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Ensemble or Individual System, Collapse or no Collapse:

A Description of a Single Radiating Atom

Gerhard C. Hegerfeldt and Tobias S. Wilser

Institut fiir Theoretische Physik
Universitat Gottingen, Germany

Abstract

We use ordinary quantum mechanics to analyze a gedanken experiment of re-
peated photon measurements on an atom. The measurements are a short, but finite,
time At apart. This leads to a coarse-grained time scale and to a description of
photon counts from a single atom by a sample path of a classical stochastic process
governed by quantum mechanics. It is shown that a collapse, or reduction, of the
state vector at a no-photon ("null”) measurement is not needed but may be used
as a very convenient technical tool. We also show that within the coarse-grained
time scale the axiomatic theory of continuous measurements of Davies and Srinivas
can in the case of a radiating atom be obtained from ordinary quantum mechanics.
Applications to macroscopic dark phases and quantum beats are indicated.

PACS: 03.65.Bz, 32.80.-t, 42.50.Bs

1. Introduction

In recent years there have been exciting experiments on single atoms in Paul traps. Partic-
ularly interesting theoretical questions arise in connection with macroscopic dark periods
or macroscopic quantum jumps of a single atom. Macroscopic dark periods of a single
fluorescent atom were predicted by Dehmelt [1] for a system with two excited states, one
rapidly decaying and the other metastable. Driving such a system by two lasers one in-
tuitively expects frequent transitions from the ground state to the nonmetastable excited
state with the subsequent emission of a spontaneous photon (”light period”). Once in a
while there will be a transition to the metastable state, where the electron will stay for
an extended period, and there will be no photons (*dark period”, "electron shelving”).
Quantum mechanically the situation is less clear than semiclassically because by the time
development the atom will in general be in a coherent superposition of all three states,
with an admixture of the rapidly decaying state always present, so that one may wonder
if the dark periods really exist. These ideas have been analyzed semiclassically by the
telegraph process [2] as well as quantum mechanically [3, 4, 5, 6]. Macroscopic dark pe-
riods were indeed found experimentally for single atoms in a Paul trap [7], confirming a
spectacular quantum effect.
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In the following we use only ordinary quantum mechanics. By this we mean the sta-
tistical interpretation as well as the reduction of the state vector after a measurement
[8]. According to the statistical interpretation, as understood here, one deals with prob-
ability statements which are experimentally verified as frequencies, or relative numbers
of events, in an ensemble. Instead of considering many systems one may also measure
on an individual system, then prepare it again in the same way, measure again, and so
on. In the case of interest here this would mean an ensemble of many atoms each with
its own radiation field and laser, or a single atom with radiation field and laser, observed
infinitely long, then prepared again as before, observed again, and so on.

For reductions we take the von Neumann-Liiders rule [9]. For example, if one measures
the energy of a system in the state | 1) and finds a particular eigenvalue of the energy
which is degenerate, then the state immediately after the measurement is given by the
projection of the state |1) onto the eigenspace of the respective eigenvalue, with ensuing
normalization. Such a reduction is surely an idealization of the measurement process and
only a substitute for a detailed theory of the measuring apparatus.

Such a change of the state vector will, of course, influence the results of subsequent
measurements. As an example we consider a spin 3 in a magnetic field B = (B,0,0) in
x-direction. The Hamiltonian is given by

== 1/2kB-0 = 1/2 hBo;
As initial state |po) we take the one with spin up, 03 |@e) = |@o). Then, at time ¢,
| ps) = exp{—io1Bit/2} | o) -

We now imagine the 3-component of the spin measured in two different ways.
a) We measure at time T = w/B only. This gives

(oaf2 Vs = =1/2

b) We measure first at time T/2, then perform a reduction of the wave function, and
measure again at time 7'. This gives

(o3/2)r = 0

which differs radically from the previous outcome.

We now consider an atom which radiates photons. One then has the problem that if
the photons are detected by a counter or seen by the eye of an observer one performs, in
principle, a measurement, with all the consequences of the theory. Moreover, due to the
stochastic nature of the emission times, how does one know when to measure?

