A practical guide to computer simulation II

Alexander K. Hartmann, University of Göttingen

July 3, 2003

8 Random Numbers

Examples for Random numbers used in computer simulations:

- Instances with quenched disorder, e.g. spin glasses (interactions are random)
- Simulation at finite temperatures using Monte Carlo algorithms
- Randomized algorithms (deterministic algorithms made random)

Literature: [1, 2].

8.1 Generating random numbers

Computers are deterministic \rightarrow no true randomness possible.
Randomness created by user (time intervals between keystrokes): not controllable.

Pseudo random numbers: generated deterministically but look random, i.e. have many properties of random numbers: uniform distribution, low correlations.

Linear congruential generator: generates sequence I_{1}, I_{2}, \ldots between 0 and $m-1$, starting from given I_{0}.

$$
\begin{equation*}
I_{n+1}=\left(a I_{n}+c\right) \bmod m \tag{1}
\end{equation*}
$$

Random numbers r uniformly in interval $[0,1): r_{n}=I_{n} / m$. Arbitrary distributions (see below).
Task: choose parameters a, c, m (and I_{0}) such that generator is "good" \rightarrow test criteria needed. Attention: several times results for simulations were wrong because of bad random number generators [3].

Example: $a=12351, c=1, m=2^{15}$ and $I_{0}=1000$ (and dividing by m) is "uniformly" distributed in $[0,1$) (Fig. 1).

Figure 1: Distribution of random numbers in the interval $[0,1)$. They are generated using a linear congruential generator with the parameters $a=12351, c=$ $1, m=2^{15}$.

But they have correlations. Study: k-tuples of k successive random numbers $\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right)$. Low correlations: k-dim space uniformly filled. LCGs: points lie on $(k-1)$-dimensional planes, number is at most $O\left(m^{1 / k}\right)$. Above case: few planes, see Fig. 2

Figure 2: Two point correlations $x_{i+1}\left(x_{i}\right)$ between successive random numbers x_{i}, x_{i+1}. Linear congruential generator with the parameters $a=12351, c=1, m=$ 2^{15}.

Better: $a=12349$ instead, Fig. 3.
"Good generator": $a=7^{5}=16807, m=2^{31}-1, c=0$. Note: more than 32-bit arithmetic needed, see Ref. [1].

Low-order bits much less random than the high-order bits \rightarrow numbers in an interval $[1, \mathrm{~N}]$:

Figure 3: Two point correlations $x_{i+1}\left(x_{i}\right)$ between successive random numbers x_{i}, x_{i+1}. Linear congruential generator with the parameters $a=12349, c=1, m=$ 2^{15}.

```
r = 1+(int) (N*(I_n)/m);
```

instead of using the modulo

8.2 Inversion Method

Given: drand() generating uniformly distributed random numbers in $[0,1)$.
Aim: random numbers Z according pdf $p(z)$ with distribution

$$
\begin{equation*}
P(z) \equiv \operatorname{Prob}(Z \leq z) \equiv \int_{-\infty}^{z} d z^{\prime} p\left(z^{\prime}\right) \tag{2}
\end{equation*}
$$

target: find a function $g(X)$, such that after the transformation $Z=g(U)$. Assume g is strongly monotonically increasing i.e. can be inverted \rightarrow

$$
\begin{equation*}
P(z)=\operatorname{Prob}(Z \leq z)=\operatorname{Prob}(g(U) \leq z)=\operatorname{Prob}\left(U \leq g^{-1}(z)\right) \tag{3}
\end{equation*}
$$

Since $\operatorname{Prob}(U \leq u)=F(u)=u$ for U uniformly in $[0,1)$ and with identifying u with $g^{-1}(z)$, we get $P(z)=g^{-1}(z)$, hence $g(z)=P^{-1}(z)$. Works if P can be calculated (eventually numerically) and can be inverted.

Example:
Exponential distribution: probability density $p(z)=\lambda \exp (-\lambda z)$ with $P(z)=$ $1-\exp (-\lambda z)$. Hence generate uniformly distributed random numbers U and choose $Z=-\ln (1-U) / \lambda$.

8.3 Rejection Method

For non-integrable pdfs of non-invertible distribution functions, if distribution $p(z)$ fits into a box $\left[x_{0}, x_{1}\right) \times\left[0, p_{\max }\right)$, i.e. $p(z)=0$ for $z \notin\left[x_{0}, x_{1}\right]$ and $p(z) \leq p_{\max }$. basic idea: generate random pairs (x, y), which are distributed uniformly in $\left[x_{0}, x_{1}\right] \times\left[0, p_{\max }\right]$ and accept only those values x where $y \leq p(x)$ holds, i.e. the pairs which are located below $p(x)$, see Fig. 5.

Figure 4: Histogram of random numbers generated according to an exponential distribution $(\lambda=1)$ compared with the probability density (straight line) in a logarithmic plot.

```
algorithm rejection_method}(\mp@subsup{p}{\mathrm{ max }}{},\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},p
begin
    found := false;
    while not found do
    begin
        u
        x:= \mp@subsup{x}{0}{}+(\mp@subsup{x}{1}{}-\mp@subsup{x}{0}{})\times\mp@subsup{u}{1}{};
        u
        y:= p max }\times\mp@subsup{u}{2}{}\mathrm{ ;
        if }y\leqp(x)\mathrm{ then
            found:= true;
    end;
    return(x);
end
```

Drawback: Many random numbers needed, some are even thrown away.

