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Abstract. We study the response of F-actin bundles to driving forces through a simple analytical model.
We consider two filaments connected by reversibly bound crosslinks and driven by an external force. Two
failure modes under load can be defined. Brittle failure is observed when crosslinks suddenly and collectively
unbind, leading to catastrophic loss of bundle integrity. During ductile failure, on the other hand, bundle
integrity is maintained, however at the cost of crosslink reorganization and defect formation. We present
phase diagrams for the onset of failure, highlighting the importance of the crosslink stiffness for these
processes. Crossing the phase boundaries, force-deflection curves display (frequency-dependent) hysteresis
loops, reflecting the first-order character of the failure processes. We evidence how the introduction of
defects can lead to complex elasto-plastic relaxation processes, once the force is switched off. Depending
on, both, the time-scale for defect motion as well as the crosslink stiffness, bundles can remain in a quasi-
permanent plastically deformed state for a very long time.

PACS. 87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies – 62.20.F- De-
formation and plasticity 87.15.LaMechanical properties 87.19.rd Elastic properties

1 Introduction

Actin is one of the the most prominent examples of a pro-
tein that can polymerize into long filamentous polymers
(f-actin). In combination with some of the many different
actin-binding proteins (“crosslinks”) these filaments can
then assemble into a wealth of higher-order cytoskeletal
structures, with a multitude of different biological func-
tions. On a fundamental level it is an interplay between the
energy scales of crosslink and filament deformations that
determines the mechanical properties of these structures.
The dynamical properties are governed, among other fac-
tors, by the reversibility of the filament-crosslink bond,
which has an intrinsic and finite lifetime. In living cells,
dynamic crosslinking is needed to facilitate the rearrange-
ment of the cytoskeleton under external mechanical and
chemical forces. This results into dissipation of memory of
initial states and stabilization in new configurations under
changing environment. Under load, reversible crosslinking
can be one pathway for stress release. Consequences may
be internal rearrangements, large-scale structure forma-
tion, creep or even catastrophic failure.

Apart from complex cytoskeletal networks, actin fila-
ments are also found to assemble into simple structures
with only few filaments. For example one can observe
kinked helices, rings, tennis-racket shapes due to a com-
petition between elastic and interfacial effects [1,2]. The
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coiled acrosome is composed of straight sections of bun-
dled actin filaments joined via kinks [3]. A racket shape is
also observed in a tubulin rod that had buckled inside of
a vesicle [4].

Here, we consider the arguably simplest filament as-
sembly: that of two filaments crosslinked together in a
parallel fashion to form a bundle.

F-actin bundles are plenty in cytoskeletal structures in
eukaryotes. They provide mechanical stability in filopodia,
microvilli, stereocilia stress fibers and the sperm acrosome,
play roles in various cellular functions like locomotion [5,
6,7], mechanotransduction [8] and fertilization. Some in-
vitro experimental studies reveal that the crosslinking pro-
teins and their interactions with the filaments have impor-
tant effects on the mechanical and the structural proper-
ties of the bundle assemblies [9,10,11,12,13,14,15]. Under
the assumption of permanently bound crosslinks, a theo-
retical description has been developed (“wormlike bundle”
model) to characterize bundle mechanics [16,17]. Theoret-
ical work has also focused on thermal denaturation [18,
19], thermally assisted force-induced desorption [20], or
the effects of filament helicity on bundle structure and
stability [21,22].

In recent experiments [23], the time dependent effects
of large bundle deformation has been studied in-vitro.
These experiments highlight the important aspect of “crosslink
remodelling”, which has not been accounted for in these
previous studies: in response to force, crosslinks will re-
peatedly un- and rebind at different binding sites along
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the actin filament. In the experiments, a crosslinked f-
actin bundle is subjected to a stress and kept in a bent
state for a short period (10s) or a long period (1000s).
After this waiting time, the bundle was released and the
relaxation was observed with time. For short waiting time,
the bundle relaxes back exponentially to its initial straight
ground state. It behaves elastically. For the long wait-
ing times, however, the bundle only partially relaxes back
and a substantial residual bending deformation remained
in the bundle, which is therefore plastically deformed. It
seems that upon deformation, new crosslink binding sites
become available which allow to reduce the strain on the
crosslinks and thus are more favourable. After release of
the force, these new connections stabilize the bent confor-
mation and thus the bundle remains in a bent form.

