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Abstract
In supergravity models with superlight gravitinos G̃ the gravitino couplings to
matter are amplified by the tiny mass of this particle. Such models provide
additional supernova cooling mechanisms via light gravitino emission. These states
would appear to the observer as missing energy since gravitinos cannot be detected.
The detection of supernova neutrinos from SN1987A however provides us with a
clear bound on any extra cooling mechanism of supernova cores. Any suggested
new physics like supergravity has to respect these bounds and we derive the lower
bounds on the gravitino mass obtained from this requirement.
We investigate the two gravitino pair production processes γγ −→ G̃G̃ and νν −→
G̃G̃ and derive corresponding bounds that strongly depend on the masses of the
goldstino’s scalar partners. We also discuss phenomenological implications of
bilinear R-parity violations and show that the corresponding additional production
of single gravitinos from the processes γγ −→ G̃ν and νν −→ G̃ν is too low to
have any observable effect.

Keywords: Supergravity, Astroparticle Physics, Gravitino Phenomenology,
Supernovae
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Zusammenfassung
Die Masse des Gravitinos G̃ kann in einigen Modellen der Supergravitation sehr
gering sein. Die Materiekopplungen eines leichten Gravitinos werden durch den
kleinen Wert der Masse m3/2 verstärkt. Im Kern einer Supernova wären so die Ener-
gien hoch genug, Gravitinos zu produzieren, zu emittieren und den Supernovakern
zusätzlich abzukühlen. Durch die Detektion der Neutrinos der Supernova SN1987A
wurde jedoch verifiziert, dass der größte Energieanteil durch Neutrinos abgestrahlt
wird, neue relevante Supernova-Kühlungsmechanismen sind somit ausgeschlossen
und neue Physik darf solche nicht vorhersagen.
Wir untersuchen die Produktion von leichten Gravitino-Paaren durch die Prozesse
γγ −→ G̃G̃ und νν −→ G̃G̃ und finden untere Grenzen für m3/2, da leichtere
Gravitinos zu stark zu der Energieemission beitragen würden. Diese Grenzwerte
hängen jedoch stark von der Annahme ab, wie massiv die Superpartner des Golds-
tinos in dem gewählten Modell sind. Des weiteren diskutieren wir, inwiefern die
Hinzunahme von bilinearen R-Paritätsverletzungen unsere Ergebnisse beeinflussen.
Die neuen Produktionskanäle einzelner Gravitinos γγ −→ G̃ν und νν −→ G̃ν
erweisen sich jedoch als zu schwach, um bei der Kühlung einer Supernova eine
relevante Rolle zu spielen.

Stichwörter: Supergravitation, Astroteilchen-Physik, Gravitino Phänomenolo-
gie, Supernovae
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1
Preface

Almost four decades passed by since the Standard Model of Particle Physics has
been formulated. It summarizes today’s best understanding of the elementary
particles of nature and their fundamental interactions. For these forty years the
Standard Model has been scrutinized like hardly any other theory. Countless
high-energy experiments have been conducted in hopes that new phenomena would
be observed; Phenomena that could not be explained by the Standard Model and
whose discovery would lead to scientific progress extending our fundamental un-
derstanding of Nature. Over the years the experimental efforts became bigger and
bigger and the discoveries confirmed exactly what the Standard Model predicted.
This year the Nobel prize in physics was awarded to the British physicist Peter
Higgs and the Belgian physicist François Englert for their theoretical discovery of
the Higgs-mechanism. The reason for this was the discovery of a very Higgs-like
boson at CERN a year before. It seems that the Standard Model as a whole has
been comfirmed as the correct description of high-energy physics at accessible
energies. The Large Hadron Collider at CERN will presumably return to operation
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1. Preface

in 2015 and the hopes to find new physics are still high, but one might ask how to
proceed if the LHC fails to detect any physics beyond the Standard Model.
Nevertheless, it is undisputed that the Standard Model is not able to serve as a final
fundamental theory but as an effective description of high-energy physics. We will
depict its problems in more detail in sec. 2.1. There is a vast number of proposals
on how to extend the theory and it is the purpose of particle physics phenomenology
to find ways to examine and check the new ideas using empirical observations.
Particle colliders are only one experimental setting with high enough energies,
another way is to exploit the natural high-energy phenomena in astrophysics, even
if these energies are lower than in today’s colliders.
In this thesis we make use of the observation of the famous Supernova SN1987A.
As we will see, the detection of Supernova neutrinos enables us to test any new
physics that would lead to novel mechanisms of energy loss in such an event. One
of such mechanisms could be provided by Supersymmetry.
Supersymmetry is a special extension of the Standard Model’s symmetry group
that gained a lot of attention during the last decades. In the course of this thesis we
depict what Supersymmetry is and show its ability to solve several of the Standard
Model’s most severe problems. Yet, it also predicts many new phenomena, e.g.
every particle from the Standard Model would obtain a partner particle, called the
superpartner or ‘sparticle’. None of these new particles has been observed so far.
By promoting Supersymmetry to a local symmetry gravity is included into this
framework very naturally. In Supergravity, the superpartner of the graviton is
called the gravitino or G̃. Different realizations of supergravity, i.e. different ways
of SUSY breaking, can give rise to both heavy and very light gravitinos. The
latter case is of special interest for us, because a small gravitino mass could lead to
additional contributions of Supernova cooling beside neutrino emission. Since these
new mechanisms are strictly bound by the SN1987A observation we can derive
certain bounds on the gravitino mass. This is the main goal of this thesis.

We organize the way of proceeding as follows. In ch. 2 we start by discussing
the context of this thesis. We give some more details on the Standard Model and
the hierarchy problem and devote one section to Supernovae and the energy-loss
argument. Subsequently we introduce the idea of Supersymmetry and Supergravity
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in ch. 3. We cover topics like Supersymmetry breaking, the Super-Higgs effect,
R-Parity and present the full general Supergravity Lagrangian. Afterwards we
focus on the gravitino and depict its phenomenology in ch. 4, which is completed
by the Feynman rules which we obtain from the Lagrangian in ch. 3.
Our main analysis is divided into two parts. In ch. 5 we review some investigations
by Grifols, Mohaparta and Riotto [1] in great detail and generalize them. In ch.
6 we examine how these results are altered in the case of broken R-parity. We
summarize and discuss our results in the last chapter.
Since we want to present our analysis as comprehensibly as possible, we provide
several appendices containing many helpful treatments. We establish the conven-
tions, notations and physical constants used throughout this thesis in app. A. We
devote an extra appendix (app. B) to spinor notations and conventions and also
treat spinors in curved spacetime. This is necessary for app. C where we derive
Feynman rules for gravitons from linearized gravity. The appendices D, E and F
contain several other relevant relations we need and tools we use.
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2
Fundamentals – From Particles to

Stellar Explosions

This thesis can be placed into the broad spectrum of astroparticle physics. We start
by discussing the particle related background as well as the astrophysical context.

Supersymmetry (and Supergravity) is a well-motivated extension of the Standard
Model. As an introduction we treat the general properties and problems of the
SM. Here we focus on the hierarchy problem that serves as a nice transition and
motivation to the topic of Supersymmetry.

In sec. 2.2 we treat the astrophysical setting of this thesis and discuss the mechanism
of supernovae. We are most interested in the energy-loss-argument which is the
basis for our subsequent investigations.
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2. Fundamentals – From Particles to Stellar Explosions

2.1. The Standard Model of Particle Physics – Its
Successes and Deficits

The Standard Model of Particle Physics (SM)1 is an extremely successful description
of fundamental particles and their interactions. Despite gigantic efforts by thou-
sands of physicists it was not possible to observe significant anomalies from the SM
predictions. The most recent success of the SM is the confirmation of the predicted
existence of the (or rather a) Higgs boson on 4 July 2012 [5] at the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN) in
Geneva. Assuming that the observed boson is indeed the SM-Higgs one finds a
remarkable agreement between experiment and theory [6]. However we will see
that the SM is in a somewhat awkward situation from the theoretical as well as
from the empirical point of view, despite its large achievements.
The SM is a Poincaré invariant quantum field theory with additional internal
symmetries. The corresponding symmetry groups as well as the field content and
the values of the 19 free parameters of the theory are dictated by observations.
Having non-abelian gauge groups the SM is formulated as a Yang-Mills-Shaw theory
introduced in 1954 by Chen-Ning Yang and Robert L. Mills and independently by
Ronald Shaw in 1955 [7]. The structure of the SM interactions are determined by
the gauge group SU(3)C × SU(2)L × U(1)Y . It is regarded as one of the most suc-
cessful theories in science. Yet, the SM faces some serious problems or challenges if
you will. We want to mention three of these challenges, two of which are concerned
with the SM’s incompleteness and one that concerns its internal consistency.
The SM cannot be the fundamental and complete description of nature since it
does not incorporate all of either nature’s interactions or nature’s particles. The
issue of gravity is not addressed in the SM, it just does not appear. A consistent
formulation of a quantum theory of gravity and its relation to particle physics
remains one of the most important open questions in physics today.
The second problem of incompleteness is the lack of Dark Matter (DM) in the
SM. On the scale of galaxies, galaxy clusters and cosmology, we find convincing

1For a pedagogical introduction we refer e.g. to the textbook of Halzen and Martin [2] or the
review by Novaes [3]. For more details of the historical development of the SM we mention [4]
as an example.
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2.1. The Standard Model of Particle Physics – Its Successes and Deficits

evidence for the existence of huge quantities of invisible and massive matter [8].
Models in which the DM particle is a Weakly Interacting Massive Particle (WIMP)
are favored from cosmological arguments, yet none of the particles in the SM have
the right properties in order to act as DM. The last challenge is one regarding the
internal consistency of the SM . It is called the ’hierarchy problem’ [9] and it will
serve us as a bridge to the topic of this thesis2.
Not least because of the shortcomings of the SM mentioned above, today’s interpre-
tation of the SM is that of an effective field theory. The theory is not interpreted
as a fundamental theory but as a description of physics up to a physical cutoff
energy ΛUV. Above this scale new, unknown physical structures become relevant,
e.g. quantum gravity effects may no longer be ignored at the Planck scale.
Considering this new physics it is puzzling that the Higgs mass is as small as it
is. A fundamental scalar field as the Higgs field is highly sensitive to the heaviest
fields in a theory and any physics beyond the SM. The bare mass would receive
radiative corrections,

mH = mH,bare + ∆mH = O(100GeV) . (2.1)

If the Higgs couples e.g. to some heavy fermion f via the term λfHff you obtain
a mass correction from the diagram in figure 2.1.

H

f

H

f

Figure 2.1.: Fermion Loop

This diagram gives corrections to the Higgs mass
of the form

∆m2
H = −|λf |

2

8π2 Λ2
UV + ... . (2.2)

Since we are sure of the existence of physics
beyond the SM (at least gravity), we expect ΛUV

to be a large energy scale like the GUT or Planck scale, yielding large correction
terms like (2.2). Therefore a cancellation between two huge terms must occur in
(2.1) in order to get a small value of mH ≈ 125 GeV.
In anticipation of the next chapters we mention that this problem could be solved

2Here we follow mainly the introduction of [10]
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2. Fundamentals – From Particles to Stellar Explosions

by the introduction of a new symmetry connecting bosons and fermions. If we
assume that for each fermion in the theory we also have a bosonic field, we obtain
additional corrections to the Higgs mass, e.g. given by the diagram in figure 2.2,

∆m2
H = λs

16π2 Λ2
UV + ... . (2.3)

H H

s

Figure 2.2.: Scalar Loop

The different sign between (2.2) and (2.3)
enables us to understand the cancellation of
radiative corrections without the need of fine-
tuning [11]. In chapter 3.1 we will elaborate on
this kind of symmetry.
We observe that recent developments at the LHC
have left the SM in an inconvenient position. On

the one hand we have this extremely powerful and predictive theory, on the other
hand, for the reason mentioned above, it cries out for extensions and particle
physicists around the world hoped for the LHC to not only find the Higgs boson
but also evidence of new physics at the TeV scale. However the first run of the
LHC, that ended on 14 February 2013, seems to confirm the SM and fails to detect
signals from physics Beyond the Standard Model (BSM) [12]. The situation will
worsen if the second run of the LHC at a center-of-mass energy of 13 TeV, beginning
presumably in early 20153, does not show anything new as well.
This would leave us with the serious question of how to proceed in high energy
physics. Of course we have to wait for the results, but in either case it is important
to look for alternative methods to test high-energy physics beyond accelerators.
Having a vast number of proposed extensions and hypotheses and limited amounts
of data finding new phenomenological methods has to be the order of the day. As
mentioned in the preface one promising area of research is astroparticle physics.
The relatively young combination of particle physics, astrophysics and cosmology
faces some of the most fundamental open questions in modern physics and reveals
many new possibilities to tackle these problems. This thesis gives one of these
attempts.

3http://press.web.cern.ch/press-releases/2012/12/
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2.2. Supernovae and the Energy Loss Argument

2.2. Supernovae and the Energy Loss Argument

Fe Si  O Ne C  He H

A core collapse of stars with masses larger than a
few solar masses can trigger a giant stellar explosion
called a Supernova (SN) [13]. Its dynamics can be
explained by a ’bounce-and-shock’ model [14]:
The evolution of a star ends as soon as its nuclear
fuel is exhausted. Then the central iron core is
surrounded by various layers of different fusion pro-
cesses, e.g. hydrogen fusion in the most outer layer
as illustrated in the figure.
The iron core can no longer release energy via fu-
sion and remains stable as long as the electron degeneracy pressure balances the
gravitational pressure. But once the core mass exceeds the Chandrasekhar limit
of M ≈ 1.44M� it becomes unstable and starts to collapse. This contraction
enhances itself by leading to electron-capture (p+ e− → νe + n) and lowering the
electron pressure. In a split second the core collapses to a small (RSN ≈ 10km)
and hot (TSN ≈ 50MeV) object of supranuclear density (ρSN ≈ 3 × 1014g cm−3).
Then the contraction slows down and the gravitational binding energy of

Eb ∼
3
5
GNM

RSN

= 1.6× 1053
(
M

M�

)(
RSN

10km

)−1
erg (2.4)

gets released. While the contraction of the core stops more material continues to
fall towards the core’s center with suprasonic velocity. This leads to the emergence
of a shock wave at the core edge. This shock wave moves outwards and gains more
and more energy. Finally it ejects the material of the stellar mantle. This explosion
is called a supernova. All that remains is an explosion nebula and a neutron star
(R ≈ 10 km, M ≈M�). The exact mechanism for the transformation of the core
implosion to the explosion of the mantle is not fully understood. It is believed to
be connected to the mantle’s interactions with the SN-neutrinos.
Despite the fact that single Supernovae can be bright as whole galaxies the mantle
material and the electromagnetic radiation make up only ∼ 1% of the released
energy. Neutrinos carry away the energy bulk.
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2. Fundamentals – From Particles to Stellar Explosions

Supernova Neutrinos We will now focus on the neutrino sector of a SN [15]. As
the core collapses, only electron neutrinos are produced via electron capture of
nuclei,

e− +N → νe +N ′ .

These neutrinos escape directly, but are not relevant for the overall neutrino
luminosity. During the collapse the core density increases and the neutrino’s mean-
free-path decreases through scattering Nνe → Nνe. At temperatures higher than
10 MeV and densities over 1012g cm−3 the cross-section of neutrino scatterings on
heavy nuclei increases [16] such that the neutrinos are trapped. The cross-section
of neutrino scatterings is proportional to E2

ν , only low-energy neutrinos are able to
escape the core now. The other neutrinos form the so called ‘neutrino sphere’ with
a radius of

RC ≈ 1.0× 106cm
(

Eν
10 MeV

)
.

Apart from the early universe this is the only instance where neutrinos are in
thermal equilibrium. After the collapse stops and the shock wave emerges all kind
of neutrinos can be produced, because thermal processes lead to the presence of
relativistic positrons,

γγ → e−e+ → νxν̄x for high Eν ,
NN → NNνxν̄x for low Eν .

Now the cooling phase occurs, where the hot and dense core emits thermal neutrinos
from all flavors. A SN is roughly a black-body source for neutrinos4.
In our analysis we will simplify this picture by assuming that the core has a radius of
10 km and all flavors of neutrinos are in thermal equilibrium following Fermi-Dirac
statistics, see app. E.

4Neutrinos of different flavors interact differently with matter. That is why the neutrino sphere
is ill-defined [15].
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2.2. Supernovae and the Energy Loss Argument

2.2.1. The Observation of SN1987A

On 23 February 1987 the blue giant
Sanduleak-69202 in the Large Magellanic
Cloud exploded in a supernova that was
named SN1987A. Since Kepler’s supernova
in 1604 it was the first one visible to the
naked eye. The remains can be seen in the
figure at the side5. It is the first and to this
day only SN, whose neutrinos have been
observed directly. They have been detected
in Kamiokande II and IMB [17]. Together
with models of gravitational collapse [18] it
is possible to estimate the neutrino energy
released at SN1987A,

Eν > 2× 1053erg . (2.5)

The Argument of Energy Loss Comparing (2.4) with (2.5) we find a correspon-
dence which constrains new physics by an argument of anomalous energy loss [13].
New physics is often accompanied by the presence of new particles. Weakly in-
teracting particles of low mass could contribute to the energy loss or cooling of
stars and SNe. These anomalous energy loss mechanisms are however constrained.
Comparing again (2.4) and (2.5) a new particle X could only have a SN luminosity
of roughly

LX < 1052 erg
s . (2.6)

The luminosity LX gives the integrated energy emitted by anomalous cooling
mechanisms via new particles. This argument applies if the new particle escapes
from the SN core. It should not diffuse inside the core for longer than tdiff ∼ 1s,
since the energy gets depleted via neutrino emission during this duration.

