∑
k

{
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µδφ

}

We have used that the variation of ∂µφ is equal to the derivative of δφ, which
is true if the variations are smooth. The second term is transformed by per-
forming a partial integration. Boundary terms on ∂Σ vanish due to our choice
of δφ and we get

δS =
∫
Σ

{
∂L
∂φ
− ∂µ ∂L

∂(∂µφ)

}
δφ

Due to the arbitrariness of the δφ we conclude that the term in curly brackets
has to vanish, which gives us the form of the Euler-Lagrange equations for
field theories (summation convention!)

∂L
∂φ
− ∂µ ∂L

∂(∂µφ)

To every field we define a canonically conjugate momentum as

π(k)(x) =
∂L

∂(∂0φ(k))

and the Hamilton density of the field theory is given by

H =
∑
k

π(k)∂0φ
(k) − L

Note that the definition of the canonically conjugate momentum is in accor-
dance with the definition: “the quantity, which is conserved as a consequence
of translational symmetry in space”. We will give a more systematic discussion
of such conservation laws in the section 8.3.
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8.2 Relativistic Field Theories

In the previous section, we have considered the mechanics of an elastic string.
The resulting field equation turned out to be the wave equation, which, as
we know by now, is a Lorentz invariant equation. Obviously, the underlying
theory we used was Newtonian mechanics and from this point of view, the
Lorentz invariance is a completely unphysical artifact. Our derivations are
only valid in a very special frame of reference, where the string is at rest and
only the longitudinal density modulations are time dependent.
Maxwell’s equations were considered from this point of view by the time they
were found. It was believed that the true “microscopic” theory was Newton’s
mechanics and that Maxwell’s equations, which turned out to violate invari-
ance against Galilei transformations were assumed to be derived in a very spe-
cial frame of reference. It was believed that a special “substance” called aether,
which carries the electromagnetic phenomena, was at rest in this of reference.
As you all know, this point of view was wrong, all efforts to find a relative mo-
tion with respect to the aether failed and the correct story is told by the theory
of special relativity.
Now, if we forget about its derivation, we can take the Lagrangian density
Eq. (8.9) as a simple example of a manifestly Lorentz invariant field theory.
Let us write its action in covariant notation

S =
1
2

∫
d4x (∂µφ)(∂µφ)

This theory is also called the massless scalar field or massless Klein-Gordon field.
Consider a slight generalization of the elastic chain, where every mass point is
not only coupled to its neighboring mass points but also to its resting position
by ideal springs. The additional potential energy V = m2/2

∑
φ2
i gives rise to

an additional term in the Lagrangian density of the string. Adding this term
to our action in covariant form, we get the so called massive scalar field or Klein-
Gordon field with mass m

S =
1
2

∫
d4x [(∂µφ)(∂µφ)−m2φ2] (8.18)

The field equation
(∂µ∂µ +m2)φ = 0

is considered as a Lorentz invariant generalization of Schrödinger’s equation
for a free particle (which is definitely not a Lorentz invariant equation). In-
deed, we did encounter this theory already in Quantum Mechanics II as possible
extension of Schrödinger’s non-relativistic wave equation to scalar, massive,
free,relativistic particles.
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8.2.1 The Lagrangian of Maxwell’s Theory

The Lagrange density should reproduce the Maxwell equations as the station-
ary point of the action functional. First we have to decide which fields to chose
as dynamical variables. It may seem that the field strengths are the most sen-
sible choice. However, there are two strong arguments, which favor the 4-
potential:

1) If you choose the Fµν , you have to reproduce both the homogeneous
and the inhomogeneous Maxwell equations as the stationary point. The
homogeneous Maxwell equations pose constraints on the 6 independent
fields contained inFµν . Remember that we have introduced the 4-potential
exactly to resolve these constraints.

2) Remember the Lagrangian of (relativistic) particles in a given electro-
magnetic field. In Sec. 6.8 we learned that the Lagrangian of interaction
between particles and fields is expressed by means of the 4-potential

Lint = −1
c
Aµjµ

This term reproduces the Lorentz force and is in accordance with Maxwell’
equations, but it is not given by the field strengths.

So let us choose the 4-potential Aµ as the dynamical field variables.
Obviously, the Lagrange density must be a Lorentz scalar (density). Further-
more, gauge transformations Aµ → Aµ + ∂µΛ should leave the equations of
motions untouched. This is indeed the case, because in

∫
d4x(Aµ + ∂µΛ)jµ the

additional term vanishes after a partial integration
∫
d4xjµ∂

µΛ = − ∫ d4xΛ∂µjµ
as a consequence of the continuity equation ∂µjµ = 0. As the equations of mo-
tion are second order partial differential equations and only contain deriva-
tives of the Aµ (not the Aµ themselves) the Lagrangian should only depend on
∂µAν . So it is quite suggestive to try to construct a part of the Lagrangian from
the field strength tensor. It should have the form

aFµνF
µν

to be a Lorentz invariant. So much for plausibility. There are some more ar-
guments to fix some aspects of the Lagrangian, but we just prefer to give it
straight away and show it reproduces the Maxwell equations:

L = − 1
16π

FµνF
µν − 1

c
Aµjµ (8.19)

Now we consider the terms of the Euler-Lagrange equation

∂L
∂Aλ

− ∂ρ ∂L
∂(∂ρAλ)

= 0
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The first term is straightforward to compute, but the second term needs a lit-
tle contemplation. First note that the Lagrangian should be expressed by the
dynamical field variables before taking the derivatives. Thus we have to use

FµνF
µν = (∂µAν − ∂νAµ)gµκgνσ(∂κAσ − ∂σAκ)

A simple way to perform the partial differentiation with respect to ∂ρAλ is to
use the chain rule

∂

∂(∂ρAλ)
=

∂Fµν
∂(∂ρAλ)

∂

∂Fµν
= (δµρδνλ − δµλδνρ) ∂

∂Fµν

Using this rule and F νµ = −Fµν we get

∂ρ
∂L

∂(∂ρAλ)
= −2

1
16π

∂ρ(δµρδνλ − δµλδνρ)Fµν = − 1
4π
∂ρF

ρλ

Now we can combine the elements of the Euler-Lagrange Equations and re-
cover the inhomogeneous Maxwell equations in covariant form

∂ρF
ρλ =

4π
c
jλ

Finally, we give the Lagrangian and the corresponding Hamiltonian of Maxwell’s
theory in terms of the E and B fields. Multiplying the two 4× 4 matrices Fµν
and Fµν and taking the trace of the resulting matrix FµνF νµ gives

L =
1

8π
(E2 −B2)− 1

c
jµAµ

To compute the Hamiltonian, we first have to find the canonically conjugate
momenta

π(0) =
∂L

∂(∂0A0)
= 0

π(i) =
∂L

∂(∂0Ai)
= − 1

4π
F 0i =

1
4π
Ei

Surprisingly, the conjugate momentum of A0 vanishes! The Hamiltonian den-
sity

H =
3∑
i=1

π(i)∂0Ai − L =
1

4π

3∑
i=1

Ei∂0Ai − L

is rewritten using Ei = −∂iA0 − ∂0A
i and Ai = −Ai:

H =
1

4π
E · (E +∇A0)− 1

8π
(E2 −B2) +

1
c
jµAµ

=
1

8π
(
E2 +B2

)
+

1
4π
E ·∇A0 +

1
c
jµAµ
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The first term we already know from the undergraduate courses as energy
density of the electromagnetic field.
If we compute the Hamiltonian from this density, we may use a partial inte-
gration to get a much more transparent form of

1
4π

∫
d3r E ·∇A0 = − 1

4π

∫
d3r (∇ ·E)A0

= −
∫
d3r ρA0

As j0 = cρ we may combine the term with the other current dependent term
jµAµ − j0A0 = −j ·A. Thus we finally find for the Hamiltonian H :

H =
∫
d3r H

=
∫
d3r

[
1

8π
(E2 +B2)− 1

c
j ·A

]
In the absence of external sources (j = 0) it is the first term, which gives the
energy (density) of a free Maxwell field.
When using the expressions for the Lagrangian and the Hamiltonian you must
always keep in mind that they apply to situations, where the external sources
are given and fixed. In particular, you should not apply it to situations, where
the sources are themselves dependent on the electromagnetic fields (for exam-
ple, currents in a conductor). If you want to treat these more complicated situ-
ations, you have to add a dynamical theory of the degrees of freedom, which
generate the currents.
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8.3 Noether’s Theorem

8.3.1 Internal Symmetry: Simple Example

In classical mechanics you learn that space-time symmetries are closely con-
nected to conservation laws. For example, the translation symmetry implies
the conservation of momentum, the time translation symmetry implies con-
servation of energy and the rotation symmetry implies conservation of angular
momentum. Emmy Noether has shown how to generalize this and how to con-
nect the symmetry with respect to some continuous group of transformations
to conservation laws. This deep theorem has its most remarkable applications
in field theory. There is even a “straightforward” quantum field theory ver-
sion of Noether´s Theorem, called Ward identities. To understand the power
of Noether´s Theorem, let us consider a relativistic field theory for a system
consisting of two scalar fields φ1, φ2 with Lagrange density

L =
∑
a=1,2

(∂µφa∂µφa − m2φ2
a)

Such field theories do in fact arise in physical problems, but for the moment,
we don´t give any more interpretation. Note that the Lagrangian does not
change under transformations

φ′1 = cosα φ1 + sinα φ2

φ′2 = − sinα φ1 + cosα φ2

corresponding to rotations in some internal two-dimensional space. Now we
follow the strategy of Noether´s theorem from classical mechanics.
Let us consider an infinitesimal angle δα and put sin δα ≈ δα and cos δα ≈ 1
so that δφa = φ′a − φa becomes:

δφ1 = δα φ2

δφ2 = −δα φ1

We insert φa(x) + δφa(x) in the Lagrangian and calculate δL as

δL =
∑
a=1,2

(∂µδφa)(∂µφa) + (∂µφa)(∂µδφa)− 2m2δφaφa

= 2
∑
a=1,2

[
(∂µδφa)(∂µφa)−m2δφaφa

]
Now let us add and subtract (∂µ∂µφa)δφa to obtain

δL = 2
∑
a=1,2

∂µ [δφa∂µφa]− 2
∑
a=1,2

δφa
[
∂µ∂

µ +m2
]
φa .
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The last term contains the field equations and thus vanishes. Since by assump-
tion we must have δL = 0, it follows that∑

a=1,2

∂µ [δφa∂µφa] = 0

or, after inserting the variations δφa,

δα ∂µ[φ2∂
µφ1 − φ1∂

µφ2] = 0 .

Due to the arbitrariness of δα, the 4-divergence has to vanish. Thus we have
found a continuity equation

∂µj
µ = 0

with a 4-current density

jµ = (cρ, j) = φ2∂
µφ1 − φ1∂

µφ2

Note that the 0-component is the density of a conserved “generalized charge”

Q =
∫
d3rj0

8.3.2 General One-Parameter Symmetry Group

The generalization of the above, simple example is straightforward. We have
a field theory with a collection {ψ(s)}, s = 1 · · ·n of fields as dynamical vari-
ables, and consider a general, one-parameter group of transformations with
parameter λ

ψ
(r)(x) = G

(r)
λ ({ψs(x)})

such that G(r)
λ=0 = id. It is important to note that these transformations act on

the fields only, but not on the space-time argument x. The general strategy for
transformations which modify x, too, will be discussed in the next section.
Transformations near the identity result in small changes in the fields

δψ(r) = ψ
(r) − ψ(r) =

dG(r)

dλ

∣∣∣∣∣
λ=0

· λ+O(λ2)

and the corresponding change in the Lagrange density is

δL =
n∑
r=1

[
∂L
∂ψ(r)

δψ(r) +
∂L

∂(∂µψ(r))
∂µδψ

(r)

]
To proceed we simply add and subtract the 4-divergence

∂µ

(
∂L

∂(∂µψ(r))

)
δψ(r)
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so that the change in Lagrange density becomes

δL =
n∑
r=1

[
∂L
∂ψ(r)

− ∂µ
(

∂L
∂(∂µψ(r))

)]
δψ(r) + ∂µ

(
∂L

∂(∂µψ(r))
δψ(r)

)
If the Lagrange density is invariant under the transformationsGλ (simple sym-
metry transformations), we can conclude that for every trajectory (where the
term in angular brackets vanishes), the 4-current density

jµ =
n∑
r=1

∂L
∂(∂µψ(r))

dG(r)

dλ

∣∣∣∣∣
λ=0

(8.20)

obeys a continuity equation
∂µj

µ = 0.

Obviously, jµ is only defined up to a multiplicative constant.

8.3.3 Energy-Momentum Tensor

The transformations discussed in the previous section are of a type that change
the field configurations locally. In the “classical” formulation of Noether’s the-
orem they correspond to transformations acting on the coordinates qi only but
do not involve time. As you may remember, for a general type of transforma-
tion including also time, Noether’s theorem looks slightly different.
In the following, I want to discuss the consequences of space-time symme-
tries, which corresponds to the classical application in mechanics. The sim-
plest transformation of this type is the space-time translation

xµ → xµ + aµ .