2. Null Measurements

We imagine a general N-level atom possibly illuminated by one or several lasers and use
an ideal detector of efficiency 1 to measure the photons emitted. We start at ¢t = 0 and
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assume the first photon to be detected at time ¢;. This is obviously a photon measurement,
and one may try to describe it quantum mechanically as follows. At time ¢, = 0 one
has a no-photon state |0,,) together with an atomic state | ¢4). Until time ¢, one uses
the unitary time development,

U(tla tO) |0ph) | ¢'A)1

and then one would have a reduction at time ¢,. The probability FPo(¢) to have found no
photon at time t,¢ < t;, is then

Po(t) = 32 1(ia | (Opn | Ut to) | Opn) | ) I

where the sum is over all atomic states. Defining the projector [Py by
Po = 3 |0pn) |ja)(jal (Opnl
JaA

| 0pn) 14 (Opn | (1)

one can write Fy(t) as

Po(t) = || IPo Ult,to) |Opn) | ¥a) |7 (2)

The right-hand side of this has been calculated by Porrati and Putterman [6]. The
probability Py(t) is important for the determination of photon rates and for dark periods,
as first pointed out in Ref. [3].

There is an objection to this. In order to know that there had been no photon before
t,, one would have had to open the detector between 0 and ¢; without detecting a photon.
Opening the detector and not finding a photon, however, is also a measurement which
may be called a "null measurement” [10]. Should each of these null measurements not
also be accompanied by a reduction? In the above procedure leading to (2) they are not
manifestly taken into account.

How many of these null measurements does one need? Ideally, infinitely many, and
ultimately this line of reasoning would lead to "continuous measurements” [11]. However,
it is well-known that the von Neumann-Liiders rule leads to difficulties with continuous
measurements since in the idealized limit of measurements repeated infinitely fast it leads
to a freezing of the state, the so-called quantum Zenon effect [12].

By an axiomatic extension of quantum mechanics Davies and Srinivas [13] have con-
structed a theory of continuous measurement which is adapted to counting rates. But for
any particular situation one needs a phenomenological input or some intuition to obtain
the explicit form. W= will come back to this theory in the Section 5.

3. From Ensemble to Single System

We return to the N-level system of the last section and consider a gedanken experiment.
To avoid freezing of the state due to the quantum Zenon effect we open the detector at
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instances a very short — but finite — time At apart and perform, at each null measurement,
an explicit reduction of the state vector. To obtain limits on At we require that At should

be
(1) much shorter than the life time of a level, i.e., much less than 1072s;

(ii) large compared to the time it takes a photon to travel the distance of an atomic
diameter (essentially the correlation time in quantum optics).

We thus arrive at

At =2 1071 — 10712,

Therefore we have up to 10® additional reductions per second on top of the 10® photons
or so.

Reductions and sample paths. We assume that the single atom from above, with its
radiation field, is a member of an ensemble £ described by the initial state IOPh) | %a).
The atoms may or may not be driven by external pumping. At times At apart we imagine
a measurement on each system of £. By £*" we denote the subensemble of all systems
for which no photon was found at time At. Similarly, 8((,"6” denotes the subensemble
of systems for which at times At, 2At,---, nAt no photon was found. Clearly one has

(m) D txsiws S("At). According to the von Neumann-Liiders rule the subensemble

8( is described by the state vector
IPo U(At,0) | Opn) | %a) / |l - |l
where the projector IP, is given by (1). The n-th subensemble £{**" is described by
U(nAt,(n — 1)At) [Py -+ IPo U(At,0) | Opr)| %pa) / Il - |l (3)

which shows the intermittent unitary time development interrupted by repeated reduc-
tions in between. The first subensemble Sém) has relative magnitude

| Po U(At,0) |0p5) | 1a)ll?

which in the statistical interpretation is the probablllty of finding no photon at time At.
The relative magniti.de of subensemble 80 compared to £ is

Po(nAt) = || P U(nAt, (n — 1)At) Py U((n — 1)At, (n — 2)At) - --
(4)

. Py U(2At, At)IPy U(At,0) | 0,4) | %04) ||

which gives the probability of finding no photon at the times At, - - -, nAt. This expression
is quite different froin the previous one in (2).