5http://www.spacetelescope.org/images/potw1142a/
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3
Global and Local Supersymmetry

In the first section of this chapter we introduce the general idea of global Supersym-
metry in a qualitative way, sketch its development and make the first comments
about SUSY breaking.

In section 3.2 we generalize SUSY to a gauge symmetry and describe the idea of
Supergravity. Here the gravitino will appear for the first time and we give some
details on local SUSY breaking and the Super-Higgs mechanism.

Subsequently we state the full Supergravity Lagrangian in 3.3 as the starting point
of our investigations. For this we have to introduce a lot of notations, but we will
see explicitly the concepts and ideas from the previous sections. At the end of this
chapter we end up with a Lagrangian suitable for our phenomenological studies.

At last we discuss R-Parity and its violations. Here the focus lies on bilinear
R-parity violations.
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3. Global and Local Supersymmetry

3.1. Global Supersymmetry

The special symmetry between bosons and fermions that we briefly mentioned in
ch. 2.1 is called Supersymmetry (SUSY) [10, 19]. The reasons, why SUSY gains
a lot of attention by theoretical physicists are diverse, we already mentioned its
ability to solve the hierarchy problem. Now we want to add another motivation of
a rather aesthetic nature.
It all started in 1971, when it was shown that the Mandula-Coleman theorem [20]
could be circumvented. This theorem is based on some very general assumptions
and states that the most general Lie algebra of symmetries of the S-matrix of a
realistic quantum field theory can only be a direct product of the Poincaré group
and a finite number of generators belonging to the Lie algebra of a compact Lie
group, which transform as Lorentz scalars. In other words the tensorial symmetries
are completely given by the Poincaré generators, i.e. the Lorentz generators Mµν

and generators of spatial translations Pµ.
But the assumptions turned out to be too restrictive when it was shown that
the Poincaré algebra could be nontrivially extended by generators given by the
Weyl-spinors Qα [21, 22], which obey anti-commutation relations. These spinors1

satisfy the so-called super-Poincaré algebra,

{
Qα, Qβ̇

}
= 2σµ

αβ̇
Pµ , (3.1)

{Qα, Qβ} =
{
Qα̇, Qβ̇

}
= 0 , (3.2)

[Qα, P
µ] =

[
Qα̇, P

µ
]

= 0 . (3.3)

The generators Q satisfying (3.1–3.3) relate bosonic states with fermionic ones,

Q|boson〉 ∼ |fermion〉 , Q|fermion〉 ∼ |boson〉 . (3.4)

A finite SUSY transformation is parametrized by a Weyl spinor ε and given by
e−iεQ. We refer to SUSY as global, if ε is not spacetime-dependent.
The first supersymmetric, renormalizable field theory interesting for particle physics
was formulated by Wess and Zumino in 1974 [23], who presented a supersymmetric

1The conventions used for spinors are given in the app. B.
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3.1. Global Supersymmetry

toy model consisting of two real bosonic and one chiral fermionic field. However the
first realistic supersymmetric theory, the MSSM, was not introduced until 1981 [24].
Shortly after the work of Wess and Zumino it was shown that SUSY is not just
one but the only possible way of extending the symmetry algebra of the S-matrix
nontrivially [25]. Of course there are also more phenomenological reasons to study
SUSY like the solution of the DM problem mentioned in ch. 2.1 or the unification
of gauge couplings at high energies [24].

3.1.1. Global Supersymmetry Breaking

In a supersymmetric theory every bosonic particle in the spectrum has a fermionic
partner and vice versa. A complex scalar field, a chiral fermion and an auxiliary
field form a so-called supermultiplet (φ, ψ, F ). In order for a theory to be invariant
under SUSY transformations, the bosonic and fermionic superpartners of these
supermultiplets must have identical masses. This is obviously excluded. The scalar
superpartner of the electron, the selectron, being charged and light, would have
been discovered a long time ago. This means that in the true vacuum state |Ω〉 of
the theory SUSY should be a broken symmetry, leading to a mass gap between the
superpartners of one supermultiplet. Since the Hamiltonian of the theory can be
expressed in terms of the SUSY generators one can show that

Q|Ω〉 6= 0⇔ 〈Ω|H|Ω〉 > 0 . (3.5)

Therefore in order for global SUSY to be spontaneously broken, the vacuum energy
must be non-zero. To achieve this one usually assumes that some auxiliary field
F obtains a vacuum expectation value (VEV) 〈F 〉. This way supersymmetry is
broken at a scale ΛSUSY =

√
〈F 〉. After symmetry breaking, a massless Goldstone

particle enters the spectrum as in the electroweak theory, but in the case of SUSY
this is a fermion, the so-called goldstino [21, 26]. As a spin 1/2 particle it has a
complex scalar superpartner, the sgoldstino, whose mass depends on the specific
model.
It turns out that the auxiliary field with the VEV cannot belong to a supermultiplet
from the observable field sector, e.g. the electron-selectron supermultiplet. Instead
it has to be outsourced to a supermultiplet of a new hidden field sector [27]. This
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3. Global and Local Supersymmetry

supermultiplet is composed of the goldstino, the sgoldstinos and the auxiliary
field F that acquires the VEV. As soon as SUSY breaking occurs in this sector,
it gets communicated to the observable parts by certain interactions, which also
depend on the SUSY breaking mechanism.

3.2. Local Supersymmetry (Supergravity)

Since the internal symmetries of the SM are all realized locally (’gauged’), it is not
far-fetched to examine the consequences of promoting SUSY to a local symmetry.
For this the parametrizing spinor ε is assumed to be a spacetime dependent function
ε(x).
Looking at (3.1) we see that the SUSY generators are connected to the Poincaré
group. Hence gauging SUSY also means gauging spacetime translations. Therefore
the only way to have a locally supersymmetric theory is to add the Einstein-Hilbert
action2. The spin-2 graviton has to be part of the particle spectrum and we find
that local SUSY is nothing but the combination of supersymmetry and General
Relativity (GR) and thus called Supergravity (SUGRA)3[30, 31].
As every other boson the graviton is part of a supermultiplet and has a fermionic
partner of spin 3

2 called the gravitino, whose dynamics is described by the Rarita-
Schwinger action. Before SUSY breaking both the graviton and the gravitino are
massless. Indeed you can interpret these two fields as the gauge fields of the local
Poincaré group and local SUSY respectively. In conclusion this leaves us with the
locally supersymmetric part of the action describing the gravity sector,

S =
∫

d4xe
[
− 1

2κ2R−
1
2ε

κλµνψκγ
5γλ∂µψν

]
, (3.6)

where e is the determinant of the vielbein (see app. B and C), R is the Ricci scalar,
κ =
√

8πGN is the gravitational coupling constant and ψµ is the Rarita-Schwinger
field describing the gravitino. Since it is the central particle of this thesis we will
focus on the gravitino in the separate chapter 4.

2We could also argue in the opposite direction and say that SUSY would have to be a local
symmetry, since we are sure of gravity’s existence.

3For a review we refer to [28]. For a pedagogical introduction we also recommend [19, 29].
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3.2. Local Supersymmetry (Supergravity)

It is understood that N = 1 , d = 4 SUGRA is not a candidate for a fundamental
theory for its non-renormalizability. Just as in the case of perturbative quantization
of General Relativity, SUGRA is considered as an effective field theory predictive
up to a physical cutoff energy scale.

3.2.1. Local Supersymmetry Breaking and Super-Higgs
Mechanism

In sec. 3.1.1 we stated that non-vanishing vacuum energy is the indicator for
spontaneously broken supersymmetry in the global case. In SUGRA this is no
longer valid and we obtain additional terms in the scalar potential which could
cancel the vacuum energy. The Minkowski spacetime would be the theory’s classical
background. Instead of the vacuum energy the new criterion for SUSY breaking in
the local case is given by a non-vanishing gravitino mass m3/2. While the graviton
remains massless a massive gravitino is a clear indicator of SUSY breaking and
directly related to the SUSY breaking scale ΛSUSY via

m3/2 = κ√
3

Λ2
SUSY . (3.7)

But how does the gravitino obtain its mass?
It does in a way similar to the massive vector bosons in electroweak symmetry
breaking. In analogy to these particles, the gravitino becomes massive via the
Super-Higgs effect [30, 32, 33]. The goldstino becomes its ±1

2 helicity states and
disappears from the physical spectrum. This reasoning, which we only sketched
here, will be carried out explicitly in the next chapter.
Different SUSY breaking schemes give rise to different values ofm3/2. For example in
Planck-scale mediated SUSY breaking, gravity mediates the symmetry breakdown
to the observable sector [34]. In this framework the gravitino typically has a mass
comparable to the gaugino masses. There are other models allowing m3/2 to be
small as we will see in ch. 4.
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3. Global and Local Supersymmetry

3.3. General Lagrangian of a Locally
Supersymmetric Gauge Theory

The full Lagrangian for a gauge invariant SUGRA Model is derived in [32] and also
given in [29]. We start from the Lagrangian given in the app. G of the book by Wess
and Bagger and rewrite it using four-component spinors4. The full supergravity
Lagrangian is given by

e−1L =

− 1
2κ2R + gij∗DµφiDµφ∗j −

1
2g

2D(a)D
(a) + igij∗χL

jγµDµχiL

+ e−1εκλµνψκγλDµψLν −
1
4f

R
(ab)F

(a)
µν F

(b)µν + 1
8f

I
(ab)ε

µνκλF (a)
µν F

(b)
κλ

+ i

2λ(a)γ
µDµλ(a) − 1

2e
−1f I(ab)Dµ

[
eλ

(a)
γµλ

(b)
R

]
−
√

2g∂iD(a)λ
(a)
χiL

−
√

2g∂j∗D(a)χL
jλ(a) + κ

4
√

2g∂if(ab)D
(a)λ

(b)
χiL + κ

4
√

2g∂i∗f ∗(ab)D(a)χL
iλ(b)

+ i

√
2

16 ∂if(ab)λ
(a) [γµ, γν ]χiLF (b)

µν + i

√
2

16 ∂i
∗f ∗(ab)χL

i [γµ, γν ]λ(a)F (b)
µν

+ κ

2gD(a)ψµγ
µλ

(a)
R −

κ

2gD(a)ψµγ
µλ

(a)
L − i

√
2κ
2 gij∗Dµφ∗jψνγµγνχiL

+ i

√
2κ
2 gij∗DνφiχLjγµγνψµ −

iκ

16
[
ψµ [γm, γn] γµλ(a)

] [
F (a)
mn + F̂ (a)

mn

]
− κ2

4 gij
∗

[
iεκλµνψκγλψRµ + ψµγ

νψµR
]
χL

jγνχL
i

− κ2

8 (gij∗gkl∗ − 2Rij∗kl∗)χcL
i
χkLχL

jχcL
l

− 1
16
[
2κ2gij∗f

R
(ab) + (fR(cd))−1∂if(bc)∂j∗f

∗
(ad)

]
χL

jγµχiLλ
(a)
γµλ

(b)
L

− 1
8∇i∂jf(ab)χcL

i
χjLλ

(a)
λ

(b)
L −

1
8∇i∗∂j∗f

∗
(ab)χL

iχcL
jλ

(a)
λ

(b)
R

− 1
16(fR(cd))−1∂if(ac)∂jf(bd)λ

(a)
χiLλ

(b)
χjL

− 1
16(fR(cd))−1∂i∗f

∗
(ac)∂j∗f

∗
(bd)χL

iλ(a)χL
jλ(b)

− 1
16g

ij∗∂if(ab)∂j∗f
∗
(cd)λ

(a)
λ

(b)
L λ

(c)
λ

(d)
R + 3κ2

16 λ(a)γ
µλ

(a)
R λ(b)γµλ

(b)
R

4Note that our conventions, see app. A and B, differ from the ones chosen in [29].
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

− κ

16
√

2∂if(ab)

[
λ

(a) [γµ, γν ]χiLψνγµλ
(b)
R − ψµγµχiLλ

(a)
λ

(b)
L

]
+ κ

16
√

2∂i∗f ∗(ab)
[
χL

i [γµ, γν ]λ(a)ψµγνλ
(b)
L + χiLγ

µψµλ
(a)
λ

(b)
R

]

− exp
(
κ2K

2

)κ2

4 W
∗ψRα

[
γα, γβ

]
ψLβ + κ2

4 WψLα
[
γα, γβ

]
ψRβ

+
√

2κ
2 DiWψµγ

µχiL +
√

2κ
2 Di∗W

∗χL
iγµψµ + 1

2DiDjWχcL
i
χjL

+ 1
2Di

∗Dj∗W
∗χL

iχcL
j + 1

4g
ij∗Dj∗W

∗∂if(ab)λ
(a)
λ

(b)
L + 1

4g
ij∗DiW∂j∗f

∗
(ab)λ

(a)
λ

(b)
R


− exp

(
κ2K

) [
gij
∗
DiW (DjW )∗ − 3κ2W ∗W

]
. (3.8)

We will now introduce the individual constituents.

Field Content

Matter Fields

The matter sector consists of chiral superfields. In the component formulation
of (3.8) they appear as a lefthanded 4-spinor χiL, given by

χiL =
(χiα)WB

0

 , (3.9)

where (χiα)WB is the 2-spinor used by Wess and Bagger in [29], as well as a complex
scalar field φi and an auxiliary field F . The index i runs over all chiral superfields
of the respective model and the index α is the spinor index. In the following we
will mark all quantities coinciding with the ones in [29] with WB.

Gauge Fields

Since we are interested in gauge invariant models there are also gauge supermulti-
plets. They consist of a gauge boson A(a)

µ with the associated field strength tensor
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3. Global and Local Supersymmetry

F (a)
µν and a superpartner fermion, the gaugino λ(a), written as a Majorana spinor5,

λ(a) =

−i
(
λ(a)
α

)
WB

i
(
λ

(a)α̇
)
WB

 , (3.10)

and an auxiliary field D(a). The gauge index is always written with brackets,
(a) = 1, 2, ..., dimG for the gauge group G.

Gravity Fields

In the gravity sector, we have the graviton spin-2 field, given by the vielbein or
tetrad emµ that can be found indirectly in the vielbein‘s determinant e and the
Ricci scalar R, for more details on the vielbein we refer to the app. B and C. The
gravitino is a massless Majorana vector-spinor field ψµ,

ψµ =
−i (ψµα)WB

i
(
ψ
α̇

µ

)
WB

 . (3.11)

In contrast to the gauge and matter fields there are two auxiliary fields, a complex
scalar fieldM and a real vector field bµ, which secure a consistent off-shell description
of the gravity sector. These do not appear in (3.8) because they have already been
eliminated using their respective field equation.

Auxiliary Fields

The auxiliary fields of the chiral supermultiplets F i do not appear in the Lagrangian
for the same reason. Their equation of motion reads

F i = eκ
2K/2gij

∗
Dj∗W

∗ . (3.12)

We will need the field equations for the scalar M field given by

M = −3κeκ2K/2W . (3.13)

5 Just as in [35] we add additional factors of i in the definition of the gaugino and gravitino
fields.
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

The D(a) fields have not been eliminated. However their field equations are given
by

D(a) = Re
(
f−1

)
(ab)

Ki

(
t(a)φ

)i
, (3.14)

where the generators t(a) of the Lie algebra of the gauge group G occur for the first
time.

Matter Coupling to the SUGRA multiplet

The coupling of matter to the gravity sector of the model is encoded in three
functions:

1. The first is the superpotential W , an analytic function of the scalar fields
φi as well as scalar fields h from a hidden sector,

W (φi, h) = Wh(h) +Wo(φi) . (3.15)

It has a mass dimension of 3 and determines the self-interactions of the scalar
fields and their Yukawa couplings. The scalar field h plays an essential role
when it comes to SUSY breaking. We will have to come back to this in
sec. 3.3.

2. The Kähler potential K(φi) is a real function of mass dimension 2, that
appears either directly in (3.8) or indirectly in the Kähler metric

gij∗ := ∂2K

∂φi∂φ∗j
. (3.16)

It is in particular responsible for the kinetic term of the scalar fields. The
corresponding Kähler connection and curvature are given by

Γkij = gkl
∗ ∂gjl∗

∂φi
, (3.17)

Rij∗kl∗ = gml∗
∂

∂φ∗j
Γmik . (3.18)
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3. Global and Local Supersymmetry

3. The gauge kinetic function f(ab)(φi) is located in front of the kinetic terms
of the gauge boson and gauginos. It is a dimensionless and analytic function.
Its real part, together with its real inverse, is used to raise and lower the
gauge indices.

