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Causality Problems for Fermi's Tmo-Atom System
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Let A and B be two atoms or, more generally, a "source" and a "detector" separated by some

distance R. At t = 0 A is in an excited state, B in its ground state, and no photons are present.
A theorem is proved that in contrast to Einstein causality and finite signal velocity the excitation
probability of B is nonzero immediately after t = 0. Implications are discussed.

PACS numbers: 03.65.Bz

To study and check finite signal velocity, Fermi [1] con-
sidered two atoms A and B separated by a distance R. At
time t = 0 atom A is assumed to be in an excited state
Ie~) and B in its ground state IgB), with no photons
present. Atom A will decay to its ground state under
the emission of a photon which may then be absorbed
by atom B. Fermi asked when atom B will notice A

and start to move out of its ground state. In accordance
with Einstein causality, i.e. , no propagation faster than
the speed of light, he expected this to occur after a time
t = R/c. This was indeed what Fermi found by his cal-
culation.

More than thirty years later Shirokov [2] pointed out
that Fermi's "causal" result was the artifact of an ap-
proximation. Indeed, Fermi had replaced an integral over
positive frequencies by an integral ranging from —oo to
oo. Without this approximation his calculation would

not have given the expected result.
Moreover, Fermi had calculated the probability for

a transition to A nonexcited, B excited, and no pho-
tons, i.e. , the transition probability from the state
Ie~)]gs)10~h) to the state Ig~)[eg)10~h), which requires
measurements on A, B, and photons simultaneously.
Hence this "exchange" probability does not refer to fi-

nite signal velocity or Einstein causality but to "local" or
"nonlocal" correlations. What is really needed for finite
signal velocity is the probability of finding B excited, ir-

respective of the state of A and of possible photons. This

ea iz gn}

will be called the excitation probability of B.
Fermi's problem was investigated by many authors in

this or in a related form, e.g. , by Heitler and Ma [3],
Hamilton [4], Fierz [5], Ferretti [6, Milonni and Knight

[7], Shirokov [2] and his review 8, Rubin [9], Biswas et
at. [10], and Valentini [11]. The older papers confirmed
Fermi's conclusion, while the results of the later papers
depend on the model and the approximations used. At
present there seems to be agreement that Fermi's local
result is not correct, but that this nonlocality cannot be
used for superluminal signal transmission since measure-
ments on A and B as well as on photons are involved.

Usually previous authors have used "bare" states and
a Hamiltonian of the form

Ht„„, = H~+ His+ HF + H~F + HBF . (1&

where Hg~ and HBF represent the coupling of atoms A

and B to the quantized radiation field. The Hilbert space
is simply a tensor product,

+bare = +A +B +F ~ (2)

The initial state is then

l&o'") = Ie~) IgB) 10~h)

The probability of finding B in some excited state, irre-

spective of the state of A and photons, is a sum over all

excited states IeB) of B, over all states Ii~) of A and over

all photon states 1(n)), i.e. ,

li~)lee)ltnt)(tnt~i(es~g(i~~g) Ill, '")

ea)(eBI x 1Flyt' "):

0, "= l~ x ) [equi) &eiiI x lF (5)

represents the observable "B is in a bare excited state, "
and it is a projection operator. The expectation value of
0, "gives the excitation probability of B.

For bare states, however, there is a serious difficulty.

where the completeness relation for orthonorrnal bases
has been used. The operator Even with atom A absent and no photons present atom B

will be immediately excited under simultaneous emission

of photons. This well-known unphysical behavior is a
consequence of the interaction term H~F because then
the bare ground state Ig~)10t,t, ) is no longer an eigenstate
of the bare Hamiltonian. Therefore, all results for bare
states have to be considered with caution.

Valentini [ll] and also Biswas et al. [10] have found

596 0031-9007/94/72 (5)/596 (4)$06.00
1994 The American Physical Society



VOLUME 72, NUMBER 5 PH YSICAL R EVI EW LETTERS 31 JANUARY 1994

the following interesting result for bare states by using
perturbation theory and cutoffs. They calculated that
for t & R/c the bare ground state of B behaves as if the
excited atom A were not present. This result seems to
indicate a causal behavior and suggests a similar result
for a properly renormalized theory. This, however, will
be shown not to be the case.