At each measurement on the individual system under consideration chance decides
according to the probabilities Py(At), --- , Py(nAt), --- whether or not a photon is
detected. This behavior can be simulated by flipping a coin weighted with the conditional
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probabilities for each measurement. Once a photon is detected and absorbed our individ-
ual system becomes a member of a new ensemble £. How to describe the new ensemble
is in general quite a subtle question and will be discussed elsewhere. Here we will assume
for simplicity that the system is reset to |0,4)|04) where |04) is the atomic ground state
[14]. With no external pumping the state remains constant after ¢;. If a driven atom
starts out from the ground state and if at time ¢, = (n + 1)At, say, the first photon is
detected then the procedure starts again, with a time ¢; for the next photon detection,
and so forth.

Thus in the above approach the photon and no-photon detection times for a single
atom form a sample path of a classical stochastic process which is governed by quantum
mechanics. Without pumping the sample path terminates. In the simple case of a driven
atom which is reset to the ground state after a photon detection one obtains a path of a
renewal process since after each photon detection the memory is lost. In general, however,
this need not be so.

Evaluation of Po(nAt). We can rewrite the state vector of the n-th subensemble in
(3) as

|01) (Opn |U(nAL, (n = 1)At)[0pn) -~ (Opn |U(AL,0)[0pn) [#4) /|-

= |0p) [¥a(ndt)) /|| - (5)

where the expressions (0,4 | U(nAt, (n —1)At) |0p4) are now purely atomic operators and
where |1 4(nAt)) is a vector in the atomic space of norm less than 1, due to the repeated
reductions. One has

Po(nAt) = || pa(nAt) ||* . (6)

Since At is small one can use ordinary perturbation theory to evaluate (5). A standard

Hamiltonian is [15]
H = Hy + Hr + D-(E + EL(t)) (7)

where H, is the purely atomic part, Hr the radiation field part, E the quantized field,
EL(t) a possible classical field of lasers, and D the atomic dipole operator,

D = e |ia)ial X 1ja)(al -

Going over to the interaction picture with respect Hy = H4 + Hp one obtains in second
order

(Opn |U(mAL,(m - 1)At) | Opa)

" mAt
e-—l AMmAL lA o ih_l dt’ (Oph I HI(t’) |0ph)
(m-1)At

mAt t!

_ h—2 dtfv/(‘ I)Atd " (Oph lH[(t')H](t“) |0ph)} eiHA(m—l)At

(m-1)At

The expression in the curly brackets is easy to evaluate as indicated in footnote [16]
where for At — 0 the quantum Zenon effect appears automatically; a particular case is
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evaluated in [17]. E.g., for a three-level V-system with states | 0), | 1), |2) and with
transition frequencies w;, w; and laser frequencies wri, wr2 the curly bracket can be
written as [18]

mAt . ' 1 . . .
1A - iﬁ_l dt' [z (1/291 |J)(0| e‘(“"l—“’LJ)t 4 h.C. = '2—ZAJ |]>(] I)

(m=-1)At F

—ie |1)(2] et — iy | 2)(1] eiw”’]

where

v = (0] X |i)-(j | X]|0) wf‘ ez/GreDhc3 (8)

and where A; = 27;; are the Einstein coefficients and Q; the Rabi frequencies, which
are proportional to the laser amplitudes. Now the product over m from 1 to n can be
performed, leading to a time-ordered expression of the form

|a{nAt)) = TCXP{—i Rt /onm dt’ Hmd(t')} 144(0)) (9)

The "reduced Hamiltonian” H,.q is nonhermitian. In particular, for the V-system one
obtains for H,.q in matrix form with respect to the basis |0), 1), |2)

0 01 /2™t Qy/2 e'eret
h Hep = | Qif2 8" Ey=1 Ayj2 —i %3 (10)
92/2 et wrat g Y21 Ez -1 Ag/?

We now introduce a "coarse-grained” time,

t =nAt , n = 0,1,2,--- . (11)
Then (9) can be written as
d .
g |¥a(t)) = —i i7" Hrea |9a4(t)) (12)
and one has
Po(t) = Jlvat) II* . (13)

Collapse or no collapse: How does this result compare with that calculated from (2)?
Surprisingly, within the coarse-grained time scale our Po(t), obtained by n-fold reductions,
coincides completely with that obtained with no reductions [19]. The n-fold repeated
reductions do not seem to have an effect except for the temporal coarse-graining! The
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approach of this section, however, has the advantage of mathematical simplicity since
straightforward perturbation theory can be used.

