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C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr, F.

Peters (Eds.),

John von Neumann Institute for Computing, Jülich,
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The computation of the complete spectrum of a complex Hermitian matrix typically proceeds

through a Householder step. If only eigenvalues are needed, this Householder step needs almost

the complete CPU time. Here we report our own parallel implementation of this Householder

step using different variants of C and OpenMP. As far as we are aware, this is the only existing

parallel implementation of the Householder reduction for complex Hermitian matrices which

supports packed storage mode. As an additional feature we have implemented checkpoints

which allow us to go to dimensions beyond 100 000. We perform runtime measurements and

show firstly that even in serial mode the performance of our code is comparable to commercial

libraries and that secondly we can obtain good parallel speedup.

1 Introduction

There are problems which require the complete diagonalization of big complex Hermitian

matrices. For example, in theoretical solid-state physics, the computation of thermody-

namic properties of certain quantum many-body problems boils down to the computation

of the complete spectrum of eigenvalues of the Hermitian matrix representing the Hamil-

tonian1, 2, 3 (eigenvectors are not needed for this specific purpose, but would be required for

the computation of other properties). In this application, the original problem is split into

smaller pieces using symmetries4, 5. In particular, the aforementioned problems are lattice

problems and we can use Fourier transformation to exploit translational symmetry. This

yields a range of matrix eigensystems where the matrices of largest dimension turn out to

be complex. Thus, the diagonalization of Hermitian matrices constitutes the bottleneck of

such computations. Although the individual matrices are originally sparse, they are treated

as dense matrices since all eigenvalues are needed, and the standard algorithms for solving

this problem6, 7, 8 proceed through a stage where the matrix becomes densely populated.

Libraries like LAPACK9 provide diagonalization routines such as zheev for dense

complex Hermitian matrices. Such routines typically perform first a Householder reduction

to tridiagonal form and then use QR-/QL-iteration to solve the tridiagonal problem6, 10.

The applications mentioned above1, 2, 3 do not need eigenvectors. Therefore, almost all

CPU time and memory is spent in the Householder step. Furthermore, if eigenvectors are

not needed, one can store the matrix in a so-called packed form which exploits symmetry

of the matrix and stores only one triangular half. Available library routines work well

in low dimension n, but memory requirements grow as n2 and CPU time grows as n3 for

larger dimensions. More precisely, approximately 8n2 bytes are needed to store a complex

double-precision matrix in packed form and the Householder reduction of such a matrix
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requires approximately 16n3/3 floating-point operations. For example, in dimension n =
40 000 we need 12GByte to store the complex matrix in packed form, while full storage

would already require 24GByte main memory. Thus, for complex dimensions n & 40 000
substantial fractions of the main memory even of current high-performance computers are

going to be used. Consequently, a parallelized code should be used to utilize the CPUs

attached to this memory and reduce runtime.

There are different parallel diagonalization routines supporting distributed memory and

several comparative studies of such libraries exist (see, e.g., Refs. 11, 12, 13). We will not

attempt yet another comparative study, but just mention a few relevant features. ScaLA-

PACK14 and variants like PESSL15 do unfortunately not support packed matrices and even

require two copies for the computation of eigenvectors. In addition, these libraries may

have problems with numerical accuracy11. PeIGS supports packed matrices, but it does

not provide diagonalization routines for complex matrices16; the necessary conversion of a

complex Hermitian to a real symmetric eigenvalue problem wastes CPU-time and a factor

2 of main memory. There are further parallel matrix diagonalization routines (see, e.g.,

Refs. 17,18,19,20), but we do not know any parallel implementation of an eigensolver for

complex Hermitian matrices which contends itself with the minimal memory requirements.

On shared memory parallel computers, the diagonalization routines contained e.g. in

LAPACK may call a parallel implementation of the basic linear algebra package BLAS.

However, this does not yield good parallel performance since parallelization should set

in at a higher level. While inspection of the Householder algorithm6, 7, 8, 21 shows that it

is possible to parallelize the middle of three nested loops, we are not aware of any such

parallelization for a shared-memory parallel machine.

Here we report our own efforts at a parallel implementation of the Householder reduc-

tion in C using OpenMP22. In section 2 we first discuss our parallelization strategy. Then

we present performance measurements both of the serial and the parallel code in section 3.