These translations combine two symmetry operations of classical mechanics:
space translations (leading to momentum conservation) and time-translation
(leading to energy conservation). So we expect to find the field version of
the conservation of the energy-momentum 4-vector. The form of Noether’s
theorem we must use here then reads

If δS = 0 for a transformation compatible with the Euler-Lagrange
equations, this transformation is connected to a conserved current.

Let us now apply this “Noether strategy” to a field φ with Lagrange density
L(φ, ∂µφ). As usual we assume infinitesimal transformations, i.e. we can ex-
pand the field at the translated position x′ = x+ δa(x) according to

φ(x′) = φ(x+ δa(x)) ≈ φ(x) + δaµ∂µφ(x)
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and insert this expansion into the action functional to calculate the linear vari-
ation by standard steps.

δSa =
∫
d4x

{
∂L
∂φ

(δaµ∂µφ) +
∂L

∂(∂νφ)
∂ν(δaµ∂µφ)

}
From ∂ν(δaµ∂µφ) = δaµ∂ν∂µφ + (∂νδaµ)(∂µφ) the first term is combined with
the other term proportional to δaµ. The other term is partially integrated. So
we get ∫

d4xδaµ
{
∂µL − ∂ν

(
∂L

∂(∂νφ)
∂µφ

)}
The integral may be written in the form∫

dxδaµ∂νT
ν
µ . (8.21)

with
T νµ =

∂L
∂(∂νφ)

∂µφ− δνµL

This quantity is called the canonical energy-momentum tensor and has a form
reminding us of the result for time-translations in classical mechanics, were
the conserved quantity is the Hamilton function

H =
dL

dq̇i
q̇i − L .

The expression for T 0
0 is indeed exactly what you would expect for a Hamil-

tonian density

T 0
0 = H =

∂L
∂(∂tφ)

∂tφ− L

(compare with the “elastic string”). Quite generally, the 0-component T 0
µ cor-

responds to a 4-vector of densities of conserved quantities, i.e.

T 0
0 energy density

T 0
i momentum density

For every relativistic field theory, we can furthermore read off now (Note that
T νµ = gµκT νκ))

• the energy current density or energy flux: T i0

• the momentum density ρiP = T 0i = −T 0
i

• the momentum current density tensor or stress tensor σij = T ij .

In this way, you find that the concepts of balance equations we encountered in
hydrodynamics show up naturally for every relativistic field theory.
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8.3.4 Energy-Momentum Tensor of Electromagnetic Fields

It is straightforward to generalize the energy-momentum tensor to the case of
several fields φ(k):

T νµ =

{∑
k

∂L
∂(∂νφ(k))

∂µφ
(k)

}
− δνµL

Let us now specialize this result to the case of an electromagnetic field. The
Lagrange density is

L = − 1
16π

FµνFµν

External sources have to be put equal to zero, because otherwise we would not
have energy-momentum conservation at all (translational symmetry is explic-
itly broken).
In case of gauge potentials as fields, it is necessary to consider the variations
of fields a little bit more carefully. From

Aν(xµ + δaµ) ≈ Aν(x) + ∂µA
ν(x)δaµ

we get variations of the vector potential, which are not gauge invariant. There-
fore, we cannot guarantee that small variations in one gauge will stay small af-
ter application of a gauge transformation. We can construct manifestly gauge
invariant small variations, if we combine the space time translation with a
special gauge transformation (which is still a symmetry transformation, of
course!). We choose as gauge field χ = δaµAµ and obtain

δAν = δaµ (∂µAν − ∂νAµ) .

Using the previously obtained result

∂L
∂(∂µAν)

= − 1
4π
Fµν

we get

Tµν =
1

4π

[
FµσF ν

σ +
1
4
gµνFαβF

αβ

]
with

∂µT
µν = 0

as long as jµ = 0. Of course the definition of Tµν is valid also without this
assumption. In that case we can calculate the divergence of the tensor with the
help of Maxwell’s equations as (exercise)

∂µT
µν +

1
c
F ναjα = 0 .
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The individual components of the energy-momentum tensor can be evaluated
straightforwardly (exercise) and read

T 00 =
1

8π
{
E2 +B2

}
=: u(r, t) (8.22a)

T 0i =
1

4π
[E ×B]i =: cPi(r, t) (8.22b)

T i0 = − 1
4π

[E ×B]i =: −1
c
Si(r, t) (8.22c)

T ik = − 1
4π

[
EkEi +BkBi − 1

2
δik
(
E2 +B2

)]
. (8.22d)

The notations on the right hand sides show the physical meaning of the com-
ponents: The first is the energy density u(r, t) of the fields, the quantity P =
(P1, P2, P3) is interpreted as momentum density. The vector S is the energy
flux density and called Poynting vector. The space-space components build
Maxwell’s stress tensor.
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The second fundamental classical field theory besides Maxwell’s theory of
electromagnetism is Einstein’s theory of gravitation or general relativity. In
this theory, the fields are related to the geometric structure of space and time.
We will see, that gravitation is a consequence of a deviation from the flat space-
time structure of special relativity or Minkowski metric. However, before we
can discuss the basic principles of general relativity and go through simple
applications of the theory, we have to introduce some mathematical concepts
and notations from differential geometry, that allow us to deal with curved man-
ifolds.

9.1 Exterior Forms on Rn

This chapter is meant to give you a glimpse “behind the curtains” of the math-
ematical basis of field theories, especial their coordinate-free formulation. As
usual it is not meant to be complete in any sense, in particular not in any math-
ematical.
Let us consider a smooth manifold M . This can, on the one hand, be a simple,
flatRn; on the other hand, we can also think of the surface of a n-dimensional
sphere. For the former, it is obviously possible to introduce one global coordi-
nate system or chart and express all physical quantities in terms of this coor-
dinate frame. The latter, however, does not permit such a global coordinate
system. As we move along the surface of the sphere, the directions of the
coordinate vectors will have to change, too, and we will have to deal with lo-
cal charts and the description of physical objects like the components of fields
will have to be adapted to the changed coordinate frames. On the other hand,
physics and the quantities necessary to describe them should not depend on
a particular choice of a coordinate system. It is the aim of differential geom-
etry to introduce concepts that allow to express physical quantities in curved
manifolds in a coordinate-free notation.
At a given point x ∈M , we can define the tangential space TxM to M in x and
a mapping

1
ω: TxM −→ R , v 7→ 1

ω (v)

We will call
1
ω an exterior one-form. A particularly important example is the

total differential df of a smooth function f , which acts on a vector v ∈ TxM as

df(v) =
n∑
i=1

vi∂if ≡ v(f)

and simply yields the derivative of f in x along the direction of v. Note that we
used upper indices for the components of the field v, but lower indices for the
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partial derivatives. In the last step we made use of the fact, that the tangential
space at a point x ∈M can be represented via the directional derivatives (think
of the Taylor expansion). One can thus write in a short-hand way

v =
n∑
i=1

vi∂i

and consider {∂i} as basis of the tangential space in point x. Thus, any smooth
vector field V on M can be decomposed as

V =
n∑
i=1

vi(x)∂i

with smooth component functions vi(x).
Obviously, the coordinates xi are smooth functions themselves and the differ-
entials dxi are exterior one-forms one calls basis one-forms. The set {dxi} is
dual to the basis {∂i} and

dxi(∂k) = ∂k(xi) = δik

and one can expand every exterior one-form with respect to this basis, i.e.

1
ω=

n∑
i=1

ωidx
i , ωi(x) =

1
ω (∂i) .

For an arbitrary, smooth vector field we then have

1
ω (V ) =

n∑
i=1

V i(x)ωi(x) .

Let us define the following wedge product for exterior forms by stating it for the
basis forms: (

dxi ∧ dxj) (v, w) := viwj − vjwi

where v, w ∈ TxM arbitrary. The wedge product is antisymmetric, i.e. dxi ∧
dxj = −dxj ∧ dxi, and obviously a generalization of the cross-product for R3

(exercise). It can be generalized to an arbitrary number of factors. For example
for a 3-dimensional manifold we obtain

(dxi ∧ dxj ∧ dxk)(u, v, w) = det

 ui vi wi

uj vj wj

uk vk wk


The products dxi ∧ dxj form a basis for smooth exterior two-forms

2
ω=

∑
i<j

ωij(x)dxi ∧ dxj .
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and so on. For some k > 0 one can thus generate
(
n
k

)
basis k-forms dxi1∧dxi2∧

· · · ∧ dxik and define corresponding k-forms

k
ω=

∑
i1<...<ik

ωi1...ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

These k-forms are also called covariant tensor fields of rank k, and the associ-
ated space is labeled Λk(M). The dimensions are

dimΛk(M) =
(
n

k

)
.

Let us now define a mapping

d : Λk(M) −→ Λk+1(M) ,
k
ω→ d

k
ω .

For a smooth function, d is simply the total differential

f → df =
∑
i

∂ifdx
i

Applying d to the wedge product of two forms can be evaluated via the Leibniz
rule:

d(
r
ω ∧ s

ω) = (d
r
ω)∧ s

ω +(−1)r
r
ω ∧(d

s
ω) .

Finally, an explicit representation of d
k
ω is given by

d
k
ω=

∑
j

∑
i1<...<ik

∂ωi1...ik(x)
∂dxj

dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

We call d the exterior differential. An interesting property is that d ◦ d = 0.
Obviously, the spaces Λk and Λn−k have the same dimension and are thus
isomorphic. We can now define a map

? : Λk −→ Λn−k , ω 7→ ?ω

(Hodge’s star operator). If we have an oriented basis {ei} it follows

(?ω)(eik+1
, . . . , ein) = εi1...ikik+1...inω(ei1 , . . . , eik)

where ε... is Levi-Civita symbol extended to n indices. In particular for n = 3
we have:

?dxi =
1
2

∑
j,k

εijkdx
j ∧ dxk ,

?
(
dxi ∧ dxj) = εijkdx

k ,

?
(
dxi ∧ dxj ∧ dxk

)
= 1 .
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For general n the relation

?(?ω) = (−1)k(n−k)ω

holds.
Finally, we may combine the exterior differential with the star operation into

δ := (−1)n(k+1)+1 ? d? , ∆LdR := d ◦ δ + δ ◦ d .

The left operator, which is called codifferential, is to some extent the opposite
to d, because it is a mapping δ : Λk −→ Λk−1. In particular, its application to
a function f ∈ Λ0(M) yields δf = 0. The second operator is called Laplace-
de-Rahm operator and does not change k. Applied to a function f ∈ Λ0(M) it
reduces to the usual Laplace operator (exercise).

9.2 Maxwell’s equation in coordinate free notation

As a first example let us now consider the application of the formalism devel-
oped above to Maxwell’s theory.

9.2.1 Field-strength tensor and Lorentz force

If we now denote with dxµ the basis one-forms in Minkowski space, our field-
strength tensor Fµν(x) becomes a 2-form

2
ωF=

1
2
Fµνdx

µ ∧ dxν

where we had to introduce the factor 1/2 to allow the use of the sum conven-
tion (taking into account that both Fµν and dxµ ∧ dxν are antisymmetric). If
we take into account that Fµν differs from Fµν in (7.68) only by the sign in the
time-space components (i.e. Ei → −Ei), we may write this as

2
ωF= dx0 ∧ [E1dx

1 + E2dx
2 + E3dx

3
]− [B3dx

1 ∧ dx2 +B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1
]

= dx0∧ 1
ωE − 2

ωB .

In Minkowski space, both electric and magnetic field become 2-forms, conve-
niently written as

2
ωE :=

3∑
i=1

Ei(r, t)dx0 ∧ dxi (9.1a)

2
ωB :=

1
2

∑
ijk

εijkBi(r, t)dxj ∧ dxk (9.1b)
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If we apply
2
ωF only to one vector field, say uµ, we find

2
ωF (u, ·) = Kµ(x)dxµ , Kµ(x) =

q

c
Fµν(x)uν ,

i.e. the Lorentz force (appearing as one-form here).

9.2.2 Maxwell’s equations

Before we can write down Maxwell’s equation, we have to find the properties
of Hodge’s ? operator. This is somewhat subtle, because in contrast to normal
R4, Minkowski space has the metric gµν . The result is as follows (summation
convention!):

? dxµ =
1
3!
gµλελνστdx

ν ∧ dxσ ∧ dxτ , (9.2a)

? (dxµ ∧ dxν) =
1
2!
gµλgνρελρστdx

σ ∧ dxτ , (9.2b)

? (dxµ ∧ dν ∧ dxσ) = gµλgνρgσηελνητdx
τ , (9.2c)

?
(
dx0 ∧ d1 ∧ dx2 ∧ dx3

)
= det(g) = −1 . (9.2d)

After these considerations we can write down Maxwell’s equations using the

exterior 2-form
2
ωF , and the 1-form

1
ωj= jµ(x)dxµ as

d
2
ωF= 0 (homogeneous equations) (9.3a)

δ
2
ωF=

4π
c

1
ωj (inhomogeneous equations) (9.3b)

Like d ◦ d = 0, one also has δ ◦ δ = 0. Thus applying δ to (9.3b) a second time
yields

δ
1
ωj= 0 , (9.4)

which, when translated into functions, is the continuity equation.