In this context we introduce the notation

∂if(ab) := ∂f(ab)

∂φi
, ∂i∗f(ab) := ∂f(ab)

∂φ∗i
, (3.19)

Ki := ∂K

∂φi
, and Ki∗ := ∂K

∂φ∗i
. (3.20)

Covariant Derivatives and SUSY Transformation

The covariant derivatives in (3.8) and (3.12) are given by

Dµφi = ∂µφ
i + igA(a)

µ gij
∗
∂j∗D(a) , (3.21)

DµχiL = ∂µχ
i
L + i

4ωµ
abσabχ

i
L + ΓijkDµφjχkL + igA(a)

µ ∂k
(
gij
∗
∂j∗D(a)

)
χkL

− 1
4κ

2
(
KjDµφj −Kj∗Dµφ∗j

)
χiL −

i

2κ
2gA(a)

µ ImF(a)χ
i
L , (3.22)

Dµλ(a) = ∂µλ
(a) + i

4ωµ
abσabλ

(a) − gf (abc)A(b)
µ λ

(c)

+ 1
4κ

2
(
KjDµφj −Kj∗Dµφ∗j

)
λ(a) + i

2κ
2gA(b)

µ ImF(b)λ
(a) , (3.23)

Dµψν = ∂µψν + i

4ωµ
abσabψν

+ 1
4κ

2
(
KjDµφj −Kj∗Dµφ∗j

)
ψν + i

2κ
2gA(a)

µ ImF(a)ψν , (3.24)

DiW = Wi + κ2KiW , (3.25)
DiDjW = Wij − ΓkijDkW

+ κ2
(
KijW +KiDjW +KjDiW − κ2KiKjW

)
. (3.26)

The Lagrangian is invariant under the local SUSY transformation parametrized by

the Majorana spinor ξ(x) =
ξWB(x)
ξWB(x)

,
δξeµ

a = κ
(
ξγaψRµ − ξγaψLµ

)
, (3.27)

22



3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

δξφ
i =
√

2iξχiL , (3.28)
δξχ

i
L = −i

√
2γµξRDµφi − ΓijkδξφjχkL −

√
2eκ2K/2gij

∗
Dj∗W

∗ξL

− 1
4
√

2ξLgij
∗
∂j∗f

∗
(ab)λ

(a)
λ

(b)
R + 1

4κ
2
(
Kjδξφ

j −Kj∗δξφ
∗j
)
χiL , (3.29)

δξA
(a)
µ = ξγµλ

(a)
R − ξγµλ

(a)
L , (3.30)

δξλ
(a)
L = 1

4F
(a)
µν [γµ, γν ] ξL − igD(a)ξ + i

4
√

2ξ(fR(ab))−1∂if(bc)λ
(c)
χiL

+ i

4
√

2ξ(fR(ab))−1∂i∗f
∗
(bc)χ

i
Lλ

(c) − i

4κ
2(Kjδξφ

j −Kj∗δξφ
∗j)λ(a)

L , (3.31)

δξψµ = 2
κ
Dµξ + iκeκ

2K/2WγµξR −
i

4κ
2(Kjδξφ

j −Kj∗δξφ
∗j)ψLµ

− i

8κ [γµ, γν ] ξgij∗χjLγνχiL −
i

2κ
(
gµν + 1

4 [γµ, γν ]
)
ξ λ(a)γ

νλ
(a)
R . (3.32)

Here we also used the covariant derivative of ξ given by

Dµξ = ∂µξ + i

4ωµ
abσabξ + 1

4κ
2
(
KjDµφj −Kj∗Dµφ∗j

)
ξ . (3.33)

SUSY Breaking and Super-Higgs Effect

In the ch. 3.1.1 and 3.2.1 we discussed many aspects of SUSY breaking in a
qualitative way. Now we want to carry out the corresponding steps explicitly.
If SUSY is spontaneously broken, the superpartner of the Standard-Model particles
could indeed attain a mass high enough to explain that they remain unobserved to
this day.
We already saw that global SUSY is broken, if and only if the vacuum energy
〈Ω|H |Ω〉 = 〈Ω|V |Ω〉 is non-zero. Here V is the scalar potential. In global SUSY
it is given by

V (φ) = F iF ∗i + 1
2D

(a)D(a) . (3.34)

Note that this potential is always positive or zero. If one of the auxiliary fields
F i attains a vacuum expection value (VEV) 〈F i〉, we will obtain a non-vanishing
vacuum energy and thus spontaneous breaking of supersymmetry6. With a positive

6At this point we will not consider the possiblity of SUSY breaking via a non-vanishing 〈D(a)〉.
For reasons see e.g. [10]
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3. Global and Local Supersymmetry

vacuum energy, we would obtain de-Sitter spacetime as our classical background.
Now let us turn to local supersymmetry. In this case the scalar potential (3.34) is
generalized to

V (φ) = F igij∗F
∗j∗ + g2

2 Re f(ab)D
(a)D(b) − 1

3M
∗M . (3.35)

After implementing the gravity sector the potential is no longer positive semi-
definite. Since a significant cosmological constant is experimentally disfavored we
demand that the vacuum energy vanishes,

〈V 〉 = 0 ⇒
√
〈F igij∗F ∗j

∗〉 = 1√
3
〈|M |〉 . (3.36)

In contrast to a globally supersymmetric model, we can choose flat Minkowski
spacetime as our classical background.

Gravitino Mass

We define the supersymmetry breaking scale as Λ4
SUSY ≡ 〈F igij∗F

∗j∗〉 and evaluate
(3.7),

m3/2 = κΛ2
SUSY√

3
= κ√

3

√
〈F igij∗F ∗j

∗〉 = κ

3 〈|M |〉 . (3.37)

With (3.13) we obtain

m3/2 = κ2eκ
2〈K〉/2〈|W |〉 . (3.38)

This combination appears in the Lagrangian (3.8) giving rise to the gravitino mass
term,

− e exp
(
κ2K

2

)(
κ2

4 W
∗ψRα

[
γα, γβ

]
ψLβ + h.c.

)

=⇒− 1
4 em3/2 ψα

[
γα, γβ

]
ψβ . (3.39)
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

The gravitino is now massive. As outlined in sec. 3.2.1 it obtained its two additional
degrees of freedom by absorbing the goldstino, which can be set to zero. In other
words, the goldstino-gravitino mixing term in (3.8),

−i
√

2κ
2 〈DiW 〉χcL

i
γαψRα + h.c. , (3.40)

vanishes.

Gaugino Masses

The only term in (3.8) that could generate gaugino masses is

−eeκ2K/2
[1
4g

ij∗Dj∗W
∗∂if(ab)λ

(a)
R λ

(b)
L + h.c.

]
. (3.41)

Based on these terms we define the gaugino mass matrix,

M(ab) = 1
2e

κ2〈K〉/2gij
∗〈Dj∗W 〉〈∂if(ab)〉 , (3.42)

which gives the possibility of mixing the gaugino’s mass eigenstates.

3.3.1. Minimal Choices for the Lagrangian

In the following we will only consider terms up to the order κ1 and neglect terms
of higher order with one exception that we discuss later.
In addition we have to make some choices for the Kähler potential, the gauge kinetic
function and the superpotential. We choose them minimally, just in order to get
the desired features of the theory, e.g. gaugino masses and canonical kinetic terms,

f(ab) = δ(ab)f(h) , (3.43)
K(h, h∗, φi, φ∗i) = Kh(h, h∗) + φiφ∗i , (3.44)

W (φ, h) = Wh(h) +Wo(φi) . (3.45)

We assume that the function f(h) is real. Note that ∂if(ab) is now of the order
κ1. Other consequences of this choice are a trivial Kähler metric, (3.16) becomes
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3. Global and Local Supersymmetry

gij∗ = δij∗ , vanishing connection terms Γkij = 0 as well as a vanishing Kähler
curvature Rij∗kl∗ = 0. Furthermore we do no longer distinguish between upper and
lower gauge indices (a), (b), ... or superfield indices i, j, ..., since they are now raised
and lowered by δ(ab) and δij∗ respectively. Furthermore the gaugino mass matrix
(3.42) is diagonal.

e−1L = − 1
2κ2R +DµφiDµφ∗i −

1
2g

2(f(h))−1D(a)D(a) + iχL
iγµDµχiL

+ e−1εκλµνψκγλDµψLν −
1
4f(h)F (a)

µν F
(a)µν + i

2f(h)λ(a)
γµDµλ(a)

+
[
−
√

2g∂iD(a)λ
(a)
χiL + 1

4
√

2gf(h)−1∂if(h)D(a)λ
(a)
χiL

+ i

√
2

16 ∂if(h)λ(a) [γµ, γν ]χiLF (a)
µν + κ

2gf(h)−1D(a)ψµγ
µλ

(a)
R

− i
√

2κ
2 Dµφ

∗iψνγ
µγνχiL + h.c.

]
− iκ

8 f(h)
[
ψµ [γm, γn] γµλ(a)

]
F (a)
mn

− exp
(
κ2K

2

)κ2

4 W
∗ψRα

[
γα, γβ

]
ψLβ + κ√

2
DiWψµγ

µχiL

+ 1
2DiDjWχcL

i
χjL + 1

4Di∗W
∗∂if(ab)λ

(a)
λ

(b)
L + h.c.


− exp

(
κ2K

) [
DiW (DiW )∗ − 3κ2W ∗W

]
− κ2

4
[
iεκλµνψκγλψRµ + ψµγ

νψµR
]
χL

iγνχL
i +O(κ2) . (3.46)

The last term may be of order κ2, nonetheless it will be relevant in one situation
later on. The auxiliary D fields are simply given by

D(a) = φ∗i t
(a)
ij φ

j . (3.47)

After SUSY breaking the field h from the hidden sector acquires a VEV 〈h〉 (as
well as 〈f〉, 〈Wh〉, 〈Kh〉) and we obtain the following gravitino and gaugino masses,

m3/2 = κ2eκ
2〈Kh〉/2〈|Wh|〉 ,

M(ab) = 1
2e

κ2〈Kh〉/2〈Di∗Wh〉〈∂if(h)〉δ(ab) .
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3.3. General Lagrangian of a Locally Supersymmetric Gauge Theory

We do not want the function f(h) to appear explicitly in our Lagrangian, so we
perform the following re-scaling as it was done in [35],

λ −→ λ̂ =
√
〈f〉λ , (3.48)

A(a)
µ −→ Â(a)

µ =
√
〈f〉A(a)

µ , (3.49)

g −→ ĝ = g√
〈f〉

, (3.50)

M(ab) −→ M̂(ab) = M(ab)

〈f〉
. (3.51)

We immediately abbreviate the notation and omit the hats. In consequence of the
re-scaling we obtain canonically normalized gauge kinetic terms. These choices
leave us with the Lagrangian,

e−1L = − 1
2κ2R +DµφiDµφ∗i −

1
2g

2(φ∗it(a)
ij φ

j)(φ∗kt(a)
kl φ

l) + iχL
iγµDµχiL

− 1
2e
−1εκλµνψκγ

5γλDµψν + i

2 m3/2ψασ
αβψβ −

1
4F

(a)
µν F

(a)µν

+ i

2λ
(a)
γµDµλ(a) − 1

2M(a)

(
λ

(a)
R λ

(a)
L + h.c.

)
+
[
−
√

2g(φ∗jt(a)
ji )λ(a)

χiL + κ

2g(φ∗it(a)
ij φ

j)ψµγµλ
(a)
R

− i
√

2κ
2 Dµφ

∗iψνγ
µγνχiL + h.c.

]
− iκ

8
[
ψµ [γm, γn] γµλ(a)

]
F (a)
mn

− exp
(
κ2K

2

)κ2

4 W
∗ψRα

[
γα, γβ

]
ψLβ + κ√

2
DiWψµγ

µχiL

+ 1
2DiDjWχcL

i
χjL + 1

4Di∗W
∗∂if(ab)λ

(a)
λ

(b)
L + h.c.


− exp

(
κ2K

) [
DiW (DiW )∗ − 3κ2W ∗W

]
− κ2

4
[
iεκλµνψκγλψRµ + ψµγ

νψµR
]
χL

iγνχL
i +O(κ2) . (3.52)

The masses of chiral fermions can be produced as usual from the bilinear part of
the superpotential, the Yukawa couplings emerge from trilinear terms [35]. In ch.
4.3 this Lagrangian will be our starting point.
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3.4. R-Parity

In this section we will assume the field content of the Minimal Supersymmetric
Standard Model (MSSM)7. The superpotential of the MSSM is given by

WMSSM = µHuHd + λeijHdLiE
c
j + λdijHdQiD

c
j − λuijHuQiU

c
j , (3.53)

where the indices i, j, k run over the three generations. However these terms are
not the most general set of renormalizable and gauge invariant terms.
Demanding gauge invariance and renormalizability the SM contains the most
general set of Yukawa couplings. This naturally leads to the conservation of baryon
number B and lepton number L, whose underlying symmetry can be regarded as
‘accidental’. This nice feature is lost once we add SUSY. It is possible to generalize B
and L to the sparticles, but some of the couplings compatible with gauge invariance
and renormalizability are very problematic. Namely the superpotential terms
proportional to

L · LEc , Q · LDc , U cDcDc , (3.54)

that cannot be found in (3.53), lead to undesirable features. They introduce new
effective four-fermion interactions via exchange of squarks or other bosons that
do not conserve B or L. These interactions could spoil our model containing
electromagnetic, weak and strong interactions via gauge spin-1 boson mediation.
They can also lead to rapid proton decay, whose life time is very strictly bounded
from below (τP > 2.1 · 1029y [36]).
One solution was found by Pierre Fayet, who introduced a new discrete symmetry,
called R-parity [37]8 and given by

RP = (−1)3B+L+2s =

+1 for particles,

−1 for sparticles .
(3.55)

7For an introduction we refer for example to [10, 19].
8For a pedagogical introduction we refer to [19]. For a review on R-Parity and its violation we
recommend [38].
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3.4. R-Parity

The conservation of R-parity forbids the terms in (3.54) and allows the necessary
Yukawa couplings of the Higgs-fields present in (3.53), because RP = −1 for
Q,LU c, Dc, Ec and RP = +1 for Hu and Hd.
It also means that the lightest supersymmetry particle (LSP) is stable and that
sparticles can only be produced in pairs. R-parity could emerge as the discrete
remnant of a broken global U(1) symmetry, whose generators R do not commute
with the SUSY generators,

[Qα, R] = Qα ,
[
Qα̇, R

]
= −Qα̇ , (3.56)

and therefore treats particles and sparticles differently. This kind of internal global
symmetry is present in N=1 SUSY [19] but in the end one still has to impose
R-parity conservation as an additional input of the theory.

3.4.1. Bilinear R-Parity Violations

It should be clear by now that there is no fundamental reason to not include the
superpotential terms

W/R = µiHu · Li + 1
2λijkLi · LjE

c
k + λ′ijkLi ·QjD

c
k + 1

2λ
′′
ijkU

c
iD

c
jD

c
k . (3.57)

However, as said before, these couplings are highly constrained phenomenologically
since they might lead to violation of baryon and lepton number. But only if both B
and L are violated simultaneously the proton could decay via e.g. p −→ π0e+ and
it is possible to introduce lepton number violating terms compatible with empirical
data [39].
We will relax the MSSM’s assumption of invariance under R-parity and allow
bilinear R-parity violations [38, 40] given by the first term in (3.57),

W/RP
= µiHu · Li . (3.58)

This term is motivated by its ability to generate a hierarchical neutrino mass
spectrum favored by observations (e.g. the solar neutrino problem) [41].
After SUSY breaking additional terms containing bilinear RPV can be found in
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3. Global and Local Supersymmetry

the soft SUSY-breaking terms,

Lsoft =
(
BiHuL̃i + m̃2

diH
†
dL̃i + h.c.

)
+ ... (3.59)

We can include the nine R-parity violating parameters µi, Bi, m̃
2
di while respecting

existing experimental bounds since baryon number is still conserved and the proton
remains stable. This is not at all an unnatural thing to do and can change the
predicted phenomena completely [42].
Without R-parity we can no longer distinguish between the Higgsino Hd and
leptons Li. Mixing becomes a possibility and we can perform rotations of the weak
eigenstates [39]

Hd

Li

 7→
H ′d
L′i

 = U

Hd

Li

 , with U ∈ SU(4) . (3.60)

This rotations lead to a tranformation of the RPV parameters such as

µi 7→ µ′i = U∗i0µ+ U∗ijµj , (3.61)

and also generates new Yukawa couplings λijk and λ′ijk
9. Due to the bilinear

term (3.59) the sneutrinos ν̃i typically acquire a VEV vi = 〈ν̃i〉√
2 after radiative

electroweak symmetry breaking alongside with the Higgs VEVs vu and vd [43]. But
we should note that the value of the sneutrino VEV depends on the choice of weak
interaction basis and changes under the transformation (3.60) as

vi 7→ v′i = Ui0vd + Uijvj . (3.62)

Of course it does not matter which basis is chosen. We could find weak eigenstates
such that vi = 0 and µi 6= 0. Following [39] we choose,

U =
 1 −εi
ε∗i 13×3

 , for εi ≡
µi
µ
� 1 . (3.63)

9These new trilinear terms do not lead to baryon number violations.

30



3.4. R-Parity

In this basis the three parameter µi vanish and trilinear /R terms emerge in the
superpotential. We have a non-vanishing sneutrino VEV given by [40]

vi
vd
≈

Bi tan β −m∗2HdLi
m̃2
l̃ij

+ 1
2mZ cos 2β . (3.64)

The angle β is defined by tan β ≡ vu
vd
.