Fermi's problem of Gnite signal velocity will now be
treated under very general assumptions without bare
states. Although a renormalized theory has yet to be
constructed, only two basic properties of such a suppos-
edly existing theory are needed. The first is that the
states of such a theory form a Hilbert space, denoted by
'8«„. The other property needed is a renormalized self-

adjoint Hamiltonian H «„whi hcis bounded from below,
e.g. , by 0. The assumption of positive energy is standard
and physically well motivated.

In general '8«„ is no longer a tensor product,
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FIG. 1. Two systems located at time t = 0 in separate
regions a distance R apart. A excited, B in ground state, and
no photons initially.

to this first theorem I will now show a second theorem
which includes interactions.

Theorem. —Let the Hamiltonian be positive or bound-
ed from below and let the initial state at time t = 0 be

A in an excited state,
B in a ground state, no photons.

Q«n /+A X QB XRF, 6
Let PB(t) be the probability of finding B excited,

and the initial state, denoted by ~Qo), will not be a simple
product state, PB(t) = (@~I&. I&~) (8)

IA) 8 le~)lg~) lymph)

Similarly, if the observable "B is in an excited state"
makes sense and is represented by an operator G,~ then
in general G,s g Gb'«. However, G,~ will still be a
projection operator since its eigenvalues are 1 for "yes"
and 0 for "no." The excitation probability of B at time
t is then given by the expectation value

Alternatively one may assume that the excitation proba-
bility of B is an expectation value of some positive oper-
ator, or one may measure the excitation through a posi-
tive observable which vanishes for the ground state, e.g. ,
some operator related to the square of the dipole moment
[12]. In all these cases one will run into difficulties with
Einstein causality.

No pointlike localization of A and B is required. As a
generalization of Fermi's setup A and B may be systems
initially localized in two regions separated by a distance
R as in Fig. 1, with no (real) photons present. The
ground state of B may be degenerate.

We note that measurements of the excitation proba-
bility of B involve measurements on B only and that
PB(t = 0) = 0. One would expect, as Fermi, that

where O, ~ is a projection operator or, more generally, a
positive operator.

Then either (i) the excitation probability of B is
nonzero for almost all t, and the set of such t's is dense
and open or (ii) the excitation probability of B is identi-
cally zero for all t.

Remarks. —Alternative (i) means that B starts to move
out of the ground state immediately and is thus in-
fluenced by A instantaneously, in contrast to Einstein
causality. Alternative (ii) is clearly unphysical since in

this case B is never excited so that B is never influenced

by A.
The proof is basically very simple and uses only the

positivity of H«„, or rather its boundedness from below,
and the fact that one deals with the expectation value of
a positive self-adjoint operator.

Proof of theorem. —Since ~Q&) is continuous in t, so is

Pz(t). Hence, if for some tq one has P&(tq) ) 0 then this
also holds in a small interval around ty, and therefore the
set is open. Now let us assume that the set of t's with

Pz(t) ) 0 is not dense. Then there is a small but finite
interval I such that

PB(t) = 0 for t c I .

It will now be shown that this implies that alternative
(ii) holds. Equation (9) can be written as

P&(t) =0 for 0 &t &R/c.
(@/~& ~~@t) = 0 (10)

However, in a slightly different context a theorem of
the author [13] as well as prior [14] and later results
[15—18] showed difficulties with causality in particle lo-
calization [19]. Although the theorem is not applicable
her" it applies to free particles or to the center of mass
of systems —it makes one wary. Indeed, as a complement

If 0, is a projection operator then (G,~) = G,~.
Therefore Eq. (10) can be written as
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O, s~g&) = 0 for f c I . (12)

For O,s a positive operator the argument is similar [20].
Now let P be any fixed vector and define the auxiliary
function Fy(t) by

(13)

Then, by Eq. (12),

Fy(t) = 0 for t 6 I .

Since H„„&—const, one has that the operator

—iH,.„(t+iy)/t

is well defined for y & 0. Putting z = t + iy one sees
that Fy(z) can be defined as a continuous function for
Imz & 0, and, moreover, F~(z) is analytic for Imz ( 0
(cf. Fig. 2) [21]. However, such an analytic function
cannot have boundary values vanishing on a real interval
unless

Fp(z):—0

for Imz g 0 [22]. But then, by continuity, one also has
F~(t) = 0 for all real t. Hence the right side of Eq. (13)
vanishes for all t. Since Q was arbitrary, one has

O,s]gi) = 0 for all t

and this gives PB(t):—0, i.e. , case (ii).
This proves that P&(t) is either nonzero on a dense

open set or that it vanishes identically. In a slightly
more sophisticated way it will now be shown directly that
PB(t) is either nonzero for almost all t or vanishes iden-
tically. Let the set of zeros of PB(t) be denoted by JVo.
The same argument as before shows that F~(t) vanishes
there too. As a boundary value of a bounded analytic
function Fy(t) satisfies, unless it vanishes identically, the
inequality [23]

dt ln ~F&(t)]/(I + t') & —~ .