Although it is obviously a nice mental gymnastic to invent new nomenclatures
to make formulas look even more compact (and unreadable to the uninitial-
ized), the obvious question is: Does it do any good? The answer is, of course,
yes. Note that Maxwell’s equation in the form (9.3a) and (9.3b) are written
without any reference to a particular coordinate system, but in a calculus re-
specting the Minkowski metric. Thus, they are manifestly Lorentz covariant. Sec-
ond, the above calculus is still valid if one leaves the realm of a flat metric and
enters general relativity with curved time-space manifolds. The representa-
tion of the forms, basis etc. by actual functions becomes in fact much more
cumbersome, the structure of the equations, however, remains.
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9.2.3 Vector potential and covariant derivative

With the vector potential Aν(x) we can build a 1-form

1
ωA:= Aµ(x)dxµ

with derivative

d
1
ωA= dAν(x) ∧ dxν = ∂µAν(x)dxµ ∧ dxν .

The right hand side tells us that

2
ωF= d

1
ωA .

Note that the above relation implies that the homogeneous Maxwell equations

are trivially fulfilled, because d
2
ωF= d ◦ d 1

ωA= 0 by virtue of d ◦ d = 0.
Furthermore, we can change

1
ωA→ 1

ωA +dχ

without changing
1
ωF , i.e. we can implement the gauge transformation in a

natural way in this language. Finally let us now apply the Laplace-de-Rahm

operator to
1
ωA:

∆LdR
1
ωA= (d ◦ δ + δ ◦ d)

1
ωA= −(d ∗ d ∗+ ∗ d ∗ d)

1
ωA= (�Aµ(x)dxµ) .

Finally, the particularly important Lorentz gauge reads in this formalism

δA = 0

Since gauge transformations seem to play a particularly important role in field
theories, we may elaborate on them a little further. First, let us define the
operator (covariant derivative)

DA := d+ i
q

~c
1
ωA

The appearance of ~ is pure convention here, necessary only to obtain the cor-
rect units, but already suggests that this will become especially interesting in
quantum mechanics. On an arbitrary exterior form, this operator acts as

DAω = dω + i
q

~c
1
ωA ∧ω

In particular for an arbitrary smooth function we have

DAf =
(
∂µf + i

q

~c
Aµf

)
dxµ
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Applied twice, we have (the calculations are straightforward and left as exer-
cise)

DA ◦DA = i
q

~c
2
ωF

This result becomes even clearer when we rename A := i q~c
1
ωA and F :=

i q~c
2
ωF to find

DA = d+A , D2
A = dA+A ∧A = dA = F (9.5)

These type of equations are well known in differential geometry: A is called
connection (form), DA = d + A is called covariant derivative and F the curvature
(form). It can be shown that F = D2

A can be interpreted as “round trip” through
a small closed path in M . Such an equation is also called structure relation.

9.3 Elements of general relativity

9.3.1 Principle of Equivalence

One particular property of gravitation or gravitational fields is, that all bod-
ies move in them in the same manner, irrespective of their mass, charge, . . .,
provided the initial conditions are the same. For example, the free fall in the
gravitational field of the earth is the same for all bodies; whatever their mass,
the acceleration is always the same.
This special property of gravitational fields can be used to establish an analogy
of the motion of a body in such a field and the motion without field, but in a
noninertial reference system: A freely moving body in a uniformly accelerated
reference system has relative to that noninertial system a constant acceleration
equal and opposite to the acceleration of the system. The same applies to a
body moving in a uniform gravitational field. As a Gedankenexperiment let
us consider the situation depicted in Fig. 9.1:

• Case 1: The rocket is placed in a part of the universe far removed from
gravitating bodies. The rocket is accelerated forward with a constant
acceleration g relative to an inertial observer. The observer releases a
body from rest and sees it fall to the floor with acceleration g.

• Case 2: The rocket motor is switched off so that the ship undergoes uni-
form motion relative to the inertial observer. A released body is found to
remain at rest relative to the observer in the ship.

• Case 3: The rocket is next placed on the surface of the earth, whose rota-
tional and orbital motions are ignored. A released body is found to fall
to the floor with acceleration g.
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Figure 9.1: The lift experiments

• Case 4: Finally, the rocket is allowed to fall freely towards the center
of the earth. A released body is found to remain at rest relative to the
observer.

Thus, motion in an uniform gravitational field is equivalent to free motion in
an uniformly accelerated noninertial reference system. This is the principle of
equivalence.

There is, however, a subtle difference. The “fields”, to which noninertial sys-
tems are equivalent, will vanish if we transform to an inertial system. This
is not possible for a “true” gravitational field produced by a mass and which
has to vanish at infinity. Fields produced by noninertial systems, on the other
hand, will stay uniform or even increase like the centrifugal acceleration as
one approaches infinity. The best one can do is to find a certain region in space
where one can consider the gravitational field as uniform and transform locally
to a suitable noninertial system where the field vanishes locally.

In an inertial reference system, the space time interval ds2 is given by

ds2 = c2dt2 − dx2 − dy2 − dz2 .

If we now transform e.g. into a uniformly rotating reference frame with

x = x′ cosωt− y′ sinωt , y = x′ sinωt+ y′ cosωt , z = z′
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the corresponding expression for ds2 is

ds2 =
[
c2 − ω(x′2 + y′2)

]
dt2 − dx′2 − dy′2 − dz′2 + 2ωy′dx′dt− 2ωx′dy′dt

Obviously it is impossible to write such an expression as sum of squares of
coordinate differentials. Thus, in a noninertial system we will have to use the
general form

ds2 = gµνdx
µdxν

where the metric tensor gµν is a function of the coordinates now and uniquely
determines the geometric properties of the space-time manifold.
Consequently, we can now interpret gravitational fields as changes of the space-
time metric leading to a metric tensor that is different from the Minkowski
form gµν = diag(1,−1,−1,−1). The geometric structure of space and time is
thus determined by physical phenomena and not an a priory given property
of space and time. Also, since gravitational fields cannot be “gauged” away
globally, there does not exist a reference frame where the metric tensor takes
on the Minkowski form; this can be achieved at most locally for a (infinitesi-
mally small) region about a given point p, where the gravitational field can be
considered as uniform. Globally, space-time will have to be considered as a
curved manifold.

9.3.2 Curves, Torsion and Curvature

To work in a curved space time manifold M , we need the concept of differen-
tiation of fields on that manifold. The definition in a flat space is to take the
difference of the field evaluated at a certain point p and its neighboring point
p + δp in a certain direction and divide by the coordinate difference δp. In R3

we then arrive at the conventional result

∇V =

 ∂1V1 ∂1V2 ∂1V3

∂2V1 ∂2V2 ∂2V3

∂3V1 ∂3V2 ∂3V3


which is a tensor field overR3.
If we try to adopt this definition to a curved manifold M, we have to account
for the change of coordinate system when picking a point p+ δp in the neigh-
borhood of p. Simply setting p → p + δp will transport a vector parallel with
respect to the local coordinate system at p. In Fig. 9.2 this situation has been visu-
alized with the dashed arrow. This is, however, not what we want, because in
this case a certain component µ of our vector in the coordinate system at p will
in general become a different component (or a linear combination of compo-
nents) relative to the coordinate system at p + dp. We rather need a definition
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p + dp
pM

1

Figure 9.2: Parallel transport in a curved manifold.

of parallel transport such that the vector at p+ dp is oriented with respect to the
local coordinate system at p+ dp as it was at p, corresponding to the full arrow in
Fig. 9.2.
As usual, we use as definition of the derivative the linear change in the vector
field V , i.e. V (p + dp) = V (p) + (DV )(p) · dp, where we denote the operation
of differentiation with D. The corresponding expression for a vector field V =
vµ∂µ becomes, according to our rules developed in the section on differential
geometry, a mixed tensor field

DV = (∂νvµ + δνv
µ) ∂µ ⊗ dxν .

The field δνv
µ, which takes into account the change of coordinate system, has

to depend on the field V in a linear way to ensure that D is a linear operation.
We can thus make the ansatz

δνv
µ = Γµνκv

κ .

The 43 functions Γκµν : M −→ R are called Christoffel symbols or connection
coefficients. The operation

DV = (∂νvµ + Γµνκv
κ) ∂µ ⊗ dxν (9.6)

thus defined is called covariant derivative or absolute derivative of V . For a certain
direction we will write1

D∂νV = (∂νvµ + Γµνκv
κ) ∂µ .

Note, that the Christoffel symbols cannot form a tensor field. In fact, if they
were a tensor field, then, because we can always assume in an infinitesimally

1In literature, the short hand notations vµ,ν for the partial derivative ∂νvµ and vµ;ν or vµ||ν
for the covariant derivative are frequently used.
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small region about a point p ∈M a flat manifold where surely Γ = 0, then due
to the properties of a tensor under coordinate transformations we must have
Γ = 0 in M and consequently M must be globally flat.

The formula (9.6) can easily be extended to tensor fields taking into account
that a tensor field Tµν has to transform like the tensor product AµBν of two
vector fields. One then arrives at

DT =
(
∂κT

µν + ΓµλκT
λν + ΓνλκT

µλ
)
∂µ ⊗ ∂ν ⊗ dxκ

as expression for the covariant derivative of a contravariant tensor field.

The most important tensor field is the metric tensor, because it directly deter-
mines the geometric properties of space-time. Let us therefore try to find out,
what we can say about Dg. To this end let us note that, as for any 4-vector,

Aµ = gµλAλ .

Obviously, this is also true for the µ-th component of DA, i.e.

(DA)µ = gµλ(DA)λ .

However, from the first relation we obtain

(DA)µ = gµλ(DA)λ + (Dg)µλAλ .

Thus, the metric tensor gµν has to satisfy2

Dg = 0 , (9.7)

which leads to the explicit expression

Γλµν =
1
2
gλκ (∂νgκµ + ∂µgκν − ∂κgµν) (9.8)

for the Christoffel symbols (exercise).

Next, we must define what motion in a curved space-time manifold means. To
that end, let us denote with

γ : R −→M , τ 7→ γ(τ)

a curve in M with a curve parameter τ (for example the proper time) and
with V a smooth vector field (defined at least in an open neighborhood of γ).
One calls the vectorfield Dγ̇V the covariant derivative along γ or total derivative,

2This is also called Riemannian or Levi-Civita connection.
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denoted also as DV/dτ . With V = vµ∂µ and γ̇ = dxµ

dτ ∂µ the representation of
Dγ̇V in terms of coordinates is

Dγ̇V =
(
dvκ

dτ
+ Γκµν

dxµ

dτ
vν
)
∂κ .

One calls V to be autoparallel along γ if

Dγ̇V = 0

holds. A special application involves the field γ̇ (which belongs to the tangent
space at each point x(τ) and is thus a valid vector field). If we have

Dγ̇ γ̇ = 0 ⇔ ẍκ + Γκµν ẋ
µẋν = 0 (9.9)

we may say that along γ the “velocity” γ̇ is constant. Therefore such a curve γ
is called a geodesic.
Let us discuss the formula (9.9) from a different point of view. Remember, that
in special relativity the equation of motion for a free particle was given by

duµ

dτ
=
d2xµ

dτ2
= 0 .

Obviously, for a covariant description in a curved space-time we have to use
the replacement

duκ

dτ
→ Duκ

dτ
=
d2xκ

dτ2
+ Γκµν

dxµ

dτ

dxν

dτ

and thus the geodesic can be viewed to describe the free motion of a body. Fur-
thermore, denoting bymẍµ the 4-acceleration, we can interpret−mΓκµν ẋ

µẋν as
“force field” arising from the curvature of space-time, the gravitational field.
Note that we now can identify the metric tensor as “potential of the gravi-
tational field” and the Christoffel symbols as “field intensities” determined
by the derivatives of the “potentials”. Thus, the equation Duκ/dτ = 0 of a
geodesic can be regarded as the generalization of the law of inertia in the pres-
ence of a curvature in space-time, which we will call gravitational field in the fol-
lowing. It has also become unnecessary to introduce two different “masses”
(heavy and inert ones), eliminating a certain element of “magic” from New-
ton’s theory, where one has to postulate their equivalence a posteriori.
How can we quantify the deviation of our manifold M from a flat metric? A
possible way is to consider parallel transport from a starting point x to a final
point x + dx + dx̄ along different, infinitesimal paths. Such a construction for
a general vector V is shown in Fig. 9.3. Going through the algebra, the change
of vµ(x) along the two different paths is found to be

∆vµ = −Rµρσνvρ(x)dx̄νdxσ .
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x x + dx

x + dx̄ x + dx + dx̄M
V

V + (DV )dx

V + (DV )dx+
(D̄V )dx̄+
(D̄DV )dxdx̄

V + (D̄V )dx̄
+(DV )dx+
(DD̄V )dx̄dx

V + (D̄V )dx̄M

1

Figure 9.3: Parallel transport along a closed, infinitesimal path.

