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Abstract
Positivity is an important property of the state spaces in quantum mechanical sys-
tems. Since this property is nonlinear, it is often difficult to investigate. In order
to study quantum field theories and in particular Hilbert space positivity of higher
correlation functions in globally conformal invariant theories, the partial wave expan-
sion is subject to current investigations. Due to its complexity, an explicit expression
of the expansion is only known in a few exceptional cases. Using orthogonality re-
lations between partial waves, it is possible to express n-point functions by lower
correlation functions. We have found operators performing the reduction in the case
of correlation functions involving only scalar fields of the same scaling dimension. In
a more general case, we have obtained some intermediate results, but further work
is necessary to complete the analysis. Furthermore, implications of conservation
laws resulting from the twist-2 contribution to the operator product expansion in
a correlation function are investigated. These laws can also be used as a test of
positivity.

Zusammenfassung
Positivität ist ein wichtiges Merkmal der Zustandsräume in quantenmechanischen
Systemen. Da diese Eigenschaft nichtlinear ist, treten bei der Untersuchung der Po-
sitivität oft Probleme auf. Um Quantenfeldtheorien und insbesondere Hilbertraum-
positivität höherer Korrelationsfunktionen in global konform invarianten Theorien
zu überprüfen, steht die Partialwellenentwicklung im Fokus aktueller Studien. Auf-
grund der komplexen Struktur ist die explizite Berechnung der Entwicklung nur in
wenigen Ausnahmefällen bekannt. Mithilfe von Orthogonalitätsrelationen zwischen
den Partialwellen können n-Punkt-Funktionen durch niedrigere Korrelationsfunktio-
nen beschrieben werden. Für Korrelationsfunktionen von skalaren Feldern gleicher
Skalendimension wurden Operatoren gefunden, die diese Reduktion durchführen. In
allgemeineren Fällen konnten wir einige Zwischenresultate erzielen, eine vollständige
Betrachtung erfordert jedoch weitere Arbeiten. Des Weiteren wurden Folgerungen
von Erhaltungssätzen untersucht, die von dem Twist-2 Beitrag zur Operatorpro-
duktentwicklung in einer Korrelationsfunktion herrühren. Diese können ebenso als
Positivitätstest genutzt werden.
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Notation

We give a short list of notations and abbreviations used throughout this thesis.

Symbol or Ab-
breviation

Meaning

OPE operator product expansion
PDE partial differential equation
GCI global conformal invariance
xij xi − xj − iεe0

%ij squared distance (xi − xj − iεe0)2

P↑+ proper orthochronous Poincaré group
H Hilbert space
Ω vacuum state
M four dimensional Minkowski space
Conf(M) conformal group acting on Minkowski space
conf(M) conformal algebra acting on Minkowski space
∂i partial derivative w. r. t. xi
∂ij partial derivative w. r. t. %ij
∇i derivative w. r. t. ∂i
Wn n-point function
Pµ generators of translations
D generator of dilations
Mµν generators of the connected Lorentz group
Kµ generators of special conformal transformations
S(R4) Schwartz space
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1 Introduction

1.1 Motivation

One of the most remarkable facts of nature is that microscopic fields and particles
are described by a quantum theory. Quantum field theories have been studied inten-
sively for many decades. Most physicists have followed and still follow an approach
where classical fields are quantized, leading e. g. to the standard model in particle
physics which is to date a very successful theory. Unfortunately, this kind of theories
may yield problems concerning the mathematical structure. Starting in the 1950s,
an alternative way of formulating a QFT has been established. The idea is to start
from a certain set of minimal properties which should be satisfied by any physical
theory and translate them into the language of mathematics. Next, concrete physi-
cal models should be constructed.

Despite the success of rigourous constructions of quantum field theories in two space-
time dimensions, there are no physical models present in four dimensions but free
field models so far. Many different axiomatic formulations provide us with math-
ematically sound frameworks but the universality of these frameworks, e. g. a pure
Wightman theory [21], is problematical: Namely, it is difficult to construct specific
models. As a result, a typical strategy is to narrow the wide range of possible models
by extending the symmetry group.

An often studied class of theories are conformal theories. In such a framework,
all angle preserving transformations are required to be symmetry transformations.
Although our world is not conformally covariant, some physical systems might ex-
hibit at least an approximate conformal symmetry, e. g. in high energy physics [7] or
in statistical mechanics [19]. The postulation of conformal covariance implies many
helpful consequences. One effect is that the operator product expansion and the par-
tial wave expansion (PWE) of correlation functions (i. e. the main objects of interest
in a Wightman-theory) are determined in some cases [15]. The PWE turns out to be
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1 Introduction

very useful in order to investigate a theory and is already well-studied in the case of
four-point functions [4, 5]. In order to restrict the theories even more, we can demand
global conformal invariance (GCI) where we postulate the existence of a true repre-
sentation of the conformal group on our Hilbert space [18]. This highly restrictive
symmetry leads e. g. to rationality of all correlation functions and commutativity of
covariant fields not only at spacelike but also at timelike distances [18]. Under these
conditions, candidates for contributions to 6-point functions which cannot arise in
a free theory have been found [16]. These candidates automatically fulfil almost all
Wightman axioms, except for positivity. Therefore, they have to be tested if they
also satisfy this last condition and thereby would yield a physical theory. PWE has
proven to be a helpful tool to study in particular positivity. However, the partial
wave expansion is not known for 6-point functions or higher.

The purpose of current studies is a further developement of this tool in four but also
in two dimensional conformal quantum field theories.

In this thesis, we restrict our analyses to four spacetime dimensions. An alternative
to the actual decomposition is provided by using orthogonality relations between
partial waves [13]. The aim is to find operators which project separately on differ-
ent contributions of the irreducible positive energy representations of the conformal
group. Hence, they express a n-point function by (n-1)-point partial waves. Succes-
sive reduction would permit studying Hilbert space positivity using PWE without
knowing the explicit expansion of the n-point functions.

2



1.2 Organization

1.2 Organization
This thesis is structured as follows: In a first part, we review some general as-
pects of the framework used throughout the thesis, in particular we focus on the
notion of conformal covariance and global confomal invariance. Next, consequences
of these additional symmetries within a Wightman theory on a Minkowski space
are discussed and we work out the central question. We then present the partial
wave expansion, a tool used very often in the investigation of conformal theories and
starting point for the analyses performed in this thesis. Properties of the partial
waves are used in order to express n-point functions by expansions of lower corre-
lation functions for the purpose of avoiding an explicit partial wave expansion. To
conclude, these results are then applied to the investigation of conservation laws
occuring in a GCI theory.
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2 The setting

This first chapter is dedicated to the general framework used in the following. Every
physical quantum theory should satisfy a couple of fundamental principles such as
locality, covariance under the action of the Poincaré group, stability (existence of an
energy ground state) and unitarity (existence of a probability interpretation since we
are interested in a quantum theory). These principles are fixed among others in the
Wightman-formalism in which the objects of interest are the correlation functions
since they carry all information about the fields [21]. In particular, it is important
that the axioms require Hilbert space positivity. Throughout the whole thesis, only
the case of four spacetime dimensions is considered even though many results can
be generalized to higher dimensions.

We first review the general physical input. In the second part, we focus on the
notion of conformal covariance and global conformal invariance and conclude with
some definitions used in the following.

2.1 Wightman theory
There are two ways of working in a Wightman formalism. The first possibility is to
formulate axioms for the fields themselves, but it is often more useful to consider
their correlation functions. The reconstruction theorem [21] permits to recover the
fields from their correlation functions, so that both formulations are equivalent [9,
19, 21]. The following axioms are valid for bosonic fields.

2.1.1 Axioms for the fields

Relativistic quantum theory

Let H be a separable Hilbert space and U(g) a unitary representation of P↑+ =

R4 o SL(2,C) on H. A state is a unit ray in H and there exists a unique state Ω

(vacuum), which is invariant under the action of P↑+. Since the representation is
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2 The setting

unitary, a pure translation can be written as U(x) = eiPµx
µ , where the spectrum of

Pµ lies in the closure of the forward cone {pµ|pµpµ ≥ 0, p0 ≥ 0}.

The fields

There exists a multiplet of operator valued distributions on S(R4) defined (together
with their adjoints) on a domain D dense in H. This domain contains the vacuum
and is invariant under the action of the field algebra and P↑+. The adjoint Φ∗(f) of
a field Φ(f) is defined by

〈Ψ2|Φ∗(f)|Ψ1〉 = 〈Ψ1|Φ(f)|Ψ2〉, (2.1.1)

where Ψ1, Ψ2 ∈ D.

Locality

If f and g are test functions with spacelike separated support, then

[Φj(f),Φk(g)] = 0. (2.1.2)

In other words, fields should commute for spacelike distances.

Transformation law

Under the action of P↑+, the fields transform according to

U(a,A)Φj(f)U(a,A)∗ =
∑
k

Sjk(A
−1)Φk(f(A−1(x− a))). (2.1.3)

Here S(A) is a finite dimensional representation matrix of the Lorentz group speci-
fying the tensor or spinor character of the field.

Completeness

The vacuum Ω is cyclic for the smeared fields:

H = span{Φ1(f1)Φ2(f2) . . .Ω}. (2.1.4)

6



2.1 Wightman theory

2.1.2 Axioms for the correlation functions

The field axioms yield the following set of axioms for their correlation functions.
These Wightman distributions are defined as

W1...n(x1, x2, . . . , xn) = (Ω,Φ1(x1), . . . ,Φn(xn)Ω). (2.1.5)

Hermiticity condition

The Wightman distributions satisfy

(Ω,Φ1(x1) . . .Φn(xn)Ω) = (Ω,Φ∗1(x1) . . .Φ∗n(xn)Ω) (2.1.6)

Locality

For Bose fields, the following equality holds if (xi − xi+1)2 > 0.