Finally, section 4 summarizes the current status and discusses future plans.

2 Implementation of the Householder algorithm

We start from a serial implementation of the standard Householder algorithm6, 7, 8 in C99.

A complete version of the code is available from Ref. 23. This code has been inspired by

the routine tred2 of Ref. 21, but is has been generalized to complex numbers, thoroughly

optimized for modern CPUs, and prepared for parallelization.

Let us discuss our parallelization strategy using a part of the code as an example. The

fragment which performs a reduction of the Hermitian matrix m looks as follows in C99:

for(i=dim-1; i>=1; i--) {
...

for(j=0; j<i; j++) {

f = conj(m[i][j]);

g = p[j] = p[j]-hh*f;

cptr1 = p; cptr2 = m[j]; cptr3 = m[i];

for(k=0; k<=j; k++)

*cptr2++ -= (f * conj(*cptr1++) + g * *cptr3++);

}
...

}
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First, we observe that dependencies inside the loop over j can be eliminated by performing

the operations on p in a separate loop. It is then possible to parallelize the loop over j, i.e.

the middle of three nested loops, with OpenMP by adding a #pragma omp parallel

for in front of it. One problem with such a naı̈ve approach is that the length of the

innermost loop depends on j such that we run the risk that the work is not distributed

equally across the different threads. It is possible to ensure load balancing by introducing

an auxiliary variable which explicitly runs over the threads. However, a second problem

remains. Namely, the innermost loop over k should be able to reuse the vector p and the

row i of the matrix m from the Level 2 cache of the CPU. For dimensions dim around

33 000 the memory requirements for these data start to exceed 1MByte such that they fail

to fit into the Level 2 cache for larger dimensions, leading to a substantial degradation of

the performance of such a code for big matrices.

Therefore, we proceed differently. Namely, we split the innermost loop over k into

sufficiently small chunks and pull the loop over the chunks outside the loop over j. A

parallel version of the above code fragment then looks as follows:

for(i=dim-1; i>=1; i--) {
...

for(j=0; j<i; j++)

p[j] -= hh*conj(m[i][j]);

nchunks = compute_chunks(sizeof(complex double), i-1);

#pragma omp parallel for private(chunk,j,k,f,g,cbegin,cend,

cendt,cptr1,cptr2,cptr3,pptr) if(nchunks>1)

for(chunk=0; chunk<nchunks; chunk++) {

cbegin = chunks[chunk].begin;

cendt = chunks[chunk].end;

pptr = p+cbegin;

for(j=0; j<i; j++) {

f = conj(m[i][j]);

g = p[j];

cptr1 = pptr;

cptr2 = m[j]+cbegin;

cptr3 = m[i]+cbegin;

cend = (j<cendt)?j:cendt;

for(k=cbegin; k<=cend; k++)

*cptr2++ -= (f * conj(*cptr1++) + g * *cptr3++);

}

}
...

}

The administrative routine compute_chunks has the task of splitting the segment of

size i into chunks such that two constraints are obeyed. Firstly, each chunk should fit

into Level 2 CPU cache. For this reason the size of an individual element is passed as

an argument. Secondly, the load is to be balanced knowing that the inner loop is re-

stricted to k ≤ j. There are two further variants of this routine: compute_eq_chunks

performs the same task for the situation where the inner loop also runs to i-1 and

compute_min_chunks just computes chunks such that they fit into Level 2 CPU cache.
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2.4GHz Intel Core2 1.9GHz IBM Power5 1.6GHz Itanium2

variant gcc 4.1.1 Intel icc 10.0 gcc 4.0.2 IBM xlc 8.0 gcc 4.1.0 Intel icc 9.1

C99 5.18 4.60 7.05 17.03 20.42 8.04⋆

C++ 5.11 44.23 7.05 10.18 26.70 16.87

plain C 5.48 5.46 7.94 6.43⋆ 28.74 14.68

SSE3 4.39⋆ 4.41

Table 1. Runtimes in seconds for the serial computation of eigenvalues for a “small” complex matrix in dimen-

sion n = 1184. Different rows are for different variants of our code, different columns for different CPUs

and compilers. Note that runtimes include overhead, e.g., for initialization and diagonalization of the resulting

tridiagonal matrix.