The quantity R appearing on the right hand side directly determines the devi-
ation ofM from a flat manifold and is called curvature tensor

R =
1
3!
Rµνκλdx

ν ∧ dxκ ∧ dxλ ⊗ ∂µ

Rµνκλ = ∂κΓµλν − ∂λΓµκν + ΓσλνΓµµσ − ΓσµνΓµλσ .

In terms of the curvature form

Ωµ
ν :=

1
2
Rµνκλdx

κ ∧ dxλ (9.10)

and the connection form
ωµν := Γµκνdx

κ . (9.11)

it can be represented as
Ωµ
ν = dωµν + ωµκ ∧ ωκν .

Comparing this equation with expression (9.5), we see that the curvature form
Ωµ
ν plays a role similar to the field tensor in Maxwell’s theory. Furthermore,

the potentials Aµ(x) there are replaced by the Christoffel symbols. Note that
there exists a very important difference: The potential in Maxwell’s theory is a
scalar function, i.e. ωA ∧ ωA = 0. In general relativity, however, the potentials
are matrices which in general do not commute, hence ωΓ ∧ ωΓ 6= 0.



9.3. ELEMENTS OF GENERAL RELATIVITY 157

That curvature and curvature tensor deserve these names can be seen from the
theorems

A pseudo-Riemannian space is locally flat iff the curvature3 vanishes.

and

Parallel transport is independent of the path iff the curvature tensor van-
ishes.

Note that both theorems state equivalences. In particular, one can always
achieve that for a space locally flat in a given point4 p the Christoffel symbols
vanish (Γµνκ(p) = 0). These systems we will call local inertial systems.
There exist a lot more interesting theorems and relations on space-time struc-
ture (or differential forms, if you like the mathematical perspective more),
which can fill a lecture on its own. Those concepts presented up to now are
however sufficient to grasp the basic ideas behind general theory of relativity.

9.3.3 The Newtonian Limit

Let us now consider the limit of a slowly moving particle in a weak gravi-
tational field. The latter means, that we may introduce a coordinate system
which is nearly Lorentzian, i.e.

gµν = ηµν + hµν , |hµν | � 1 , ηµν = diag(1,−1,−1,−1) .

For a slowly moving particle we furthermore have dx0/dτ ≈ c, i.e. |dxi/dτ | �
1. One then obtains

d2xi

dt2
≈ d2xi

dτ2
= −Γiαβ

dxα

dτ

dxβ

dτ
≈ −c2Γi00 (9.12)

and
Γi00 ≈

1
2

(∂ih00 − ∂0h0i) .

We now make the further assumption that the gravitational field is stationary,
i.e. ignore the second term, and arrive at

d2x

dt2
= −c

2

2
∇h00 ,

which coincides with the Newtonian equation of motion if h00 = 2Φ/c2 or
equivalently

g00 ≈ 1 +
2
c2

Φ .

3Since there exist other connections one must in fact state here: “of the Riemannian connec-
tion”.

4plus within an open region, of course
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This looks very appealing, but what is Φ? Obviously, we are still lacking an
important ingredient to our theory, viz a relation that actually determines the
metric tensor.

9.3.4 Einstein’s field equations

In electrodynamics, the physical fields (or gauge fields) were determined by
Maxwell’s equations, which represent the field equations of that theory. These
equations were determined from experiment. A similar approach will be used
here. If our theory shall make sense at all, we have to obey certain conserva-
tion laws and limiting cases. One limiting case obviously is Newton’s law of
gravity, which means that the field Φ has to fulfill

∆Φ = 4πG%

for a given mass density %. Since we assume static mass distributions (i.e.
work in the non-relativistic limit), the mass density is equivalent to the energy
density, which in turn is related to T00 of the energy-momentum tensor

T00 ≈ c2% .

Hence,

∆g00 ≈ 2
c2

∆Φ ≈ 8π
c2
G% ⇔ ∆g00 ≈ 8πG

c4
T00 .

Now consider the following contraction

Rµν := Rκµκν = ∂κΓκµν − ∂νΓκκµ + ΓσνµΓκκσ − ΓσκµΓκνσ

of the curvature tensor, called Ricci tensor. Within the Newtonian limit, gµν ≈
ηµν+hµν with |hµν | � 1 time independent. The Christoffel symbols are related
to gµν and thus hµν via (9.8). Ignoring terms quadratic in h, we may write

Rµν ≈ ∂κΓκµν − ∂νΓκκµ .

Since the fields are static, we especially have

R00 ≈ ∂lΓl00

and, since for the same reasons Γl00 ≈ ∂lg00/2 we find

R00 ≈ ∆g00 ≈ 4πG
c4

T00 .

This relation suggests that a general ansatz for the field equations might be

Rµν =
4πG
c4

Tµν ,
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where Tµν is the energy-momentum tensor of the field theory. However, this
ansatz would violate the conservation law

(DT )µν = ∂νT
µν + ΓµνλT

λν + ΓννλT
µλ = 0

for energy, momentum and angular momentum density. Note, that in this
equation the simple partial derivative had to be replaced by the covariant
derivative to make the equation manifestly covariant. The correct form can
be however obtained by requiring these conversation laws, leading to

Rµν − 1
2
gµνRκκ =

8πG
c4

Tµν . (9.13)

These are Einstein’s field equations. Note that these equations are nonlinear,
partial differential equations even in vacuum, because the curvature tensor de-
pends quadratically on the fields (Christoffel symbols). Evidently, this feature
of general relativity means that solving these equations, even numerically, is
extremely cumbersome.
A remarkable fact is that for four dimensional space-time one can prove the
following statement:

The most general tensorDµν(g) satisfying (i)Dµν(g) = Tµν and (DD)µν =
0 (required by conservation laws) is given by

Dµν(g) =
1
κ
Gµν +

Λ
κ
gµν

with
Gµν := Rµν − 1

2
gµνRλλ

the so-called Einstein tensor.

Note that the whole theory leaves only two additional constants κ and Λ open!
By comparing this expression with the Newtonian limit, we see that κ =
8πG/c4. The quantity Λ is called cosmological constant and would imply the
existence of a homogeneous mass distribution in addition to the “physical”
masses. While conventionally one assumed Λ = 0, recent discoveries of a de-
celeration of the expansion of our universe raised the question, whether one
indeed has to consider Λ 6= 0 to account for this effect (“dark energy”).

9.3.5 Linearized Theory of Gravity

As before, we consider the case, that our system is – at least in a certain space-
time region – nearly flat. Thus, a coordinate system exists for which

gµν = ηµν + hµν , |hµν | � 1 .
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For example, for our solar system we have |hµν | ∼ |Φ|/c2 ∼ GM�/c2R� ∼
10−6. However, the gravitational fields may vary with time now.
For such fields, we expand the field equations in powers of hµν and keep only
the linear terms. The Ricci tensor is then given by

Rµν = ∂λΓλµν − ∂νΓλλµ

with
Γαµν =

1
2
(
∂νh

α
µ + ∂µh

α
ν − ∂αhµν

)
where we used the convention that indices are raised and lowered with ηµν

and ηµν , respectively. For the Ricci tensor we then obtain

Rµν =
1
2

[
∂ν∂λh

λ
µ�hµν − ∂µ∂νhλλ + ∂µ∂λh

λ
ν

]
.

Inserting this into the field equations5 Gµν = 8πGTµν one arrives at

�hµν + ∂µ∂νh
λ
λ− ∂µ∂λhλµ− ∂ν∂λhλν − ηµν�hλλ + ηµν∂λ∂σh

λσ = −16πGTµν .

As one can show by direct computation, these field equations require ∂νTµν =
0, which means that the sources that produce the field do not feel a back reac-
tion of this field.
It is now useful to introduce the quantity

γµν := hµν − 1
2
ηµνh ,

where h := hλλ. In terms of γµν , the field equations read

−�γµν − ηµν∂α∂βγαβ + ∂α∂νγµα + ∂α∂µγνα = 16πGTµν .

An important observation now is that, as in Maxwell’s theory, there exist gauge
transformations which leave the linearized Einstein tensor invariant. These
transformations are of the form

hµν → hµν + ∂νξµ + ∂µξν

with an arbitrary vector field ξµ. The gauge invariance means, that we can
always find a gauge, such that (Hilbert gauge)

∂βγ
αβ = 0 (9.14)

(proof as exercise) and the field equations reduce to the simple form

�γµν = −16πGTµν .

5In the following we set c = 1 for convenience.
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As we have learned in section 7.5.3, the solution of these equations can be
found by using the Green function. Since we again have to deal with the
D’Alembert operator, we already know the solution, which is given by Eq. (7.55).
Thus, we may write

γµν(x) = −4G
∫
Tµν(x0 − |r − r′|, r′)

|r − r′| d3r′+solution of the homogeneous equation.

(9.15)
Within our linearized theory, we thus have found that the field consists of two
terms, the first being created by the sources (i.e. our sun), while the second
represents gravitational waves traveling with the speed of light.
To be able to proceed further, let us now consider nearly Newtonian sources,
for which

T00 � |T0j |, |Tij |
holds. If we further assume small velocities, we may also neglect retardation
effects in (9.15) to obtain

γ00 = 4Φ , γ0j = γij = 0

with
Φ = −G

∫
T00(ct, r′)
|r − r′| d

3r′ . (9.16)

For the metric we obtain with hµν = γµν − 1
2ηµνγ

λ
λ

g00 = 1 + 2Φ , g0i = 0 , gij = −(1− 2Φ)δij .

At large distances r � r′ from the sources, we can perform a multipole expan-
sion for (9.16) and keep only the monopole contribution, observe that T00 ≈ %,
use a static mass density and finally obtain

g00 = 1− 2
GM

r
, g0i = 0 , gij = −(1 + 2

GM

r
)δij . (9.17)

The first term is what we have already found in the beginning of our tour
through general relativity. The additional changes of the space components
of the metric tensor give already rise to observable effects. Let us consider as
an example the behavior of a massless particle (e.g. light) passing a mass (e.g.
the sun). Since massless particles travel with the speed of light, i.e. their world
lines are light-like, all vectors have to fulfill aµaµ = 0. In particular, the energy-
momentum relation now reads E = p (c = 1) or E2 = p2. Although the world
lines cannot be parametrized by the proper time any more (since ds2 = 0), one
can still find a curve parameter, say λ, and fromE2 = p2 we infer the covariant
relation

gµν
dxµ

dλ

dxν

dλ
= 0 .
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For a free particle, the Lagrangian is given by the covariant expression6

L = gµν
dxµ

dλ

dxν

dλ

which here implies L = 0.
For the further discussion it is helpful to use spherical coordinates. For that
purpose we can write the metric tensor (9.17) as exterior form as

g = (1− 2
GM

r
)dx0 ⊗ dx0 − (1 + 2

GM

r
)(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) .

Using the basis vectors dr, rdθ and r sin θdφ the metric tensor for spherical
coordinates becomes

g = (1−2
GM

r
)dx0⊗dx0−(1+2

GM

r
)
(
dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdφ⊗ dφ)

)
.

With this result we find for the Lagrangian (α := GM )

L = (1− 2
α

r
)(ẋ0)2 − (1 + 2

α

r
)
(
ṙ2 + r2(θ̇2 + sin2 θφ̇2)

)
.

Note that as in Newtonian mechanics φ is cyclic, i.e.

φ̇ =
l

r2 sin2 θ(1 + 2αr )

is a constant of motion. Furthermore, for θ we obtain the equation (r2θ̇)˙ =
r2 sin θ cos θφ̇2 which means that if we choose θ = π/2 initially, θ̇ = 0 holds and
the motion is confined to the equitorial plane. The second cyclic coordinate,
x0, leads to the conservation of the quantity ẋ0(1− 2α/r) =: E, which we may
identify as energy. Finally, we are left with the equation

(1− 2
α

r
)−1E2 − (1 + 2

α

r
)ṙ2 − l2

r2(1 + 2αr )
= 0

to determine r(φ), for example. With r′ = dr
dφ = ṙ/φ̇ and the new variable

u = 1/r we have

ṙ2 = (r′)2 l2

r4(1 + 2αr )2
= (u′)2 l2

(1 + 2αu)2

and finally
E2

l2
1 + 2αu
1− 2αu

− u′2 − u2 = 0 .