Wn(x1, . . . , xi, xi+1, . . . , xn) =Wn(x1, . . . , xi+1, xi, . . . , xn). (2.1.7)

Covariance

Wightman distributions are translation and Lorentz invariant. It follows that they
only depend on the relative coordinates xij = xi − xj (reduced Wightman distribu-
tion).

Spectral conditions

The Fourier transforms of the reduced Wightman distributions are tempered distri-
butions and have their support in the product of the future light cones.

Positivity

For any sequence {fi} of test functions, the Wightman distributions of a single field
Φ have to satisfy

∞∑
j,k=0

∫
dx1 . . . dxjdy1 . . . dykf j(x1 . . . xj)Wjk(xj, xj−1, . . . , x1, y1, . . . yk)fk(y1, . . . , yk)

≥ 0, (2.1.8)

7



2 The setting

where Wjk = (Ω,Φ∗(xj) . . .Φ
∗(x1)Φ(y1) . . .Φ(yk)Ω). For several fields, appropriate

generalizations are satisfied.

Cluster decomposition property

For a spacelike vector a we have:

W(x1, . . . , xj, xj+1 + λa, xj+2 + λa, . . . , xn + λa)→W(x1, . . . xj)W(xj+1, . . . , xn)

(2.1.9)
as λ→∞.

2.2 The conformal group and global conformal
invariance

We would like to enlarge the symmetry group. In order to obtain a physical theory,
the external symmetry transformations have to preserve at least the causal structure.
The largest group satisfying this demand is the conformal group [6]. This subsection
refers mainly to information from [9, 11, 19].

Definition 2.2.1. (Conformal group)
The conformal group Conf(M) is the group of all angle preserving transformations:

xµ 7→ x̃µ, dx̃µdx̃µ = w(x)2dxµdxµ, (2.2.1)

with a real, smooth function w(x) (scale factor).

These include

• Poincaré transformations,

• dilations: xµ 7→ λxµ,

• and special conformal transformations:

xµ 7→
xµ − bµ

1− b · x+ b2x2
. (2.2.2)

Note that the special conformal transformations cannot give a global symmetry
since they admit singularities where the denominator vanishes. Hence, working
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2.2 The conformal group and global conformal invariance

on the Minkowski space itself, we encounter problems because a special conformal
transformation may map points from Minkowski space to infinity. Thus, we can find
a unitary conformal transformation which violates causality by mapping spacelike
separated fields on timelike separated fields [18], unless they commute also at timelike
distances. This problem can be avoided by working with a projective representation
of the universal covering group of Conf(M) on the covering space of the Minkowski
space [10] and pass to the conformally compactified Minkowski space:

Definition 2.2.2. (Conformally compactified Minkowski space)
The compactified Minkowski space is defined as

M̄ = {z = (z1, z2, z3, z4) ∈ C4 | z =
z̄

z̄2
, z2 =

4∑
ß=1

z2
i = ~z2 + z2

4}. (2.2.3)

In the following, we would like to require the existence of a well-defined unitary
representation on the compactified Minkowski space itself, which leads to global
conformal invariance (GCI). This strong constraint will have an important impact
on the field content itself and on correlation functions.

In [18], global conformal invariance is defined in the following way:

Definition 2.2.3. (Global conformal invariance)
A quantum field theory defined on Minkowski space and satisfying Wightman axioms
is called globally conformal invariant if the Wigthman distributions are invariant
under the action of the conformal group.

We will see that any QFT satisfying GCI defined on Minkowski space admits an
extension to the compactified Minkowski space.

In the following, we are mostly interested in theories generated by scalar fields Φ

which transform under dilations according to

x 7→ λx, Φ(x) 7→ λdΦ(λx), (2.2.4)

where d is the scaling dimension.

It can be shown [11] that all irreducible unitary positive energy representations are
lowest weight representations. This demand already restricts the possible weights
α = (d,−j1,−j2) where d is the scaling dimension and j1, j2 ∈ SL(2,C) spins.
The admissible representations can be classified [11]:

9



2 The setting

1) d = j1 = j2 = 0 (trivial 1-dimensional representation)

2) j1, j2 6= 0, d ≥ j1 + j2 + 2

3) j1 · j2 = 0, d ≥ j1 + j2 + 1.

The corresponding Lie algebra conf(M) is generated by the generators Pµ of trans-
lations, the generators Mµν of the connected Lorentz group, the dilations D and the
special conformal transformations Kµ. A positive energy representation is charac-
terized by P0 > 0, which is equivalent to positivity of the conformal Hamiltonian
H0 = 1

2
(P0 + K0) [11]. The reason for this is that there exists a unitary conformal

transformation mapping K0 to P0. With a scalar field Φ(x), the generators have the
following commutation relations:

i [Pµ,Φ] = ∂µΦ

i [D,Φ] = (x · ∂ + d)Φ

i [Mµν ,Φ] = (xµ∂ν − xν∂µ)Φ

i [Kµ,Φ] = (2xµ(x · ∂)− x2∂µ + 2dxµ)Φ. (2.2.5)

It is sometimes useful to define the twist:

Definition 2.2.4. (Twist)
The twist 2κ is the quantity

2κ = d− L (2.2.6)

for a rank L operator of scaling dimension d.

Furthermore, we will often use cross ratios:

Definition 2.2.5. (Cross ratios)
The cross ratios are defined as

Rij
kl =

%ij%kl
%ik%jl

with %ij = x2
ij = (xi − xj − iεe0)2. In the case of four points in spacetime, we can

choose two algebraically independent cross ratios:

s =
%12%34

%13%24

, t =
%14%23

%13%24

. (2.2.7)

All other cross ratios can be expressed by products or ratios of s and t.

10



2.2 The conformal group and global conformal invariance

Additional postulation of GCI leads to very constrained correlation functions and
therefore, it simplifies the calculations a lot. This permits a better understanding
of the structural properties of possible theories. Among others, these consequences
are discussed in the following chapter.
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3 Consequences of conformal
covariance and GCI

Conformal covariance and in particular global conformal invariance have far reaching
consequences. In conformally covariant theories, the operator product expansion of
products of scalar fields Φ1Φ2 is achievable, since its coefficients are determined
by conformal symmetry up to a (model dependent) normalization. In addition,
postulation of GCI strongly restricts the admissible correlation functions and the
field content. These implications simplify calculations a lot and may even lead to
an example for a nontrivial theory.

In a theory satisfying GCI, the twist-2 contribution to the OPE plays an important
role since it gives rise to infinitely many conserved tensor currents. They are the
starting point to derive a concrete condition for a (twist-2 contribution to a) n-point
function to be nontrivial and in addition, it is possible to compute the whole twist-2
contribution of a n-point function from its leading part.

In this chapter, we first summarize the consequences of GCI on the field content and
on the correlation functions. We continue with an overview about OPE and point
out the importance of the twist-2 contribution to the OPE in a GCI QFT. Last we
focus on the notion of nontriviality and how it manifests.

13



3 Consequences of conformal covariance and GCI

3.1 Field content and structure of correlation
functions

Even in a conformally covariant theory, the 1-, 2- and 3-point functions of scalar
fields are fixed up to a constant [7]:

W1(x) = 0

W2(x1, x2) = δd1,d2
C

%d112

W3(x1, x2, x3) =
C ′

%
(d1+d2−d3)/2
12 %

(d1+d3−d2)/2
13 %

(d2+d3−d1)/2
12

. (3.1.1)

The demand of global conformal invariance (combined with the Wightman axioms)
in Minkowski space strongly restricts the field content and the structure of corre-
lation functions [15, 18]. Nikolov et al. have studied the consequences of GCI in
detail [18]. The most important implications for scalar fields are [15, 18]:

1) The correlation functions of fields Φ(x) are invariant under transformations

Φ(x) 7→ det

(
∂g

∂x

)d/4
Φ(g(x)), (3.1.2)

where g ∈ Conf(M) and ∂g
∂x

is the Jacobi matrix. Furthermore, it follows
that d ∈ N.

2) Fields satisfy Huygens locality: for sufficiently large N ∈ N,

%N12 [Φ1(x1),Φ2(x2)] = 0, (3.1.3)

i. e. fields commute if (x1 − x2)2 6= 0.

3) Correlation functions are rational:

〈Φ1 . . .Φn〉 =
∑
{µjk}

C{µjk}
∏
j<k

(%jk)
µjk , (3.1.4)

with µjk = µkj ∈ Z and, as a consequence of (3.1.2),∑
j, j 6=k

µjk = −dk. (3.1.5)

14



3.2 Operator product expansion and twist-2 contribution

Here, dk is the scaling dimension of the field Φk. Furthermore, the exponents
µjk satisfy the pole bounds (unitarity bounds)

µjk ≥ −b
dj + dk + δdjdk − 1

2
c, (3.1.6)

where b·c denotes the floor function. It follows that the sum in (3.1.4) is finite.

These results admit, among others, an extension of any GCI QFT to the compactified
Minkowski space.