This transition from elastic to plastic response of the
filament bundle is the subject of this paper. We will show
how already a simple two-filament bundle can display com-
plex mechanical properties. With the help of case-studies
we can define two failure modes of the bundle under load.
Brittle failure is observed when crosslinks unbind under
load [24,25], leading to catastrophic loss of bundle in-
tegrity. Ductile failure maintains bundle integrity at the
cost of crosslink remodelling and defect formation.

The paper is organized as follows. In Sect.2, we de-
scribe our model. Two different cases of crosslink binding
are considered. The results are discussed in Sect.3. We
show that bundle deformation leads to crosslink unbind-
ing processes that crucially depend on the stiffness of the
crosslinking protein. The Sect. 3.1 and Sect.3.2 discuss the
two above mentioned scenarios. A time-dependent force is
introduced in Sect.4. There we show how the response
changes with the frequency of the driving force, and also
consider the relaxation of the bundle once the force is
switched off. Finally, in Sect.5, we summarize our results.

2 Model

We consider a biopolymer bundle of length L, lying in a
two-dimensional plane and consisting of two parallel in-
extensible actin filaments. A schematic diagram of such a
bundle is shown in Fig.1. In a variety of systems such as or-
ganic and inorganic nanotubes as well as stiff biopolymers,
the stretching deformation mode is energetically expensive
relative to the bending mode, so that the filaments may be
approximated as inextensible. We comment on the effect
of filament stretching at the end of Sect. 3. The filaments
are laterally interconnected by reversible crosslinks (red
lines in Fig.1) they can dynamically bind and unbind the
filament pair.

On each filament there are N× crosslink binding sites,
spaced at regular intervals a distance δ apart. One end of
the bundle is grafted at a wall and the other end is free to
move. The force is applied at the free end which produces
a bending deformation in the bundle creating stress on the
crosslinks. The boundary conditions resemble the in vitro
experiments done by D. Strehle et. al [23], where the free
end is subjected to a force by pulling it while the other
end is immobilized by sticking to a heavy bead. Because of

b

δ δ s+2δs− s+s

xk

Fig. 1. Schematic diagram of an F-actin bundle with two fila-
ments. Two black lines represent the filaments. The black cir-
cles show the crosslink binding sites on the filaments. The red
vertical lines represent the crosslinks connecting two filaments.
The distance between two crosslink binding sites is δ and the
lateral distance between the filaments is b. The crosslink stiff-
ness is denoted by k×.

the driving force, the bundle will be deformed by bending
the filaments and shearing the crosslinks (see Fig.2). The
shearing energy [26,27,28,29] of the crosslinks amounts to

Hsh =
k×
2δ

∫ L

0

(bθ(s))
2
ds, (1)

where b is the separation between the two filaments and
k× is the crosslink stiffness, or the mechanical stiffness of
the crosslinking agent. Here θ(s) is the angle of inclina-
tion, i.e. angle of the local tangent the bent bundle makes
at a point s with respect to the initial configuration, s be-
ing the arc length along the bundle. The quantity bθ(s),
therefore, gives the amount of shear in the crosslink at s.
The bending energy of the filaments can be obtained from

b θ θ(s)
b

s

force

end
fixed free

end

Fig. 2. A bent configuration of a crosslinked filament bundle.
Bending by an angle θ leads to crosslink sliding and a shear
deformation of amplitude bθ.

WLC Hamiltonian as

Hb = κf

∫ L

0

θ′2(s) ds, (2)

where κf is the bending stiffness of the filaments. There is
another contribution coming in the Hamiltonian due the
driving force f at the free end, which reads,

Hf = −2f

∫ L

0

θ(s) ds. (3)
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In our calculations we use a linearized forcing term ∼ fθ,
which is only accurate for small deflections. For typical
experiments large deflections may be important, and the
full expression f sin(θ) would have to be used. We have
checked in some cases that this would not change the
qualitative behaviour of the bundle response under stress.
Moreover, considering the small θ approximation keeps
the model solvable analytically.

The total Hamiltonian of the system is then the sum
of the three contributions, H = Hsh +Hb +Hf .