6We actually use L2 here, which however does not make any difference as long as we are
interested in the Euler-Lagrange equations only.
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Within our linearized theory we must, for consistency, neglect terms α2/r2 and
obtain as equation for the orbit

u′2 + u2 =
E2

l2
(1 + 4αu) . (9.18)

Since αu is typically very small, we can solve this equation by iteration. Ignor-
ing the second term on the right hand side, we have with R = l/E

u′2 + u2 =
1
R2

,

with the solution

u(φ) =
sinφ
R

.

Inserting x = r cosφ, y = r sinφ one obtains (u = 1/r)

R = r sinφ = y ,

i.e. the curve is a straight line parallel to the x-axis at distance R.
For the full solution we make the ansatz u = R−1 sinφ + a and obtain from
(9.18)

cosφ
R2

+
(

sinφ
R

+ a

)2

=
1
R2

+
4α
R2

(
sinφ
R

+ a

)
or

2
(
a− 2α

R2

)
sinφ+ a

(
aR− 4α

R

)
= 0 .

This latter equation can be solved for a by iteration with the result

a =
2α
R2

+O

(
α2

R4

)
,

and hence

u(φ) ≈ sinφ
R

+
2α
R2

.

Let me now replace x = r cosφ, y = r sinφ as before. We then find

R = y +
2α
R

√
x2 + y2 ,

which describes a hyperbola. The asymptotes are obtained for x → ∞ as (see
Fig. 9.4)

y = R± 2α
R
x

and the angle between these asymptotes and the line y = R, φ∞, becomes∣∣∣∣dydx
∣∣∣∣ = | tanφ∞| ≈ |φ∞| = 2α

R
.
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x

y

S

R
φ∞φ∞

1

Figure 9.4: Schematic representation of the solution u(φ).

Thus the total angle of deflection for light by a mass M is given by

δ = 2|φ∞| ≈ 4MG

Rc2
≈ 1.75′′

R�
R

in case of the sun. This prediction by general relativity has been confirmed by
observation pretty soon after it has been made during a total eclipse of the sun
in March 1919.
A similar calculation can be done for a massive particle, where the Lagrangian
is

L = gµν
dxµ

dτ

dxν

dτ
= 1

with proper time τ . Within this theory, one can for example discuss the ad-
vance of the perihelion of a bound orbit. It turns however out, that the result
obtained is slightly too large in comparison with a more refined theory due to
the neglect of nonlinear contributions to the metric.
Without external sources the linearized theory in Hilbert gauge leads to the
field equations

�γµν = 0 . (9.19)

Even within the Hilbert gauge, one still has the freedom to choose the gauge
such that in addition γλλ = 0 (exercise). As in Maxwell’s theory, the most
general solutions can be represented as plane waves

hµν = <e
{
εµνe

−ikαxα
}

with k2 := kαk
α = 0 from the wave equation (9.19), kµε

µ
ν = 0 from the Hilbert

gauge (9.14) and εµµ = 0 from the additional gauge condition γλλ = 0. Further
analyzing the properties of the polarization tensor εµν , one can show, that – as
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for vacuum light waves – there exist only two independent polarization states.
One finds that for the gravitational waves under consideration here the helicity
is ±2 instead of ±1 for electromagnetic waves. In a quantized theory, one calls
the normal modes of gravitational waves gravitons and from the helicity can
conclude that they carry a spin S = 2.
Treating the generation of waves by sources as in Maxwell’s theory, one finds
again similar structures. In contrast to electrodynamics, were the dominant
contribution is dipole radiation, gravitational radiation is generated from the
quadrupolar terms in the source distribution. Thus, it is in general weaker and
the decay will be much faster.

9.3.6 Beyond the linear approximation

The linearized theory of the previous section already showed the power of
the theory of general relativity even within the linear approximation. To go
beyond this linear theory, one typically has to “guess” a certain form of the
metric and then determine the parameters by solving Einstein’s field equations
(9.13). The best known among these solutions is the Schwarzschild metric,
which is given by

g = (1− 2
GM

c2r
)dx0 ⊗ dx0 − 1

1− 2GM
c2r

dr ⊗ dr − r2
(
dθ ⊗ dθ + sin2 θdφ⊗ dφ) ,

(9.20)
which describes the gravitational field outside of a nonrotating and radial sym-
metric mass distribution. The Schwarzschild metric (9.20) seems to have a se-
rious defect, i.e. a divergence at the Schwarzschild radius

RS := 2
GM

c2
.

The problem comes about by the assumption of a static metric. It turns out,
that this cannot be true any longer for r < RS . In fact, the radius RS marks the
distance from the mass distribution where a light pulse takes infinitely long to
reach an observer at r > RS (event horizon). Light and particles at r < RS are
captured inside the event horizon. Note that for this to become possible it is
required that the mass is concentrated within RS . In such a case one speaks of
a black hole. A very nice discussion of this issue can be found in the book by
H. Goenner [12].
Let us now briefly discuss the geodesics of the Schwarzschild metric. These
can be obtained from the Lagrangian

L̃ =
(

1− RS
r

)
c2ṫ2 −

(
1− RS

r

)−1

ṙ2 − r2
(
θ̇2 + sin2 θ φ̇2

)
= ε ,
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where ε = c2 for massive particles and ε = 0 for light. The dot means differ-
entiation with respect to the curve parameter (for example the proper time in
case of massive particles).
As before, we have two cyclic variables, t and φ with integrals of motion(

1− RS
r

)
ṫ =

e

c

sin2 θ r2φ̇ = l .

Moreover, from the Euler-Lagrange equation

−r2 sin θ cos θ φ̇2 + (r2θ̇)̇ = 0

follows for the initial condition θ(0) = π/2 that θ̇ = 0, i.e. the motion is re-
stricted to the equitorial plane as before. Finally, for r we obtain the equation

ṙ2 = e2 −
(

1− RS
r

)(
ε+

l2

r2

)
. (9.21)

Setting ε = 0 in (9.21), we can again deduce the result for the deflection of light;
with ε = c2 we could, for example calculate the advance of the perihelion of
mercury.
A different way to discuss the possible trajectories without calculations can be
obtained by rewriting (9.21) as

ṙ2 + Veff (r) = e2 , (9.22)

where I introduced an effective potential

Veff = c2

(
1− RS

r

)(
1 +

l2

c2R2
S

R2
S

r2

)
. (9.23)

The effective potential has extrema at the points

ρ± = a2

(
1±

√
1− 3

a2

)
,

where ρ = r/RS and a2 = l2/(c2R2
S). Note that real extremal points exist only

for a ≥ √3, i.e. a minimal value of l. Further analysis shows that ρ− is a max-
imum and ρ+ a minimum. The form of Veff is shown in Fig. 9.5. In contrast
to Newton’s law of gravitation, one has in total four different types of trajec-
tories: Trajectory a directly leads into the center of the source of gravitation;
this type of trajectory does not exist in Newtonian theory of gravity. Similarly,
trajectory b hits the (instable) extremal point and corresponds to a trajectory,
where the perihelion is never reached but circles infinitely many times. Trajec-
tories c and d correspond to the “classical” hyperbolas and elliptic trajectories
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1

Figure 9.5: Schematic representation of Veff in Eq. 9.23 for a massive particle.

also present in Newtonian theory. However, here the perihelion (or aphelia) is
not fixed but moves in time, as observed e.g. for mercury.
A nice Java applet showing these features can be found at

http://www.fourmilab.ch/gravitation/orbits.

There are a lot more interesting further effects emerging in general relativity.
These things go unfortunately far beyond the scope of this lecture, but can for
example be found in Ref. [12].

http://www.fourmilab.ch/gravitation/orbits
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10.1 Quantum Particles in Classical Electromagnetic Fields:
Gauge Invariance

We have stressed repeatedly that the Maxwell theory is only part of a consis-
tent theory of electromagnetic fields and charged matter. The charge density
and current density, which enter Maxwell’s equations have to be given, before
the electric and magnetic fields can be calculated. To set up a consistent and
self-contained theory of charged matter we also need a Lagrangian describing
the dynamics of matter and the coupling of matter to electromagnetic fields.

We start with a non-relativistic example, which will help us to grasp a beautiful
idea about the connection of symmetry and interactions, which is the basis of all
modern theories of fundamental interactions. We consider (non-relativistic)
quantum particles and treat the electromagnetic fields as non-quantized. The
example is not entirely academic. There are important practical applications,
where the electromagnetic fields are “macroscopic” and need not be quan-
tized, for example in “accelerator physics”. For us, this example is a perfect
setting for extending the Maxwell Lagrangian by a matter field, which gives
rise to electric charges and currents.

Schrödinger’s equation for a free particle is the stationary condition of an ac-
tion with Lagrangian density

LS =
i~
2

[ψ∗(∂tψ)− (∂tψ∗)ψ]− ~2

2m
|∇ψ|2

This Lagrange density has an obvious symmetry, which you already know
from quantum mechanics: the wave function ψ can be multiplied by a constant
phase

ψ(r, t) = eiαψ(r, t)

Note that these transformations form a continuous group (under multiplica-
tion). The group of all unitary n × n matrices U is called U(n) and the phase
factor multiplication corresponds to the special case n = 1. Therefore we state
that 1-particle non-relativistic quantum mechanics has a U(1) symmetry. In
the following section we will introduce some important concepts on continu-
ous groups.

Noether’s theorem tells us, that there is a conserved 4-current given by Eq. (8.20),
which for the present example leads to

jµ =
∂L

∂(∂µψ∗)
(−iψ∗) +

∂L
∂(∂µψ)

(iψ)
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as a conserved quantity as a consequence of U(1) symmetry. Using

∂L
∂(∂tψ)

=
i~
2
ψ∗ (10.1a)

∂L
∇ψ =

−~2

2m
∇ψ∗ (10.1b)

and the corresponding relations for the complex conjugate field ψ∗ we get a
4-vector1

jµ = −~
(
c|ψ|2, ~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

)
consisting of the well known probability density and current density of ele-
mentary quantum mechanics and obeying the continuity equation

∂µj
µ = −~

(
∂t|ψ|2 +∇

[
~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

])
= 0

If the quantum particle carries a charge q and moves in an electromagnetic
field, described by the 4-potential (φ,A) you know that Schrödinger’s equa-
tion is changed to

i~∂tψ =
1

2m
[−i~∇− q

c
A]2ψ + qφψ

and the corresponding Lagrange density is

LS =
i~
2

[ψ∗(∂tψ)− (∂tψ∗)ψ]− 1
2m
|(−i~∇− q

c
A)ψ|2 − qφ|ψ|2

Adding the Maxwell Lagrange density

LM = − 1
16π

FµνF
µν

we have a complete semi-classical theory L = LS + LM of charged quantum
particles in classical electromagnetic fields. A gauge transformation

φ′ = φ− 1
c
∂tχ

A′ = A+∇χ

leads to changes in L, which may be written in form of a 4-divergence of the
current.
Now we come to a remarkable point. The combined Lagrange density has a
much higher symmetry than its parts, if we combine gauge transformations of

1For the derivation remember that ∂µ = ( 1
c
∂t,∇) (Eq. (6.7))!
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the 4-potential with smooth, space-time dependent phase factors, multiplying the
wave function

ψ′(r, t) = eiα(r,t)ψ(r, t)

Under such transformations the derivatives of the wave function transform as
follows:

∂tψ
′ = eiα(r,t)

{
∂t + i(∂tα)

}
ψ

∇ψ′ = eiα(r,t)
{
∇+ i(∇α)

}
ψ

Thus LS is changed under the space-time dependent phase factors, which are
not symmetry transformations by themselves. However, it easy to check, that
these changes may be compensated by an appropriate gauge transformation
of the 4-potential. The time derivatives in LS produce an extra term

δ1L = −~(∂tα)|ψ|2

whereas a gauge transformation of the scalar potential produces an extra term

δ2L =
q

c
(∂tχ)|ψ|2

Thus, choosing
α =

q

~c
χ

leads to δ1L+ δ2L = 0. In the terms with spatial derivatives we get additional
terms

[−i~∇− (q/c)A′]ψ′ = eiα[−i~∇− (q/c)A+ ~(∇α)− (q/c)(∇χ)]ψ

which also compensate each other exactly. So, surprisingly, the complete the-
ory is invariant under combined gauge transformations and space-dependent
phase factor multiplications of the wave function.
At this point, an interesting (although at first sight rather bizarre) possibility
emerges: Is it possible that electromagnetic fields have to exist, because the La-
grange density of the “matter fields” (the wave function in our example) must
be invariant under local U(1) transformations? In this perspective the 4-potential
appears as a compensating field, because it compensates (via its gauge transfor-
mations) the changes in the Lagrange density, which appear from local phase
transformations. This has turned out to be an extremely fruitful hypothesis,
because it relates interactions to symmetry principles. The requirement of invari-
ance under local phase transformations forces the existence of gauge fields and
fixes the form of the coupling between gauge fields and matter fields.
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10.2 Geometric Interpretation of Gauge Fields and the
Construction of Non-Abelian Gauge Theories

The idea of a compensating field may seem a bit artificial to you. To convince
you that this is indeed a very “natural” construction, we show you that the
underlying idea is a geometric one. Thus the construction of interactions is
reduced to a geometric problem – just like in Einstein’s theory of gravitation!