Ensemble or individual system: The coarse-grained time can, for all questions relating
to time differences much larger than At, be considered as practically continuous. On the
coarse-grained time scale the detection of photons from an atom can thus be described by
a sample path of a classical stochastic process with continuous time, a process which is
governed by quantum mechanics. Without external pumping these paths terminate and
then it is clear that one can make no definite statements about an individual system. With
external pumping, however, this is possible due to the ergodic property of the process.
Ergodicity allows one to replace time averages over a sample path by ensemble averages
which in turn can be calculated by probability theory. For a renewal process this is more
or less evident, and for the general case ergodicity is physically expected. This explains
that although in the statistical interpretation quantum mechanics deals with ensembles
it can make certain definite predictions for a single driven atom.

4. Applications

Macroscopic dark periods [3, 4, 6, 17]. For the Dehmelt V-system the off-diagonal
elements 7;; in H,.q can be neglected. This is most easily seen by going to an interaction
picture with respect to an auxiliary Hamiltonian Hy, = wr1 |1)(1 | + wr2 |2)(2 | which
removes the time dependence from the Q;-terms and adds an exp {%i(wr1 — wrz2)t} to
the v;;-terms. This produces rapid oscillations which lead to negligible contributions.
With their neglect one obtains a Py(t) identical to that of Cohen-Tannoudji and Dalibard
[3], and their analysis applies. Due to the fact that one level is metastable, level 2 say, one
has A; < A; and this leads Py(t) to split into the sum of two parts, one rapidly decaying
roughly like exp {—:1;t}, the other very slowly decaying, roughly like exp {—Ajt}, and
with a very small factor in front. There is thus a small probability to reach this region
where the second term prevails — i.e. very many photon detections will be needed —,
but once this region is reached one has to wait a very long time for the next photon
since its probability density is wy(t) = —PFPg(t). During this dark period, | 14(t)) is not
completely in the mutastable state |2) but has a |1)-component. Hence in contradiction
to the semi-classical electron-shelving picture there is a finite probability — in fact it
can be approximately 1/2 — that the next photon does not originate from the transition
metastable to ground state [6, 17].

Quantum beats. We consider a three-level V-system whose upper levels have only a
very small energy diflerence héw and no laser (}; = 0). We consider the decay from one of
the excited states. In this case the off-diagonal terms 7;; in (10) become important. Po(t)
will now contain oscillating terms which leads to a non-exponential decay, the well-known
quantum beats. Here it turns out that these beats also occur for the decays of levels 1
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and 2 separately, not only for coherent superpositions as required in some textbooks [20].

Macroscopic dark periods without metastable state [21]. Again we consider a V-system
with very small upper-level separation héw and irradiate it with a single laser tuned to
the vicinity of the upper levels. The Rabi frequency is denoted by (). We now assume
in addition that the transition dipole moments are parallel. For éw < § light and dark
periods are predicted. Their mean duration Ty, and Tp can be explicitly calculated for
arbitrary laser detuning. In particular, if the transition dipole moments are equal and if
the laser is tuned to the 0 — 1 or 0 — 2 transition one finds

T, = 4Q%/A;(6w)?
Tp/T, = QF/2(6w)? .

If the laser is tuned exactly halfway between the upper levels the surprising phenomenon
is predicted, for any 6w, that after the emission of a number of photons the atom will
stop fluorescing completely (Tp — oo). This is related to a nonabsorption resonance in
gases [22, 23].

5. Connection with the Continuous Measurement Theory
of Davies and Srinivas

Davies and Srinivas [13] have extended the axiomatics of quantum mechanics by postu-
lates for ‘homogeneous quantum counting processes’. In particular, their postulates imply
the existence of two ‘superoperators’ J and S; which map trace class operators to trace
class operators and satisfy certain properties. For an individual system of an ensemble
described by a density matrix p their meaning is as follows. Tr(Sp) is the probability
of finding no counting event in [0,t], and the probability density w(ty,---,tn;[0,%]) for
finding a counting event exactly at the times t;,---,t, in [0,t] is given by

w(tla"'stlﬂ;[oﬂt]) = Tr (St—-t... J St.,-t,,-,-] e J Stg—tl J StIP) (14)

For a particular system J and S; have to be determined phenomenologically or by intu-
ition.