Neutrino-Neutralino and Chargino-Charged Lepton Mixing

As mentioned before without lepton number conservation bilinear RPV gives rise to
new mixings. Especially the neutralinos mix with the neutrinos and the charginos
mix with the charged leptons. These interactions are of special relevance to us,
since they lead to new effective gravitino couplings to leptons, as we will see in
chapter 4.4.
The 4 × 4 neutralino mixing matrix in the MSSM becomes a 7 × 7 matrix M7

N

given in a basis (−iγ̃, −iZ̃0, H̃0
u, H̃

0
d , νi)T . This matrix can be diagonalized using

a unitary 7× 7 matrix N7, 

χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4

χ̃0
4+i


= N7



−iγ̃
−iZ̃0

H̃0
u

H̃0
d

νi


. (3.65)

Following [40] we define the photino-zino, zino-zino and higgsino-zino mixing
parameters,

Uγ̃Z̃ = mZ

4∑
i=1

N∗iγ̃NiZ̃

mχ̃0
i

≈ mZ sin θW cos θW
M2 −M1

M1M2
, (3.66)

UZ̃Z̃ = mZ

4∑
i=1

N∗
iZ̃
NiZ̃

mχ̃0
i

≈ −mZ

(
sin2 θW
M1

+ cos2 θW
M2

)
, (3.67)

UH̃0
uZ̃

= mZ

4∑
i=1

N∗
iH̃0

u
NiZ̃

mχ̃0
i

≈ m2
Z cos θW

M1 cos2 θW +M2 sin2 θW
M1M2µ

, (3.68)
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3. Global and Local Supersymmetry

UH̃0
d
Z̃ = mZ

4∑
i=1

N∗
iH̃0

d
NiZ̃

mχ̃0
i

≈ −m2
Z sin θW

M1 cos2 θW +M2 sin2 θW
M1M2µ

. (3.69)

Here we wrote down the leading terms in the expansion of N7 in ξ ≡ vi
v
(with

v = vu + vd) and mZ .
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4
Phenomenology of Superlight

Gravitinos

We now focus on the central particle of this thesis. After a short discussion of
the Rarita-Schwinger action, which describes the free massive spin-3

2 gravitino
field, we explain why a superlight gravitino is of special interest for particle physics
phenomenology. This also involves the SUSY equivalence theorem stating that a
very light gravitino effectively acts as a massless spin-1

2 goldstino.

In sec. 4.3 we complete the derivation of our model and state the Feynman rules
necessary for our investigations. Also we comment briefly on the complex role of
the sgoldstino fields and their couplings and masses.

The focus of the final section lies on the additional gravitino interactions arising
from bilinear RPV terms in the superpotential. The vacuum expectation value of a
sneutrino field gives new effective couplings between gravitino, matter fermions and
gauge bosons.
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4. Phenomenology of Superlight Gravitinos

4.1. Free Gravitinos – The Rarita-Schwinger-Field

The Lagrangian of a free massive spin 3
2 field already appears in (3.52). It can be

written [44] as

L = −1
2ε

µνκλψµγ
5γν∂κψλ −

1
4m3/2ψµ [γµ, γν ]ψν . (4.1)

The corresponding field equations are the Rarita-Schwinger equations [45],

εµνκλγ5γν∂κψλ + 1
2m3/2 [γµ, γν ]ψν = 0 . (4.2)

Alternatively they can be expressed in the form

∂µψµ(x) = 0 , (4.3)
γµψµ(x) = 0 , (4.4)

(i/∂ −m3/2)ψµ(x) = 0 . (4.5)

Therefore the object ψµ is a four-vector with spinors as entries, each satisfying
the Dirac equation. Hence the solution ψµ ∼ e−ipxψ̃µ can be written using a
spin-1

2 spinor u and a polarization vector εµ of a spin 1 field,

ψ̃µ(~p, λ) =
∑
s,m

〈(1
2 , s

)
(1,m) |

(3
2 , λ

)〉
u(~p, s)εµ(~p,m) , (4.6)

where
〈(

1
2 , s

)
(1,m) |

(
3
2 , λ

)〉
are Clebsch-Gordan coefficients [46].

When summing over the gravitino spins we will need the polarization tensor of ψµ
with momentum p,

Π±µν(k) =
∑
s

ψ±, sµ (k)ψ±, sν (k) ,
(
where s = ±1

2 ,±
3
2

)
= −(/p±m3/2)×(gµν − pµpν

m2
3/2

)
− 1

3

(
gµσ −

pµpσ
m2

3/2

)(
gνλ −

pλpν
m2

3/2

)
γσγλ

 , (4.7)
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4.2. Phenomenology of Superlight Gravitinos

for the positive and negative frequency solution respectively [40, 44]. For a derivation
we refer for example to [47].
The polarization tensor satisfies the following relations,

γµΠ±µν(p) = Π±µν(p)γν = 0 , (4.8)
pµΠ±µν(p) = Π±µν(p)pν = 0 , (4.9)

(/p−m3/2)Π±µν(p) = Π±µν(p)(/p−m3/2) = 0 . (4.10)

4.2. Phenomenology of Superlight Gravitinos
The actual value of the gravitino mass heavily depends on the SUSY breaking
scheme. For example in Planck-scale mediated SUSY breaking gravity communi-
cates the symmetry breakdown to the observable sector [34]. In this framework
the gravitino typically has a mass comparable to the gaugino masses. For phe-
nomenological reasons we are interested in superlight gravitinos only, which do
not appear in the framework of Planck-scale mediated SUSY breaking. However
there are other models allowing m3/2 to be small like certain no-scale models [48]
and models with gauge-mediated SUSY breaking (GMSB) [49]. In the latter gauge
interactions communicate the SUSY breaking to the observable matter fields of our
theory leading to the necessary mass gaps. Gravity, being present as well of course,
is not relevant in this context. But why should we restrict ourselves to superlight
gravitinos?
In 1977 the French physicist Pierre Fayet came to the conclusion that a superlight
gravitino would be very favourable from a phenomenologist’s point of view [50].
He concludes

"[...]that the super-Higgs mechanism gives to the gravitino, and to
gravitation effects in particle physics, their chance to be detected, since
weak interactions can be generated from gravitational ones."

A small value of m3/2 would enhance the gravitino’s interactions that would have
been otherwise suppressed by a prefactor of the gravitational coupling κ. It turns
out e.g. that the effective gravitino-gauge boson-gaugino vertex is proportional
to κ mṼ

m3/2
, the magnitude of the fraction mṼ

m3/2
could compensate the weakness of
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4. Phenomenology of Superlight Gravitinos

gravity.
We already saw that the massive gravitino obtains its ±1

2 helicity states by absorbing
the goldstino. If the gravitino mass is very small compared to the energy scale of
the relevant process, these helicity states dominate and the gravitino effectively
behaves like the massless goldstino, while its ±3

2 helicity states are negligible. This
is called the SUSY Equivalence Theorem [51]. In the equivalence theorem limit we
can write

ψµ ∼ i

√
2
3

1
m3/2

∂µψ , (4.11)

where ψ is the spin-1
2 goldstino. In certain models this enhancement of gravita-

tional interactions affects also the sgoldstinos. In contrast to the goldstino, the
sgoldstinos do not disappear from the physical spectrum and can be very light
[52, 53]. Therefore a superlight gravitino could open not only a phenomenological
door to gravitation but also to the observation of new particles from a hidden
sector, which we will discuss further in sec. 4.3.

Indeed our analysis is based on the assumption that the gravitino mass is very
small. But in using these simplifications we implicitly neglect terms in the gravitino
polarization tensor (4.7). In cross-sections of reactions with more than one external
gravitino these terms might be relevant and cannot be ignored. Instead the whole
polarization tensor should be used. In order to simplify our calculations we can
expand (4.7) in powers of m3/2,

Π±µν(k) = 2
3
kµkν
m2

3/2
/k ± 1

3
4kµkν − kµ/kγν − kνγµ/k

m3/2

+ 1
3 (−3gµν/k + /kγµγν − γνkµ + γµkν) +O(m3/2)

≡ 1
m2

3/2
Π(2)µν(k)± 1

m3/2
Π(1)µν(k) + Π(0)µν(k) +O(m3/2) . (4.12)

Note that the number of γ-matrices is even for Π(1) and odd for Π(2) and Π(0).
In practice, when dealing with superlight gravitinos, it often will turn out to be
sufficient to retain the leading order in (4.12), i.e. Π(2)µν(k) and to substitute
(4.11). Before doing so one should perform a careful power counting of m3/2 in the
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4.2. Phenomenology of Superlight Gravitinos

occurring amplitudes. We will elaborate on this in sec. 5.2.1.

Previous Studies

Various approaches to test the possibility of a superlight and detectable gravitino
were proposed. Possible experimental settings are colliders: e+e− annihilation
[53, 54], γγ annihilation [55, 56] and hadron collider [57] were considered to
constrain a superlight gravitino. In this thesis we want to use observations from
astrophysics and compare them to the predictions derived from particle physics
models. But also within astroparticle physics there have been various approaches
to a superlight gravitino. Some early constraints on its mass were derived from
cosmology, more precisely from Big Bang Nucleosynthesis (BBN). It was shown
that BBN allows either a light gravitino < 1keV or a very heavy one [58]. These
investigations have been revisited in 1993 by Moroi [59] and four years later again
by Gherghetta [60, 61]. The latter found that m3/2 & 1eV. Other approaches
consisted of the possibility of exotic cooling of stars, red giants and white dwarfs
[62]. These were reviewed in [63].
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4. Phenomenology of Superlight Gravitinos

4.3. Gravitino Interactions and Feynman-Rules

Now we will derive the final Lagrangian of our model, that we will use in the ch. 5
in the case of conserved R-parity. It is a broken-supersymmetric Einstein-Maxwell
system with the gauge group U(1)QED. We extract all necessary terms from (3.52)
and read off the Feynman rules, especially the ones of the Gravitino interactions.
For this gauge group we only have one gaugino, the massive photino (M(ab) → mγ̃).
The relevant kinetic terms and Gravitino interactions are contained in the following
Lagrangian,

e−1L =− 1
2κ2R−

1
2e
−1εκλµνψκγ

5γλDµψν + i

2 m3/2ψασ
αβψβ −

1
4FµνF

µν

+ i

2λ
(a) [γµDµ −mγ̃]λ(a) +Dµφ

iDµφ∗i −mφiφ
∗iφi

+ iχiLγ
µDµχ

i
L −

1
2mχi

(
χcL

i
χiL + h.c.

)
− iκ√

2
(
Dµφ

∗iψνγ
µγνχiL −Dµφ

iχiLγ
νγµψν

)
− κ

4ψµσ
ρσγµλ Fρσ

− κ2

4
[
ie−1εκλµνψκγλψRµ + ψµγ

νψµR
]
χL

iγνχL
i +O(κ2) . (4.13)

The covariant derivatives are given by

Dµφ
i = ∂µφ

i + iQiAµφ
i , Dµχ

i
L = ∂µχ

i
L + i

4ωµabσ
abχiL + iQiAµχ

i
L ,

Dµλ = ∂µλ+ i

4ωµabσ
abλ , Dµψν = ∂µψν + i

4ωµabσ
abψν .

Here Qi is the charge of the respective field1.

Sgoldstino Couplings and Masses

The couplings of the scalar field h from the hidden sector to matter depend largely
on the specific choices for the h-depending parts of the gauge kinetic function, the
Kähler potential and the superpotential (3.43)-(3.44). The model we choose has
been derived in [32, 64] and employed by various authors in the context of gravitino
phenomenology [1, 55, 56, 60, 61, 65]. It inherits a canonical Kähler potential,

1Note that we do not sum over the index i.
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4.3. Gravitino Interactions and Feynman-Rules

a vanishing cosmological constant and D-term SUSY breaking. The Lagrangian
involving the sgoldstino reads

e−1LSgoldstino = 1
2
(
∂µS∂

µS −mSS
2 + ∂µP∂

µP −mPP
2
)

+ κ

4 cFµνF
µνS + i

κ

2m3/2dψµσ
µνψνS

− κ

8 ce
−1εµνρσFµνFρσP − i

κ

4dε
µνρσψµγνψρ∂σP +O(κ2) . (4.14)

The scalar and pseudo-scalar fields S/P are the real sgoldstino components [55]
given by

S = 1√
2

(h+ h∗) , P = 1√
2i

(h− h∗) . (4.15)

The dimensionless couplings c and d emerge from the super-Higgs mechanism and
are related to each other,

c · d = mλ

m3/2
, (4.16)

or more specifically for no-scale models [55],

c = −
√

2
3
mγ̃

m3/2
, d = −

√
3
2 . (4.17)

We do not need to include the sgoldstino’s couplings to other fermions like the
neutrinos because they are not getting amplified by the factor m−1

3/2 [65].
In the end all these assumptions still do not fix the sgoldstino masses. They depend
on possible additional terms in the Kähler potential [61] and could be very light,
such as the gravitino, or very heavy. The phenomenology of these cases differs
dramatically and we will distinguish the two cases in our analysis in ch. 5.
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4. Phenomenology of Superlight Gravitinos

Feynman Rules

We will now present the Feynman rules of our model. Our model contains Majorana
fermions like the photino and the gravitino. We will handle Majorana spinors by
using the method of a continuous fermion flow [66]. Depending on the fermion flow
direction, we obtain two expression for each vertex.

External Lines

The momentum p flows from left to right.

• Matter Fermions and Photino:

us(p) ,

vs(p) ,

us(p) ,

vs(p) .

• Gauge bosons:

µ εµ(p) µ ε∗µ(p) .

• Gravitinos:

µ ψ+ s,µ(p) , µ ψ
+ s,µ(p) ,

µ ψ
− s,µ(p) , µ ψ− s,µ(p) .

When we use the equivalence theorem (4.11) the more precise relations read

ψ+ s,µ(p) ≈ i

√
2
3
pµ

m3/2
us(p) , (4.18)

ψ− s,µ(p) ≈ i

√
2
3
pµ

m3/2
vs(p) . (4.19)

Usually we will suppress the spin index s for convenience.
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4.3. Gravitino Interactions and Feynman-Rules

Propagators

• Matter fermions:

i(/p+mχ)
p2 −m2

χ

,

i(−/p+mχ)
p2 −m2

χ

.

• Matter scalars:

i

p2 −m2
φ

.

• Gauge boson (in the ξ = 1 gauge):

µ ν
−igµν
p2 −m2

A

.

• Gaugino:

i(/p+mλ)
p2 −m2

λ

.

• Graviton (see app. C)

µν αβ
i

2p2 (ηµαηνβ + ηµβηνα − ηµνηαβ) .

Vertices from (4.13)

We present the Feynman rules relevant for the upcoming analysis. For a complete
set (without the Graviton rules) we refer to [35]. For the graviton vertices we have
to linearize gravity. The derivation can be found in the app. C.
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4. Phenomenology of Superlight Gravitinos

All momenta flow into the vertex.

p

µ

iκ√
2/pγµPL ,

p

µ

iκ√
2PLγµ/p ,

p

µ

− iκ√
2PRγµ/p ,

p

µ

− iκ√
2/pγµPR ,

p

µ

α −κ
2γ

µσαβp
β ,

p

µ

α −κ
2σαβp

βγµ ,

k2

k1

S

ν

µ

iκdm3/2ηµν ,

k2

k1

ν

µ

P iκcεσρµνk
σ
1k

ρ
2 ,

q

k1

k2

P

ν

µ

iκd
2 εµσνργ

σqρ ,

k2

k1

ν

µ

S
− iκc ×

[(k1 · k2)ηµν − k1νk2µ] ,
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k2

k1

q

β

α

µν

2iκ
[
ηα(µk2ν)k1β + ηβ(µk1ν)k2α − (k1 · k2)ηα(µην)β − ηαβk1(µk2ν)

+ 1
2ηµν ((k1 · k2)ηαβ − k1βk2α)

]
,

q

k2

k1

µν

β

α

κ

2

[
εασβ(µγ

5γν)(k2 − k1)σ + i

2εασβ(µγ
5
{
γσ, σν)ρ

}
qρ

+ 2im3/2
(
ηαβηµν − 2ηα(µην)β

) ]
.

These vertices agree with the one given in [35] and [55]. Although the authors of
the former employ the Veltman definition of the graviton field (C.9) leading to
some extra factors of

√
2, for more details we again refer to the app. C of this

thesis.

4.4. R-Parity Violating Gravitino Vertices

In sec. 3.4 we introduced R-parity and bilinear R-parity violations. We mentioned
that models including bilinear RPV can inherit a sneutrino VEV 〈ν̃〉 and also allow
for neutrinos and neutralinos to mix. This leads to effective interactions between
neutrinos, gravitinos and gauge bosons.

γ(k)
χ̃0

ντ

ν µ

〈ν̃τ 〉
= iκgZ〈ν̃〉

8
√

2mZ

Uγ̃Z̃
(
1 + γ5

)
γµ [/k, γν ] , (4.20)
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Z0(k)
χ̃0

ντ

ν µ

〈ν̃τ 〉
= iκgZ〈ν̃〉

8
√

2mZ

UZ̃Z̃
(
1 + γ5

)
γµ [/k, γν ] , (4.21)

Z0(k)

ντ

ν µ

〈ν̃τ 〉

= −igZκ〈ν̃〉
4
√

2
(
1 + γ5

)
γµγν . (4.22)

These diagrams have been computed in the context of gravitino decays [40, 47, 67].
We have to estimate these parameters such that we are able to make quantitative
statements later on.
Instead of the sneutrino VEV we will use the parameter ξ ≡ 〈ν̃〉

v
, where v is the

SM-Higgs VEV of v ≡ (
√

2GF )−1/2 ≈ 246 GeV. For the estimation of the gravitino
luminosity later on we will assume

ξ ∼ 10−7 (4.23)

such that neutrino masses below 1 eV can be obtained. The mixing parameter
defined in (3.66) and (3.67) can be estimated roughly if neutralino masses are of
the same order M1 ∼M2 ∼M1/2 [40].

Uγ̃Z̃ = UZ̃Z̃ ≈
mZ

M1/2
, andM1/2 = O(100GeV) , (4.24)

≈ 0.8 . (4.25)

At last the electroweak coupling parameter is defined as

gZ ≡
g

cos θW
, with g = 321/4

√
GFMW ,

≈ 0.65 . (4.26)

44



5
Supernova Constraints on Superlight

Gravitinos

The first part of our analysis is about gravitino pair production in supernovae with
conserved R-Parity. We review in great detail some results from the mid-90s [1]
and obtain similar astrophysical bounds on the gravitino mass.

