
A practical guide to computer simulation II

Alexander K. Hartmann, University of Göttingen

July 3, 2003

8 Random Numbers

Examples for Random numbers used in computer simulations:

• Instances with quenched disorder, e.g. spin glasses (interactions are ran-
dom)

• Simulation at finite temperatures using Monte Carlo algorithms

• Randomized algorithms (deterministic algorithms made random)

Literature: [1, 2].

8.1 Generating random numbers

Computers are deterministic → no true randomness possible.

Randomness created by user (time intervals between keystrokes): not control-
lable.

Pseudo random numbers: generated deterministically but look random, i.e. have
many properties of random numbers: uniform distribution, low correlations.

Linear congruential generator: generates sequence I1, I2, . . . between 0 and m−1,
starting from given I0.

In+1 = (aIn + c)modm (1)

Random numbers r uniformly in interval [0, 1): rn = In/m. Arbitrary distribu-
tions (see below).
Task: choose parameters a, c, m (and I0) such that generator is “good” → test
criteria needed. Attention: several times results for simulations were wrong be-
cause of bad random number generators [3].

Example: a = 12351, c = 1, m = 215 and I0 = 1000 (and dividing by m) is
“uniformly” distributed in [0, 1) (Fig. 1).

1

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p(
x)

Figure 1: Distribution of random numbers in the interval [0, 1). They are gen-
erated using a linear congruential generator with the parameters a = 12351, c =
1, m = 215.

But they have correlations. Study: k-tuples of k successive random numbers
(xi, xi+1, . . . , xi+k−1). Low correlations: k-dim space uniformly filled. LCGs:
points lie on (k−1)-dimensional planes, number is at most O(m1/k). Above case:
few planes, see Fig. 2

0 0.2 0.4 0.6 0.8 1
xi

0

0.2

0.4

0.6

0.8

1

x i+
1(

x i)

Figure 2: Two point correlations xi+1(xi) between successive random numbers
xi, xi+1. Linear congruential generator with the parameters a = 12351, c = 1, m =
215.

Better: a = 12349 instead, Fig. 3.
“Good generator”: a = 75 = 16807, m = 231 − 1, c = 0. Note: more than 32-bit
arithmetic needed, see Ref. [1].

Low-order bits much less random than the high-order bits → numbers in an
interval [1,N]:

0 0.2 0.4 0.6 0.8 1
xi

0

0.2

0.4

0.6

0.8

1

x i+
1(

x i)

Figure 3: Two point correlations xi+1(xi) between successive random numbers
xi, xi+1. Linear congruential generator with the parameters a = 12349, c = 1, m =
215.

r = 1+(int) (N*(I_n)/m);

instead of using the modulo

8.2 Inversion Method

Given: drand() generating uniformly distributed random numbers in [0, 1).

Aim: random numbers Z according pdf p(z) with distribution

P (z) ≡ Prob(Z ≤ z) ≡
∫ z

−∞

dz′p(z′) (2)

target: find a function g(X), such that after the transformation Z = g(U).
Assume g is strongly monotonically increasing i.e. can be inverted →

P (z) = Prob(Z ≤ z) = Prob(g(U) ≤ z) = Prob(U ≤ g−1(z)) (3)

Since Prob(U ≤ u) = F (u) = u for U uniformly in [0, 1) and with identifying
u with g−1(z), we get P (z) = g−1(z), hence g(z) = P−1(z). Works if P can be
calculated (eventually numerically) and can be inverted.

Example:
Exponential distribution: probability density p(z) = λ exp(−λz) with P (z) =
1 − exp(−λz). Hence generate uniformly distributed random numbers U and
choose Z = − ln(1 − U)/λ.

8.3 Rejection Method

For non-integrable pdfs of non-invertible distribution functions, if distribution
p(z) fits into a box [x0, x1)×[0, pmax), i.e. p(z) = 0 for z 6∈ [x0, x1] and p(z) ≤ pmax.
basic idea: generate random pairs (x, y), which are distributed uniformly in
[x0, x1] × [0, pmax] and accept only those values x where y ≤ p(x) holds, i.e.
the pairs which are located below p(x), see Fig. 5.

0 2 4 6 8 10
z

10
−4

10
−3

10
−2

10
−1

10
0

p(
z)

Figure 4: Histogram of random numbers generated according to an exponential
distribution (λ = 1) compared with the probability density (straight line) in a
logarithmic plot.

algorithm rejection method(pmax, x0, x1, p)
begin

found := false;
while not found do

begin

u1 := random number in [0, 1);
x := x0 + (x1 − x0) × u1;
u2 := random number in [0, 1);
y := pmax × u2;
if y ≤ p(x) then

found := true;
end;
return(x);

end

Drawback: Many random numbers needed, some are even thrown away.