3.2 Operator product expansion and twist-2
contribution

The operator product expansion is a very powerful tool to study conformal theories.
Combined with the demand of conformal invariance, it reveals candidates for non-
trivial theories. The main concern is whether these candidates satisfy Hilbert space
positivity.

In order to find a candidate for a contribution to a n-point function, it is useful to
define

U(x1, x2) = (%12)d−1 · (Φ1(x1)Φ2(x2)− 〈0|Φ1Φ2|0〉) , (3.2.1)

where Φ1 and Φ2 are two scalar fields of the same scaling dimension d [15]. The
subtracted term corresponds to the (most singular and trivial) twist-0 contribution
(vacuum) and the factor (%12)d−1 ensures regularity of the correlation functions in-
volving U in %12 because the pole bounds (3.1.6) exclude poles of higher order than
d− 1. U is Huygens bilocal but not conformally covariant. The Taylor expansion in
x12

U(x1, x2) =
∞∑
n=0

3∑
µ1,...,µn=0

xµ1

12 · · ·x
µn
12 ·Xn

µ...(x2) (3.2.2)

introduces the OPE of Φ1Φ2. It involves fields X which do not transform irreducibly
under conformal transformations. They can be replaced by introducing quasiprimary
fields OL

µ1...µn
of rank L (i. e. fields which transform irreducibly under the action of

the conformal group) by subtracting derivatives of lower dimensional fields. These
fields OL

µ1...µn
are traceless tensors. The OPE can be reorganized according to the

15



3 Consequences of conformal covariance and GCI

twist 2κ = d− L:
U(x1, x2) =

∑
Vκ(x1, x2) · %κ−1

12 , (3.2.3)

with
Vκ(x1, x2) =

∞∑
L=0

Kµ1...µL
κ (x12, ∂x2)O

L+2κ
µ1...µn

(x2). (3.2.4)

Due to the universality of the 2- and 3-point functions of scalar fields in a con-
formal theory, these Kµ1...µL

κ (x12, ∂x2) can, up to a normalization, be determined
globally for any (!) conformal QFT. Hence, the whole operator product expansion
can be performed explicitly in a conformal theory.

For twist-2, the 2-point functions are conserved and so are the fields, since a vanish-
ing norm square of a vector implies the vanishing of the vector itself and the Reeh-
Schlieder theorem now implies that the fields themselves have to vanish. In a GCI
theory, this yields that the twist-2 contribution V1 is biharmonic �1V1 = 0 = �2V1

(the argument uses the explicit expressions of the Kµ1...µL
κ (x12, ∂x2)) [17].

In general, we can use the following property [2]:

Lemma 3.2.1. (Harmonic completion)
For every power series p in z ∈ Cn there exists a unique h = p+ z2 · q, q another
power series, such that h is harmonic.

Therefore, we can find the unique harmonic decomposition of U :

U(x1, x2) = V1(x1, x2) + %12Ũ(x1, x2).

The fact that V1 is harmonic w. r. t. x1 and also x2 gives a condition on possible
candidates of twist-2 contributions, since the two a priori different harmonic comple-
tions have to coincide. This condition yields a differential equation, which is solved
by candidates u0 for the leading part of the twist-2 part [15]:

(E1D2 − E2D1)u0 = 0, (3.2.5)

with
D1 =

∑
3≤j<k≤n

%jk∂1j∂1k, E1 =
∑
3≤i

%2i∂2i,

where ∂jk = ∂
∂%jk

. (3.2.5) ensures that these leading parts can be completed to the
full twist-2 contribution. Issues regarding convergences of the decompositions are

16



3.3 Pole structure and nontriviality

studied in [15].

3.3 Pole structure and nontriviality
The question is whether there exist harmonic bilocal fields which are nontrivial, i. e.
which are not a biharmonic combinations of canonical free fields, e. g.

: ϕ(x1)ϕ(x2) :,

: ψ̄(x1)(x1 − x2)µγ
µψ(x2) :,

: Fµν(x1)(2xν12x
κ
12 − ηνκx2

12)F µ
κ (x2) :,

where : · : denotes normal ordering and Fµν is the Maxwell field, ϕ a scalar field and
ψ a Dirac field. Investigation of the pole structure of possible candidates yields a
useful classification.

It can be shown that the PDE (3.2.5) combined with rationality of the correlation
functions also leads to constraints on the pole structure of the candidates for u0 [16].
The most involved structure we can find is of the form

1

%d−1
12

polynomial

%p1i%
q
1j%

r
2i%

s
2j

· some factors.

If both p and q or r and s are positive, the structure has a double pole, otherwise
it is called a single pole. It can be shown [15], that the following statements are
equivalent:

1) The twist-2 bifield V1(x1, x2) converges to a Huygens bilocal field (i. e. spacelike
and timelike commutativity is satisfied w. r. t. both variables).

2) The correlation functions 〈·V1·〉 are rational.

3) 〈·V1·〉 admit only single poles.

Furthermore, a trivial V1 has these properties: for trivial fields, the correlation
functions are sums of products of two-point functions according to Wick’s theorem.
Those in turn are fixed by conformal invariance and rational.
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3 Consequences of conformal covariance and GCI

One good example for a typical solution to the PDE (3.2.5) with double pole
structure is the following six-point structure [16]:

F0 =
(%15%26%34 − 2%15%23%46 − 2%15%24%36)[1,2][5,6]

%d−1
12 · %14%23%13%24%35%36%45%46%̇

d−1
56

, (3.3.1)

where (·)[i,j] denotes the antisymmetrization in the variables xi, xj. To date, pos-
itivity is neither proved nor rejected. In order to study Hilbert space positivity of
this candidate (and similar ones), we would like to use partial wave expansion.
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4 Partial Wave Expansion

The partial wave expansion (PWE) is similar to the OPE and provides a very useful
tool in order to study a quantum field theory, in particular to investigate Hilbert
space positivity. In the following, we first explain the main idea. In a conformal field
theory, the partial waves can be determined explicitly for correlation functions of (up
to four) scalar fields. In the second part, we show a possible way of computing them.
In addition, this is then applied to the well-studied case of four-point functions.

4.1 General idea

The idea is to expand a correlation function by projecting onto the irreducible pos-
itive energy representations of the conformal group (a similar expansion is known
from quantum mechanics, where wave functions are expressed by spherical harmon-
ics which are eigenfunctions of the Casimir operators of the angular momentum
algebra). The partial waves depend only on the (conformal) algebra and are there-
fore universal for any conformal field theory. Thus, the physical content of a specific
theory is only characterized by the coefficients. In particular the PWE of four-point
functions has been studied successfully, but so far we do not know much about the
PWE of higher correlation functions.

By inserting projections 1 =
∑

αi
Παi into a general correlation function, we obtain

the expansion:

〈Φ1(x1) . . .Φn(xn)〉 =
∑
α

〈Φ1Φ2Πα2Φ3Πα3 . . .Παn−2Φn−1Φn〉

=
∑
α

Bαβα(x1, . . . , xn),

where α = (α2, . . . αn−2), βα are partial waves and αi = (di, j1i , j2i) representations
of the conformal group.
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4 Partial Wave Expansion

For up to four scalar fields, the partial waves are determined by GCI (again be-
cause of the explicit knowledge about the 2- and 3-point functions). Furthermore,
they are universal (i. e. they do not depend on the fields Φi). This implies that if a
specific β is known to exist in any free theory, the contribution is neccessarily posi-
tive and reduces therefore the study of positivity to investigation of the coefficients.
In the case of four-point functions of free massless fields, each partial wave in the
expansion appears with a positive coefficient and, as a consequence, also the univer-
sal partial waves are positive. For other fields or more than four scalar fields, the
three-point functions are linear combinations of a finite basis of structures. These
structures are universal but unfortunately, they are not known to date.

4.2 Determination of the partial waves

In order to find the partial waves, Casimir operators are useful objects. In four
dimensions, the conformal group has rank 3 and therefore, the corresponding algebra
has 3 Casimir operators. A Casimir operator is composed of the generators of
the algebra which have known commutation relations with the fields. Thus, the
commutation relations of the Casimir operators with the fields are also known.
By Schur’s Lemma, every irreducible representation space is an eigenspace of the
Casimir operators at the same time. In D = 4 spacetime dimensions, the quadratic
Casimir operator has the form:

C =
1

2
(PµK

µ +KµP
µ)−D2 +

1

2
MµνM

µν (4.2.1)

with the eigenvalues:
cα = d(d− 4) + L(L+ 2).

A state ΦΩ is irreducible, but not Φ1Φ2Ω. Consider CΦ1Φ2Ω. By using commu-
tation relations and XΩ = 0 (for X = any generator of the conformal algebra), we
obtain the equation

CΦ1Φ2Ω = D12Φ1Φ2Ω,

where D is a differential operator. We insert operators projecting on irreducible
states:

Φ1Φ2Ω =
∑
α

ΠαΦ1Φ2Ω.
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4.3 Special case: four scalar fields

The Casimir operator commutes with the projection operators. It leads to the
equalities

CΠαΦ1Φ2Ω = cαΠαΦ1Φ2Ω

= ΠαCΦ1Φ2Ω = D12ΠαΦ1Φ2Ω.

In total, it yields the following differential equation:

(Ω,Φ · · ·ΦΠαD12Φ1Φ2Ω) = cα (Ω,Φ · · ·ΦΠαΦ1Φ2Ω)︸ ︷︷ ︸
=βα

=⇒ D12βα = cαβα.