Since we have an explicit expression for Py(t) we can derive the form of the superop-
erators J and S;. Orly ordinary quantum mechanics is used and no additional postulates
are required. We illustrate this for the three-level V-system, two excited states coupled
to a common ground state, with two lasers. Let the initial atomic state be p. The cor-
responding Po(t; p), valid until the detection of the first photon, is obtained from (9) and
(10) by carrying these equations over to density matrices in an obvious way. Then, after
the detection of the i-th photon the atom is each time reset to the ground state, and the
corresponding Py(t — t;;|0)) is obtained from (10) with |44) = |0). By standard argu-
ments of classical probability theory one then finds for the n-photon probability density
w(ty, -, ta; [0, t]) [17]

w(ty, a3 [0, t]) = Po(t —t;]0)) wi(tn —tn-1;]0)) -+ wi(ta —t1;]0})) wi (t1;p) (15)
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where w; = —F;.
We now define superoperators J and S; by

Jp = |0)(0] Tr{ i(Heea— Hrg)p } (16)

S pri e Texp{—ih‘l fo'dt' Hm,(t')} " [Texp{—i?r‘ /ﬂ'dt' H,ed(t')}]* (17)

We note that J is time independent, by (10). Now, first of all it is apparent that T'r (S: p)
coincides with Py(t;p). Inserting (16) and (17) on the right-hand side of (14) one finds
by a calculation similar to one in Ref. [17] that this agrees with (15).

Using only ordinary quantum mechanics we have in this way exhibited operators that
satisfy the requirements of the quantum counting process of Ref. [13]. There is, however, a
severe conceptual proviso. In our approach we are dealing with a coarse-grained time, and
the above seemingly continuous variables t;,---,t, in (15) are, truly speaking, discrete.
We thus arrive at the conclusion that the ”continuous” measurement theory of Ref. [13]
can, at least in the case considered here, be derived from ordinary quantum mechanics if
one relaxes the "continuous” and goes over to a coarse-grained time scale.

6. Discussion

Our intuitive idea is that it should make no difference for the photon statistics whether
or not all photons are actually observed once they are sufficiently far away from the atom
and do no longer interact with it. In a cavity with reflecting walls this would evidently
not be true. Therefore we think that the results of Section 3, together with ordinary
probability theory, can also be applied to situations where only a part of the photons
are actually detected. This is substantiated by the result that for the photon statistics
it makes no difference whether or not reductions are performed at no-photon (”null”)
measurements. With these reductions, however, elementary perturbations theory can be
used since At is very small, and this simplifies the analysis considerably. In this sense the
null reductions may be considered as technical tool.

No attempt has been made to give a detailed theory of the measurements, but at
each measurement and depending on its outcome a straightforward reduction of the state
vector according to the von Neumann-Liiders rule is carried out. These reductions put
an individual system each time into a particular subensemble, and this branching into
subensembles may depend on the system under consideration. In the simple case con-
sidered in Section 3 the atom is reset to the ground state after a photon detection, and
for a driven atom one then obtains a sample path of a renewal process . In general,
however, the resetting will not always be to the same state and might in fact even be
time dependent. In this way we arrive at the result that on a time scale much coarser
than At the photon emissions of an atom can be regarded as a sample path of a classical
stochastic process obtained from ordinary quantum mechanics. Ergodicity allows one to
replace time averages over a sample path by ensemble averages, and such quantities can
thus be calculated for a single radiating atom.



113

It should be pointed out, however, that our gedanken experiment with its repeated
reductions and temporal coarse-graining and its reduced description of the atomic state is
not applicable to all questions encountered for a single radiating atom. The term ‘emission’
of a photon appears to be imprecise and should be replaced by ‘detection’ since it is
doubtful whether it makes sense quantum mechanically to speak about emission without
an actual observation. If one is interested in spectral distributions of the emitted light
repeated observations would cause changes, as is clear from the time-energy uncertainty
relation. For such observables like the spectrum, which in a sense is complementary
to photon counting, one will need other facets of the complete wave function of atom
plus radiation field. The true wave function contains all information and gives a ’holistic’
description of all aspects of the system while some partial aspects, as the photon statistics,
may be amenable to a simplified description.

Part of this work was done while one of us (G.C.H.) was at the Institute for Advanced
Study, Princeton, New Jersey. The research was partially supported by the Monell Foun-
dation and the Deutsche Forschungsgemeinschaft.
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