The most favourable configuration is chosen by the
system by minimizing energy. In doing so, some crosslinks
may unbind from the binding sites to cope with the force.
This results in a change in the crosslink density in the
bundle depending on the magnitude of the applied force,
the stiffness of the crosslinks and bending stiffness of the
bundle. To proceed with the analytical calculations, we
introduce the crosslink density,

n = number of bound crosslinks/N×

in a mean field way which effectively normalizes the crosslink
stiffness k× → nk× in Eq.(3) [25,24]. The crosslink den-
sity n can vary from 0 (all crosslinks unbound) to 1 (all
crosslinks bound). There are two other contributions in
the energy, one is from the entropy of mixing, Emix =
kBT [n lnn+ (1− n) ln(1− n)] and the other is µn, where
µ is the chemical potential for crosslink binding.

We modify the problem of unbinding of crosslinks in a
way to allow the crosslinks to rebind to new crosslink bind-
ing sites. To simplify things, let us allow the crosslinks to
rebind only to the right neighbouring site, i.e. allow con-
nections between site α of 1st filament and sites α as well
as α + 1 on the 2nd filament (see Fig.3). The rebinding

bb

defect

force

θ−δ

s

Fig. 3. A bent configuration of a forced crosslinked filament
bundle. Rebinding of crosslinks has taken place to new bind-
ing sites after holding the bundle in bent configuration. The
red dotted line shows the crosslink in undeformed state. The
rebinding creates a defect in the bundle.

will result in a mismatch in the crosslink binding registry
between the two filaments. The starting point of such mis-
match will look like a “defect” with one vacant binding site
in one filament (Fig.3b). We will only allow for one defect
in the following. If sD is the defect site, all the crosslinks

situated at s > sD will be rebound to the shifted reg-
istry. This can be incorporated into the Hamiltonian by
modifying the shearing energy as,

Hsh =
k×
2δ

∫ L

0

(bθ(s)− d(s))
2
ds, (4)

where d(s) is the relative shift in the crosslinking sites
in the two filaments. It goes from zero to δ when going
through the defect. For convenience we choose the follow-
ing continuously differentiable form

d(s) =











0, s ≤ sD − δ,
δ
2

(

1 + sin π(s−sD)
2δ

)

, sD − δ < s < sD + δ,

δ, s ≥ sD + δ.

(5)
Here we assume that the defect has a core region of size
2δ, from sD − δ to sD + δ. Note that here we set n = 1 as
we do not allow any open crosslink.

The total Hamiltonian is minimized with respect to θ
to find the corresponding differential equation. The solu-
tion for θ(s) is then plugged back into the Hamiltonian
to find the energy. The numerical calculations have been
done with the following parameters. The intercrosslink
spacing δ and the separation between the filaments b are
taken as b = δ = 1. In actin filaments the crosslink sites
can be taken to be roughly 40nm apart, which corrre-
sponds to the helical repeat of the filament [9]. The bend-
ing stiffness κf = 1, sets the energy scale in all the results.
The length of the bundle and the persistence length are
taken as L = lp = 500, which correspond to ∼ 20µm [30].
Temperature is fixed via (kBT )

−1 = lp/κf = 500. The
most important parameter in this work is the ratio k×/κf .
We refer to this ratio whenever we say k× in this paper.
Stiff crosslinks corresponds to large k× and soft crosslinks
corresponds to small k×. The force is measured with re-

spect to the Euler buckling force fb =
π2κf

2L2 .

3 Results

3.1 Unbinding of crosslinks under force

In this sub-section we consider the effects of unbinding
under increasing levels of force. To this end, we set k× →
nk× in Eq. (1) and determine the equilibrium state by
minimization with respect to θ(s) and n. Defect formation
will not be allowed in this section, thus we take d(s) ≡ 0.