10.2.1 Compendium: Maxwell’s theory

To start with, let us briefly recapitulate the properties of Maxwell’s theory with
respect to gauge transformations:

• It is invariant under global gauge transformations

Gem = U(1) :=
{
eiα|α ∈ R (mod 2π)

}
(10.2a)

as well as local gauge transformations

Gem :=
{
eiα(x)|α ∈ C∞(M) (mod 2π)

}
(10.2b)

whereM denotes Minkowski space. The group (10.2a) we shall call struc-
ture group; the infinite dimensional group (10.2b) derived from it is called
gauge group and fixes the form of the gauge transformation.

For Maxwell’s theory the structure group thus is U(1). This Abelian
group has only one generator which we may denote as 1.

• A gauge transformation is given by A′µ = Aµ − ∂µα(x). With the help
of exterior forms this can be written as2 A′ = A − dα. For g ∈ Gem an
obviously equivalent way of writing this is

iA′ = igAg−1 + g(dg−1) , (10.3)

where the parentheses mean that the derivative acts only on g−1. Ob-
viously, it is convenient to include the factor i into the definition of A
(see also section 9.2.3), hence we will use the replacement A→ iA in the
following.

In section 9.2.3 we have shown, that the electromagnetic fields are the
curvature form F = D2 obtained from the covariant derivative D =
d + A. In the present case we have D2 = (dA) + A ∧ A = (dA). We

2Unless stated otherwise we shall use ~ = c = 1 from now on.
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furthermore note in passing that the behavior of D and F under gauge
transformations is

D′ = d+A′ = gg−1d+ gAg−1 + g(dg−1) = gdg−1 + gAg−1

= gDg−1 (10.4)

F ′ = D′2 = gDg−1gDg−1 = gFg−1 = F , (10.5)

i.e. a conjugation or equivalence relation with respect to the gauge group.

• The coupling of the electromagnetic field to a charged particle field can
be expressed via the covariant derivative (principle of minimal coupling)
through the “kinetic energy” as3 ∂µψ

∗∂µψ → (Dµψ)†Dµψ. Its behavior
under gauge transformations is given by

(
D′µψ

′)†D′µψ′ =
(
gDµg

−1gψ
)†
gDµg−1gψ

= (gDµψ)† gDµψ

= (Dµψ)† g†gDµψ

= (Dµψ)†Dµψ , (10.6)

i.e. it is invariant provided we apply the same gauge transformation g ∈
Gem to both the electromagnetic field and the particle field.

We already learned in the theory of gravitation, that the structure equation
D2 = Ω together with field equations (=Einstein’s equations) for the potentials
(=Christoffel symbols) determine the geometric structure of the space (=space-
time) the physical objects (=masses) live in. The deviation from a flat space-
time manifold was interpreted as forces acting between the objects living in
this space, i.e. gravitational forces between masses.

In the present case we have found a very similar structure. Our physical ob-
jects are now charges, which however live in an abstract space spanned by the
particle fields ψ. The geometric structure of this space is determined by the
structure equation D2 = F and the field equations (=Maxwell’s equations) for
the potentials. Finally, the electromagnetic forces acting between the charges
can be interpreted as resulting from a deviation from a flat ψ-space.

This similarity between the two completely unrelated phenomena of electro-
magnetism and gravitation lets the initially rather bizarre idea of giving the
potentials and gauge fields a fundamental physical meaning appear in a com-
pletely new light. It thus seems to be a quite general principle that

3We replace Dµψ∗ by (Dµψ)† for reasons apparent from the further discussions.
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fundamental interactions can be understood as geometric properties of a
general field-space (describing generalized charges) determined by a suit-
ably chosen gauge group.

10.2.2 Non-Abelian gauge groups

Obviously, the gauge group Gem of electromagnetism is very special in that it
is Abelian. There is in fact nothing to prevent us from having a system with
a non-Abelian gauge group; in fact, the modern understanding of the funda-
mental interactions would be impossible without this possibility. However, in
contrast to Abelian groups, which only have one-dimensional irreducible rep-
resentations, non-Abelian groups have in general a series of irreducible repre-
sentations of different dimensionality, i.e. the physics will critically depend on
the actual representation induced by the physical particle fields. Furthermore,
for non-Abelian groups the group elements do not commute, and one has to
find out what modifications to the previous formulas become necessary. Last
but not least, not all groups are possible candidates for gauge groups. It must
be possible to define a gauge-invariant, positive-semidefinite kinetic energy of
the form (Dµψ,D

µψ), where (. . . , . . .) denotes a bilinear form invariant under
the structure group.

Under these conditions, the possible structure groups are so-called compact Lie
groups. A (finite dimensional) Lie group is a smooth manifold G of transfor-
mations fulfilling the group axioms and where products g1 ◦ g2 and g−1 are at
least ∈ C1 with respect to the group parameters. A well-known example is the
SO(3), i.e. the group of all orthogonal 3× 3 matrices R overRwith detR = 1.
Every element R ∈ SO(3) can for example be characterized by the Euler an-
gles and the matrices are in fact ∈ C∞ with respect to these parameters, which
are all taken from a compact interval4.

A further necessary prerequisite is that the structure group must contain the
identity (=no gauge transformation), which means that it must be the so-called
identity component. The identity component contains all group elements, which
can be obtained from the identity by smooth variations of the group param-
eters. For example, the orthogonal group O(3) contains also those matrices R
for which detR = −1. Obviously, these elements are (in R!!) not smoothly
connected to the identity (but they are in C).

4The Lorentz group is an example of a non-compact Lie group which is important in physics.
The Lorentz transformations depend on the rapidity θ ∈ [0,∞)
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Quite generally, the elements of the identity component can be represented as

g = exp

{
i

N∑
k=1

αkTk

}
(10.7)

and are obviously smooth functions of the real variables αk. The generators
Tk span the Lie algebra g := Lie(G), i.e. they form a basis of g. The algebra is
characterized by the commutators

[Ti,Tj ] = iCkijTk , i, j, k = 1, 2, . . . ,dim g (10.8)

with structure constants Ckij ∈ R. By a suitable choice of generators, the struc-
ture constants can always be made totally antisymmetric in all three indices.
As you already know from group theory, the theory of representations is of
central importance. In the case of Lie groups one is especially interested in a
mapping

% : g → C
n ×Cn

Tk 7→ T (Tk) ,

where the complex n×nmatrices T (Tk) fulfill the same commutation relations
as Tk. One can show, that the matrices T can be chosen to be hermitian, T = T †.
There are two particularly important representations, the fundamental or defin-
ing representation and the adjoint representation. The former is the represen-
tation – different from the trivial representation – with the lowest dimension,
the latter is defined through the structure constants themselves, i.e.

T (ad)
nm (Tk) = −iCmkn .

Let me make these concepts transparent by discussing an important example,
the SU(2) ⊂ U(2). The elements of SU(2) have to fulfill the additional con-
straint det g = 1. If we write such an element g ∈ SU(2) – which is a 2 × 2
matrix – as g = exp{iA}, we can immediately read off g†g = 1 ⇔ A† = A and
det g = 1 ⇔ TrA = 0. Now, any traceless 2 × 2 matrix can be represented as
sum over the Pauli matrices, i.e.

A =
3∑
i=1

aiσi , ai ∈ R

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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The Pauli matrices – multiplied with a factor 1/2 – are thus an obvious choice
for the generators5 of SU(2). The commutators are[σk

2
,
σl
2

]
= iεklm

σm
2

i.e. the structure constants are given by6 Ckij = εijk. For the fundamental repre-
sentation we obtain the spinor representation (2-dimensional) with T (f)(Ti) =
σi/2, and the adjoint representation is given by

T (ad)(T1) = −iε1lm =

 0 0 0
0 0 −i
0 i 0

 (10.9a)

T (ad)(T2) = −iε2lm =

 0 0 i

0 0 0
−i 0 0

 (10.9b)

T (ad)(T3) = −iε3lm =

 0 −i 0
i 0 0
0 0 0

 (10.9c)

An important property of simple7 Lie groups like SU(2) is that one can always
choose the representation matrices such that

Tr (T (Ti)T (Tj)) = κδij , (10.10)

where κ > 0 depends on the representation but not on the indices. For exam-
ple, for SU(2) one finds

Tr
(
T (f)(Ti)T (f)(Tj)

)
=

1
4

Tr (σiσj) =
1
2
δij

and
Tr
(
T (ad)(Ti)T (ad)(Tj)

)
= . . . = 2δij (10.11)

(exercise).
We now have defined the structure group of our system. The next step would
be to set up a Lagrange density for the scalar8 fields Φ = (Φ(1),Φ(2), . . . ,Φ(m))
of our theory. The fields span a representation of the structure group, too,
which may be reducible or irreducible. To assure that the Lagrange density
is a scalar with respect to the Lorentz and structure group we have to define

5Does that ring a bell in your head?
6The bell must be pretty loud by now!
7A group G is called simple if it is (i) non-Abelian and (ii) does not contain an invariant

subgroup H ⊂ G, i.e. a subgroup with gHg−1 ⊆ H for all g ∈ G.
8The concept can be easily extended to multicomponent fields.
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a scalar product with respect to the structure group. Such a scalar product
will in general depend on the group and the representation spanned by the
fields. We will denote it as (X,Y ) and the terms entering the Lagrange density
will be of the form (Φ,Φ) and (∂µΦ, ∂µΦ). For example, for the L = 1 triplet
representation of SO(3) such a scalar product would be the Clebsch-Gordan
coupling to total angular momentum L = 09 and read

(X,Y ) =
1∑

i=−1

(−1)1−iX∗i Y−i .

Finally, we have to construct the gauge group by replacing the parameters
αk in (10.7) by smooth functions αk(x) of space-time. With this operation we
allow gauge transformations to be restricted to a finite space-time volume, i.e.
remote fields will remain unaffected. This means that we attach a local copy of
the structure group to each point x ∈ M, which can be viewed as an internal
additional space at this point10. For two points x 6= y the copies of G(x) and
G(y) are disjoint and consequently the representations induced by Φ(x) and
Φ(y) live in disjoint vector spaces. This means, that for Φ(x) and Φ(x+dx) one
cannot simply identify a particular component Φ(i)(x) with Φ(i)(x+ dx). If we
ask the question, which transformation will lead from Φ(i)(x) to Φ(i)(x + dx),
we are again at a point where we have to define what parallel transport means.

10.2.3 Potentials and covariant derivative

By now we have learned how one can construct such a transformation. Let us
denote with N = dim g the dimension of our Lie algebra. One can then define
the generalized potential

A := iq

N∑
k=1

A(k)Tk . (10.12)

In this definition we included a constant q, which is a generalized “charge”,
and a factor i for the reasons encountered in (10.3). There are as many A(k) as
the Lie group has generators and they are one forms overM

A(k) = A(k)
µ dxµ ,

with four smooth real fields A(k)
µ . The potential defined in that way has a dual

nature. On the one hand it is a one form over Minkowski space, on the other
hand it has its values in the Lie algebra.

9A quantity with L = 0 transforms as a scalar under SO(3).
10One calls this construction a principal fiber bundle withM as base manifold and G as typical

fiber.
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Guided by our experience from Maxwell’s and Einstein’s theories we define
the parallel transport between to points x and x+ dx as

Φ(x+ dx) =
(
1− T (Φ)(A)

)
Φ(x) , (10.13)

where T (Φ)(. . .) denotes the representation induced by the field Φ. If the def-
inition (10.13) correctly describes parallel transport, it must have the prop-
erty, that a gauge transformation g(x + dx) applied to (10.13) commutes with
1− T (Φ)(A) in the sense that

T (Φ)(g(x+ dx))Φ(x+ dx) = T (Φ)(g(x+ dx))
(
1− T (Φ)(A)

)
Φ(x)

=
(
1− T (Φ)(A′)

)
T (Φ)(g(x))Φ(x) .

In other words

g(x+ dx) (1−A) =
(
1−A′) g(x) ,

where we used the fact, that this property must be independent of the actual
field or the representation T (Φ). Taylor expansion of g(x+ dx) ≈ g(x) + dg and
using 0 = d(gg−1) = (dg)g−1 + gdg−1 we arrive at the gauge condition

A′ = gAg−1 + gdg−1 , (10.14)

which has precisely the same form as in Maxwell’s theory. Note, however,
that here the order of the products is crucial, because the gauge group is non-
commutative!

We are now in the position to write down the covariant derivative

DA := d+A

for our theory which is tantamount to the replacement

∂µΦ(x)→
{
∂µ1+ iq

N∑
k=1

A(k)
µ (x)T (Φ)(Tk)

}
Φ(x) .