8.4 The Gaussian Distribution

Gaussian distribution with mean m and width σ (most commonly used distribu-
tion in simulations), pdf: σ is (see also Fig. 6)

pG(z) =
1√
2πσ

exp

(

(z − m)2

2σ2

)

(4)

Here,: z according normal distribution (m = 0, σ = 1). General case: use σz+m
Neither inversion nor rejection method works here. 3 possibilities

• Work artificially boxed, e.g. in [−3, 3] → no large values.

0 2 4 6 8 10
z

0.0

0.1

0.1

0.2

0.2

p(
z)

Figure 5: The rejection method: points (x, y) are scattered uniformly over a
bounded rectangle. The probability that y ≤ p(x) is proportional to p(x).

• Use central limit theorem: sum of N independently distributed random
variables ui (with mean m and variance v) converge to a Gaussian distribu-
tion with mean Nm and variance Nv. Use ui (m = 0.5, v = 1/12) uniformly
in [0, 1), N = 12, then Z =

∑12
i=1 ui − 6 as desired. Drawback: 12 numbers

needed and boxed in [−6, 6].

• Box-Müller method: take two values drawn from uniformly in [0, 1) dis-
tributed random variables and set.

n1 =
√

−2 log(1 − u1) cos(2πu2)

n2 =
√

−2 log(1 − u1) sin(2πu2)

Proof [1, 2]: Write n1, n2 in polar coordinates (r, θ), i.e. (r, θ) = f(n1, n2),
the inverse is:

n1 = r cos(θ)

n2 = r sin(θ)

We want to obtain the pdfs for (r, θ). For the general case (W, Z) =
f(X, Y) with pX,Y being the (joint) pdf of (X, Y) we have pW,Z(w, z) =
pX,Y (f−1(w, z))|J−1| with |J−1| being the Jacobi determinant of the in-
verse Transformation.

Using

|J−1| =

∣

∣

∣

∣

∂n1

∂r
∂n1

∂θ
∂n2

∂r
∂n2

∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣

∣

∣

∣

= r cos2(θ)+r sin2(θ) = r (5)

we get

pR,Θ(r, θ) =
r

2π
e−n2

1
/2−n2

2
/2 =

r

2π
e−r2/2 (6)

The distribution factorizes in r and θ. Hence θ can be taken uniformly dis-
tributed in [0, 2π] (i.e. θ = 2πu2) and pR(r) = re−r2/2 (*). Now it remains

to see how to generate random numbers according pR.

For this, consider X exponentially distributed with parameter λ, i.e. pX(x) =
λe−λx. Let’s take Y =

√
X. We want to obtain the pdf pY (y). For the gen-

eral case Y = H(X) (H strongly monotonic) it is pY (y) = pX(H−1(y)) 1
|H′(H−1(y))|

.

Here with H(x) =
√

x, i.e. H−1(y) = y2 and H ′(x) = −1/2
√

x, we get
pY (y) = 2λye−λy2

. Comparing with (*), we see that taking X exponen-
tially distributed with λ = 0.5 (i.e. x = −2 log(1 − u1)) and then taking
r =

√
x we get the desired distribution for r. QED.

• Simulation of particles in a box is explained in Ref. [4]

−4 −2 0 2 4
x

0

0.1

0.2

0.3

0.4

0.5
p G

(x
)

Figure 6: Gaussian distribution with zero mean and unit width. The circles rep-
resent a histogram obtained from 104 values drawn with the Box-Müller method.

8.5 Exercise

Write a program that generates 104 random numbers for a Gaussian distribution
boxed in [−6, 6] using the rejection method and record a normalized histogram
of bin width 0.1. Draw the histogram and the Gaussian distribution in gnuplot.

References

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical

Recipes in C (Cambridge University Press, Cambridge 1995)

[2] B.J.T. Morgan, Elements of Simulation, (Cambridge University Press, Cam-
bridge 1984)

[3] A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Phys. Rev. Lett. 69, 3382
(1992); I. Vattulainen, T. Ala-Nissila and K. Kankaala, Phys. Rev. Lett. 73,
2513 (1994)

[4] J.F. Fernandez and C. Criado, Phys. Rev. E 60, 3361 (1999)