The minimization with respect to the variable θ(s)
gives a differential equation, namely,

θ′′(s)− nK2θ(s) = − f

κf
K2 =

k×b
2

2κfδ
, (6)

solving which we get the behaviour of θ(s). The bend-
ing angle satisfies the proper boundary conditions that
θ(0) = 0, θ′(L) = 0 and that θ(s), θ′(s) are continuous ev-
erywhere. The bending angle is θ(s) ∝ f , more explicitly,

θ(s) =
f

K2κf

[

1− coshK(L− s)

coshKL

]

. (7)



4 Poulomi Sadhukhan, Ole Schuman, Claus Heussinger: Elasto-plastic biopolymer bundles

Therefore, the effective free energy per crosslink site in-
cluding entropy of mixing is,

F (n) =
f2 sech2(

√
nKL)

8n3/2K3κf

[

(10− 3n) sinh(2
√
nKL)

−2
√
nKL(6− 2n+ (4 − n) cosh(2

√
nKL))

]

+µn+ kBT [n logn+ (1 − n) log(1− n)]. (8)

At zero temperature, the free energy has minimum ei-
ther at n = 0 or n = 1. The crosslink density correspond-
ing to the lowest energy jumps from 1 to 0 as we reach a
critical value of force fc. This means that at fc, suddenly
all crosslinks unbind and the bundle breaks down into two
independent filaments. The phase diagram can be found
by equating F (0) = F (1) (see Fig.4).

0 0.05 0.1 0.15 0.2 0.25
f /√µ

0

5e-4

1e-3

k x/κ
f

n=0

n=1

Fig. 4. Phase diagram for inextensible filaments at temper-
ature T = 0. The transition across the line separating the
phases with average crosslink density n = 0 (fully decoupled)
and n = 1 (fully coupled) is discontinuous.

At finite temperatures, there is a variation in the crosslink
density n with the driving force f (see Fig. 5). The crosslinks
unbind continuously with increasing force for soft crosslinks
(small k×) while for large k×, there is a jump in the
crosslink density indicating a first-order transition. The
transition is from a state where the filaments are tightly
coupled by many bound cross-links, to a state of nearly
independent filaments with only a few bound crosslinks.
This happens due to the presence of a metastable state
at large k×. The plot of the crosslink density with force,
therefore, shows a region where for a given force two val-
ues of n are possible. The exact location of the jump in
the crosslink density from one branch to the other can be
determined by observing when the global minimum and
the metastable minimum switch. This is the case for slow
quasi-static driving, when crosslinks are allowed to equi-
librate for a given level of the external load. Away from
equilibrium, the forward and the reverse branch will be
different depending on the driving frequency, giving rise
to interesting dynamics and hysteresis effects. This will
be discussed later in Sect.4. The range of f , when there
is a metastable state, increases with increasing crosslink
stiffness. For very large crosslink stiffness, the allowed val-
ues of n are more towards the two extremes, 1 and 0, like

0 0.25 0.5 1.0 1.25
Force  f

0

0,1

0,2

0,3

0,4

0,5

C
ro

ss
lin

k 
de

ns
ity

  n

k
x
=10

-5

k
x
=10

-4

k
x
=10

-3

Fig. 5. The variation of the crosslink density with driving force
at finite temperature and µ = 0. In this figure, for k× = 10−4

and k× = 10−3, the jump from one to the other branch happens
within the region enclosed by the dotted line.

zero temperature behaviour. For a bundle consisting of
more than two filaments, a series of first-order transitions
is expected as observed in Ref. [25].

The discontinuity in the crosslink density with force is
reflected in the average bending angle

〈θ〉 = 1

L

∫ L

0

θ(s)ds, (9)

which is feasible to observe in experiments. In Fig.6, we
plot 〈θ〉 as a function of force f . We see that the slope of
the curve 〈θ〉 gradually reaches to a fixed value for all k×,
which corresponds to the value with n = 0. For large k×,
the average bending changes suddenly from small value to
a large one as a result of jump in the crosslink density. The
softer the crosslinks, the smaller is the jump in the average
bending at the critical force. For the last two graphs, we

0 0.25 0.5 0.75 1
Force  f

0

0.5

1.0

A
ve

ra
ge

 b
en

di
ng

 <θ>

k
x
=10

-5

k
x
=10

-4

k
x
=10

-3

n=
0

Fig. 6. This plot shows how the average bending 〈θ〉 of the
bundle varies with the driving force f (µ = 0). The black
dotted line shows the behaviour for n = 0. All the lines merge
gradually to this dotted line for large force.

set the chemical potential µ = 0. Nonzero µ tends to lead
to stronger discontinuities.
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This sudden unbinding of nearly all crosslinks is rem-
iniscent of a brittle failure process during which bundle
integrity is lost completely. With our choice of boundary
conditions (grafted at one end), filaments stay together,
however, and after removal of the load, crosslinks can
again form. This will be a quick process which is essen-
tially downwards in energy landscape. This is illustrated
by Fig. 7.