In the same way, projections have to be inserted at all other places. Thus, Casimir
operators can, in principle, be used to determine the explicite form of the partial
waves (unfortunately, the differential operators are in general pretty involved). In
two spacetime dimensions, this method is succesful [13] but it is not practical in four
dimensions.

4.3 Special case: four scalar fields
Dolan et al. computed the partial waves of correlation functions of four scalar
fields [5]. In the following, this is shown for the special case of equal scaling di-
mensions and in four spacetime dimensions:

Commutation of C = 1
2

(PµK
µ +KµP

µ) − D2 + 1
2
MµνM

µν past the fields Φ3Φ4 in
〈Φ1Φ2Φ3Φ4〉 using the commutation relations (2.2.5) yields

Cβ = D34β with

D34 = 2d(2d− 4) + 2d x34 · (∂3 − ∂4) + x2
34(∂3 · ∂4)− 2x34 ⊗ x34 · ∂3 ⊗ ∂4. (4.3.1)
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4 Partial Wave Expansion

In general, GCI implies rational correlation functions of the form

〈Φ1(x1) · · ·Φn(xn)〉 = f (cross ratios) ·
∏
i<j

%
µij
ij

with µij satisfying the constraints (3.1.5) and (3.1.6). For n = 4, we only have the
two cross ratios

s =
%12%34

%13%24

, t =
%14%23

%13%24

and therefore
〈Φ(x1) · · ·Φ(x4)〉 =

1

%d12%
d
34

· f(s, t).

Substitution leads to:
2Ds,tf(s, t) = cα · f(s, t)

with

Ds,t = s(t− s− 3)∂s + (1− 2t− st− s+ t2)∂t

+ 2st(t− s− 1)∂s∂t

+ s2(1− s+ t)∂2
s + t(1− 2t− st− s+ t2)∂2

t . (4.3.2)

This differential equation is still pretty complicated and therefore, we use a second
helpful substitution to obtain a differential equation which is invariant under the
exchange of the two new variables u and v:

s = uv, t = (1− u)(1− v).

The Jacobi matrix for this transformation is:(
∂su ∂t

∂sv ∂tv

)
=

(
∂us ∂vs

∂ut ∂vt

)−1

(4.3.3)

=
1

u− v

(
u− 1 −u
1− v v

)
. (4.3.4)

Hence, we find the new differential equation

2Duvf(u, v) = cαf(u, v)
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4.3 Special case: four scalar fields

with

Duv = u2(1− u)∂2
u + v2(1− v)∂2

v

+

(
−u2 + 2

uv

u− v
(1− u)

)
∂u

+

(
−v2 − 2

uv

u− v
(1− v)

)
∂v.

Dolan and Osborn [5] studied the solutions in detail and in a more general case
(arbitrary spacetime dimension and different scaling dimensions). For the scaling
dimensions d1 = d4, d2 = d3 they could express the solutions in terms of hyper-
geometric functions. For four-point functions, it is shown that all occuring partial
waves are positive and therefore, only the positivity of the coefficients has to be
checked. In this case, a recurrence formula for the coefficients is known [14].
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4 Partial Wave Expansion
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5 Reduction of n-point functions

Due to its complicated structure, the explicit PWE of higher (n > 4) correlation
functions or correlation functions of nonscalar fields in four spacetime dimensions
is still unknown today. By reducing the n-point functions, we can try to avoid the
resulting problems since we do not perform the partial wave expansion explicitly. In
order to express a n-point function by (n-1)-point functions, we can use that differ-
ent partial waves are orthogonal w. r. t. a suitable mesure dµ(x1, x2) and project on
the contribution of every representation to the expansion separatly.

In the case of the twist-2 part of a correlation function of scalar fields, local differ-
ential operators have been found that perform the projection. The second part of
this chapter addresses the reduction of arbitrary twist contributions of scalar fields
carrying the same scaling dimension and also lays the ground for a generalization of
the analysis to symmetric traceless tensor fields and/or different scaling dimensions.
If not mentioned otherwise, we consider scalar fields of equal scaling dimensions in
this chapter.

5.1 Reduction of twist-2 correlation functions
In general there exists a differential operator D projecting a state Φ1Φ2Ω on an
irreducible state ΦαΩ for every representation α occuring in the OPE of Φ1Φ2 (local
linear maps):

Φα(x)Ω = ιx ◦DΦ1(x1)Φ2(x1)Ω, (5.1.1)

where ιx denotes evaluation at x1 = x2 = x. To simplify the calculation, we project
in one direction by contracting the tensor fields with polarization vectors: T (v) =

T µ1...µnvµ1 . . . vµn . The original tensor field is recovered by taking the derivative with
respect to the vectors. Eq. (5.1.1) implies that applied to the twist-2 contribution
V1(x1, x2), we obtain

ιx ◦Dµ1...µnV1(x1, x2) = T µ1...µn(x)
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5 Reduction of n-point functions

in case T µ1...µn occurs in the OPE of Φ1Φ2. Hence, ιx ◦ D(v) projects the twist-2
contribution to a correlation function 〈. . . V1〉 onto the contributions 〈. . . T (v)〉. In
the twist-2 case, the image of these operators D has very specific properties, so that
we can use them in order to find those differential operators.

It is known that only representations α = (d, j, j) contribute to the OPE of two scalar
fields, which corresponds to symmetric and traceless tensors [12]. Therefore, it is
sufficient to contract the tensors with only one vector v. Thus, possible contributions
to the operators are only contractions of the vector v and ∂i, i = 1, 2.

In addition all correlation functions involving the twist-2 part of the product Φ1Φ2

are biharmonic (∂2
i V1 = 0) [17]. Furthermore, we know that correlation functions

involving this part are conserved. Since we have specified the twist to be 2κ = 2,
the representations differ only in the rank L = 2j.

To summarize, the image of D has to be:

• symmetric: all contractions with the same vector v (vµ1 . . . vµnT
µ1...µn),

• of rank L: (v · ∂v)DV1 = LDV1 (gives the homogenity in v),

• traceless: ∂2
vDV1 = 0,

• conserved: (∂v · ∂1 + ∂v · ∂2)DV1 = 0.

The rank L contribution is isolated by applying D and setting x1 = x2. In this way,
we reduce an n-point function to (n-1)-point functions.

The following examples for L = 0, 1, 2, 3, 4 are calculated by hand (for L = 0, 1, 2 cf.
[14]) and are used to check more general results:

• D0 = id

• D1 = v · ∂1 − v · ∂2

• D2 = (v · ∂1)2 + (v · ∂2)2 − 4(v · ∂1)(v · ∂2) + v2(∂1 · ∂2)

• D3 = (v · ∂1)3 − (v · ∂2)3 + 9(v · ∂1)(v · ∂2)2

−9(v · ∂2)(v · ∂1)2 + 3v2(v · ∂1)(∂1 · ∂2)− 3v2(v · ∂2)(∂1 · ∂2)

• D4 = (v · ∂1)4 + (v · ∂2)4 + 36(v · ∂1)2(v · ∂2)2

−16(v · ∂1)(v · ∂2)3 − 16(v · ∂2)(v · ∂1)3 + 6v2(v · ∂1)2(∂1 · ∂2)

+6v2(v · ∂2)2(∂1 · ∂2) + 3
2
v4(∂1 · ∂2)2 − 18v2(v · ∂1)(v · ∂2)(∂1 · ∂2).
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5.2 Reduction of arbitrary correlation functions

In order to find a general formula for the differential operators, we can start with
the ansatz

DL =
∑

m+n=L

∑
c≤L/2

Acmn(v · ∂1)m−c(v · ∂2)n−c(v2)c(∂1 · ∂2)c.

The property that the image is traceless and conserved yields two recursive equations
which are solved by

Acmn =
−(m− c+ 1)(n− c+ 1)

2c(c+ 1) + 2c(m+ n− 2c)
Ac−1
mn

=⇒ Acmn = (−1)c
m!n!(m+ n− c)!

2cc!(m+ n)!(m− c)!(n− c)!
A0
mn

with
A0
mn = (−1)n

(m+ n)!2

m!2n!2
.

We conclude with the following proposition.

Proposition 5.1.1. The operator

DL =
∑

m+n=L

∑
c≤L/2

(
L

c

)(
L− c
m

)(
L− c
n

)(
v2

2

)c
(∂1 · ∂2)c(v · ∂1)m−c(−v · ∂2)n−c

(5.1.2)
returns a traceless, symmetric and conserved rank L tensor if applied to a biharmonic
function.

Thus, using orthogonality of the partial waves, we can reduce a twist-2 contri-
bution to a correlation function of n scalar fields to (n-1)-point functions of (n-2)
scalar and one tensor field.

5.2 Reduction of arbitrary correlation functions

In the following, we discuss two possible ways of reducing contributions to n-point
functions of arbitrary twist. First, we make use of conformal covariance, which
implies that the 3- and 2-point functions of scalar fields are determined and we
therefore know, how the differential operators should act. We have applied this
procedure in order to compute examples of operators corresponding to some specific
representations α = (κ, L), but we have not found a systematic way of determining
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5 Reduction of n-point functions

the operators corresponding to an arbitrary representation.

Second, we use the fact that the local differential operators should commute with
the action of the algebra conf(M) in order to obtain conditions which completely
determine them. So far, the second method seems to be more promising. For two
scalar fields of equal scaling dimension coupling to a symmetric traceless tensor field,
we could determine the operators that project on an arbitrary representation.