With these administrative routines we can then follow the same strategy as above and par-

allelize a total of three loops which are needed for the reduction to tridiagonal form and two

additional loops which compute the transformation matrix which is needed if eigenvectors

are also desired.

The following additional features of our implementation may be worthwhile mention-

ing. Firstly, at the beginning of each outermost loop over i it is possible to checkpoint

the computation by writing the updated part of the matrix m and some additional data onto

hard disc. We have implemented such checkpoints with a second set of administrative rou-

tines. Secondly, the matrix m is implemented as a vector of pointers to its rows. On the one

hand, this renders it unnecessary to store the complete matrix consecutively in memory and

also allows convenient access to the matrix elements in a lower triangular packed storage

mode. On the other hand, in combination with the checkpoint it becomes possible to return

memory to the system for those parts of the matrix where the computation is completed,

allowing part of the computation to run with reduced memory requirements.

3 Performance

We start with tests of the serial performance of our code. For this purpose we use a “small”

complex Hermitian matrix of dimension n = 1184which can be downloaded from Ref. 23.

This matrix needs about 11MByte if stored in packed form and should therefore be big

enough not to fit completely into the Level 2 CPU cache.

First, we have compared the public domain Gnu C-compiler24 with compilers provided

by the vendors on different platforms as well as different variants of the implementation of

the Householder algorithm, namely the C99 version discussed in section 2, a C++ version

using the complex<double> data type from the Standard Template Library, a version

with complex numbers hand-coded in plain C, and a version with complex numbers hand-

coded in inline-assembler for CPUs supporting SSE instructions. Results are shown in

Table 1. One observes that variations of runtimes by a factor 3 on the same CPU are not

uncommon depending on the version of our code and more noteworthy on the compiler.

On the Intel Core2 we obtained the best performance for a version where complex num-

bers had been hand-coded with SSE3 assembler instructions, but the C99 variant compiled

with Intel icc 10.0 is almost as fast. On the Power5, gcc 3.3.2 gave somewhat better per-

formance for the plain C code, but did not compile the C99 version properly. Evidently,

we are witnessing how complex numbers according to the C99 standard are just being
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Figure 1. Comparison of runtimes for the serial computation of eigenvalues for a “small” complex matrix in

dimension n = 1184 between our code and routines zhpev provided by different libraries. Note that runtimes

include overhead, e.g., for initialization and diagonalization of the resulting tridiagonal matrix.

properly implemented in C compilers. C++ is still lagging somewhat behind in perfor-

mance, but this should also be remedied once the complex<double> template defaults

to a properly implemented internal data type of the compiler. Overall, we hope that on

each platform a C99 compiler will be available soon which yields optimal performance

and supports OpenMP such that we will be able to focus on the C99 variant for future code

developments. For further analysis in this paper we use the combinations marked by a star

in Table 1.

Fig. 1 presents a comparison of the serial performance of our code with other libraries.

In all cases, the corresponding routine is called zhpev, although the interface of IBM

ESSL differs from Intel Math Kernel Library (MKL)/LAPACK9. It is gratifying to see that

we do not only outperform public-domain libraries (like a version of LAPACK included

with a recent distribution of Mandrake Linux), but that we can also compete with the

commerical Math Kernel Library on the Intel Core2. On the high-performance machines,

our code is about a factor 2 slower than the commercial libraries. We can only speculate if

this could be improved with better compilers (compare Table 1), but we believe that even

serial performance is acceptable at the moment.

Now we move on to discuss parallel performance of our code. For this purpose we use

a “large” complex Hermitian matrix of dimension n = 41 835 which is also available from

Ref. 23. This matrix requires about 13GByte of main memory in packed storage mode. On

the one hand, this problem is substantially bigger than the problem sizes investigated in

other eigensolver performance tests12, 13. On the other hand, this is still at the lower edge

of dimensions where it becomes necessary to use a parallel eigensolver for our purposesa.