A system with similar kind of unbinding mechanism
is a double stranded DNA. Force-induced phase transi-
tions by pulling two strands in opposite direction is dis-
continuous from a fully bound or zipped state to a fully
unbound or unzipped state [31]. This all-or-none binding
state resembles the case of the f-actin bundle with very
stiff crosslinks.

E
ne

rg
y

crosslink density

E
ne

rg
y

crosslink density

withdraw
force

Fig. 7. Schematic of the energy landscape with and without
force. At large forces, the bundle is in an unbound state with
the minimum of the energy at very small n. At this condition,
keeping all other parameters fixed, if we withdraw the force, the
energy profile is linearly decreasing with n, with the minimum
at n = 1. Hence, after only a short time we see the system
to roll back to the bound state, regaining its old configuration
with perfectly ordered bound crosslinks as it was before the
deformation.

3.2 Rebinding of crosslinks under force

In this section we consider the possibility that, under de-
formation, crosslinks rebind to more favourable binding
sites, thus forming a defect. As explained in the mod-
elling section this is accounted for by a defect-function
d(s), which goes from zero to δ at the defect site sD. The
relevant observable now becomes the defect site sD in-
stead of the crosslink density n, which we assume to be
saturated at n = 1. The differential equation for θ(s), ob-
tained by minimizing the Hamiltonian w.r.t. θ, is

− 2κfθ
′′(s) +

k×b

δ
(bθ(s)− d(s)) = 2f. (10)

One can find the total energy E as a function of defect
site sD using the solution θ(s) of this differential equa-
tion in the Hamiltonian. The value of sD at which E is
lowest in the E vs. sD curve gives the location of the de-
fect. Without force, f = 0, it is at the free end, sD = L.
As the force increases, beyond a critical force, the bun-
dle creates a defect to reduce bending stress and crosslink
shearing. There is a region near the free end of the bundle
where the creation of a defect is very costly. This region
widens with increasing crosslink stiffness and vanishes for

soft crosslinks. Hence, for large k×, when increasing force
from a very small value, we see a sudden creation of defect
deep inside the bundle at the critical force. Fig. 8 shows
the location of the defect scaled by the length of the bun-
dle L, vs. force f . The critical force fc is the value of
force where the defect site jumps from sD = L to smaller
value. As the force increases further, the defect site moves
towards the fixed end and gets stuck there.

0 1 2 3
Force  f

0

0.2

0.4

0.6

0.8

1.0

D
ef
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t s

ite
  s D

/L

k
x
=10

-5

k
x
=10

-4

k
x
=10

-3

k
x
=10

-2

∆

∆

Fig. 8. Defect site sD moves with the driving force f . The
critical force fc is the value of force where the lines jump to
sD = L.

The creation of the defect is also apparent in the value
of the average bending angle 〈θ〉, which displays a sud-
den jump. We plot 〈θ〉 against force for different values
of k× in Fig. 9. For soft crosslinks the average bending
angle increases stronger with increasing force than that of
stiff crosslinks. Rather, for very stiff crosslinks, the aver-
age bending does not change much with increasing force
except at the critical force, where we see a jump in the
value of 〈θ〉. In this limit the bundle is extremely stiff
and can hardly be bent by the external force – any bend-
ing deformation would lead to very costly shearing of the
crosslinks, which is avoided as long as no defect forms.
With a defect present, the bend is localized to the defect
region leaving most of the bundle straight and thus the
crosslinks unstrained.

This results in a kink in the bundle. Fig.10 shows
how the bundle looks like for soft (k× = 10−3) and stiff
crosslinks (k× = 10−1) for a large force, f = 5fb. For
comparison, we fix the defect position at s = L/2 in both
the bundles. We see that for large k×, there is a sharp
bending, or kink, around the defect site. The larger k×,
the sharper is the kink. For small k× no kink is visible,
even with a defect. The light blue line in Fig. 10 shows
the bundle for extensible filament with the same crosslink
stiffness (k× = 10−1) as the kinked bundle (black line)
with inextensible filaments. From this graph we can con-
clude that the kink can be suppressed either by allowing
stretching in the filaments or by choosing soft crosslinks.