5.2.1 Reduction of n-point functions using the explicit formulas
of 3- and 2-point functions

In order to find differential operators which reduce an arbitrary contribution to a
correlation function, we try to use the fact that the 3- and 2-point functions are
explicitly known. Furthermore, we know that our Hilbert space H is given by the
smeared states Φα(x)|0〉 and therefore, an arbitrary state |ψ〉 can be written as
a linear combination of these basis vectors. In particular, it is known that 3-point
functions 〈ΦΦΦα〉 of a tensor field coupled to two scalar fields of equal dimensions are
only nonzero, if Φα is a symmetric and traceless tensor, α = (κ, L), L = 2j = j1 + j2

and d = 2κ+ L [12].

Hence, we can write a 3-point function as:

〈0|Φ1Φ2|ψ〉 =
∑
κ′,L′

∫
dx3fκ′,L′(x3)〈Φ1Φ2Tκ′,L′(x3)〉 (5.2.1)

with the functions fκ′,L′(x3) and symmetric traceless tensor fields Tκ′,L′ .

The next step is to find operators Eκ,L, which select a specific representation in the
expansion and reduce the 3-point function to a 2-point function. Here we use the
expression [12]

〈Φ1(x1)Φ2(x2)Tκ,L(v, x3)〉 = %−d12 (X2)κ(v ·X)L0 (5.2.2)

for the 3-point function, where (·)0 denotes the harmonic part w. r. t. v and Φ1, Φ2

are of equal scaling dimensions. Moreover, we used these simplified expressions:

Xµ =
x23µ

%23

− x13µ

%13

, X2 =
%12

%13%23

.
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5.2 Reduction of arbitrary correlation functions

The 2-point function is given by

〈Tκ,L(v, x1)Tκ,L(w, x2)〉 = %
−(2κ+L)
12 · I(v, w;x12)L00 (5.2.3)

with
Iµν = ηµν − 2

xµxν
x2

, (5.2.4)

I(v, w) = Iµνv
µwν and (·)00 denotes the harmonic part w. r. t. v and w. Thus, we

have

ιx0 ◦ Eκ,L %d12〈Φ1Φ2Tκ′,L′(x3)〉 = δκκ′δLL′〈Tκ,L(x0)Tκ′,L′(x3)〉, (5.2.5)

where ιx0 refers to evaluation at x1 = x2 = x0. The idea is to use eq. (5.2.5) in
order to determine Eκ,L. Once they are known, we can apply them to eq. (5.2.1),
leading to

ιx0 ◦ Eκ,L %d12〈Φ1Φ2|ψ〉 =

∫
dx3fκ,L(x3)〈Tκ,L(x0)Tκ,L(x3)〉.

Choosing the state |ψ〉 to be |ψ〉 = Φ3 . . .ΦnΩ, the operator Eκ,L isolates a specific
(κ, L) in

〈Φ1 . . .Φn〉 =
∑
κ′,L′

〈Φ1Φ2Πκ′,L′Φ3 . . .Φn〉.

In principle, further application of these local differential operators permits a suc-
cessive reduction of an arbitrary n-point function, but 3-point functions involving
the resulting additional tensor fields have to be reduced, too.

Using the method just presented, these operators have been found for some specific
values of (κ, L):

E10 = (∂1∂2)

E11 = (∂1∂2) [(v∂1)− (v∂2)]−
[
∂2

1(v∂2)− ∂2
2(v∂1)

]
E12 = (∂1∂2)

[
(v∂1)2 + (v∂2)2

]
− 4(∂1∂2)(v∂1)(v∂2) + 3

[
∂2

1(v∂2)2 + ∂2
2(v∂1)

]
− 3(∂2

1 + ∂2
2)(v∂1)

E20 = (∂1∂2)2 + (∂1∂2)
[
(v∂1)2 + (v∂2)2

]
+

1

2
∂2

1∂
2
2

E0L =
∑
s+t=L

(−v∂1)s(v∂2)t
1

s!(s− 1)!t!(t− 1)!
(5.2.6)
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5 Reduction of n-point functions

Note that for the last operators, corresponding fields do not exist. κ = 0 and L > 0

violates unitarity and κ = L = 0 denotes the vacuum contribution, which is not
taken into account, because we apply the operators only to the modified correlation
functions. Those are regular in %12 and do not contain the vacuum contribution,
cf. eq. (3.2.1). Hence, any correlation function has to be annihilated by E0L in a
positive theory. In the following, the operators (5.2.6) will be used to check results.

5.2.2 Reduction of n-point functions using intertwining
differential operators

The previous way of determining operators which reduce n-point functions seems to
date too complicated to be generalized to arbitrary representations α. Furthermore,
an explicit formula for the three-point functions is not known for general fields. We
now focus on a possible way of determining them by using the so called intertwining
property in order to find partial differential equations whose solutions are the oper-
ators Eα [13].

We first consider two scalar fields Φ1 and Φ2 of the same scaling dimension d. As
before, we use that their 3-point functions can only be nonzero if they couple to a
symmetric and traceless tensor field. Therefore, we only investigate this case. In the
following, the fields are always thought of as being involved in a correlation function.
The aim is to find local differential operators E ′α projecting Φ1(x1)Φ2(x2) on a field
Φα which transforms under the representation α = (κ, L):

Φα(x) = ιx ◦ E ′αΦ1(x1)Φ2(x1) (5.2.7)

where ιx refers again to evaluation at x1 = x2 = x.

It follows by conformal covariance that E ′α annihilates 3-point functions involving a
field carrying a representation µ 6= α:

ιx ◦ E ′α〈Φµ(y)Φ1(x1)Φ2(x1)〉 = δµα〈Φµ(y)Φα(x)〉.

Applied to the OPE of Φ1Φ2, the operators E ′α precisely isolate the contribution of
the field Φα. Therefore, they reduce the particular n-point partial wave to a (n-1)-
point partial wave in a correlation function.

In order to determine the operators E ′α, we use that they are supposed to satisfy
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5.2 Reduction of arbitrary correlation functions

the intertwining property [8], so that they leave the action of the conformal algebra
invariant:

Definition 5.2.1. (Intertwining property)
Let (E1, α1) and (E2, α2) be representations of an algebra A. We say that a linear
map T : E1 → E2 intertwines α1 and α2 if

∀ a ∈ A α2(a) ◦ T = T ◦ α1(a). (5.2.8)

In this case T is called an intertwining operator for α1 and α2.

Thus, we demand

E ′α〈[A,Φ1Φ2]Φα〉 = 〈[A,Φα]Φα〉

= 〈[A,E ′αΦ1Φ2]Φα〉 (5.2.9)

for any generator A of the conformal algebra. Using the commutation relations with
a covariant field Φ(x) (scalar or tensor) transforming under the representation λ,

i[A,Φ(x)] = aλΦ(x)

gives rise to differential operators ad1 + ad2 and a(κL), respectively. For scalar fields
ad are given by the commutation relations (2.2.5) and for the symmetric traceless
tensor fields (contracted with a polarization vector v) a(κL) are specified by

i[Pµ,Φ(x)] = ∂µΦ(x),

i[D,Φ(x)] = (x · ∂ + (2κ+ L))Φ(x),

i[Mµν ,Φ(x)] = (xµ∂ν − xν∂µ + vµ∂
v
ν − vν∂vµ)Φ(x)

= (x ∧ ∂ + v ∧ ∂v)Φ(x), and

i[Kµ,Φ(x)] = (2xµ(x · ∂)− x2∂ + 2(2κ+ L)xµ + 2vµ(x∂v)− 2(x · v)∂v)Φ(x)

= (2xµ(x · ∂)− x2∂ + 2(2κ+ L)xµ − 2x · (v ∧ ∂v))Φ(x). (5.2.10)

Now equation (5.2.9) reads

ιx ◦ E ′α ◦ (ad1 + ad2)〈Φ1Φ2Φα〉 = a(κL) ◦ ιx ◦ E ′α〈Φ1Φ2Φα〉 (5.2.11)

We start with the ansatz E ′α = Eα(x1+x2, v, ∂1, ∂2)◦(%12)d. A dependence on x1−x2
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5 Reduction of n-point functions

does not need to be taken into account since E ′α is always followed by ιx. v is again
the polarisation vector. Note that by conformal invariance, the pole bounds ensure
a singularity in %12 of at most %−d12 and therefore, the evaluation map is applied to
a regular function if Eα is regular. We tighten the condition and demand equality
also on the operator level:

ιx ◦ Eα ◦ (%12)d ◦ (ad1 + ad2) = a2κ+L ◦ ιx ◦ Eα ◦ (%12)d. (5.2.12)

Commuting the factor (%12)d past the operators (ad1 + ad2) on the left-hand side
systematically removes the d dependencies for every generator of the conformal
algebra. Hence, we are left with the condition

ιx ◦ Eα ◦ (a1 + a2) = a2κ+L ◦ ιx ◦ Eα (5.2.13)

for two scalar fields of the same scaling dimension.

In the following calculations, we often need to commute xi ◦ Eα. Since Eα depends
on ∂i, we can use the identity

Eα ◦ xi = xi ◦ Eα +∇iEα, (5.2.14)

where ∇i denotes the derivative w. r. t. ∂i. We already know that they have to be
homogeneous of degree L and harmonic in v. Evaluating the intertwining conditions
(5.2.13) with the generators

1) A = Pµ,

2) A = D, and

3) A = Mµν

gives information about the general shape of Eα, namely:

1) The generators of translations yield

(∂1 + ∂2)Eα = 0, (5.2.15)

i. e. Eα does not depend on x1 + x2.
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5.2 Reduction of arbitrary correlation functions

2) The generator of dilations gives rise to

(∂1∇1 + ∂2∇2)Eα = (2κ+ L)Eα, (5.2.16)

where ∇i denotes again the derivative w. r. t. ∂i. This means that Eα is
homogeneous in ∂1 and ∂2 of degree 2κ+ L.