In particular these authors indirectly assume to have massless sgoldstinos in their
model which enhance the gravitino pair production heavily. We perform the same
calculation with very massive sgoldstinos and obtain strongly altered results. This
shows the strong model-dependence of these bounds.

In sec. 5.3 we change the initial particles from photons to neutrinos and show that
this gives rise to additional relevant supernova cooling channels once the assumption
of massless sgoldstinos is dismissed. Yet, this process does not lead to qualitatively
new findings.
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5. Supernova Constraints on Superlight Gravitinos

5.1. Gravitino Pair Luminosity

The luminosity for gravitinos produced via γ(p1)γ(p2) −→ G̃(k1)G̃(k2) is given [68]
by

L = V
∫ d3p1

(2π)3 2p0
1

2nγ(p0
1)
∫ d3p2

(2π)3 2p0
2

2nγ(p0
2)
∫ d3k1

(2π)3 2k0
1

∫ d3k2

(2π)3 2k0
2

(2π)4δ(4)(p1 + p2 − k1 − k2)(k0
1 + k0

2)
∣∣∣M(γγ → G̃G̃)

∣∣∣2 . (5.1)

Thus, the luminosity is given by the overall amount of gravitino energy produced
inside a volume V with temperature T via the collision of photons in thermal
equilibrium. The temperature enters the luminosity via the photon Bose-Einstein
distribution function nγ(p0

i ), given by

nγ(p0
i ) = 1

ep
0
i /T − 1

(see app. E) .

For the squared amplitude |M|2, we already averaged over incoming and summed
over outgoing spins. Now we can use energy conservation, the expression for the
relative velocity (D.18) and the total cross-section (D.20),

L = V

(2π)6

∫
d3p12nγ(p0

1)
∫

d3p22nγ(p0
2)(p0

1 + p0
2)|v1 − v2|Nid!σ(γγ → G̃G̃)

= 8V
(2π)6

∫
d3p1nγ(p0

1)
∫

d3p2nγ(p0
2)(p0

1 + p0
2)p1 · p2

p0
1p

0
2
σ(γγ → G̃G̃) , (5.2)

where Nid is the number of identical particles in the final states appearing in (D.20)1.
In order to simplify the integration we use that nγ(p0

i ) > e−p
0
i /T for all p0. Hence,

L >
8V

(2π)6

∫
d3p1d3p2e

−(p0
1+p0

2)/T (p0
1 + p0

2) (1− cosα)σ(γγ −→ G̃G̃) , (5.3)

where α = ](~p1, ~p2) .

The cross-section in general depends on the photons’ momenta or rather on the
Mandelstam variable s. We express the photon momenta p1 and p2 in spherical

1This expression differs from the luminosity given in [1] by a factor of 8.
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coordinates (p0
i , θi, φi) and obtain

s = (p1 + p2)2 = 2p0
1p

0
2(1− cosα) , (5.4)

and cosα = sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2 . (5.5)

The next step is to calculate σ(γγ −→ G̃G̃).

5.2. Gravitino Pair Production via Photon Collision

5.2.1. Calculation of the Cross-Section

We consider the process γ(p1)γ(p2)→ G̃(k1)G̃(k2). The contributing diagrams are
given by

iM =

p2

p1

k1

k2

β

α

ν

µ

+

p1

p2

k1

k2

α

β

ν

µ

+
p2

p1

k1

k2

β

α

ν

µ

+
p2

p1

k1

k2

β

α

ν

µ

+
p2

p1

k1

k2

β

α

ν

µ

. (5.6)

Applying the Feynman rules given in sec. 4.2 and app. C, we obtain the amplitude
of this process,

iM = iMPhotino + iMGraviton + iMScalar + iMPseudoscalar , (5.7)

47



5. Supernova Constraints on Superlight Gravitinos

where

iMPhotino = iκ2

4 εα1 ε
β
2 p

κ
1p

λ
2 ψ

+µ(k2)σακγµ
/q1 −mγ̃

q2
1 −m2

γ̃

γνσβλψ
− ν(k1)

+ iκ2

4 εα2 ε
β
1 p

κ
2p

λ
1 ψ

+µ(k2)σακγµ
/q2 −mγ̃

q2
2 −m2

γ̃

γνσβλψ
− ν(k1) , (5.8)

iMGraviton = κ2

2(p1 + p2)2

(
(ε1 · ε2)pλ1p

ρ
2 + 1

2
(
(p1 · ε2)(p2 · ε1)− (p1 · p2)(ε1 · ε2)

)
ηλρ

+ (p1 · p2)ελ1ε
ρ
2 − (p2 · ε1)ερ2pλ1 − (p1 · ε2)pλ2ε

ρ
1 + (ρ↔ λ)

)

ψ
+µ(k2)

[
εµσν(λγ

5γρ)(k2 − k1)σ + i

2εµσν(λγ
5
{
γσ, σρ)τ

}
− 2im3/2(2ηµ(ληρ)ν − ηµνηλρ)

]
ψ− ν(k1) , (5.9)

iMScalar = iκ2mγ̃

(p1 + p2)2 −m2
S

×

εα1 ε
β
2

(
(p1 · p2)ηαβ − pβ1pα2

)
ηµν ψ

+µ(k2)ψ− ν(k1) , (5.10)

iMPseudoScalar = −iκ
2mγ̃

2m3/2

1
(p1 + p2)2 −m2

P

×

εα1 ε
β
2 p

κ
1p

λ
2 εκλαβ (p1 + p2)ζ εµδνζ ψ

+µ(k2)γδψ− ν(k1) . (5.11)

After squaring (5.7) we have to sum over the spins of the photons and gravitinos.
For the gravitinos we could just use (4.7). It is however beneficial to first detect
the relevant terms in the polarization tensor and neglect the rest.

Identifying the Relevant Terms – Power-Counting of m3/2

Using the equivalence theorem (see sec. 4.2) can be a neat way of simplifying the
calculation of the cross-section. Nevertheless it cannot be used without caution,
since we deal with a process involving two external gravitinos. In this case it turns
out that we would miss important terms of leading order of m3/2 if we simply use
(4.18-4.19). Instead we perform a careful power-counting before we can exploit the
equivalence theorem.
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5.2. Gravitino Pair Production via Photon Collision

In the case of gravitino pair production a generic amplitude is given by

iM1 = 1
mi1

3/2
ψ

+µ(k2)Θ(n1,...,nN )
1,µν ψ− ν(k1) . (5.12)

The amplitude consists of N terms with nj γ-matrices respectively, indicated by
the indices (n1, ..., nN ). We will obtain several contributing diagrams and therefore
several amplitudes. After averaging over initial and summing over final states, a
general term in the squared amplitude reads

∣∣∣M†
1M2

∣∣∣ = 1
mi1+i2

3/2
Tr
[
Πνν′(k1)Θ̃(n1,...,nN )

1,µ′ν′ Πµ′µ(k2)Θ(m1,...,mM )
2,µν

]
. (5.13)

The first step in our calculation will be the identification of the leading order ileading
of m3/2. For this we proceed as follows:

1. We find the amplitudes with the leading order imax of m3/2.

2. We use the equivalence theorem and calculate the square of these amplitudes.
The result should be ∝ m

−(2imax+4)
3/2 .

3. Now there are two possibilities:

a) The result does not vanish, ileading = 2imax + 4. In this case we are done,
since the other diagrams will only give higher order corrections to the
cross-section.

b) The result vanishes. Now the second term in (4.12) could possibly yield
the leading terms of order m−(2imax+3)

3/2 and cannot be neglected. Also
other diagrams with lower power imax− 1 of m3/2 become relevant again
and may not be neglected as there are interference terms of the order
m
−(4+imax+(imax−1))
3/2 .

4. We continue in this fashion order by order, until we find the first non-vanishing
terms of order ileading.

5. We add up all terms of this order. In this step the equivalence theorem can
be of great benefit if applied carefully.

49



5. Supernova Constraints on Superlight Gravitinos

Contributions of Order 6

We quickly see that only the amplitude (5.11), which involves a pseudoscalar
exchange, is of the order m−1

3/2. The only terms in the amplitude’s square ∝ m−6
3/2

come from the square of (5.11),

|MPseudoScalar|2 ∝
1

m2
3/2

Tr
[
Πνν′(k1)γδ′Πµ′µ(k2)γδ

]
= 1
m6

3/2
Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(2) (k2)γδ

]
+ 1
m5

3/2

(
Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(1) (k2)γδ

]
+ Tr

[
Πνν′

(1) (k1)γδ′Πµ′µ
(2) (k2)γδ

])
+ 1
m4

3/2
Tr
[
Πνν′

(1) (k1)γδ′Πµ′µ
(1) (k2)γδ

]
+O(m−3

3/2) (5.14)

Now we will have to calculate the trace of many γ-matrices. For calculations like
this we will use the Mathematica package FeynCalc[69, 70]2. After the evaluation
of these traces we find that the contributions ∝ m−6

3/2 vanish upon choosing a
frame of reference and substituting the kinetic relations (D.11-D.14). Following
our procedure we move to the next power.

Contributions of Order 5

We immediately see that the contributions ∝ m−5
3/2 in (5.14) vanish due to odd

numbers of γ-matrices in the trace. But there are also interference terms of the
same order,

2The used code can be found in the app F.
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M†
PseudoScalarMPhotino ∝

1
m3/2

Tr
[
Πνν′(k1)γδ′Πµ′µ(k2)Θ(6,7)

Photino

]
= 1
m5

3/2
Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(2) (k2)Θ(/6,7)

Photino

]

+ 1
m4

3/2

(
Tr
[
Πνν′

(1) (k1)γδ′Πµ′µ
(2) (k2)Θ(6,/7)

Photino

]

+ Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(1) (k2)Θ(6,/7)

Photino

] )
+O(m−3

3/2) ,

(5.15)

M†
PseudoScalarMGraviton ∝

1
m3/2

Tr
[
Πνν′(k1)γδ′Πµ′µ(k2)Θ(0,3,5)

Graviton

]
= 1
m5

3/2
Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(2) (k2)Θ(/0,3,5)

Graviton

]

+ 1
m4

3/2

(
Tr
[
Πνν′

(1) (k1)γδ′Πµ′µ
(2) (k2)Θ(0,/3,/5)

Graviton

]

+ Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(1) (k2)Θ(0,/3,/5)

Graviton

] )
+O(m−3

3/2) , (5.16)

M†
PseudoScalarMScalar ∝

1
m3/2

Tr
[
Πνν′(k1)γδ′Πµ′µ(k2)Θ(0)

Scalar

]
= 1
m5

3/2
Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(2) (k2)Θ(/0)

Scalar

]

+ 1
m4

3/2

(
Tr
[
Πνν′

(1) (k1)γδ′Πµ′µ
(2) (k2)Θ(0)

Scalar

]

+ Tr
[
Πνν′

(2) (k1)γδ′Πµ′µ
(1) (k2)Θ(0)

Scalar

] )
+O(m−3

3/2) , (5.17)

The terms that vanish due to an odd number of γ-matrices are indicated by a
crossed-out index, e.g. Θ(0,/3,/5)

Graviton. For the remaining terms we calculate the traces
using FeynCalc. The terms ∝ m−5

3/2 vanish after substituting (D.11-D.14) just as
before. The only non-vanishing terms are of the order m−4

3/2.

Contributions of Order 4

First of all, we notice that the amplitudes (5.8-5.10) do not depend on the gravitino
mass. Apart from their interference terms withMPseudoScalar it is safe to compute
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their contributions in the equivalence theorem limit. The result will be of the
order m−4

3/2. We calculate the square of the amplitudes, average over the incoming
photon spins and sum over the outgoing gravitino spins. After the insertion of the
kinematic relations (D.11)-(D.14) we obtain

1
4 |iMPhotino + iMGraviton + iMScalar|2 =

=
κ4s2m4

γ̃

288m4
3/2

1
(x2 sin2(θ) + 4x+ 4)2128x+ 16 sin2(θ)(cos(2θ) + 11)x2 + 4(4 cos(2θ) + 3 cos(4θ) + 25)x3

+ sin2(θ)(12 cos(2θ) + cos(4θ) + 51)x4 + 8 sin4(θ)x5

+O(m−2
3/2) , (5.18)

where x ≡ s
m2
γ̃
. As discussed before the only non-vanishing contribtion from (5.14)

is of the order m−4
3/2,

1
4 |MPseudoScalar|2 =

κ4s2m4
γ̃

36m4
3/2

x+O(m−3
3/2) . (5.19)

We turn to the interference terms in (5.15-5.17). Due to the fermion propagator
the amplitudes (5.8) include terms with odd and even numbers of γ-matrices, so
does (5.9). The only non-zero terms are given by

1
4
(
M†

PseudoScalarMPhotino
)

+ c.c. =

−
κ4s2m4

γ̃

18m4
3/2

(x3 sin2(θ) + x2 cos(2θ) + 3x2)
x2 sin2(θ) + 4x+ 4 . (5.20)

Result for the Cross-Section

We add up (5.18), (5.19) and (5.20) to obtain the complete square of the overall
amplitude. We substitute this into (D.23)3. After integration we are left with the

3We point out that we have to include an overall factor of 1
2 coming from the Majorana nature

of the gravitinos.
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total cross-section of γγ → G̃G̃,

σ(γγ → G̃G̃) =
κ4m4

γ̃s

1728πm4
3/2
×

[ 1
1 + x

(
x+ 7− 12

x
− 24
x2

)
+ 1
x+ 2

(48
x3 + 24

x2 −
6
x

)
log(1 + x)

]
. (5.21)

This is in agreement with the results in [55, 60]4. For x� 1, i.e. a large photino
mass, this yields

σ(γγ → g̃g̃) =
κ4s2m2

γ̃

576πm4
3/2

+O(x0) . (5.22)

Heavy Sgoldstinos

Up until now we always assumed the sgoldstinos to be very light (mS,mP � mγ̃).
However many models contain very heavy sgoldstinos. The last two diagrams in
(5.6) do not contribute significantly if mS,mP � mγ̃ holds.
Without the s-channel exchange of the scalar and pseudoscalar field the cross-section
for the gravitino pair production can be easily computed by using (4.18-4.19), since
the criticalMPseudoScalar is no longer present. It is given by

σ(γγ → G̃G̃) =
κ4m4

γ̃s

1728πm4
3/2
×

[ 1
1 + x

(
3x2 − 8x− 5− 12

x
− 24
x2

)
+ 6

2 + x

(
2 + 3

x
+ 4
x2 + 8

x3

)
log(1 + x)

]
= s3κ4

5760πm4
3/2

+O(x) . (5.23)

4The authors of these papers however don’t mention the necessity of retaining higher order
terms in the gravitino polarization tensor.
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5.2.2. Bounds from SN1987A

Case I – Superlight Sgoldstinos

Now we can substitute the cross-section (5.22) into (5.3) and integrate over the
photons momenta using (5.4) and (5.5). We find

Lγγ,I >
160
π5

(
κ

m3/2

)4

m2
γ̃V T

11
SN . (5.24)

We re-arrange this inequality and apply the constraint on the missing energy (2.6)
emitted from the Supernova core,

m3/2 > κ
(160
π5

)1/4 ( V

1052erg/s

)1/4

m
1/2
γ̃ T

11/4
SN

= 1.8× 10−5
(

mγ̃

100GeV

)1/2 ( TSN
0.05GeV

)11/4 ( V

4.2× 1018cm3

)1/4
eV . (5.25)

Here we used the conversion factors from app. A.
This constraint is valid under the condition that the gravitinos, once produced,
leave the SN core without further interactions. This means that the gravitino’s
mean-free-path λ must exceed the Supernova core radius RSN . The gravitinos
scatter mainly with photons [1], i.e. γG̃ −→ γG̃. Their mean-free-path is given by

λMFP ∼
(
nγ(TSN)σ(γG̃ −→ γG̃)

)−1
. (5.26)

The contributing diagrams to gravitino-photon scattering are given by

iM = + + + + . (5.27)

We calculate the cross-section as we did in sec. 5.2.1 using FeynCalc and obtain

σ(γG̃ −→ γG̃) =
κ4m2

γ̃s
2

2304πm4
3/2

+O(x0) . (5.28)
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In evaluating (5.26) we need the number density and the average energy of photons.
The corresponding relations can be found in app. E, namely (E.6)-(E.8). We obtain
the gravitino mean-free-path in the SN core,

λMFP ∼
8π3

9ζ(3)m
4
3/2κ

−4m−2
γ̃ T−7 . (5.29)

The bound we found in (5.25) is only valid if λMFP > RSN . Plugging in numbers
we find

λMFP ∼ 2.1× 106
(

m3/2

1.8× 10−5eV

)4 ( mγ̃

100GeV

)−2 ( T

0.05GeV

)−7
km

� 10
(
RSN

10km

)
km . (5.30)

For our allowed range for m3/2 the gravitinos leave the supernova core without
scattering, our bounds are reasonable.
Yet looking at (5.30) we quickly recognize that for even smaller values of m3/2 its
mean-free-path gets short enough for the gravitinos to diffuse inside the core. If
the gravitinos are trapped inside the core for longer than 1s energy is depleted
by neutrino emission and the gravitinos’ luminosity is lower and again compatible
with LX < 1052 erg

s . Trapped gravitinos random-walk through the core and move a
distance Rdiff ∼

√
Nλmfp in time interval tdiff = λmfp

c
N , where N is the number of

scatterings. Hence the conditions for the decreased luminosity are

λmfp

c
N ≥ 1s , λmfp

√
N ≤ RSN

=⇒ λmfp ≤
R2
SN

c(1s) ≈ 0.3m . (5.31)

Substitution of (5.29) yields

m3/2 ≤ 6.2× 10−8eV (5.32)
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This is the allowed mass range for the gravitino in the case of gravitino diffusion.
As a final result we can exclude the mass range of

6.2× 10−8eV < m3/2 < 1.8× 10−5eV , (5.33)

based on the observation of the SN1987A supernova. This bound heavily relies on
the sgoldstinos being light.

