2. Aktivator Statistische Mechanik ungeordneter Systeme

Aufgabe 1: Spezifische Wärme im Mean-field Isingmodell

Zeigen Sie, dass die spezifische Wärme $c=T\partial S/\partial T$ für das Mean-field Isingmodell unstetig bei $T=T_c$ ist, aber nicht divergiert.

Aufgabe 2: Suszeptibilität und Korrelationsfunktion

Zeigen Sie, dass die Suszeptibilität $\chi = \partial m/\partial H$ (wobei m die Magnetisierung pro Spin ist und H das magnetische Feld) sich ausdrücken lässt durch die Zweipunkt-Korrelationsfunktion $G_{ij} = \langle s_i s_j \rangle - \langle s_i \rangle \langle s_j \rangle$ durch

$$\chi = \frac{\beta}{N} \sum_{ij} G_{ij}$$

Aufgabe 3: Clusterstatistik bei der Perkolation

Verifizieren Sie durch explizite Rechnung, dass für die Clusterzahlen $n_s=p^s(1-p)^2$ der eindimensionalen Perkolation $\sum_{s=1}^{\infty}sn_s=p$ gilt.

Aufgabe 4: Skalenhypothese für Clusterzahlen

Berechnen Sie unter Annahme der Skalenform $n_s = s^{-\tau} f((p-p_c)s^{\sigma})$ das Skalenverhalten des Gewichts des unendlichen Clusters

$$P = p - \sum_{s=1}^{\infty} s n_s$$

für $p > p_c$.

Hinweis: Schreiben Sie $p = \sum_{s=1}^{\infty} sn_s(p_c) + p - p_c$ und approximieren Sie die Summen durch Integrale.