3) Finally, the generators of Lorentz transformations lead to

(∂1 ∧∇1 + ∂2 ∧∇2 + v ∧ ∂v)Eα = 0, (5.2.17)

i. e. Eα is a Lorentz scalar depending only on the variables v2, (v∂i) and (∂i∂j),
i, j = 1, 2.

It follows from the homogeneities that Eα can only be a polynomial in the variables
y1 and v if κ is an integer which is ensured by global conformal invariance.

The generators of the special conformal transformations Kµ give detailed informa-
tion about the operators. Evaluation of the intertwining condition (5.2.13) and using
the previous results (5.2.16) and (5.2.17) yields a second order partial differential
equation for Eα:

[2(y1∇1)∇1 − y1∇2
1 + 2(y2∇2)∇2 − y2∇2

2]Eα(v, y1, y2) = 0, (5.2.18)

where yi = ∂i.

In order to solve this differential equation, one can make the ansatz

Eα = (y1y2)κ
[
(vy1 + vy2)L · eα(p, q, r)

]
0
, (5.2.19)

with the new variables

p =
y2

1

y1y2

, q =
y2

2

y1y2

, r =
vy1 − vy2

vy1 + vy2

.

[·]0 denotes again the traceless part w. r. t. v. Note that Eα can only be a polynomial
if eα(p, q, r) is at most of degree L in r and of degree κ in p and q. The ansatz
(5.2.19) has been chosen, because it respects the homogeneities and the new variables
are three linearly independent combinations of the possible scalar combinations of
the original variables. Since we take the traceless part w. r. t. v, we do not have
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5 Reduction of n-point functions

to take into account terms ∝ v2. These terms are uniquely determined by the
ansatz (5.2.19) and the harmonicity in v, cf. Lemma (3.2.1). Combined with the
homogeneity conditions, only three linearly independent combinations exist.

With these variables, the specific operators (5.2.6) can be expressed as

e10 = 1,

e11 = r +
r

2
(p+ q)− p− q

2
,

e12 = 1− 3r2 − 3(p+ q)r2 + 3(p− q)r,

e20 = 1 + p+ q +
pq

2
, and

e0L =
∑
s+t=L

(r + 1)s(r − 1)t
1

s!(s− 1)!t!(t− 1)!
.

With (
∇1p ∇2p

∇1q ∇2q

)
=

1

(y1y2)

(
2y1 − py2 −py1

−qy2 2y2 − qy1

)
(5.2.20)

and
∇ir =

v

vy1 + vy2

(
(−1)i+1 − r

)
(5.2.21)

and ignoring all terms ∝ v2, the substitution of (5.2.19) in eq. (5.2.18) gives rise to
a system of three differential equations:

[
L(L+ 1) + (1− r2)∂2

r + 2κ(L− r∂r) + 2(p∂p − q∂q)∂r
]
eα = 0 (5.2.22)

[4(p∂p − 1)∂p − q(κ− p∂p − q∂q)(κ− 1− ∂p − q∂q) +

2(κ− p∂p − q∂q)(κ− 1− p∂p + q∂q + (r − 1)∂r)] eα = 0, (5.2.23)
[4(q∂q − 1)∂q − p(κ− p∂p − q∂q)(κ− 1− ∂p − q∂q) +

2(κ− p∂p − q∂q)(κ− 1 + p∂p − q∂q + (r + 1)∂r)] eα = 0. (5.2.24)

Eq. (5.2.22) can now be solved in the following way: Since the equation is homo-
geneous in p and q, we can make the ansatz

eα(p, q, r) =
∑

m,n≥0,m+n≤κ

pmqnemn(r), (5.2.25)

where every contribution pmqnemn(r) has to solve eq. (5.2.22) separately. Using the
known homogenities and therefore setting p∂p = m and q∂q = n (Euler operators),
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5.2 Reduction of arbitrary correlation functions

we find that (5.2.22) no longer involves ∂p or ∂q but only the difference δ = m− n.
The substitution z = 1−r

2
finally yields Euler’s hypergeometric differential equation:

[
z(z − 1)∂2

z + (2κz − (κ− δ))∂z − L(2κ+ L− 1)
]
eα;m,n = 0. (5.2.26)

Its solutions are

eα,mn(r) = cα;m,n · fα,δ(r) = cα;m,n · (κ− δ)L · 2F1

(
−L,L+ 2κ− 1, κ− δ; 1− r

2

)
= cα;m,n(−1)Lfα,−δ(−r) (5.2.27)

with coefficients cα;m,n to be determined.

The coefficients cα;m,n are fixed by the other two differential equations (5.2.23) and
(5.2.24). In order to solve for them we use

2F1(α, β, γ + 1, z) =
γ

(γ − α)(γ − β)
[(1− z)∂z − (α + β − γ)] 2F1(α, β, γ, z)

(5.2.28)
and

2F1(α, β, γ − 1, z) =
1

γ − 1
[z∂z + (γ − 1)] 2F1(α, β, γ, z), (5.2.29)

which follows from eq. (15.2.4) and (15.2.6) in [1]. It gives rise to operators

A±α,δ =
(r ∓ 1)∂r + κ− 1∓ δ

L+ κ− 1∓ δ
(5.2.30)

which lower or raise the parameter δ in fα,δ by 1:

A±α,δfα,δ = fα,δ±1. (5.2.31)

Now we can use the operators (5.2.30) and the fact that cα;m,n = 0 for m + n > κ.
The two equations (5.2.23) and (5.2.24) then give rise to recursive systems for the
coefficients:

4(m2 − 1)cα;m+1,n + 2(κ−m− n)(L+ κ− 1− δ)cα;m,n

−(κ−m− n)(κ−m− n+ 1)cα;m,n−1 = 0, (5.2.32)
4(n2 − 1)cα;m,n+1 + 2(κ−m− n)(L+ κ− 1 + δ)cα;m,n

−(κ−m− n)(κ−m− n+ 1)cα;m−1,n = 0. (5.2.33)
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5 Reduction of n-point functions

The following proposition summarizes our results.

Proposition 5.2.2. The intertwining operators in eq. (5.2.13) which reduce a n-
point function of two scalar fields of equal scaling dimension coupling to a symmetric
traceless tensor field to a (n-1)-point function involving two tensor fields belonging
to the same representation are given by

E ′α = (y1y2)κ

[
(vy1 + vy2)L

∑
m,n≥0,m+n≤κ

cα;m,np
mqn(κ− δ)L · 2F1(α, β, γ; z)

]
0

◦%d12,

(5.2.34)
where α = −L, β = L+ 2κ− 1, γ = κ− δ, z = 1−r

2
and the coefficients cα;m,n solve

the recurrences (5.2.32) and (5.2.33).

In general, by applying the equations (15.2.2) and (15.4.4) from [1], we find that
fα,0 are derivatives of Legendre polynomials Pm. We use

2F1(α + n, β + n, γ + n, z) =
(γ)n

(α)n(β)n
∂nz 2F1(α, β, γ, z) (5.2.35)

with n = κ− 1 and
2F1(−m,m+ 1, 1, z) = Pm(1− 2z) (5.2.36)

with m = L+ κ− 1. They result to

fα,0 =
2κ−1L!

(L+ κ)κ−1

∂κ−1
r PL+κ−1(r). (5.2.37)

Application of the operators (5.2.30) now permits to express all functions fα,δ by
derivatives of Legendre polynomials. In the interesting case κ = 1 (twist-2), we find
the expression:

e1L =
(

1 +
p

2
(r − 1)∂r +

q

2
(1 + r)∂r

)
PL(r). (5.2.38)

So far, we have not investigated the recurrences (5.2.32) and (5.2.33) intensively and
systematically. We have some first results in the case L = 0 and for small values of
κ. It turns out that at least for κ ≤ 5, most solution spaces are one-dimensional. In
detail, we found (recall that m+ n ≤ κ has to be satisfied)

• κ = 1: c00 is nonzero and can be chosen arbitrarily (corresponding to the
choice of a normalization).

• κ = 2: Only c00, c10, c01 and c11 are nonzero and fixing one of them already
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5.2 Reduction of arbitrary correlation functions

determines the other coefficients.

• κ = 3: There are two independent solutions: c21 = 2c20 and c12 = 2c02,
otherwise we find cm,n = 0.

• κ = 4: Only c22 is nonzero and can be chosen arbitrarily.

• κ = 5: c23 = c32 = −2
3
c22, otherwise cm,n = 0.

Starting from these results, we can show (also for general L 6= 0) that in case κ ≥ 4

the coefficients cm,n are zero for m < 2 or n < 2. Due to the factor (n2 − 1) or
(m2 − 1), the coefficients cm,2 and c2,n decouple from the equations for n = 1 and
m = 1. Hence, the equations for cm,n are overdetermined for n < 2 or m < 2 and
therefore, cm,n = 0 in these cases. Using again the recurrences we find that form ≤ 2

and n > 2 (or n ≤ 2 and m > 2), all cm,n are expressible by the former coefficients
and therefore, cm,n = 0 also in these cases. Hence, cm,n are zero for m < 2 or n < 2.