The gauge condition (10.14) then again leads to

DA′ = gDAg
−1 ,

i.e. the transformation behavior of the covariant derivative is much simpler
than that of the potentials and given by a conjugation.



180 CHAPTER 10. GAUGE FIELDS

10.2.4 Field tensor and curvature

The next step is the construction of the curvature form, which in close analogy
to electromagnetism is given by

F := D2
A = (dA) +A ∧A .

In contrast to Maxwell’s theory, the fact that G is non-Abelian now leads to

A ∧A = −q2
N∑

k,l=1

TkTl

3∑
µ,ν=0

A(k)
µ (x)A(l)

ν (x)dxµ ∧ dxν

= −q2
N∑

k,l=1

[Tk,Tl]
3∑

µ<ν=0

A(k)
µ (x)A(l)

ν (x)dxµ ∧ dxν

= −iq2
N∑

k,l,m=1

CmklTm

3∑
µ<ν=0

A(k)
µ (x)A(l)

ν (x)dxµ ∧ dxν , (10.15)

where we used the antisymmetry of dxµ∧dxν when going from the first to the
second line. Looking again at Maxwell’s theory, we may define

F =: iq
N∑
k=1

Tk
∑
µ<ν

F (k)
µν (x)dxµ ∧ dxν , (10.16)

with

F (k)
µν (x) := ∂µA

(k)
ν (x)− ∂νA(k)

µ (x)− q
N∑

n,m=1

CknmA
(n)
µ (x)A(m)

ν (x) . (10.17)

TheN = dim g tensor fields F (k)
µν are the direct generalization of the field tensor

in electrodynamics.
Let me finally note that the behavior DA′ = gDAg

−1 again leads to the trans-
formation behavior

F 7→ F ′ = gFg−1

for the field form.

10.2.5 Gauge invariant Lagrange densities

With the prerequisites from the previous sections we are now in the position
to write down Lagrange densities which are Lorentz invariant and invariant
under transformations from a given gauge group G. The necessary ingredients
are

• A compact Lie group G and corresponding gauge group G,
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• a potential A as defined by (10.12),

• a set of fields Φ = (Φ1(x),Φ2(x), . . . ,Φm(x)) which span a (reducible or
irreducible) representation of G. For simplicity we assume scalar fields
here, but the generalization to fields with more complex transformation
properties under the Lorentz group (e.g. spinors etc.) is straightforward.

Let us start with the part containing the gauge fields, i.e. the curvature ten-
sor Fµν . Since this quantity has values in the Lie algebra, we have to find
a way to construct a scalar under the group transformations. The answer is
given by group theory: For a Lie algebra valued quantity X the functional
invariant under all group elements has the form Tr

(
T (ad)(X)

)
. Guided by

the Lagrangian of electromagnetism, we thus will have a Lagrange density
containing Tr (FµνFµν), where the trace has to be evaluated over the adjoint
representation.

If we abbreviate the first term in the field tensor (10.17) as f (k)
µν (x) := ∂µA

(k)
ν (x)−

∂νA
(k)
µ (x), the contraction will contain the term

N∑
k,l=1

Tr
(
T (ad)(Tk)T (ad)(Tl)

)
f (k)
µν (x)f (l)µν(x) .

According to (10.10) the trace does not depend on k and l, but on the represen-
tation via the constant κ(ad). Furthermore, this term has the same form as in
the Lagrangian of Maxwell’s theory (see (8.19)), i.e. the normalization constant
is fixed by the same arguments here and given by −(16πq2κ(ad))−1. With this
we can write down the Lagrange density for the gauge fields as

LYM = − 1
16πq2κ(ad)

Tr (FµνFµν) . (10.18)

The index YM stands for “Yang-Mills” in honor of the physicists who first
introduced the concept of local gauge theories into physics11.

Finally, the particle fields will be described by a Lagrange density

LΦ =
1
2
[
(∂µΦ, ∂µΦ)−m2 (Φ,Φ)

]−W (Φ(x))

where m is the mass of the particles (assumed to be the same for all particle
fields) and W (Φ(x)) an additional self-interaction term, which of course has
to be invariant under the structure group. This Lagrange density is globally,
but not locally gauge invariant. To obtain a locally gauge invariant theory

11C.N. Yang, and R.L. Mills, Phys. Rev. 96, 191(1954).
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we must (i) replace the derivative by the covariant derivative and (ii) add the
Yang-Mills part, leading to

L = − 1
16πq2κ(ad)

Tr (FµνFµν) +
1
2
[
(DµΦ, DµΦ)−m2 (Φ,Φ)

]−W (Φ(x))

(10.19)

10.2.6 Where is the physics?

Up to now the discussion remained, apart from some loans from Maxwell’s
theory, rather mathematical. The obvious question is what kind of physical
treasures are buried in the concepts introduced. To find an answer let us first
note that from the Lagrange density (10.19) one can deduce equations with a
structure similar to Maxwell’s equations in electrodynamics. In particular, one
obtains a “radiative” and a “material” part. The latter describes the generation
of the G-fields from sources provided by the particle fields.
In quantum mechanics we have learned that the quantization of the electro-
magnetic field leads to the notion of “massless particles”, called photons, which
mediate the electromagnetic interaction. The algebra of fields describing these
particles shows that they are bosons, and because they emerge from the quan-
tization of the gauge fields one calls them gauge bosons. Since photons are
massless and do not interact with themselves they mediate a long ranged in-
teraction.
A similar line of action can be taken for non-Abelian gauge theories. Here, too,
one can quantize the free fields to obtain a set of N gauge bosons mediating
the interaction described by the gauge group G. Again, these particles are
necessarily massless, because an explicit mass term in the Lagrange density
would have to be of the form

λ(k) 2

8π
A(k)
µ (x)A(k)µ(x)

and violate the local gauge invariance incurably.
Due to the non-Abelian structure group, however, the Lagrange density (10.18)
contains terms which are third and fourth order in the gauge fields. When one
sets up the Euler-Lagrange equations, these terms will lead to non-linear terms
in the equation of motion, which can (and must) be interpreted as genuine inter-
actions among the gauge bosons in the quantized theory. This particular property,
viz the self-interaction of the bosons responsible for mediating the interaction,
is a well-known feature in particle physics; thus the concept of non-Abelian
gauge theories seems to be not completely academical. On the other hand, ex-
periment tells us that most of these gauge bosons have finite masses, which at
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first sight seems to contradict the present theoretical approach. A way out of
this dilemma was proposed by Higgs12 and others. Namely, if we add to LYM

true scalar particle fields (so-called Higgs fields) which have a potential energy
W (Φ(x)) such that at Φ0 6= 0 there exists an absolute minimum, the Lagrange
density remains gauge invariant, but the gauge bosons can become massive.
This phenomenon is similar to the spontaneous generation of a magnetic order
in a rotationally invariant solid and also runs under the notion of spontaneous
symmetry breaking: The physical system has, to lower its energy, chosen a state
which seems to have a lower symmetry than the Langrange density. In this
approach the Lagrange density still has the full gauge invariance, but it is hid-
den. One calls this kind of symmetry therefore commonly hidden symmetry.
Does that concept appear rather outrageous and artificial to you? Well, in fact
you already encountered an example in solid state physics, where precisely
this mechanism is at work: Superconductivity. As you know from solid state
lectures, the superconducting state is characterized by a condensation of Cooper
pairs. The existence of particle pairs always means, that the wave function
must contain pairs of creation operators, which are not compensated by an-
nihilation operators. Such a combination obviously breaks the global gauge
invariance of Schrödinger’s equation. Since, on the other hand, electrons are
charged, they couple to the electromagnetic field as gauge field. Within Ginzburg-
Landau theory (or any mean-field theory), the condensation of the Cooper
pairs immediately leads to a generation of a “mass term” for the photons, i.e. in
a superconducting solid the photons become massive13. Experimentally, this man-
ifests itself in a finite penetration depth of electromagnetic fields, known as
London penetration depth and the expelling of magnetic fields from the interior
of a superconductor. Thus, Higgs’ mechanism is something well-known and
well-understood in solid state physics!
Note that this concept requires the existence of a massive particle with non-
vanishing vacuum expectation value. These days, this Higgs particle is the most
wanted particle searched for in high-energy experiments. Obviously, if it will
not be found, the standard theory, which is so very successful in describing the
properties of elementary particles and their interactions, will be in deep peril.

10.3 The U(2) theory of electroweak interaction

Let us now discuss the theory of the combined electromagnetic and weak in-
teraction as a specific example for all the concepts introduced before. The

12P.W. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. 145, 1156 (1966).
13P.W. Anderson, Phys. Rev. 130, 439 (1963)
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weak interaction is for example responsible for the β- and µ-decay and its short
range of 10−16 . . . 10−15cm requires that the gauge boson(s) mediating this in-
teraction have to be massive. On the other hand, the photon as the gauge
boson of the electromagnetic interaction is always massless. This poses the
first challenge. If we furthermore intend to combine both types of interactions
into one unified theory, we will have to use a structure group with at least two
generators and a possible U(1) subgroup. The simplest structure group which
fulfills this latter requirement is the non-Abelian group14 U(2) = U(1)×SU(2).
Historically, the necessity to describe the weak interaction by the non-Abelian
group U(2) was suggested by experiments, which could – at least for low en-
ergies – be explained by the existence of charged and neutral currents. From
the observed parity violation in processes involving the weak interaction one
could also conclude that the neutral current must contain a certain contribu-
tion from electromagnetic currents. The amount can be quantified by a factor
sin ΘW , where ΘW is called Weinberg angle and has a value sin2 ΘW ≈ 0.228.
The charged current and the non-electromagnetic part of the neutral current
can be understood as a representation of the SU(2) algebra, hence Sheldon
Glashow suggested in 1961 the description of the electroweak interaction as a
U(1) × SU(2) non-Abelian gauge theory. As already mentioned, the problem
in this theory was that due to the short-ranged nature of the weak interac-
tion some of the gauge bosons had to be massive, while at that time a gauge
theory produced only massless gauge fields. After Higgs’ proposal, Steven
Weinberg and Abdus Salam put forward the present standard model for the
electroweak interaction in 1967, known as Glashow-Salam-Weinberg (GSW)
model. To be precise, the GSW model describes the electroweak interaction
among the six fermionic leptons, i.e. the particle fields should contain, in ad-
dition to the Higgs field, also a corresponding set of bispinor fields. Here,
I however do not want to discuss the full theory but just how the concepts
introduced in the previous sections lead to the experimentally observed prop-
erties of the electroweak “fields”. Thus, in the following I will not consider
particle fields apart from the Higgs field.
The group U(2) has four generators, one for the U(1) and three for the SU(2)
factor. We thus have actually got more than we bargained for, namely four
gauge bosons instead of the two originally wanted. This is in fact a theoretical
prediction we just arrived at: The unified description of electroweak interac-
tions requires the existence of four gauge bosons, one of which is the massless
photon. This theoretical prediction has been experimentally verified long after
its proposal and is the first overwhelming success of the concept of local gauge

14Something likeU(1)×U(1) ∼= U(1) would not do the job, because it has only one generator!
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theories.

The general structure of the elements of the group U(2) is

U(2) 3 g = eiα

(
u v

−v∗ u∗

)
, with α ∈ R, u, v ∈ C and |u|2 + |v|2 = 1 .

The generators of the corresponding Lie algebra are

T0 =

(
1 0
0 1

)
= σ0 , (10.20a)

T1 =
1
2

(
0 1
1 0

)
=

1
2
σ1 , (10.20b)

T2 =
1
2

(
0 −i
i 0

)
=

1
2
σ2 , (10.20c)

T3 =
1
2

(
1 0
0 −1

)
=

1
2
σ3 (10.20d)

with commutators

[T0,Ti] = 0 , (10.20e)

[Tk,Tl] = iεklmTm . (10.20f)

Note that U(2) is not simple, because it contains U(1) as invariant subgroup.

The gauge group, the potentials and the covariant derivative are thus deter-
mined. From (10.11) we also know the factor κ(ad) = 2 entering (10.18) if
the structure group were SU(2) only. Since the factor group U(1) of U(2) is
Abelian, the normalization of its adjoint representation T (ad)(T0) can be cho-
sen freely. In order to have a common normalization in (10.18) the proper
choice is

√
κ(ad) =

√
2 of the adjoint representation of SU(2).