Case II – Heavy Sgoldstinos

We integrate (5.3) using the cross-section (5.23) just as we did in the case of
massless sgoldstinos and get

Lγγ,II >
1536
π5

(
κ

m3/2

)4

V T 13
SN , (5.34)

leading to the weaker bounds of

m3/2 > 7.0× 10−7
(

TSN
0.05GeV

)13/4 ( V

4.2× 1018cm3

)1/4
eV . (5.35)

In the case of very heavy Sgoldstinos, the last two diagrams in (5.27) do not
contribute significantly and can be neglected. This changes our scattering-cross-
section to

σ(γG̃ −→ γG̃) =
κ4m4

γ̃s

3456πm4
3/2
× 1

2(x− 1)2(1 + x)

(
24x5 + 3x4 + x3 + 25x2 + 41x− 52− 78

x
+ 60
x2

)

− 6
x− 1

(
2 + 3

x
+ 4
x2 −

5
x2

)
log(1 + x)


= s3κ4

768πm4
3/2

+O(x) . (5.36)
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The mean-free-path becomes

λMFP ∼
2π3

243ζ(3)m
4
3/2κ

−4 T−9 (5.37)

= 1.8× 105
(

m3/2

7.0× 10−7eV

)4 ( T

0.05GeV

)−9
km� 10

(
RSN

10km

)
km . (5.38)

The obtained bound (5.35) is consistent.
Again for sufficiently small values of m3/2 the gravitinos will diffuse in the core
leading to decreased luminosity that spoils this bound. Substituting (5.37) into
(5.31), we find that this is the case for

m3/2 < 4.5× 10−9eV . (5.39)

In conclusion, for heavy sgoldstinos, the observation of SN1987A allows us to
exclude the mass range

4.5× 10−9eV < m3/2 < 7.0× 10−7eV . (5.40)

This bound is our most conservative one from the consideration of photons. All
of the relevant couplings are contained in any SUGRA theory and we did not
assume to have any additional couplings rising from the hidden field sector. Yet,
the constraint can be tightened by additional gravitino production channels as we
will show now.
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5.3. Gravitino Pair Production via Neutrino Collision

We will now perform a similar analysis using the channel ν(p1)ν(p2) −→ G̃(k1)G̃(k2).

5.3.1. Calculation of the Cross-Section

The three contributing diagrams are given by

iM =

p1

k2p2

k1

ν

µ

+

p1

k2

ν̃

k1

p2

µ

ν

−

p1

k1

ν̃

k2

p2

ν

µ

+

p1

k2p2

k1

ν

µ

.

With the Feynman rules from sec. 4.3 and app. C we find the amplitudes,

iM1 = − κ2

8(p1 + p2)2v(p2)
[
γα(p1 − p2)β + γβ(p1 − p2)α − ηαβ( /p2 − /p1)

]
PLu(p1)

× ψ+µ(k1)
[
εµλναγ

5γβ(k2 − k1)λ + i

2εµλναγ
5
{
γλ, σβτ

}
(p1 + p2)τ

]
ψ− ν(k2)

≈ − κ2

12m2
3/2

kµ1k
ν
2

(p1 + p2)2

× v(p2)
[
γα(p1 − p2)β + γβ(p1 − p2)α − ηαβ( /p2 − /p1)

]
PLu(p1)

× u(k1)
[
εµλναγ

5γβ(k2 − k1)λ + i

2εµλναγ
5
{
γλ, σβτ

}
(p1 + p2)τ

]
v(k2) , (5.41)

iM2 = iκ2

2
1

(p1 − k1)2 −m2
ν̃

× ψ+µ(k1)(/p1 − /k1)γµPLu(p1) v(p2)PRγν(/k2 − /p2)ψ− ν(k2)

≈ iκ2

3m2
3/2

1
(p1 − k1)2 −m2

ν̃

× u(k1)(/p1 − /k1)/k1PLu(p1) v(p2)PR/k2(/k2 − /p2)ψν(k2)

≈ − iκ2

3m2
3/2 ((p1 − k1)2 −m2

ν̃)
u(k1)/p1

/k1PLu(p1) v(p2)PR/k2/p2v(k2) , (5.42)

iM3 ≈ −
iκ2

3m2
3/2 ((p1 − k2)2 −m2

ν̃)
u(k2)/p1

/k2PLu(p1) v(p2)PR/k1/p2v(k1) , (5.43)
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iM4 = κ2

4 ψ
+µ(k1)

[
εµλνκγ

λPR − iηµνγκPR
]
ψ− ν(k2) v(p2)γκPLu(p1)

≈ κ2

6m2
3/2
kµ1k

ν
2u(k1)

[
εµλνκγ

λPR − iηµνγκPR
]
v(k2) v(p2)γκPLu(p1) . (5.44)

The last amplitude of the diagram with the 4-fermion vertex can be read off the last
line of our Lagrangian in (4.13). For this process it is safe to use the equivalence
theorem from the beginning and continue with the massless goldstino instead of
the gravitino. The leading order is given by κ2

m2
3/2

. In this limit we already made
use of /ki/ki = k2

i ≈ 0 for the amplitudes (5.42) and (5.43).
Interference terms including the third amplitude likeM†

3M2 will cause problems
because they will not lead to calculable γ traces without further ado. The reason
for this is the Majorana nature of the gravitino. However, it is possible to transform
the interference terms in such a way that we can just calculate the spin sums as
usual using FeynCalc [71]. For this we need the relations (B.13), (B.14) and (B.17).
For clarity we will demonstrate the necessary steps on an example,

v(k)/p/kPRv(p) (B.14)= v(k)/p/kPRCuT (p) =
(
v(k)/p/kPRCuT (p)

)T
= u(p)CTP T

R /k
T
/p
T (v(k)†γ0)T (B.13)= u(p)CC−1PRCC

−1/kCC−1
/pCC

−1γ0Cv∗(k)
(B.17)= u(p)PR/k/pu(k) .

This way we can write the problematic interference terms as

M†
3M1 = −iκ4kµ1k

ν
2

36m4
3/2(p1 + p2)2((p1 − k2)2 −m2

ν̃)
u(p1)PL/k2/p1u(k2)

× v(k1)/p2
/k1PRv(p2)

× v(p2)
(
γα(p2 − p1)β + γβ(p2 − p1)α − 3ηαβ( /p2 − /p1)

)
u(p1)

× u(k1)
(
εµλναγ

5γβ(k2 − k1)λ + i

2εµλναγ
5
{
γλ, σβτ

}
(p1 + p2)τ

)
v(k2)
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= −iκ4kµ1k
ν
2

36m4
3/2(p1 + p2)2((p1 − k2)2 −m2

ν̃)
u(p1)PL/k2/p1u(k2)

× u(k2)
(
εµλναγβγ

5(k1 − k2)λ + i

2εµλνα
{
γλ, σβτ

}
γ5(p1 + p2)τ

)
v(k1)

× v(k1)/p2
/k1PRv(p2)

× v(p2)
(
γα(p1 − p2)β + γβ(p1 − p2)α − ηαβ( /p2 − /p1)

)
u(p1) ,

M†
3M2 = κ4

9m4
3/2 ((p1 − k1)2 −m2

ν̃) ((p1 − k2)2 −m2
ν̃)
u(p1)PL/k2/p1u(k2)

× v(k1)/p2
/k1PRv(p2) u(k1)/p1

/k1PLu(p1) v(p2)PR/k2/p2v(k2)

= κ4

9m4
3/2 ((p1 − k1)2 −m2

ν̃) ((p1 − k2)2 −m2
ν̃)
v(k2)/p1

/k2PLv(p1)

× v(p1)PL/k1/p1v(k1) v(k1)/p2
/k1PRv(p2) v(p2)PR/k2/p2v(k2) ,

M†
3M4 = iκ4kµ1k

ν
2

18m4
3/2((p1 − k2)2 −m2

ν̃)
u(p1)PL/k2/p1u(k2) v(k1)/p2

/k1PRv(p2)

× v(p2)γκPLu(p1) u(k1)
(
εµλνκγ

λPR − iηµνγκPR
)
v(k2)

= iκ4kµ1k
ν
2

18m4
3/2((p1 − k2)2 −m2

ν̃)
v(k1)/p2

/k1PRv(p2) v(p2)γκPLu(p1)

× u(p1)PL/k2/p1u(k2) u(k2)
(
iηµνPRγκ − εµλνκPRγλ

)
v(k1) .

We can now average over initial and sum over final spins as usual and find

−1
4
∑
spins

(
M†

3M1 +M†
3M2 +M†

3M4 + c.c.
)

=

κ4s5(1 + cos(θ))4(1− 2 cos(θ))
576m4

3/2 (2m2
s + s cos(θ) + s) . (5.45)

Here we already chose a frame of reference by using (D.15) and (D.16). The other
contributions are calculated as usual using FeynCalc. We add up the contributions,
integrate and obtain the total cross-section for gravitino production via neutrino
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collision,

σ(νν −→ G̃G̃) =
κ4s3

32256πm4
3/2

(
1

1 + x

(
4x3 + 4x2 + 7x1 − 7 + 14x−1 − 28x−2 + 84x−3 + 168x−4

)

− 168
x5 log(1 + x)

)
. (5.46)

Here we defined the quantity x ≡ s
m2
ν̃
. For x� 1 we find

σ(νν −→ G̃G̃) = κ4s3

23040πm4
3/2

+O(x2) . (5.47)

5.3.2. Bounds from SN1987A

Our next step is to calculate the gravitino luminosity in a supernova core. In
contrast to (5.2) we have to use the Fermi-Dirac distribution function nν according
to the neutrinos fermionic nature,

L = 3× 8V
(2π)6

∫
d3p1nν(p0

1)
∫

d3p2nν(p0
2)(p0

1 + p0
2)p1 · p2

p0
1p

0
2
σ(νν → G̃G̃) . (5.48)

The factor of 3 takes the three different flavors of neutrinos into account, whose
superpartners we assume to be degenerate in mass for simplicity.
Apart from this distinction we proceed in the same way as in sec. 5.1 and integrate
over the momenta using spherical coordinates. The luminosity is given by

Lνν = 93ζ(7)π
80

κ4V T 13
SN

m4
3/2

, where ζ(7) ≈ 1 . (5.49)

Comparison with Former Results We compare our result for the gravitino lumi-
nosity with our results for photons in the initial state. In the case of superlight
sgoldstinos we obtained a large luminosity (see (5.24)) compared to (5.49). More
precisely the ratio

Lνν
Lγγ,I

≈ 2× 10−6
(

TSN
50MeV

)2 ( mγ̃

100GeV

)−2
(5.50)
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5. Supernova Constraints on Superlight Gravitinos

clearly illustrates that the channel νν → G̃G̃ does not contribute significantly to
the gravitino production, because the production via photon collision dominates via
the exchange of sgoldstinos. In our model there are no similar enhanced couplings
for the neutrinos.

Nevertheless we also considered the other alternative, where the sgoldstino contri-
butions are suppressed by their heavy mass. The γγ → G̃G̃ does not dominate the
other channels anymore, as we see by comparing (5.34) with (5.49),

Lνν
Lγγ,II

≈ 0.7 . (5.51)

The bounds derived in the second part of sec. 5.2.2 therefore become a little bit
more restrictive. We add up the luminosities of the two production channels,

Ltotal ≡ Lγγ,II + Lνν , (5.52)

and demand that Ltotal < LX , see (2.6).

m3/2 > 8.0× 10−7
(

TSN
50MeV

)13/4 ( V

4.2× 1018cm3

)1/4
eV . (5.53)

The scattering of gravitinos on neutrinos might also be relevant in the context
of the core’s opacity. The cross-section σ(νG̃ → νG̃) is very similar to the one
computed above and we obtain

σ(νG̃→ νG̃) = 13κ4s3

10240πm4
3/2

. (5.54)

The ratio σ(νG̃→νG̃)
σ(γG̃→γG̃) ≈ 0.98 shows that this is a relevant gravitino scattering process.

The mean-free-path gets modified,

λMFP =
(
nγ(T )σ(γG̃→ γG̃) + 3× nν(T )σ(νG̃→ νG̃)

)−1

≈ 320π3

124173ζ(3)m
4
3/2κ

−4 T−9 (5.55)

= 9.7× 104
(

m3/2

8.0× 10−7eV

)4 ( T

0.05GeV

)−9
km� 10

(
RSN

10km

)
km . (5.56)
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By including the neutrinos into our analysis the mean-free-path shrunk compared
to (5.37). However the decreased value still allows the gravitinos to escape the SN
core as long as (5.31) does not hold. In other words, our argument is consistent
only if

m3/2 > 6.0× 10−9km . (5.57)

In conclusion, the additional consideration of neutrinos as the initial state allows us
to tighten the excluded intervall for the gravitino mass in the case of heavy scalars,

6.0× 10−9eV < m3/2 < 8.0× 10−7eV . (5.58)

The gravitino production rate and the gravitino scattering cross-sections with
photons and neutrinos are of same order. Their combination therefore modifies the
excluded mass range only slightly.
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6
Phenomenological Implications of

Bilinear RPV on Supernova Bounds

In the second part we allow certain additional terms in our superpotential that
violate R-parity. As discussed in ch. 4 new effective couplings emerge and the
production of single gravitinos is feasible.

For both initial states from ch. 5 we show that the production rates due to new RPV
channels are negligible. Therefore the observation of the SN neutrinos of SN1987A
does not allow us to make any statement about bilinear R-parity violations.
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6. Phenomenological Implications of Bilinear RPV on Supernova Bounds

As we saw in sec. 4.4, the inclusion of bilinear R-parity violation gives rise to
effective vertices between gravitino, neutrino and photons or Z bosons. In this way
we can not only expect gravitino pair production from photon collision that we
computed earlier, but also the production of single gravitinos.

6.1. Single Gravitino Production via Photon
Collision

We investigate whether the channel γγ → G̃ν is relevant compared to γγ → G̃G̃.
The two contributing diagrams are given by

iM =

p1

p2

k1

k2

χ̃0

α µ

β ντ

〈ν̃τ 〉 +

p2

p1

k1

k2

χ̃0

β µ

α ντ

〈ν̃τ 〉 (6.1)

The ‘blob’ in this diagram denotes the coupling of the neutrinos to the photon
field. Since the neutrino is neutral this vertex is not present at tree level of course.
However it could be generated by radiative corrections, such as

V γνν
µ =

q

ν ν

= WW +

W

+ · · · . (6.2)

Depending on the model there may be many more contributing diagrams. Instead
of focusing on this potentially large number of contributing loop diagrams we take
a general vertex with form factors [72],

V γνν
µ (q2) = fQ(q2)γµ − fM(q2)iσµνqν + fE(q2)σµνqνγ5 + fA(q2)

(
q2γµ − qµ/q

)
γ5 .
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6.1. Single Gravitino Production via Photon Collision

The occuring functions are the real charge, magnetic dipole, electric dipole and
anapole neutrino form factors respectively. For the coupling with real photons, i.e.
q2 = 0, the quantities

fQ(0) = qν , fM(0) = µν , fE(0) = eν , and fA(0) = aν

are the effective charge, dipoles and anapole of a neutrino. These are strictly
limited by observations [36],

qν < ×10−12e ≈ 10−13 ,

µν , eν < 10−7µB ≈ 10−5GeV−1 ,

aν = r2
ν

6 < 10−6GeV−2 ,

here r2
ν is the ‘neutrino charge radius’ squared.

With the vertex from (4.20) we find the amplitude

iM(γγ −→ G̃ν) =

−
κgZ〈ν̃〉Uγ̃Z̃

8
√

2mZ

εα1 ε
β
2u(k2)V γνν

β (p2
2) /p1 − /k1 +mν

(p1 − k1)2 −m2
ν

(1 + γ5)γµ
[
/p1, γα

]
ψµ(k1)

+ ((p1, α)↔ (p2, β)) . (6.3)

For the total cross-section, we find

σ(γγ −→ G̃ν) =
κ2U2

γ̃Z̃
〈ν̃〉2g2

Z s

576πm2
3/2m

2
Z

(
3s
(
f 2
E(0) + f 2

M(0)
)
− 5fQ(0)2 − 2fA(0)fQ(0)s

)

=
κ2U2

γ̃Z̃
〈ν̃〉2g2

Z s

576πm2
3/2m

2
Z

(
3s
(
ε2
ν + µ2

ν

)
− 5q2

ν − 2aνqνs
)
. (6.4)

Now we can determine whether this production rate is of any relevance compared
to the production of gravitino pairs from the same initial state. We consider the
ratio of (5.23) with (6.4).

σ(γγ −→ G̃ν)
σ(γγ → G̃G̃)

=
10g2

ZU
2
γ̃Z̃
〈ν̃〉2 m2

3/2

κ2s2m2
Z

(
3s
(
ε2
ν + µ2

ν

)
− 5q2

ν − 2aνqνs
)
. (6.5)
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We insert the numerical values for the RPV parameters from sec. 4.4 and the
empirical bounds on the neutrino’s electromagnetic properties and find

σ(γγ −→ G̃ν)
σ(γγ → G̃G̃)

< 8× 10−15
(
m3/2

10−6eV

)2
(

ξ

10−7

)2

, (6.6)

where we used s = 36T 2
SN and TSN ≈ 50MeV.

