A practical guide to computer simulation II

Alexander K. Hartmann, University of Gottingen

May 9, 2003

supplement:
Strings are arrays of char. End of string is indicated by a 0.

char name[100]; /* up to 99 characters */

Functions to handle strings are defined in string.h.

Example
strcpy (name, "Robert Smith"); /* copies text into string */
printf ("length(%s)=%d\n", name, strlen(name)); /* prints length */
Useful: sprintf (string, <format string>,) (definedin stdlib.h) works

like printf but prints to string instead of printing to standard output.

2.7 Structures, self-defined data types

Used to group several elements into one data type.
Example for definition

struct particle

{
double mass; /* in kg */
int charge; /* in units of e */
double[3] position; /* position in space. in meters */
}

Variable declaration:
struct particle particleil;
Access

particlel.mass = 9.109e-31;
particlel.charge = 1;
particlel.position[0] = -2.3e-3;

For easier use, define own datatypes. Write typedef followed by a “normal”
declaration, e.g.

typedef double vector_t[3]; /* new type ’vector_t’ */
typedef struct particle particle_t; /* new type ’particle_t’ */
vector_t velocity; /* velocity is of type ’vector_t‘ */

particle_t electron; /% variable ’electron’ is of type ’particle_t’ */

Convention: collect all types in extra header (.h) file.

1

2.8 Pointers

Pointer = Address in memory of a variable.
Declartion: <type> *ptr makes ptr an address of variables of type <type>.
&-Operator gives adress of a variable: & <variable>.

*ptr = content of the variable where ptr points to. i.e. one can set the content
by *prt= <expression>. Example:

int number, *address;

number = 50;

address = & number;
*address = 100;

printf ("%d\n", number);

will print: 100.
Arrays = pointers, int value[10] = value= address of the beginning of the
array, i.e. of variable[0]. Both int value[0] and int *value2 define an
pointer to int variables, but for value an array of length 10 is reserved in mem-
ory and value points to the beginning of the array. value2 is NOT assigned any
value initially.

Access: value[5] is equivalent to *(value+5).

If a pointer points to a structure, access to elements by -> operator.

struct particle *atom;

atom->mass = 2.0;

Pointers can be used to generate connections between different variables, e.g. to
construct complex datatypes (lists or trees, see below).

Pointers can be used to return value from a function without using the return
statment. (Useful in case of many return values)

void add_numbers(int nl, int n2, int *result_p)
{
*result_p = nl+n2;

3

Note: the pointer result_p itself cannot be changed in add_number, only the
content of the memory where result_p points to.

2.9 File handling

Useful: write results of simulations, configuration files etc directly on disk.
General recipe:

e Open file using fopen obtaining a FILE pointer.

e Write data using fprinf (equivalent to printf) but to file instead to stan-
dard output.

e close file using fclose

Example: write configuration file

struct particle atom[100]; /* simulation data
int t, cfg_id; /* auxiliray counter, counter for filenames
FILE xfile_p;

char filename[100], command[200]; /* auxilary strings

sprintf(filename, "run%04d.cfg", cfg_id);

file_p = fopen(filename, "w"); /* open file for WRITING
fprintf(file_p, "# id X y z\n") ; /* write header
for(t=0; t<100; t++) /* write data

fprintf(file_p, "%d %f %f %f\n", t, atom[t].position[0],
atom[t] .position[1], atom[t].position[2]);
fclose(file_p);
sprintf (command, "gzip -f %s", filename); /* compress file
system(command) ;

At the end: file automatically compressed = saves disk space.
To read a configuration file:

char *pos, line[200]; /* auxilary pointer, line to read from file
double x,y,z; /* for reading atom positions
int id; /* for reading id of atoms

sprintf(filename, "run%04d.cfg.gz", cfg_id);

sprintf (command, "gzip -df %s", filename); /* decompress file
system(command) ;
pos = strstr(filename, ".gz"); /* strip .gz appendix
xpos = 0;
file_p = fopen(filename, "r"); /* open for READING
while(!feof (file_p)) /* read while not end of file reached
{
fgets(line, 100, file_p); /* read one line
if(feof(file_p))
continue;
if(1ine[0] == ’#’) /* ingnore lines starting with ’#’
continue;
sscanf (line, "%d %1f %1f %1f", &id, &x, &y, &z); /* obtain data
atom[id] .position[0] = x;
atom[id] .position[1] = y;
atom[id] .position[2] = z;

}
fclose(file_p);

sprintf (command, "gzip -f %s", filename); /* compress file again */
system(command) ;

Remark: First reading using fgets, then obtaining the data by sscanf is safer
than using fscanf.

2.10 Dynamic memory allocation

Often one does not know the size of an array at compile time.

= Allocate arrays dynamically with malloc(<number of bytes>) (defined in
stdlib.h). Use sizeof(<data type>) to determine array size.

Example:

struct particle *atom2;
int num_atoms;

atom2 = (struct particle *) malloc(num_atoms*sizeof (struct particle));

Now atom2 can be used like a normal array.
When the array is not used any more, it can be given back to the memory
management:

free(atom?) ;

One should never forget to free memory, otherwise the program might grow to
an enormous size.
Allocating matrices of variable size is done in two steps, example:

int num_rows, num_columns, row;
double **matrix;

matrix = (double **) malloc(num_rows*sizeof (double *));
for(row=0; row<num_rows, row++)
matrix[row] = (double **) malloc(num_columns*sizeof (double));

Freeing:
for(row=0; row<num_rows; row++)

free(matrix[row]);
free(matrix) ;