On an IBM p575 with 8 CPUs, our code needs about 14.2 hours real time for the com-

putation of all eigenvalues whereof 99.8% are spent on the Householder reductionb. This

machine is the one with the Power5 CPUs on which we have previously tested single-CPU

performance. So, we can can use n3 scaling of the runtime measured on our small prob-

lem. It turns out that the diagonalization of the large problem takes less than 50% longer

aCPU time is too precious to carry out systematic testing for bigger production-type problems2,3 .
bWe also tested IBM parallel ESSL 3.315 under the same conditions. The best performance, namely 9.3 hours real

time, was obtained with the routine pzheevx running in SMP mode whereas variants with MPI communication

were slower than our solution.
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Figure 2. Inverse real runtimes on an IBM p575 and an SGI Altix 4700 for the first 1000 iterations of the House-

holder transformation for a “large” complex matrix in dimension n = 41 835. Lines indicate inverse runtimes

corresponding to perfect scaling of the single-thread case.

than this optimistic estimate, demonstrating good parallelization and scaling with problem

size. More details can be seen in Fig. 2 which shows the inverse real runtime for the first

1000 steps of the Householder reduction as a function of the number of threads. On the

IBM p575 we indeed observe good scaling with the number of threads. Fig. 2 also con-

tains results for an SGI Altix 4700. The nodes of this machine consist of 4 Itanium2 CPU

Cores whose single-thread perfomance we have discussed previously. Accordingly, here

we observe reasonable scaling for up to 4 threads while the drop in performance between

4 and 5 threads can be attributed to the onset of memory access across the network.

To summarize this section, we have shown that serial performance of our code is com-

petitive, that it scales well to big problems, and that good parallel speedups can be obtained.

4 Discussion and Conclusions

We have presented a parallel implementation of the Householder algorithm for packed

complex matrices with proper load balancing and CPU-cache optimization using

OpenMP22. Our implementation is also able to write checkpoints of the computation onto

hard disc which can be used to successively reduce main memory requirements even further

in later stages of the computation. A preliminary version of this code without checkpoints

has been used2 to compute the full eigenvalue spectrum of double precision complex ma-

trices in dimension n = 81 752. With checkpoints it has been possible to push this further3

to dimension n = 121 968, and very recently in one case to n = 162 243. The latter diago-

nalization required 197GByte of main memory (mainly for packed storage of the complex

matrix) and close to 400GByte hard-disc space for a fail-save checkpoint. This compu-

tation was executed in parallel on a node with 32 1.3GHz Power4 CPUs where we have

measured average CPU efficiencies & 90%.

The Householder reduction yields a tridiagonal matrix which can be transformed to

real form using simple phase factors. Thus, a diagonalization procedure for real sym-

metric tridiagonal matrices is needed to finish the computation. Currently, we simply

call the LAPACK9 routine dsterf for a reliable computation of all eigenvalues of the
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tridiagonal matrix. This routine follows the traditional approach provided by the QL/QR-

algorithms6, 10, 21. If only eigenvalues are desired, the diagonalization of the tridiagonal

matrix requires a negligible amount of CPU time as compared to the Householder reduc-

tion such that optimization of performance is unnecessary. If eigenvectors are also needed,

basis transformations have to be computed in the QL/QR-algorithm. Inspection of the

QL/QR algorithm shows that this can also be parallelized after putting the rotations into

a bufferc. Indeed, we already have an OpenMP-parallelized implementation of the QL-

transformation for the tridiagonal problem. Recent optimization efforts by other groups

have focussed on this diagonalization step of the symmetric tridiagonal matrix17, 18, 19, 20.

Runtime measurements of our not yet optimized QL-transformation show that it requires

less CPU time than the Householder step. Faster algorithms for the tridiagonal problem

are therefore unnecessary and may even be detrimental for our applications if they go at

the expense of reduced numerical accuracy or increased memory requirementsd.

At the moment, the numerical efficiency of our own implementation of the QL-

transformation for the tridiagonal problem is still at the level of the routine tqli from

Ref. 21. As a next step we need to bring this up to the level of LAPACK10 and implement

checkpoints during the diagonalization of the symmetric tridiagonal matrix. It will also be

straightforward to derive real variants from our routines although it is not our priority to

optimize performance for the real symmetric case. Finally, everything can be canned into a

stand-alone package with general-purpose OpenMP-parallelized diagonalization routines

which we plan to release into public domain. This package is also scheduled to be in-

tegrated in a future release of the ALPS applications suite for strongly correlated electron

systems26, 27. Furthermore, we hope that our code developments will also be useful in other

fields such as quantum chemistry.
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