Obviously the production of gravitinos via photon collisions occurs almost exclu-
sively in pairs and bilinear RPV does not alter any of our previous results. Neither
modifications of the luminosity nor the mean-free-path can be of relevance making
any further calculation with this result unnecessary.
For heavier gravitinos (m3/2 ∼ O(10eV) ) the two processes may lead to simi-
lar production rates but then the absolute production rate would be completely
negligible.

6.2. Single Gravitino Production via Neutrino
Collision

If the sgoldstinos are very heavy, gravitino pair production from photon collision
is not dominant and contributions from neutrino collisions are equally relevant
for the gravitino luminosity. As in the case of photons, bilinear RPVs allow us to
produce a single gravitino from the initial state νν. We show that the luminosity
from single gravitino production may safely be neglected.
The diagrams associated with the process ν(p2)ν(p1) −→ G̃(k1)ν(k2) are

iM =

p2 k2

Z

k1
p1

µ

〈ν̃τ 〉 +

p2 k2

Z

k1p1

µ

〈ν̃τ 〉
.
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They correspond to the following amplitudes,

iM1 = − κg
2
ZUZ̃Z̃〈ν̃τ 〉

8
√

3mZm3/2

1
(p1 − k1)2 −m2

Z

u(k2)γαPLu(p2) v(p1)(1 + γ5)/k1

[
(/p1 − /k1), γα

]
v(k1) , (6.7)

iM2 = − κg2
Z〈ν̃τ 〉

4
√

3m3/2

1
(p1 − k1)2 −m2

Z

u(k2)γαPLu(p2) v(p1)(1 + γ5)/k1γαv(k1) . (6.8)

We compute the cross-section using FeynCalc,

σ(νν −→ G̃ν) = κ2g4
Z〈ν̃τ 〉2

576πm2
3/2

[
U2
Z̃Z̃

(
y + 12

(
1 + 1

y

))
− 6

− 3(2 + y)
(
2U2

Z̃Z̃2(1 + y)− y
)

log(1 + y)
]

= κ2g4
Z〈ν̃τ 〉2s2

1152πm2
3/2m

4
Z

+O(y3) , where y ≡ s

m2
Z

� 1 . (6.9)

Just as in (6.6) we compare this result with the corresponding cross-section from
the R-parity conserving case (5.47),

σ(νν −→ G̃ν)
σ(νν → G̃G̃)

≈ 4× 10−7
(
m3/2

10−6eV

)2
(

ξ

10−7

)2

. (6.10)

We come to the same conclusion as sec. 6.1. The extra gravitino production from
neutrino-antineutrino collisions due to bilinear RPV is vanishingly low and has no
influence on our results from ch. 5.
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7
Conclusions

We started this thesis by covering both the astrophysical context, where we discussed
supernovae and the energy-loss argument, and the current stand of particle physics.
There we emphasized that particle physics phenomenology is of great relevance now
more than ever, especially if it comes to physics beyond the SM. We introduced
the idea of SUSY and SUGRA and presented the full Lagrangian for a locally
supersymmetric gauge field theory. After a brief treatment of R-parity and bilinear
R-parity violations we focused on the phenomenology of superlight gravitinos and
derived its Feynman rules starting from the Lagrangian mentioned above. We also
discussed the additional effective couplings to matter fermions and gauge bosons
occuring once bilinear RPVs are included.
In ch. 5 we rederived some known bounds on the gravitino mass from the observation
of SN1987A. We presented the computation of the cross-section of the process
γγ −→ G̃G̃ in great detail, because we found several subtleties and complications
concerning the usage of the equivalence theorem for light gravitinos, which had
not been mentioned in the literature. We found similar bounds from photon
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7. Conclusions

annihilation to the results by Riotto, Mohaparta and Grifols [1]. In particular we
were able to exclude the gravitino mass range of

6.2× 10−8eV < m3/2 < 1.8× 10−5eV . (7.1)

To obtain this result one has to assume very light scalar particles in the spectrum,
the sgoldstinos.The corresponding diagrams are proportional to the large photino
mass and dominate the total cross-section in the limit of superlight sgoldstinos.
However, since the sgoldstino mass can also be very large in a variety of models,
we performed the same calculation again with heavy sgoldstinos. In this scenario
the resulting bounds are less restrictive because of the lower gravitino luminosity.
Notably, other initial states can give rise to gravitino production rates similar to
the ones via γγ −→ G̃G̃. We showed this in the case of gravitino pair production
via neutrino annihilation νν → G̃G̃. The obtained gravitino luminosity is of the
same order as for photon annihilation with heavy sgoldstinos and we found the
new result

6.0× 10−9eV < m3/2 < 8.0× 10−7eV . (7.2)

In both limiting cases (mS,mP � mγ̃ andmS,mP � mγ̃) we find an excluded mass
interval which covers two orders of magnitude and we can expect similar results for
the intermediate case mS,mP ∼ mγ̃. The upper bound of m3/2 < 8.0× 10−7eV is
our most conservative result. It relies solely on interactions that are part of any
SUGRA theory regardless of the specific model.
In the second part of our analysis we treated the production of single gravitinos in
SN cores. For this to be possible R-parity cannot be conserved and we decided to
include bilinear RPVs to our model. We found new gravitino production channels
and calculated the cross-sections of the processes γγ −→ G̃ν and νν → G̃ν. The
production rates turned out to be negligible compared to the ones due to the
R-parity conserving channels, regardless of the sgoldstino masses.
We conclude that the observation of the SN neutrinos of SN1987A allows us to
exclude a gravitino mass interval covering two orders of magnitude in the superlight
mass regime. But the exact position of this interval depends on the specific model
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and the various possible realizations of the hidden field sector and SUSY breaking.
We also found that bilinear RPV would not affect these limits and only little can
be learned about R-parity from SN observation in this way.
The results could be improved either by future SN observations or by new discoveries
pointing towards specific SUGRA models with superlight gravitinos. A deeper
understanding of SUSY breaking will allow us to set considerably more robust
bounds on the gravitino mass based on SN observations.
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A
Conventions, Notations, Natural

Units and Physical Constants

Conventions and Notations

Spacetime Indices Greek letters µ, ν... denote spacetime indices of four-vectors
and tensors. They can be raised or lowered using the metric tensor. For its signature
we choose

(gµν) = (gµν) =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)
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For the partial derivative we use the notation

∂µ ≡
∂

∂xµ
, ∂µ ≡ gµν∂ν . (A.2)

(Anti-)Symmetrization of Lorentz indices are denoted with brackets,

T(µν) ≡
1
2 (Tµν + Tνµ) , (A.3)

T[µν] ≡
1
2 (Tµν − Tνµ) . (A.4)

In almost every case we use the Minkowski metric ηµν of flat spacetime as our
background.
Furthermore we fix the sign of the four-dimensional Levi-Civita symbol by

ε0123 = −1 . (A.5)

Natural Units

Throughout this thesis we employ natural units. For this we set the speed of light,
the reduced Planck constant and the Boltzmann constant to unity,

c = ~ = kB = 1 . (A.6)

In the case that we want to convert a final result back to SI-units we use the
physical constants from this chapter and the following conversion relations,

Dimension Unit Conversion Factor Value
Length 1eV−1 = 1eV−1~c = 1.97× 10−7m
Mass 1eV = 1eVc−2 = 1.78× 10−36kg
Time 1eV−1 = 1eV−1~ = 6.58× 10−16s
Temperature 1eV = 1eVk−1

B = 1.16× 104 K

We will also use the non-SI energy unit erg,

1erg ≡ 10−7J ≈ 624GeV .
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Physical Constants
We state the relevant physical constants for this thesis [36].

Constant Symbol Value in SI Units
speed of light in vacuum c 299 792 458 m s−1

reduced Planck constant ~ = h/(2π) 1.054 571 628(53)× 10−34 J s
electron charge e 1.602 176 487(40)× 10−19 C

permittivity of free space ε0 8.854 187 817 · · · × 10−12 F m−1

fine-structure constant α = e2

4πε0~c 1/137.035 999 679(94)
Newtonian gravitational constant GN 6.674 28(67)× 10−11 m3 kg−1 s−2

= 6.708 81(67) ~ c (GeV/c2)−2

Fermi coupling constant GF 1.16637(1)× 10−5GeV−2

Boltzmann constant kB 1.380 6504(24)× 10−23 J K−1

weak-mixing angle sin2 θW (MZ) 0.231 16(13)
W± boson mass mW 80.399(23) GeV/c2

Z0 boson mass mZ 91.1876(21) GeV/c2

Instead of the Newtonian constant GN we use

κ ≡ 1
MP

.

Here MP is the reduced Planck mass given by

MP ≡
mP√

8π
, with the Planck mass mP ≡

√
~c
GN

.

In natural units we obtain

κ =
√

8πGN = 4.11× 10−19 GeV−1 . (A.7)
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B
Spinors

B.1. Notations and Transformation Properties

Four-vectors and four-tensors can be defined by their transformation properties
under the Lorentz group or more precisely their matrix representation of SO(3,1).
The same goes for spinors.
We start our discussion of the spinor transformation properties with a complex
2× 2 matrix Λ with det Λ = 1, i.e. Λ ∈ SL(2,C) and a Hermitian 2× 2 matrix P .
The Pauli matrices

σ0 =
1 0

0 1

 , σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 (B.1)
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B. Spinors

form a basis of the space of Hermitian 2× 2 matrices. Therefore we can write1

P =
3∑

µ=0
Pµσ

µ =
P0 + P3 P1 − iP2

P1 + iP2 P0 − P3

 . (B.2)

A transformation of P under SL(2,C) gives us a new Hermitian matrix P ′,

P 7−→ P ′ = ΛPΛ† , (B.3)

which can be expanded as in (B.2),

P ′µσ
µ = ΛPµσµΛ†

⇒ detP ′µσµ = detPµσµ

⇔ P ′
2
0 − P ′

2
1 − P ′

2
2 − P ′

2
3 = P 2

0 − P 2
1 − P 2

2 − P 2
3 .

We see that P µ and P ′µ are connected by a Lorentz transformation, the index µ is
a proper Lorentz index. Any Λ ∈ SL(2,C) corresponds to a Lorentz transformation
and SL(2,C) may be regarded as the group of Lorentz transformations for spinors.

Weyl Two-Spinors A left-handed Weyl-spinor ψ transforms in the (1
2 , 0) repre-

sentation,

ψα 7−→ ψ′α = Λα
βψβ ,

a right-handed Weyl spinor χ in the conjugate (0, 1
2) representation,

χα̇ 7−→ ψ′α̇ = Λ∗α̇β̇χβ̇ .

In order to differentiate between the two representations we employ the Van-der-
Waerden notation [29].
Therefore the left and right-handed spinors are related by Hermitian conjugation,

(ψα)† = ψα̇ , (χα̇)† = χα .

1The summation over µ is not a tensorial operation like aµbµ = ηµνaµbν . The sum is written
explicitly in order to avoid confusion with the summation convention.
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B.1. Notations and Transformation Properties

The tensor εαβ with the components

ε21 = ε12 = 1 , ε12 = ε21 = −1 , ε11 = ε22 = 0

is invariant under SL(2,C),

Λα
βΛγ

δεβδ = εαγ .

It is therefore called the spinor Minkowski metric and can be used to raise and
lower spinor indices,

ψα = εαβψβ , ψα = εαβψ
β ,

whose Lorentz transformations are given by

ψα 7−→ ψ′
α =

(
Λ−1

)
β

αψβ ,

χα̇ 7−→ χ′
α̇ = (Λ∗)−1

β̇
α̇χβ̇ .

The contraction of two anti-commuting Weyl spinors gives us a Lorentz scalar. By
convention the notation is given by

ψχ ≡ ψαχα = εαβψβχα = −εαβχαψβ = εβαχαψβ = χβψβ = χψ ,

ψχ ≡ ψα̇χ
α̇ = εα̇β̇ψα̇χβ̇ = −εα̇β̇χβ̇ψα̇ = εβ̇α̇χβ̇ψα̇ = χβ̇ψ

β̇ = χψ .

We can also raise and lower the spinor indices of the Pauli matrices and therefore
define

σµα̇α ≡ εα̇β̇εαβσµββ̇

⇒ σµ =
1
~σ

 , σµ =
 1

−~σ

 .
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Dirac Bi-Spinors Combining a left-handed with a right-handed spinor
(

1
2 , 0

)
⊕(

0, 1
2

)
we obtain a four-component Dirac bi-spinor,

ΨD =
ψα
χα̇

 .

We adopt the conventions of [73]. The γ-matrices

γµ =
 0 σµ

σµ 0

 (B.4)

satisfy the Clifford algebra

{γµ, γν} = 2gµν . (B.5)

The Feynman slash notation,

/p ≡ γµpµ (B.6)

is used throughout the thesis. The chiral projectors are given by

PL = 1
2
(
1− γ5

)
, and PR = 1

2
(
1+ γ5

)
, (B.7)

where

γ5 = − i

4!ε
µνρσγµγνγργσ = iγ0γ1γ2γ3 =

−1 0
0 1

 . (B.8)

Under Lorentz transformations a Dirac bi-spinor transforms like

Ψ(x) 7→ Ψ′(x) = Λ1/2Ψ(x) ≡ exp
[
− i2ΘµνSµν

]
Ψ(x) . (B.9)

The Lorentz generators are given by

Sµν = 1
2σ

µν , (B.10)
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B.1. Notations and Transformation Properties

where

σµν = i

2 [γµ, γν ] . (B.11)

We define the charge conjugation matrix C,

C = iγ2γ0 =
iσ2 0

0 −iσ2

 (B.12)

as well as the adjoint and the charge conjugate of ΨD,

ΨD ≡ Ψ†Dγ0 =
(
χα ψα̇

)
.

Ψc
D ≡ CΨT

D =
χα
ψ
α̇

 .

The charge conjugation satisfies

C† = CT = C−1 = −C , C−1γµC = −γTµ , C−1γ5C = γ5T . (B.13)

Its action on spinors reads

u(p) = CvT (p) , v(p) = CuT (p) (B.14)

for Dirac and Majorana spinors. A Majorana spinor [71] satisfies the reality
condition ΨM = Ψc

M , hence we write it as

ΨM =
ψα
ψ
α̇

 , (B.15)

ΨM =
(
ψα ψα̇

)
. (B.16)

This can also be written as

v(p) = γ0Cu
∗(p) , u(p) = γ0Cv

∗(p) . (B.17)
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B.2. Spinors in Curved Spacetimes

In the case of General Relativity we deal with curved spacetime. For the treatment
of spinors in curved spacetime we have to get a little more involved and introduce
the formulation of GR in terms of the vielbein [74]. This formalism is necessary
for the derivation of graviton fermion vertices, see app. C.