8.4 The Gaussian Distribution

Gaussian distribution with mean m and width σ (most commonly used distribution in simulations), pdf: σ is (see also Fig. 6)

$$
\begin{equation*}
p_{G}(z)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{(z-m)^{2}}{2 \sigma^{2}}\right) \tag{4}
\end{equation*}
$$

Here,: z according normal distribution $(m=0, \sigma=1)$. General case: use $\sigma z+m$ Neither inversion nor rejection method works here. 3 possibilities

- Work artificially boxed, e.g. in $[-3,3] \rightarrow$ no large values.

Figure 5: The rejection method: points (x, y) are scattered uniformly over a bounded rectangle. The probability that $y \leq p(x)$ is proportional to $p(x)$.

- Use central limit theorem: sum of N independently distributed random variables u_{i} (with mean m and variance v) converge to a Gaussian distribution with mean $N m$ and variance $N v$. Use $u_{i}(m=0.5, v=1 / 12)$ uniformly in $[0,1), N=12$, then $Z=\sum_{i=1}^{12} u_{i}-6$ as desired. Drawback: 12 numbers needed and boxed in $[-6,6]$.
- Box-Müller method: take two values drawn from uniformly in $[0,1)$ distributed random variables and set.

$$
\begin{aligned}
& n_{1}=\sqrt{-2 \log \left(1-u_{1}\right)} \cos \left(2 \pi u_{2}\right) \\
& n_{2}=\sqrt{-2 \log \left(1-u_{1}\right)} \sin \left(2 \pi u_{2}\right)
\end{aligned}
$$

Proof [1, 2]: Write n_{1}, n_{2} in polar coordinates (r, θ), i.e. $(r, \theta)=f\left(n_{1}, n_{2}\right)$, the inverse is:

$$
\begin{aligned}
& n_{1}=r \cos (\theta) \\
& n_{2}=r \sin (\theta)
\end{aligned}
$$

We want to obtain the pdfs for (r, θ). For the general case $(W, Z)=$ $f(X, Y)$ with $p_{X, Y}$ being the (joint) pdf of (X, Y) we have $p_{W, Z}(w, z)=$ $p_{X, Y}\left(f^{-1}(w, z)\right)\left|\mathbf{J}^{-} \mathbf{1}\right|$ with $\left|\mathbf{J}^{-} \mathbf{1}\right|$ being the Jacobi determinant of the inverse Transformation.

Using

$$
\left|\mathbf{J}^{-\mathbf{1}}\right|=\left|\begin{array}{cc}
\frac{\partial n_{1}}{\partial r} & \frac{\partial n_{1}}{\partial \theta} \tag{5}\\
\frac{\partial n_{2}}{\partial r} & \frac{\partial n_{2}}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right|=r \cos ^{2}(\theta)+r \sin ^{2}(\theta)=r
$$

we get

$$
\begin{equation*}
p_{R, \Theta}(r, \theta)=\frac{r}{2 \pi} e^{-n_{1}^{2} / 2-n_{2}^{2} / 2}=\frac{r}{2 \pi} e^{-r^{2} / 2} \tag{6}
\end{equation*}
$$

The distribution factorizes in r and θ. Hence θ can be taken uniformly distributed in $[0,2 \pi]$ (i.e. $\theta=2 \pi u_{2}$) and $p_{R}(r)=r e^{-r^{2} / 2}\left({ }^{*}\right)$. Now it remains

For this, consider X exponentially distributed with parameter λ, i.e. $p_{X}(x)=$ $\lambda e^{-\lambda x}$. Let's take $Y=\sqrt{X}$. We want to obtain the pdf $p_{Y}(y)$. For the general case $Y=H(X)(H$ strongly monotonic $)$ it is $p_{Y}(y)=p_{X}\left(H^{-1}(y)\right) \frac{1}{\left|H^{\prime}\left(H^{-1}(y)\right)\right|}$. Here with $H(x)=\sqrt{x}$, i.e. $H^{-1}(y)=y^{2}$ and $H^{\prime}(x)=-1 / 2 \sqrt{x}$, we get $p_{Y}(y)=2 \lambda y e^{-\lambda y^{2}}$. Comparing with $\left(^{*}\right)$, we see that taking X exponentially distributed with $\lambda=0.5$ (i.e. $\left.x=-2 \log \left(1-u_{1}\right)\right)$ and then taking $r=\sqrt{x}$ we get the desired distribution for r.

QED.

- Simulation of particles in a box is explained in Ref. [4]

Figure 6: Gaussian distribution with zero mean and unit width. The circles represent a histogram obtained from 10^{4} values drawn with the Box-Müller method.

8.5 Exercise

Write a program that generates 10^{4} random numbers for a Gaussian distribution boxed in $[-6,6]$ using the rejection method and record a normalized histogram of bin width 0.1. Draw the histogram and the Gaussian distribution in gnuplot.

References

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge 1995)
[2] B.J.T. Morgan, Elements of Simulation, (Cambridge University Press, Cambridge 1984)
[3] A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Phys. Rev. Lett. 69, 3382 (1992); I. Vattulainen, T. Ala-Nissila and K. Kankaala, Phys. Rev. Lett. 73, 2513 (1994)
[4] J.F. Fernandez and C. Criado, Phys. Rev. E 60, 3361 (1999)