The stretching of the filaments will modify the shear-
ing Hamiltonian by an extra contribution of relative dis-
placement u(s) of the crosslink binding sites of one fila-
ment with respect to the other in the integrand, bθ(s) →
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Fig. 9. The average bending 〈θ〉 as a function of driving force
f for various crosslink stiffness k×.

(1) k
x
=10

-1

(2) k
x
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(3) k
x
=10
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Kink

Fo
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e 
f

extensible

fixed end free end

inextensible

1

2

3

Fig. 10. Bundle contours for different crosslink stiffness. All
the bundles have a defect at sD = L/2. The sharpness of bend-
ing is much higher in the bundle with stiff crosslinks. The light
coloured steep line (3) shows the bundle with extensible fila-
ments.

u + bθ(s). Also there will be an extra term in the Hamil-
tonian coming from the stretching energy of the Hamilto-
nian, viz.,

Hst =
ksδ

2

∫ L

0

u′2(s) ds. (11)

The phase diagram in Fig. 11 shows that the critical
force fc increases with increasing k×. For very small value
of k×, fc saturates to a fixed finite value, indicating that
no matter how soft the crosslinks are, there will be a possi-
bility to create a defect in the bundle by applying force. In
this graph, additionally, we indicate the phase separation
line for bundles with extensible filaments (dashed line). If
we allow stretching of the filaments, an additional defor-
mation mode becomes available that the bundle can use
to minimize energy. Thus, stretching delays the creation
of a defect. So, for same crosslink stiffness, it is easier to
create a defect in bundles with inextensible filaments.

Now let us consider a bundle which has been exposed
to a large force and held in the deformed configuration
for a long time, so that there is creation of a defect deep
inside the bundle. In this configuration, the energy E(sD)
has a minimum at small sD with a large energy barrier
towards higher values of sD (see Fig. 12). If, at this point,

1e-6 1e-5 1e-4 1e-3 1e-2
k

x
/κ

f

0

1

2

3

Fo
rc

e 
 f

Inextensible filaments
Extensible filaments

With defect

No defect

Fig. 11. The phase diagram of a bundle with inextensible
filaments at zero temperature. The line separates the phases
with a defect and with no defect. For small k×, the critical
force becomes independent of k×. The dashed line shows the
behaviour for extensible crosslinks.

we remove the force, then E(sD) has a wide plateau except
at the two ends, the lowest energy now being for a defect
at the free end (i.e. no defect). Once the defect is created
in the bundle, and if the force is withdrawn, the defect
gets trapped in the plateau as it does not feel any driving
force to move towards the free end, where it can escape
(see Sect. 4.2). Within this time scale, even without any
driving force, we see the bundle in a plastically deformed
configuration. This mechanism, which is reminiscent of the
ductile failure of metals, may very-well be responsible for
the long-lived residual deformation that has been observed
in the experiments of Strehle et al. [23].

withdraw
forceE

ne
rg

y

E
ne

rg
y

defect site defect site
Fig. 12. Schematic of the energy landscape with and without
force. At large forces, the bundle is in a kinked state with a
defect present at small sD. If we withdraw the force, the energy
is flat and independent of sD. This means that there is only a
weak driving force for the defect to move towards the free end,
where it can escape. Thus, depending on the dynamics of the
defect, the bundle remains in its plastically deformed state for
a long time.

4 Dynamics

Let us now consider some aspects of the dynamical evolu-
tion of the bundle degrees of freedom. In general, this will
represent a coupled evolution of the bundle contour, rep-
resented by θ(s), and the binding state of the crosslinks,
for example given in terms of the average occupation n
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or the defect location sD. In what follows we will present
simplified approaches to deal with two scenarios of time-
dependent forcing: oscillating force, and switch-off after
constant force.

4.1 Crosslink dynamics

Here, we consider the brittle failure scenario of Section 3.1
and ask about the dynamical evolution of the crosslink
occupation m = n ·N× = 0, 1, . . . , N×.