If JVo had positive measure the integral would be —oo
and thus F~(t) would vanish identically in t, for each P.
This would again imply case (ii). Hence if case (ii) does
not hold P&(t) can only vanish on a null set [24]. This
completes the proof of the theorem.

A typical behavior of the excitation probability of 8
according to (i) is shown in Fig. 3. No estimate of the
actual magnitude of P&(t) is provided by the above argu-
ment, except that it is nonzero for almost all t. It follov s
trivially for alternative (i) that the set of zeros of P&(t)
is not only of measure 0 but also nowhere dense.

It should be noted that the above proof makes no use
of any spatial separation of the two subsystems nor of
its photon content. In fact, the theorem is a mathe-
matically rigorous result which holds for any initial state
]go), any positive Hamiltonian and expectation value of
any positive operator [25]. Physics comes in only when
one thinks of ]go) as representing two spatially separated
subsystems with no photons. Of course, if the systems
are not spatially separated part (i) of the theorem comes
as no surprise.

Extensions. —The derivation does not need that A and
8 are atoms. The result clearly extends to more gen-
eral situations. (a) Larger systems: A may be some
"source" of photons and B a "detector. "

(b) A and B
may move. (c) Other particles and other interactions
may be included.

Other positive observables can be considered. For ex-
ample, for an excited localized atom (or system) with no
real photons initially one obtains an acausal result for
photons in regions not containing the atom. This is con-
trary to a result by Kikuchi [26] who, at the suggestion
of Heisenberg, had studied this problem using the same
approximation as Fermi [1]. The general case of a decay-
ing particle or system can also be treated by the above
approach.

If the effect implied by the theorem were real it could
in principle be used for superluminal signals, with all the
well-known consequences. However, the result may also
be viewed as a difficulty for the formulation of the under-
lying theory. The theorem is of the "if-then" type. To
avoid its physical consequences one has to check whether
its conditions or any additional physical assumptions are
fulfilled in a given situation. There are several possible
ways out.

expected

FIG. 2. The auxiliary function Fy(z) of the proof is ana-
lytic for Imz ( 0 (shaded area) and vanishes in the interval
I. Then it is identically zero.

PIG. 3. Typical behavior of the excitation probability of 8
according to (i). Dashed curve: expected causal behavior.
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(a) Systems localized in disjoint regions might not exist
as a matter of principle, so that strictly speaking they
always "overlap. " Then an immediate excitation may
evidently occur.

(b) Renormalization will introduce a sort of photon
cloud around each system. This essentially implies an
overlap of the systems, leading back to case (a).

(c) The notion of "ground state of B" in the presence
of A may not make sense. Without A present one will
expect a lowest energy state to exist for the system B
plus radiation field, with no real photons. However, with
A present, the lowest state of the complete system may
change. Thus the ground state of B may not be prepara
ble independently of A. Effectively this also leads back
to case (a).

One may argue that any violation of Einstein causal-
ity would be so rare or so small as to be unobservable
in practice and that it might hold only on the average.
Decisive in physical applications of the theorem is the
notion that for a certain time interval absolutely no ex-
citation of B occurs. In addition to (a)—(c) other field
theoretic mechanisms might be invoked to prevent this,
mechanisms similar to those responsible for the nonpos-
itivity of any energy density [27j, although the overall
integrated energy is strictly positive.

In conclusion, Fermi's original question on finite signal
velocity has been generalized and analyzed in a model-
independent way, without the use of any bare theory or
any approximations. Only positivity of the energy has
been used. It has been shown that this leads to violation
of Einstein causality if one assumes that two subsystems,
"source" and "detector, " can be localized in disjoint re-
gions at some initial time and that the detector is not
immediately excited. The view has been taken that this
difficulty is of a theoretical nature, and possible ways out
have been discussed.
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