We have found closed formulas for c2,n0 and cm0,2 (with n0 ≤ κ− 2 or m0 ≤ κ− 2,
resp.):

c2,n0 =

(
−1

2

)n0−2

· (κ− 4)!(L+ κ− 1)!

(κ− n0 − 2)!(L+ κ− n0 + 1)!
·
n0−2∏
a=1

(
(n0 − a)2 − 1

)−1 · c22

cm0,2 =

(
−1

2

)m0−2

· (κ− 4)!(L+ κ− 1)!

(κ−m0 − 2)!(L+ κ−m0 + 1)!
·
m0−2∏
a=1

(
(m0 − a)2 − 1

)−1 · c22.

Here, we could use that c1,n = cm,1 = 0 for all m, n and therefore the recurrences
involved only two coefficients instead of three.

5.2.3 Generalizations

The previous calculations are for two scalar fields of equal scaling dimension coupling
to a symmetric and traceless tensor field. Next we generalize the considerations: The
two fields will still be coupled to a symmetric and traceless tensor in all upcoming
considerations, even though it is not neccessarily true that three-point functions
involving the two fields are only non-zero if they couple to a symmetric traceless
tensor. First we allow different scaling dimensions d1 and d2 for the scalar fields Φ1

and Φ2. This situation needs an ansatz

E ′α = Eα(v, ∂1, ∂2) ◦ (%12)
d1+d2

2 , (5.2.39)
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5 Reduction of n-point functions

where we have already used that the first condition (A = Pµ) will exclude any
dependence on x1 − x2. In a GCI theory, d1 + d2 has to be an even number be-
cause otherwise, the three-point function 〈Φ1Φ2Tκ,L〉 would not be rational. Again,
we know that the differential operators have to be homogeneous of degree L and
harmonic in v. Proceeding as before, we can commute the factor (%12)

d1+d2
2 past

ad11 + ad22 . For A 6= Kµ it cancels again the dependences of adii on the scaling dimen-
sions. The intertwining property tells us again that the operators are Lorentz scalars
and homogeneous of degree 2κ + L in ∂i. In the case A = Kµ, the dependences on
the scaling dimensions do not cancel entirely but yield an additional term in the
differential equation which determines our operators:

[
2(y1∇1)∇1 − y1∇2

1 + 2(y2∇2)∇2 − y2∇2
2 + (d1 − d2)(∇1 −∇2)

]
Eα = 0. (5.2.40)

Next we can relax the assumption that Φ1 and Φ2 need to be scalar fields. They
are now demanded to be symmetric traceless tensor fields transforming in the same
representation β = (κ′, L′) coupling to a symmetric traceless tensor field (α =

(κ, L)):
E ′α〈Φ

β
1 Φβ

2 Φα〉.

Here, we make the ansatz

E ′α = Eα(v, y1, y2, ∂
v1 , ∂v2) ◦ (%12)2κ′+2L′ (5.2.41)

with v1 and v2 being two additional polarization vectors. In order to ensure regu-
larity, the exponent of the factor %12 has been chosen in such a way that it equals
the pole bound. The operators have to be homogeneous of degree L and harmonic
in v and ∂vi . Using ∂viEα = 0, we find again from the intertwining property that
Eα is a Lorentz scalar. Note that in this case, the Lorentz condition has changed to

(∂1 ∧∇1 + ∂2 ∧∇2 + v ∧ ∂v + ∂v1 ∧∇v1 + ∂v2 ∧∇v2)Eα = 0, (5.2.42)

where ∇vi is the derivative w. r. t. ∂vi . Here, the differential operators are homoge-
neous in ∂i of degree 2L′ + 2κ+ L:

(∂1∇1 + ∂2∇2)Eα = (2L′ + 2κ+ L)Eα. (5.2.43)

38



5.2 Reduction of arbitrary correlation functions

Evaluating the interwining condition for A = Kµ and applying eq. (5.2.43) and
(5.2.42) yields the differential equation which determines the differential operators:

[
2(y1∇1)∇1 − y1∇2

1 + 2∇1(∂v1 ∧∇v1) + 2(y2∇2)∇2 − y2∇2
2

+2∇2(∂v2 ∧∇v2)− 2L′(∇1 +∇2)]Eα = 0, (5.2.44)

Combining the two previous cases, we now consider symmetric traceless tensors
transforming in different representations α1 = (κ1, L1), α2 = (κ2, L2) and start with
the ansatz

E ′α = Eα(v, y1, y2, ∂
v1 , ∂v2) ◦ (%12)n.

The exponent n needs to be chosen in such a way that it ensures regularity. The
operators Eα with α = (κ, L) are again homogeneous of degree L and harmonic
in v and ∂vi . Furthermore, they are Lorentz scalars and homogeneous of degree
2κ+L+ 2n− d1− d2 in ∂i, where di = 2κi +Li. Moreover, they have to satisfy the
equation

[
2(y1∇1)∇1 − y1∇2

1 + 2∇1(∂v1 ∧∇v1) + 2(y2∇2)∇2 − y2∇2
2

+2∇2(∂v2 ∧∇v2) + 2d1∇1 + 2d2∇2 − 2n(∇1 +∇2)]Eα = 0. (5.2.45)

Since this kind of partial differential equations are too complicated to be treated
within the preparation of this master’s thesis, we have so far been concentrating on
the case of two scalar fields of equal scaling dimension coupling to one symmetric
traceless tensor field in further considerations. Additionally, in the case of non-
symmetric tensor fields, one would have to introduce more polarization vectors,
leading to an even more complicated structure.
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5 Reduction of n-point functions
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6 Conservation laws and applications

In the following, we would like to further investigate the twist 2κ = 2 contribution to
the OPE in a correlation function. We consider again a correlation function involving
two scalar fields of equal scaling dimension coupling to a symmetric traceless tensor
and use the operators found in the previous chapter in order to project on the
twist-2 contribution. As we said in chapter 3.3, the twist-2 part of a correlation
function has to be conserved. In this chapter, we start analyzing the resulting
higher conservation laws. In particular, we discuss the strategy in Section 6.1 and
perform the calculations for the cases L = 1 and L > 1 individually in Section 6.2.
Last, we start applying our recent results in Section 6.3.

6.1 Strategy

Using the operators (5.2.38)

E1L ∝ (y1y2)(vy1 + vy2)L
(

1 +
p

2
(r − 1)∂r +

q

2
(1 + r)∂r

)
PL(r)

found in the previous chapter, we can project a correlation function on the part
which arises from the twist-2 contribution of the operator product expansion. Since
this part is conserved in a positive theory, we can formulate conservation laws:

(∂x∂v) ◦ ιx ◦ E1L ◦ (%12)U = ιx ◦ (∂1 + ∂2) · ∂v ◦ E1L ◦ (%12)U = 0. (6.1.1)

These conservation laws can be regarded as positivity test.

We would like to apply the operators in (6.1.1) to regular correlation functions U
without vacuum contribution, cf. expression (3.2.1). We therefore define DL =

E1L ◦ (%12). With the identity (5.2.14), we can commute the factor %12 past the
operator E1L and make use of the application of the map ιx afterwards. Terms

41



6 Conservation laws and applications

involving a factor x1 or x2 systematically cancel and we are left with the expression

DL = (∇1 −∇2)2E1L. (6.1.2)

Our conservation laws can now be written as

[ιx ◦ (∂1 + ∂2)∂vDL]0 U = 0 (6.1.3)

and we define

GL := (y1 + y2) · ∂v(∇1 −∇2)2E1L

= [ι ◦ (∂1 + ∂2)∂vDL]0 . (6.1.4)

In order to take only the traceless part in the end, we have to consider terms D̂L

of DL of order (v2)0 and also (v2)1, since we calculate the divergence ∂vDL. Making
the ansatz D̂L = D′L + v2Q(v) with Q linear in v and calculating the trace, we find

0 = ∂v∂
v(D′L + v2Q)

= ∂v∂
vD′L − 4v∂vQ− 8Q

= ∂v∂
vD′L − 4LQ

=⇒ Q =
1

4L
∂v∂

vD′L,

where we used that Q is homogeneous in v of degree L− 2 and that v∂v is the Euler
operator. In total, we find

GL =

[
(y1 + y2)∂v

(
D − 1

4L
v2∂v∂

vD

)]
0

=

[(
(y1 + y2)∂v −

1

2L
(vy1 + vy2)∂v∂

v

)
D

]
0

. (6.1.5)

6.2 Calculations

In the case L = 1, the conservation law (6.1.3) is trivially fulfilled, because already
[ιx ◦ (∂1 + ∂2)∂vD1]0 = 0. Instead, we can set

G1 = y2
1 − y2

2, (6.2.1)
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6.2 Calculations

because it results from the correct projection operator D1 = v · (∂1 − ∂2) on the
conserved vector current by taking the divergence of D1.

Below, we will often use the Legendre differential equation in order to avoid higher
derivatives than ∂2

r :

(1− r2)∂2
rPL(r)− 2r∂rPL(r) + L(L+ 1)PL(r) = 0.

First, we calculate the operators D′L which are the parts of DL of order (v2)0. We
find:

D′L = 4(L2 − L− 2)(vy1 + vy2)LPL(r). (6.2.2)

In order to compare them with the operators (5.1.2), we use the representation

PL(r) =
L∑
k=0

(−1)k
(
L

k

)2(
1 + r

2

)L−k (
1− r

2

)k
(6.2.3)

of Legendre polynomials, which follows from Bonnet’s recursion formula [1]

(n+ 1)Pn+1(z) = (2n+ 1)zPn(z)− nPn−1(z).