If bundle conformational degrees of freedom (bending
mode θ and possibly internal stretching modes) are as-
sumed to be relaxed one can formulate a one-step Master
equation for the temporal evolution of the probability dis-
tribution pm(t)

∂pm
∂t

= rm+1pm+1 + gm−1pm−1 − (rm + gm)pm , (12)

with the rates

rm = meβ∆Em(f)r0 , gn = (N× −m)r0 .

r0 represents an intrinsic rate constant and the free en-
ergy profile ∆Em(f) should be taken from Section 3.1. A
similar problem is the cluster of adhesion sites discussed
in Ref. [32]. There, the energy profile is taken to be lin-
ear in the applied force, which is divided among all bound
sites, rm = mef/mr0. Here, the dependence on force is, in
general, more complex. It is also illustrative to consider
the general case in the framework of the associated rate-
equation

ṁ = −mr0eβ∆Em + r0(N× −m) , (13)

When ∆Em depends on m, this equation follows from the
Master equation Eq. (12) only by making the approxima-
tion 〈rm〉 → r〈m〉. As expected from the results of Sec-
tion 3.1 (see Fig. 5) this equation either has one stable
stationary state (at low or high force), or two stable states
(at intermediate force).

The full stochastic trajectory of the bundle occupation
m(t) in response to time-dependent forces can only be ob-
tained by solving the Master equation Eq. (12). For oscil-
lating forces f(t) = f0 sin(ωt), for example, one expects
to see ω-dependent hysteresis effects, due to the presence
of an energy barrier between the metastable state and
the groundstate. The size of the energy barrier depends
on force, ∆E(f), as calculated in Section 3.1. With this
dependence we can set up a simplified treatment of bar-
rier crossing events that lead to hysteresis without hav-
ing to solve the full Master equation. To this end, we use
Kramers equation for the rate r of a thermally assisted
escape over an energy barrier

∆E(f) = −kBT ln
r

r̂0
, (14)

where r̂0 corresponds to some intrinsic attempt rate. By
mapping escape rate to frequency, r/r̂0 ≡ ω/ω0, we can

establish a relation f(ω), for the force at which the bar-
rier can be crossed. Fig. 13 shows examples of the resulting
hysteresis loops for two different frequencies. As expected,
the area within the hysteresis loop is reduced when the
frequency decreases. The frequency range over which hys-
teresis can be observed depends on the size of the energy
barriers. For small values of the chemical potential µ, the
barriers may only be a few kBT . In this limit our approach
is not expected to hold.
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Fig. 13. Hysteresis loops for the average bending angle 〈θ〉 vs.
force f for different frequencies (µ = 0.01). The black line cor-
responds to the small frequency limit, i.e. to the equilibrium
transition. The green dashed line is for frequency w/w0 = 0.135
(w1) and the magenta dashed-dotted line corresponds to the
frequency w/w0 = 0.368 (w2) . Larger frequency indicates
larger hysteresis loop.

4.2 Coupled dynamical evolution of crosslinks and
filament conformation

Here, we discuss the ductile failure mechanism introduced
in Section 3.2. In particular, we are interested in the relax-
ation of the bundle contour after the force is switched off.
This situation is analogous to the experimental set-up of
Ref. [23]. The relaxation represents a coupled dynamical
evolution of the bundle contour y(s, t) (with y′ ≡ θ) and
the defect location sD(t). For the contour one can derive
the equation of motion from the Hamiltonian Eqs. (2) and
(4).

ζ
∂y

∂t
= −2κfy

(4) +
k×b

δ
(by′′ − d′) (15)

which represents the time-dependent generalization of Eq.
(10) for f = 0.

For the temporal evolution of the defect position sD
we use a simple rate equation

∂sD
∂t

= rδ tanh(β∆E/2) (16)

where the distance between crosslink binding sites δ rep-
resents the length-scale for the defect motion; the rate r
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sets the relevant time-scale. It will depend, for example,
on the chemical potential of the crosslinks, r ∼ eβµ.

The tanh-factor derives from the activated nature of
the process. For the defect to move the distance δ, two
energy barriers need to be crossed: first a crosslink has
to unbind from its old binding site. Second, it needs to
“stretch-out” to reach its new binding site. These two pro-
cesses are illustrated in Fig. 14.