As last step we need to specify our scalar fields entering the theory. Here we
again choose the simplest possible realization which does not induce the trivial
representation of SU(2), namely a two-component field Φ = (Φ(−),Φ(+)). The
reason why we do not choose only one component will become clear in the
course of the discussion. The representation induced by Φ is the fundamental
representation of SU(2), i.e. the generators are given by T (Φ)(Ti) = σi/2, i =
1, 2, 3. Finally, the Lagrange density reads

L = − 1
32πq2

Tr (FµνFµν) +
1
2
[
(DµΦ, DµΦ)−m2 (Φ,Φ)

]−W (Φ(x)) (10.21)
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with the field tensor

Fµν = iq
3∑

k=0

T (ad)(Tk)F (k)
µν (x) (10.22a)

and the covariant derivative

Dµ = 1
(
∂µ + iqt0A

(0)
µ (x)

)
+ iq

3∑
k=1

σk
2
A(k)
µ (x) , (10.22b)

where I defined T (Φ)(T0) = t0σ0 = t01. The reason to include a factor t0 here
will become clear later.
Presently, there are three unknown parameters entering our theory: The cou-
pling constant q, the mass m and the normalization t0 . In addition, the poten-
tial energy W (Φ(x)) of the scalar fields Φ has not been specified yet.
Without the scalar fields our theory describes four massless gauge bosons. It
will turn out that it makes sense to replace two of them by new linear combi-
nations

W (±)
µ :=

1√
2

(
A(1)
µ (x)± iA(2)

µ (x)
)

. (10.23)

For the generators this means that we have to introduce the combinations

T+ := T1 + iT2 , T− := T1 − iT2

which leads to the explicit expressions

σ+ :=
1
2

(σ1 + iσ2) , σ− :=
1
2

(σ1 − iσ2) . (10.24)

Finally, the parts containing T1 and T2 in the covariant derivative have to be
replaced by

σ1

2
A(1)
µ (x) +

σ2

2
A(2)
µ (x) =

1√
2

[
σ−W (+)

µ (x) + σ+W
(−)
µ (x)

]
. (10.25)

From the point of view of quantum mechanics, the fieldsW (±)
µ (x) describe her-

mitian conjugate partners, i.e. gauge bosons with opposite charges. Evidently,
these two fields cannot be used to describe the anticipated photon, which must
have a genuine U(1)em structure group and stay massless (and of course should
not have a charge!). This subgroup U(1)em can, but by no means must be iden-
tical to theU(1) subgroup ofU(2). Consequently, we will be cautious and form
the linear combinations

γµ(x) := A(0)
µ (x) cos ΘW −A(3)

µ (x) sin ΘW (10.26a)

Zµ(x) := A(0)
µ (x) cos ΘW +A(3)

µ (x) sin ΘW (10.26b)
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from the remaining two gauge fields, which belong to the generators T0 and
T3, respectively, and are the only possible candidates for the production of
electromagnetic fields. We have thus introduced a further parameter ΘW into
our theory, called Weinberg angle after Steven Weinberg, who first introduced
it into the theory of electroweak interactions.
The theory we have just constructed is precisely what is called the standard
model of electroweak interaction. The gauge fields γµ(x), Zµ(x) and W

(±)
µ (x)

represent the four bosons mediating the electromagnetic and weak interaction,
respectively. However, from experiment we know that only one of these fields,
namely the photon γµ(x), remains massless, the other three have masses. Let
us therefore now see what the Higgs mechanism of spontaneous symmetry
breaking can do for us to generate masses for three of the fields without ex-
plicitly breaking the gauge invariance of the Lagrange density (10.21). To this
end we have to specify a form for the potential energy W (Φ(x)). As already
mentioned, we need a form that has an absolute minimum for a field configu-
ration Φ0 6= 0. The simplest potential showing this feature is given by

W (Φ) = −µ
2

2
(Φ,Φ) +

λ

4
(Φ,Φ)2 (10.27)

with λ > 0. Note that this potential has precisely the same form as the one
encountered in the Ginzburg-Landau theory of second order phase transitions.
It has an absolute minimum at the value

(Φ0,Φ0) = µ2/λ =: v2 (10.28)

(see Fig. 10.1). As is apparent from Fig. 10.1, it is only the value of the scalar
product (Φ0,Φ0) which is fixed, but not the field Φ0. We thus still have the
choice to fix a certain realization Φ(0)

0 . Moreover, the latter is clearly not neces-
sarily invariant under the full structure group. I will come back to this point
later.
We can replace v2 in (10.27) to obtain

W (Φ) =
λ

4
(
(Φ,Φ)− v2

)− λ

4
v2 .

For our gauge theory the important thing now is, that due to the appearance
of an absolute minimum at Φ0 6= 0 the actual dynamical field for the theory
is not Φ, but rather θ(x) := Φ(x) − Φ0. This is similar to the situation in the
case of a shifted harmonic oscillator, for which the proper dynamical variable
is z = x− x0 rather than the coordinate x.
If we insert Φ(x) = θ(x) + Φ0 into the Lagrange density (10.21), the term con-
taining the covariant derivatives will lead among others to contributions of the
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Figure 10.1: Sketch of W (φ) given by (10.27).

form
1
2

(
T (Φ)(Aµ)Φ0, T

(Φ)(Aµ)Φ0

)
(10.29)

which have the structure of a mass term for the gauge fields Aµ(x). However,
gauge invariance of the Lagrange density is not violated at all, only the state of
the system realized has a symmetry which is lower than the actual symmetry
of the system, just like in solids with magnetic or other kinds of order.
As already mentioned, a particular value Φ(0)

0 for the actual field configura-
tion is not necessarily invariant under operations of the structure group. More
precisely, there will in general exist at least one element g ∈ U(2) such that
gΦ(0)

0 = Φ(1)
0 6= Φ(0)

0 . Since the elements g can be represented as15

g = exp

(
i
N∑
k=1

αkTk

)
the previous observation can be rephrased to: There exists at least one genera-
tor Ti such that

T (Φ)(Ti)Φ
(0)
0 6= 0 .

Let us now build new linear combinations

Si :=
N∑
j=1

aijTj

15We will consider a general structure group here, to make clear that this discussion holds
beyond the scope of the present theory.
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of the generators, where the aij form a non-singular constant matrix such that
for Si for i = 1, . . . , F we have

T (Φ)(Si)Φ
(0)
0 = 0 , (10.30)

while for the remaining Si for i = F + 1, . . . , N

T (Φ)(Si)Φ
(0)
0 6= 0

holds. Convince yourself that the elements obtained from (10.30) form a sub-
group H ⊂ G of G which consists of elements

H 3 h = exp

(
i
F∑
k=1

αkSk

)
with the property

hΦ(0)
0 = Φ(0)

0 .

This subgroup does not “move” the field configuration thus constitutes a gen-
uine symmetry of the state the system has chosen. As a consequence, the gauge
fields corresponding to H remain massless, which can also be seen from the
mass term (10.29), where the contributions corresponding to the generators of
H vanish due to the property (10.30). The subgroup H is also called residual
symmetry group of the gauge theory.
The remaining generators Si for i = F + 1, . . . , N have the effect of “moving”
around the state of the system in the minima valley. Obviously, their contribu-
tions to the mass term (10.29) stay finite, i.e. they lead to a finite mass for the
corresponding gauge bosons. An important lemma now states that the dimen-
sion of the Lie algebra h = Lie(H) depends only on the structure group G and
the residual group H , but not on the actual representation (i.e. dimension) of
the multiplet Φ.
Let us now return to our U(2) gauge theory. We will use the results of the
previous discussion in the following way: We know that exactly one gauge
field has to remain massless, i.e. we try to find a configuration Φ(0)

0 such that
the symmetry will be broken spontaneously according to

U(2) ∼= U(1)× SU(2)→ H = U(1)em .

The action of the potentials on a general field configuration Φ0 is given by

T (Φ)(Aµ)Φ0 = iq

{
1√
2

[
W (−)
µ (x)σ+ +W (+)

µ (x)σ−
]

+Zµ(x)
[σ3

2
cos ΘW + t0σ0 sin ΘW

]
+γµ(x)

[
−σ3

2
sin ΘW + t0σ0 cos ΘW

]}
Φ0 .

(10.31)
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Inserting this expression into the mass term (10.29), we see that we have to
make sure that e.g. the last term in (10.31) vanishes identically so that this field
remains massless. This can be achieved by choosing the field configuration as
Φ(0)

0 = (v, 0) (see Eq. (10.28) for the definition of v) and setting 2t0 = tan ΘW .
Then we obtain for the mass term(

T (Φ)(Aµ)Φ(0)
0 , T (Φ)(Aµ)Φ(0)

0

)
= q2

{
1
2

(
Φ(0)

0 , [σ+σi + σ−σ+] Φ(0)
0

)
W (−)
µ (x)W (+)µ(x)

+

(
Φ(0)

0 ,

[
σ3

2
cos ΘW +

1
2

sin ΘW tan ΘW

]2

Φ(0)
0

)
Zµ(x)Zµ(x)

}
(10.32)

where we used the fact that with respect to the scalar product σ†+ = σ− and
σ†3 = σ3 and terms containing σ2±Φ(0)

0 = 0. Application of the matrices to Φ(0)
0

together with (Φ(0)
0 ,Φ(0)

0 ) = v2 finally results in(
T (Φ)(Aµ)Φ(0)

0 , T (Φ)(Aµ)Φ(0)
0

)
= q2v2

[ 1
2
W (−)
µ (x)W (+)µ(x)

+
1

4 cos2 ΘW
Zµ(x)Zµ(x)

]
.

(10.33)

From the relation (10.33) we can now readily read off the masses of the W and
Z gauge bosons as16 2m2

W ∝ q2v2/2 and m2
Z ∝ q2v2/(4 cos2 ΘW ). Note that the

two fields W (±) are components of a doublet with respect to SU(2), i.e. they
must have the same mass. The proportionality factors in the equations for the
masses are independent of the particular particle, and one can thus derive the
important relation

m2
W

m2
Z cos2 ΘW

= 1 , (10.34)

independent of q and v, which can and has been verified experimentally.
Let me review the major findings of our theory: Starting from the Lagrange
density (10.21), we found linear combinations of the gauge fields and a partic-
ular configuration of the scalar field (Higgs field) that lead to a system which
shows a spontaneously broken symmetry U(2) → U(1)em. The residual sym-
metry U(1)em leads to a massless gauge boson which we can identify with
the photon. The generator of its Lie algebra is Tem = T0 cos ΘW − T3 sin ΘW .
Its counterpart (in the sense of group theory), the electrically neutral Z bo-
son, acquires a mass as do the electrically charged doublet partners W (±).

16The prefactor of the W term in (10.33) has to be distributed among the two partners W (±),
thus the factor 2.
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One can show that the coupling to the photon (the electric charge) is given
by q sin ΘW ≡ e. The theory predicts that the masses of the massive gauge
bosons are related by (10.34). It should also have become clear by now why
it is crucial that the scalar field Φ has to be a multi-component field. If we
had chosen a single-component field, the requirement of a residual symmetry
group U(1)em could not have been fulfilled. We also see now that the choice
of SU(2) as structure group would not have been sufficient: There is no way
to construct a Higgs field that would leave the Z boson massless, thus em-
ploying it as photon in the game, while giving a mass to the W ’s, because
the three gauge bosons would constitute a triplet under the SU(2) and must
consequently all have the same mass by symmetry.
A somewhat more elegant formulation can be achieved if one introduces a
different generator

Y := −2 cot ΘWT0

of the U(1) factor of the U(2). The generator of the residual symmetry group
U(1)em then becomes

Q := T3 +
1
2
Y

and can be directly related to the electrical charge e, while the generator Y is
called weak hypercharge.

10.4 Epilogue

This chapter should have given you an impression of the power of the concept
of gauge theories to describe fundamental interactions in nature in terms of ge-
ometrical properties of suitably chosen field spaces. As a particular example,
I presented the GSW model of the electroweak interaction among elementary
particles.
You may have wondered where in our theory the actual physical particles
(electrons, muons, . . .) do remain. Obviously, they cannot be given by the
scalar field, because they are fermions and must be described by Dirac fields.
The scalar field (Higgs field) entering our theory had to be included to make
some of the gauge bosons massive, but the particle corresponding to it has
not yet been observed. Adding the known particles into the Lagrange den-
sity (10.21) is straightforward from a conceptual point of view – we already
know the Lagrange density for Dirac fields from Quantum Mechanics II and the
coupling to the fields is included through the covariant derivative. However,
calculation of observable quantities like scattering cross sections requires the
use of quantum field theory, which goes well beyond the scope of this lecture.
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Let me just mention that the theory is indeed able to quantitatively reproduce
results obtained in collider experiments.
A similar concept can be employed to study the strong interaction among the
quarks as fundamental constituents of baryonic elementary particles. Here,
the proper structure group turns out to be SU(3), a non-Abelian group with
eight generators, leading to (massive) gauge bosons called gluons mediating an
interaction through a “charge” called color. Since these gluons carry a color-
charge themselves, the theory – in particular its quantized version, the quan-
tum chromodynamics – becomes very cumbersome and leads to effects known
as confinement and asymptotic freedom.
Finally, the combination of electroweak and strong interactions is embedded
in the grand unified theory (GUT), which has the U(5) = U(1)× SU(2)× SU(3)
as structure group.
Interested in more? Then go ahead and start reading books ... [13].
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