Writing

1 + r

2
=

vy1

vy1 + vy2

,
1− r

2
=

vy2

vy1 + vy2

,

(
L

L−m

)
=

(
L

m

)
(6.2.4)

and m = L− k yields

D′L ∝
L∑

m=0

(−1)L−m
(
L

m

)2

(vy1)m(vy2)L−m. (6.2.5)

Up to proportionality factors, these operators are equal to the (v2)0-part of the re-
duction operators we had found before, where c = 0 in (5.1.2).

Continuing with the calculation of the operators (6.2.6), we find the following propo-
sition.
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6 Conservation laws and applications

Proposition 6.2.1. In a unitary GCI theory, the operators ιx ◦GL with

GL =
2(L− 1)(L+ 2)

L

[
(vy+)L−1

(
2y+y−∂rPL + (2ry+y− − y2

− − y2
+)∂2

rPL
)]

0
,

(6.2.6)
where y± = y1 ± y2, annihilate all (regular) correlation functions.

Note the prefactor (L−1) in equation (6.2.6), which confirms that the case L = 1 is
specific and cannot be treated in the way presented above. Moreover, the operators
involve only terms proportional to Laplacians and therefore, they automatically
annihilate all twist-2 contributions.

By construction, the ι ◦ GL annihilate all functions containing a factor %12, which
corresponds to κ > 1. The new information of these conservation laws is that ι ◦GL

also annihilates all leading twist 2κ = 2 parts in the OPE.

Nikolov, Rehren and Todorov have studied previously [15] the case that a function U
admits a biharmonic completion and found a third order partial differential equation
as condition. The structure of this PDE is different from the structure of GL. It
would be interesting to study to what extent these different conditions are equivalent.

6.3 Applications

In order to start applying our recent results, we reduce the six-point structure (3.3.1)
to the four-point structure corresponding to the (2κ, L) = (2, 1)-contribution both
in the OPE of Φ1Φ2 and of Φ5Φ6. The six-point structure F0 is given by

F0 =
(%15%26%34 − 2%15%23%46 − 2%15%24%36)[1,2][5,6]

%d−1
12 · %14%23%13%24%35%36%45%46 · %d−1

56

. (6.3.1)

Recall that it is the leading part of a biharmonic function satisfying all properties
of a Wightman distribution except possibly positivity.

We use the operators introduced in Section 6.2. In this special case, they read

D12
1 = (∇1 −∇2)2E11

= v · (∂1 − ∂2) (6.3.2)

and
D56

1 = w · (∂6 − ∂5). (6.3.3)
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6.3 Applications

In order to apply D12
1 , the following reorganisation of the terms of F0 is useful:

F0 =
2

%d−1
12 · %14%23%13%24%35%36%45%46 · %d−1

56

(
(%15%26%34)[1,2] − (%15%23%46)[1,2]

−(%15%24%36)[1,2] − (%26%13%45)[1,2] − (%26%14%35)[1,2]

)
. (6.3.4)

Applying the operator ιx0D
12
1 to one of the terms in the numerator yields

ιx0v · (∂1 − ∂2) (%1k%2j)[1,2] = 4(v · x0k%0j)[k,j]. (6.3.5)

Moreover, the anti-symmetry in x1, x2 of the numerator of F0 implies that any term
multiplied by the numerator itself equals zero after application of ιx0 . Using (6.3.5)
and reorganizing the terms, ιx0D

12
1 reduces the six-point structure to

ιx0D
12
1 %

d−1
12 %d−1

56 F0 =
8

%2
03%

2
04%35%36%45%46

(
−v · x03(%45%06)[5,6] − v · x04(%35%06)[5,6]

+%34(v · x05%06)[5,6] − %03(v · x05%46)[5,6] − %04(v · x05%36)[5,6]

)
.

(6.3.6)

Next, ιx7D
56
1 is applied. We find

ιx7w · (∂6 − ∂5)(v · xk5%j6)[5,6] = 2v · w%j7 − 4v · xk7w · xj7 (6.3.7)
ιx7w · (∂6 − ∂5)(%k5%j6)[5,6] = 4(xk7%j7)[j,k]. (6.3.8)

Combining the results, we obtain the following four-point structure:

ιx7D
56
1 ιx0D

12
1 %

d−1
12 %d−1

56 F0 =
16

%2
04%

2
03%

2
37%

2
47

· (v · w(%34%07 − %03%47 − %04%37)

−2v · x03(w · x47%07)[0,4] − 2v · x04(w · x37%07)[0,3]

+2v · x07(%03w · x47 + %04w · x37)− %34w · x07) . (6.3.9)

The result corresponds to a contribution to a correlation function of the form
〈J0Φ3Φ4J7〉, where J0 and J7 are vector currents.
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6 Conservation laws and applications

For comparison, another six-point structure is presented in [13]:

B(x1, . . . , x6) =
1

%d−1
12

·
(

1

%14%23

)
[1,2]

· 1

%34

·
(

1

%36%45

)
[5,6]

· 1

%d−1
56

=
1

%d−1
12

·
(

1

%14%23

− 1

%24%13

)
· 1

%34

·
(

1

%36%45

− 1

%46%35

)
· 1

%d−1
56

.

(6.3.10)

This structure exhibits the same symmetries as F0, but it does not have any double
poles (i. e. it arises in a free theory) and is separately biharmonic both in x1, x2 and
x5, x6. It contributes to the six-point function of cubic Wick products of a massless
complex scalar field.

Application of ιx0D
12
1 and ιx7D

56
1 yields

ιx7D
56
1 ιx0D

12
1 %

d−1
12 %d−1

56 B(x1, . . . , x6) =
−16

%34

·
(v · x03%04)[3,4]

%2
03%

2
04

·
(v · x47%37)[3,4]

%2
37%

2
47

. (6.3.11)

These calculations represent only the very beginning of using the methods presented
to study positivity of the structure F0. We would need to apply all operators Eα, and
find operators which further reduce the resulting four-point structures of the form
〈J0Φ3Φ4J7〉. In Section 5.2.3, we have started the determination of these operators.
The latter completes the analysis by reducing the structure to the final form of a
two-point function.
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7 Concluding remarks

We have shown that postulation of global conformal invariance in a Wightman the-
ory permits far reaching investigations of structural aspects in axiomatic quantum
field theories. Here, we have restricted our analysis to four spacetime dimensions.

In a theory satisfying GCI, the field content as well as the Wightman distributions
are very constrained. In particular, we can make use of the fact that the twist-2
part of the OPE of two fields in a correlation function is conserved. Using other
constraints imposed by GCI on the correlation functions, it is possible to formulate
a condition for the leading part of the twist-2 contribution to be nontrivial, i. e. that
it cannot arise from a combination of canonical free fields. These candidates have
to be tested if they are positive and thereby would yield a physical theory.

A useful tool in order to investigate a conformal quantum field theory is the partial
wave expansion. The PWE expresses a correlation function in terms of eigenfunc-
tions of the Casimir operators. At the same time, the eigenspaces of the Casimir
operators are irreducible representation spaces. The eigenfunctions or partial waves
are universal for any conformal QFT and therefore, the physical properties of a par-
ticular theory is encoded in the coefficients. In principle, the PWE is determined in
any QFT exhibiting a conformal symmetry, but the actual computation of it is very
complicated. In the special case of four-point functions of scalar fields, the PWE is
well studied and the partial waves as well as the coefficiants are explicitly known.
The complexity of the problem for higher correlation functions has prevented us to
date from performing an explicit PWE in a more general case.

Instead of trying a direct computation of the PWE, we have pursued a different
strategy. Using orthogonality relation between partial waves, it is possible to reduce
n-point functions. In the case of the twist-2 contribution to a correlation function
of scalar fields, a closed formula for local differential operators which reduce the
contribution to a n-point function to (n-1)-point functions is found. Here, we could
use the special properties of the image of the operators in order to determine them.
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7 Concluding remarks

For arbitrary twist contributions, we can use the intertwining property of the dif-
ferential operators, i. e. they should commute with the group action. Applying
commutation relations for the fields with the generators of the conformal group, it
is possible to fix the structure of the operators and find differential equations which
they have to fulfil. In the case of correlation functions involving only scalar fields of
the same scaling dimension, we could solve the differential equation. In principle,
the solution is a sum of polynomial hypergeometric functions with coefficients which
are determined by recursive equations. To date, we have not found a closed formula
for these coefficients.

Starting to relax some conditions, we have studied the intertwining condition in
more general cases. Assuming different scaling dimensions and/or correlation func-
tions involving tensor fields, we have determined the general shape of the differential
operators and also the determining differential equations. Solving the equations is
still an open problem.

Last, the conserved twist-2 contribution was again in the focus. We have stud-
ied implications of the conservation laws by using the differential operators which
reduce n-point functions. By construction, the operators projecting on a twist-2
contribution annihilate all other twist contributions. Using the operators projecting
a n-point function of scalar fields of the same scaling dimension on the twist-2 part,
we have calculated the operators which annihilate all contributions to a correlation
functions, provided the theory satisfies positivity. Investigating the structure of
these conservation laws and a comparision with previous results [15] are still open
tasks.

One major reason for the analyses in this thesis was the question, whether the
6-point structure (3.3.1) satisfies Hilbert space positivity. It would therefore be in-
teresting to see if our recent results give already new information when applied to
this structure which might be part of a nontrivial theory.
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