Fig. 14. Illustration of the energy landscape relevant for the
motion of a defect. The defect moves by δ, when one crosslink,
first, unbinds and then rebinds to a neighboring site. The rel-
ative energy gain is ∆E = Eold − Enew.

The two Equations (15) and (16) have to be solved
in parallel, with the defect location entering the function
d in Eq. (15), and the bundle contour determining the
energy gain ∆E in Eq. (16). This is achieved via a mode-
decomposition of the bundle contour

y(s, t) = ypart +
∑

q

ψq(s)ỹq(t) (17)

where the ψq are the Eigenfunctions of the operator −∂4s+
κ×∂

2
s

1, and we separate out a particular solution ypart
of the equation. The resulting equations are integrated
numerically with a simple explicit Euler step.

Fig. 15 displays the results of such a calculation. De-
picted is the average bending angle 〈θ〉 as a function of
time and for various values of the time-scale r−1 for de-
fect motion. The bundle is initialized in a highly bent state
with a defect at position sD = 0.1.

Before complete relaxation into its final straight state
(〈θ〉 = 0), the bundle passes through different stages. On
small time-scales the evolution is independent of r−1 and
signals the relaxation of the bundle contour for an im-
mobile defect. Once this fast process is completed the fi-
nal relaxation is slaved to the motion of the defect. This
is illustrated by the data collapse when plotted vs. rt as
demonstrated in the inset. In the plateau region the defect
does not move as the driving force for motion is very small
(∆E is small, see Fig. 12). Depending on the time-scale
for defect motion and also on the crosslink stiffness k×,
the bundle may remain in this plastically deformed state
for a long time. Finally, the defect starts to move, leading

1 The functions are given by ψq = A sin(qx) + B cos(qx) +
C sinh(q̃x) + D cosh(q̃x), where q̃2 = q2 + κ× and the con-
stants as well as the wavenumbers q are determined from the
boundary conditions.
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Fig. 15. Average bending angle 〈θ〉 vs time t for different
values of the time-scale r−1 = 10−6 . . . 10−2 (from left to right)
and for k× = 10−2.

to a logarithmically slow terminal relaxation, after which
the defect leaves the bundle.

5 Summary and Outlook

In this paper, we study the response of F-actin bundles to
driving forces through a simple analytical model. We con-
sider two filaments connected by reversibly bound crosslinks
and driven by a force applied at the ends. Our model re-
lies on the fact that under large deformation, the crosslinks
un- and re-bind in order to reduce the stress in the bundle.

We can define two failure modes under load. Brittle
failure is observed when crosslinks suddenly unbind, lead-
ing to catastrophic loss of bundle integrity. Ductile failure
maintains bundle integrity at the cost of crosslink remod-
elling and defect formation.

We present phase diagrams for the onset of failure,
highlighting the importance of crosslink stiffness for these
processes. Crossing the phase boundaries, force-deflection
curves display (frequency-dependent) hysteresis loops, re-
flecting the first-order character of the failure processes.

We also relate our findings to recent experiments that
evidence long-lived plastically-deformed actin bundles [23].
To this end we combine an elasto-hydrodynamic descrip-
tion of the bundle relaxation with a rate equation for de-
fect motion. The terminal relaxation of the plastic defor-
mation is thus seen to be slaved to the dynamics of the de-
fect. For weak crosslinks a defect is spread over the entire
length of the bundle and is not discernible in the bundle
contour. For stiff crosslinks defects take the form of well
localized kinks. These kinks only have a very small ten-
dency to move towards the free end of the bundle, where
they can escape. Thus, crosslink stiffness is a key factor
governing the long-time dynamics of the bundle.

The model should be extended towards a more real-
istic bundle architecture, with more than just two fila-
ments and in three spatial dimensions. Similarly, it would
be useful to consider more than one defect and also dif-
ferent types of defects. Finally, it would be interesting to
analyze in more detail the transition between brittle and
ductile behavior, when, for example, the binding enthalpy
of the linkers is varied. These questions will have to be
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tackled with the help of suitable simulation techniques
and are left for future work.
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laborative research center SFB 937, as well as via the Emmy
Noether program (He 6322/1-1).
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