Vielbein, Spin Connection and Covariant Derivative of Spinors

At any point of spacetime, we are able to choose a frame of reference, such that
the local metric is that of flat spacetime ηab2. The two systems are connected by
the vielbein eµa and its inverse eµa ,

eµaeν
a = δµν , eµ

aeµb = δab . (B.18)

The vielbein connects the metric of the globally curved spacetime with the local
Minkowski metric,

ηab = gµνe
µ
ae
ν
b , gµν = eµ

aeν
bηab . (B.19)

For this reason the vielbein is sometimes referred to as the ‘square root’ of the
metric. We raise and lower flat indices with ηab and curved ones with gµν .
The covariant derivative of a tensor in the coordinate basis is given by the Christoffel
symbols,

DµV
α = ∂µV

α + ΓανµV ν . (B.20)

In our flat frame we have to use the spin connection ωµab instead of the Christoffel
symbols3,

DµV
a = ∂µV

a − ωµacV c . (B.21)

2In this section we will always distinct between Einstein indices µ, ν... and flat indices a, b, ....
3The overall sign of the spin connection can differ from reference to reference.
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B.2. Spinors in Curved Spacetimes

We will need the spin connection in particular to write a covariant derivative of
spinors, hence the name. By comparing (B.20) to (B.21) one can show that the
spin connection is related to the Christoffel symbols by

Γνµλ = eνa∂µeλ
a − eνaeλbωµab , (B.22)

⇔ ωµ
a
b = eλb

(
∂µeλ

a − eνaΓνµλ
)
. (B.23)

This can be re-expressed as the so-called ’tetrad postulate’,

Dµeν
a ≡ ∂µeν

a − eσaΓσµν − ωµabeνb = 0 , (B.24)

which leads directly to metric compatibility, Dµgνλ = 0.
We can express the spin-connection as a function of the vielbein only,

ωµab = 1
2e

ν
a (∂νeµb − ∂µeνb) + 1

2e
ν
b (∂µeνa − ∂νeµa)

+ 1
2e

ρ
ae
σ
b (∂ρeσc − ∂σeρc) ecµ . (B.25)

Covariant Derivative of a Fermion Field In GR the Lorentz transformation
parameter θµν in (B.9) become spacetime dependent. As usual the partial derivative
now transforms like

∂µΨ(x) 7→ ∂µΨ′(x) 6= Λ1/2∂µΨ(x) , (B.26)

and we need a covariant derivative including a connection [75]

DµΨ(x) = (∂µ + Ωµ) Ψ(x) , (B.27)
with Ωµ 7→ Λ1/2(x)ΩµΛ−1

1/2(x)−
(
∂µΛ1/2(x)

)
Λ−1

1/2(x) , (B.28)

such that

DµΨ(x) 7→ Λ1/2(x)DµΨ(x) . (B.29)
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B. Spinors

The connection is given by

Ωµ = i

2ωµ
abSab . (B.30)

The covariant derivative of a spinor field is correspondingly

DµΨ(x) =
(
∂µ + i

4ωµ
abσab

)
Ψ(x) . (B.31)
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C
Linearized Gravity and Graviton

Feynman Rules

C.1. The Weak-Field-Approximation of Gravity
In situations, where gravitational interactions are weak, we may neglect non-linear
contributions from the Einstein-Hilbert action. This is called linearized gravity.
Starting from the Lagrangian of some field theory we insert the spacetime depen-
dent metric gµν(x) for any Minkowski metric ηµν , promote partial derivatives to
covariant derivatives and replace d4x by the covariant volume element √−gd4x.
We choose some solution of the Einstein equations as our classical background, for
this we always choose the Minkowski metric ηµν of flat spacetime, and consider
small fluctuations or quantum contributions [76]. This is called the weak-field-
approximation

gµν = ηµν + 2κhµν =⇒ gµν = ηµν − 2κhµν +O(κ2) , (C.1)
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C. Linearized Gravity and Graviton Feynman Rules

where κ =
√

8πGN and hµν is the graviton field 1. We assume that this field is
symmetric in its indices. It also appears hidden in the metric’s and vielbein’s
determinant,

√
−g = e = 1 + κh+O(κ2) , where h ≡ ηµνh

µν . (C.2)

For fermionic fields it is necessary to perform the weak-field-approximation in terms
of the vielbein as well, we write

eµ
a = δaµ + κcµ

a +O
(
κ2
)
, (C.3)

eµa = δµa − κcµa +O
(
κ2
)
. (C.4)

Combining the equations (B.19) and (C.1) we find

gµν = eµ
aeν

bηab = ηµν + κ(cµν + cνµ) +O
(
κ2
) != ηµν + 2κhµν +O(κ2) . (C.5)

Therefore the graviton field is given by hµν = 1
2 (cµν + cνµ) = c(µν). We are only

interested in the symmetric part of cµν and can always perform the substitution
[76]

cµν 7→ c(µν) = hµν . (C.6)

Alternatively and equivalently we could just impose the symmetry cµν = cνµ, which
is called the Lorentz symmetric gauge [78].
At last we can expand the spin-connection (B.25) as

ωµab = κ (∂ahµb − ∂bhµa) +O(κ2) . (C.7)

The field hµν describes the spin-2 graviton field. In this chapter we want to derive
the relevant Feynman rules of the graviton’s interactions with matter.

1Please note that some authors define the gravitational coupling κ as
√

32πGN [76] or
√

16πGN
[77] instead of (A.7). Also some authors define the graviton field with an additional factor of√

2, compared to our hµν [77].
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C.2. Graviton Propagator

C.2. Graviton Propagator

We will only state the graviton’s propagator in the harmonic (or De Donder) gauge
without the derivation, which can be found e.g. in [77].

q
εµν εαβ = i

2
(ηµαηνβ + ηµβηνα − ηµνηαβ)

q2 , (C.8)

Compared to Veltman’s famous lecture notes [77] we have an additional factor of 1
2

caused by the different definitions of the graviton field,

hµν = 1√
2
hVeltman
µν . (C.9)

C.3. Graviton Interactions with Matter

In order to derive the vertices of the graviton interactions to matter we substitute the
global curved spacetime metric gµν and its determinant appearing in a Lagrangian
with (C.1) and (C.2).
As an alternative derivation or a consistency check we can also write the interaction
part as

−κhµνT µν +O
(
κ2
)
, (C.10)

where T µν is the symmetric Hilbert energy momentum tensor (EMT)

T µν = 2√
−g

δL
√
−g

δgµν
. (C.11)

For a particles without spin this tensor corresponds to the canonical EMT coming
from the Noether theorem,

Θµν = ∂Lmatter

∂(∂νΦi)
∂µΦi − gµνLmatter ,

where i runs over the matter fields in the Lagrangian Lmatter. In general the
canonical EMT does not need need to be symmetric nor gauge invariant. It can
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C. Linearized Gravity and Graviton Feynman Rules

however be ’fixed’ by a method of Belinfante and Rosenfeld [79] which is described
e.g. in [73, 80]. For this terms are added to Θµν which do not spoil the conservation
law and leave us with a symmetric and gauge invariant tensor,

T µν = Θµν + ∂λK
µνλ , with Kµνλ = −Kµλν . (C.12)

But it should be stated here that the correct symmetric EMT can also be derived
from Noether’s theorem alone [81].

We will now work out four examples, which clarify the derivation of graviton
vertices, starting with the simplest. Note that in all of the following vertices the
momenta are assumed to flow into the vertex as usual.

Real Scalar Field

The Lagrangian of a massive real scalar field φ in curved spacetime is given by

L = e
1
2∂µφ∂

µφ− em
2
s

2 φ2 . (C.13)

For scalar fields we find that T µν = Θµν , since

Θµν = e∂µφ∂νφ+ 1
2eg

µν
(
m2φ2 − ∂λφ∂λφ

)
(C.14)

is symmetric already.
Now we insert (C.1) and (C.2) into the Lagrangian and find

L = 1
2∂µφ∂

µφ− m2

2 φ2 + κ

2h
(
∂µφ∂

µφ−m2
sφ

2
)

(C.15)

− κhµν∂µφ∂νφ+O
(
κ2
)

= L(0) − κhµν
[
∂µφ∂νφ+ 1

2ηµν
(
m2
sφ

2 − ∂λφ∂λφ
)]

+O
(
κ2
)

(C.16)

≡ L(0) − κhµνTµν +O
(
κ2
)
. (C.17)
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C.3. Graviton Interactions with Matter

Here we defined L(0) ≡ L|κ=0. The term in the brackets in (C.16) is exactly the
canonical EMT (C.14). The vertex rule is

p2

p1

q
µν = iκ

[
p1µp2ν + p1νp2µ − ηµν

(
p1 · p2 +m2

s

)]
. (C.18)

Vector Field

We start from the Lagrangian of the electromagnetic field,

√
−gL = −1

4
√
−gFµνF µν = −1

4
√
−ggµαgνβFµνFαβ . (C.19)

The canonical EMT reads

Θµν =e ∂L
∂(∂νAλ)

∂µAλ − egµνL

=eF λν∂µAλ + e
1
4g

µνFαβF
αβ , (C.20)

which is obviously not symmetric in its two indices. We use Belinfante’s method
to fix this by adding the term −F λν∂λA

µ and find the symmetric EMT of the
electromagnetic field in flat spacetime,

Tµν = ηαβFµαFβν + 1
4ηµνFαβF

αβ (C.21)

= ηµα∂βA
α∂νA

β + ηνβ∂µA
α∂αA

β − ηαβ∂µAα∂νAβ − ηµαηνβ∂λAα∂λAβ

+ 1
2ηµν

(
ηαβ∂

λAα∂λA
β − ∂βAα∂αAβ

)
. (C.22)
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C. Linearized Gravity and Graviton Feynman Rules

For the interaction vertex with the graviton we expand (C.19) using (C.1) and
(C.2).

√
−gL = −1

4
√
−ggµαgνβFµνFαβ

= L(0) − κ

4hFαβF
αβ − κ

2
(
ηνβhµα − ηµαhνβ

)
FαβFµν +O

(
κ2
)

= L(0) − κhµν
[
ηαβFµαFβν + 1

4ηµνFαβF
αβ
]

+O
(
κ2
)

≡ L(0) − κhµνTµν +O
(
κ2
)
. (C.23)

Again we recognize the term in the brackets as the EMT (C.21). By looking at
(C.22) we can read of the vertex rule.

p2

p1

q

β

α

µν =

iκ

[
ηµαp1βp2ν + ηναp1βp2µ + ηνβp1µp2α + ηµβp1νp2α

− ηαβ (p1µp2ν + p1νp2µ)− (p1 · p2)(ηµαηνβ + ηναηµβ)

+ ηµν ((p1 · p2)ηαβ − p1βp2α)
]
. (C.24)

This is in agreement with [55] considering their deviating definition of the graviton
field, see (C.9).

Dirac Field

For graviton vertices with fermionic fields we have to employ the formulation of
GR in terms of the vielbein introduced in sec. B.2 and its weak field approximation,
see sec. C.1 and [82]. For the derivation of the fermion-graviton coupling the
correct Lagrangian of a massive spin 1

2 field takes the form [83]

√
−gLDirac =

√
−g

(
i

2ψe
µ
aγ

a
↔
Dµψ −mfψψ

)
. (C.25)
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C.3. Graviton Interactions with Matter

Here we define ψ
↔
Dµψ = ψDµψ −Dµψψ and express it as,

ψγν
↔
Dµψ = ψγν

(
∂µ + i

4ωµ
abσab

)
−
[(
∂µ + i

4ωµ
abσab

)
ψ
]†
γ0γνψ

= ψγν
↔
∂µψ + i

4ωµ
abψ {γν , σab}ψ . (C.26)

Next we substitute (B.31),(C.2), (C.4) and (C.7) to obtain the Lagrangian,

√
−gLDirac =

(
i

2ψγ
λ
↔
∂λψ −mfψψ

)
− κhµν

[
i

2ψγ(ν
↔
∂µ)ψ − ηµν

(
i

2ψγ
λ
↔
∂λψ −mfψψ

)]
+ κ

4∂
λhµνψ {γµ, σνλ}ψ +O(κ2) . (C.27)

The last term vanishes due to the fact that the graviton field is symmetric and

{γµ, σνλ} = −{γν , σµλ} , (C.28)

which can be shown by a short calculation using (B.5). From (C.27) we read off
the vertex,

p1

p2

q
µν = iκ

2
(
γ(µ(p1 − p2)ν) + ηµν

[
(/p2 − /p1)− 2mf

])
.

Rarita-Schwinger Field

The Lagrangian of the spin-3
2 field in curved spacetime is given by

√
−gL = −1

2ε
µνκλψµγ

5γν
↔
Dκψλ +

√
−g i2m3/2ψµσ

µνψν , (C.29)

where the covariant derivative is given by the spin connection,Dµψλ =
(
∂µ + i

4ωµ
abσab

)
ψλ,

see (B.31).
Since we deal with on-shell gravitinos the field equation (4.4) will help us to simplify
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C. Linearized Gravity and Graviton Feynman Rules

our vertex factor,

ψµσ
µνψν = −igµνψµψν . (C.30)

With the insertion of the covariant derivative and graviton field, we obtain

√
−gL = L(0) − κ

2 εαρβνh
µνψ

α
γ5γµ

↔
∂ρψβ − i

4∂
ρhµνεαλβµψ

α
γ5
{
γλ, σνρ

}
ψβ

+ κm3/2

2 hµν
(
ηµνηαβψ

α
ψβ − 2ηαµηνβψ

α
ψβ
)

+O(κ2) . (C.31)

Here we not only performed the steps shown in (C.26) but also used the relation
[γ5, σµν ] = 0. Completing this appendix we read off the vertex factor,

p2

p1

q

β

α

µν =

κ

2

[
εαρβ(µγ

5γν)(p2 − p1)ρ + i

2εαλβ(µγ
5
{
γλ, σν)ρ

}
qρ

+ 2im3/2
(
ηµνηαβ − 2ηα(µην)β

) ]
.

This vertex coincides with the one given in [55], it is however important to bear in
mind that these authors employ the Veltman definition of the graviton field, see
(C.9).
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D
Kinematics and Cross-Sections of

Two-Body-Scatterings

Kinematics

p2

p1

k2

k1

m2

m1

M2

M1

Figure D.1.: 2 −→ 2 Scattering

We describe the general kinematics of 2 −→ 2
scatterings in the center-of-mass frame of reference
defined by ∑i ~pi = ~0. The setting is depicted in
figure D.1.We start by writing the four momenta
as

p1 =
E1

~p

 , p2 =
E2

−~p

 , (D.1)

k1 =
E3
~k

 , k2 =
E4

−~k

 . (D.2)
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The norm of the spatial momenta are given by

p ≡ |~p| = 1
2

√
m4

1 + (s−m2
2)2 − 2m2

1(s+m2
2)

s
, (D.3)

k ≡
∣∣∣~k∣∣∣ = 1

2

√
M4

1 + (s−M2
2 )2 − 2M2

1 (s+M2
2 )

s
, (D.4)

and the energies by

E1 = 1
2

√
(m2

1 −m2
2 + s)2

s
, E2 = 1

2

√
(m2

2 −m2
1 + s)2

s
, (D.5)

E3 = 1
2

√
(M2

1 −M2
2 + s)2

s
, E4 = 1

2

√
(M2

2 −M2
1 + s)2

s
. (D.6)

In calculations of scattering cross-sections we will need the scalar products of the
momenta,

p1 · p1 = m2
1 , p2 · p2 = m2

2 , k1 · k1 = M2
1 , k2 · k2 = M2

2 , (D.7)
p1 · p2 = E1E2 + p2 , p1 · k1 = E1E3 − pk cos θ , (D.8)
p1 · k2 = E1E4 + pk cos θ , p2 · k1 = E2E3 + pk cos θ , (D.9)
p2 · k2 = E2E4 − pk cos θ , k1 · k2 = E3E4 + k2 , (D.10)

where θ = ](~p,~k).

Kinematics of Gravitino Pair Production With the massless photons or almost
massless neutrinos, m1 = m2 = 0 and the gravitinos M1 = M2 = m3/2, we obtain

p1 · p1 = p2 · p2 = 0 , k1 · k1 = k2 · k2 = m2
3/2 , (D.11)

p1 · p2 = s

2 , k1 · k2 = s

2 −m
2
3/2 , (D.12)

p1 · k1 = p2 · k2 = s

4 −
√
s

2 k cos θ , (D.13)

p1 · k2 = p2 · k1 = s

4 +
√
s

2 k cos θ , (D.14)
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with k =
√

s
4 −m

2
3/2. In using the equivalence theorem later on, we will treat the

massive gravitino as a massless goldstino. With k =
√
s

2 the following, more simple
relations hold,

p1 · p1 = p2 · p2 = k1 · k1 = k2 · k2 = 0 , p1 · p2 = s

2 , k1 · k2 = s

2 , (D.15)

p1 · k1 = p2 · k2 = s

4 (1− cos θ) , p1 · k2 = p2 · k1 = s

4 (1 + cos θ) . (D.16)

Unpolarized Scattering Cross-Section

We start with the expression for the cross-section of a general scattering process
p1p2 −→ k1k2 [73],

dσ = 1
2p0

12p0
2|v1 − v2|

d3k1

(2π)3 2k0
1

d3k2

(2π)3 2k0
2

× (2π)4δ(4)(p1 + p2 − k1 − k2)|M(p1, p2 → k1, k2)|2 , (D.17)

The line over the squared amplitude indicates, that we already summed over the
final and took the average of the initial spins. The relative velocity appearing in
the denominator is given [84] by

|v1 − v2| =
1

E1E2

√
(p1 · p2)2 −m2

1m
2
2 , (D.18)

which becomes

|v1 − v2| =
|p|(E1 + E2)

E1E2
= |p|
E2

+ |p|
E1

(D.19)

in the center-of-mass system.
When calculating total cross-sections by integration of (D.17), we avoid counting
identical final states several times by dividing by Nid!, where Nid is the number of
identical final state particles, otherwise we would count physically indistinguishable
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events more than once.

σtotal = 1
Nid!

1
2p0

12p0
2|v1 − v2|

∫ d3k1

(2π)3 2k0
1

∫ d3k2

(2π)3 2k0
2

(2π)4δ(4)(p1 + p2 − k1 − k2)|M(p1, p2 → k1, k2)|2 . (D.20)

In the centre-of-mass frame these expressions simplify to

(
dσ
dΩ

)
CM

= 1
2p0

12p0
2|vA − vB|

∣∣∣~k1

∣∣∣
(2π)24ECM

|M(p1, p2 → k1, k2)|2 . (D.21)

and

σtotal = 1
Nid!

∫
dΩ 1

2p0
12p0

2|vA − vB|

∣∣∣~k1

∣∣∣
(2π)24ECM

|M(p1, p2 → k1, k2)|2 . (D.22)

Cross-Section of Gravitino Pair Production In the case of the reaction γγ →
G̃G̃ we obtain

σ(γγ → G̃G̃) = 1
2

∫ π

0
dθ k sin θ

16πs3/2

∣∣∣M(γγ → G̃G̃)
∣∣∣2 for m3/2 6= 0 , (D.23)

σ(γγ → G̃G̃) = 1
2

∫ π

0
dθ sin θ

32πs
∣∣∣M(γγ → G̃G̃)

∣∣∣2 for m3/2 = 0 , (D.24)

where k =
√

s
4 −m

2
3/2.
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E
Formulae for Ideal Quantum Gases

For the computation of the gravitino luminosity in the SN core, we have to describe
the initial state particles. The photons and even the neutrinos are in thermal
equilibrium and can be described as an ideal quantum gas. In this section we state
the relevant relations [85].
The average number of (identical) particles in a single-particle state i is given by
the Fermi-Dirac or Bose-Einstein distribution function,

ff/b(~p) ≡


(
exp

[
Ei−µ
T

]
+ 1

)−1
, (Fermi-Dirac) ,(

exp
[
Ei−µ
T

]
− 1

)−1
, (Bose-Einstein) .

(E.1)
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E. Formulae for Ideal Quantum Gases

µ is denoting the chemical potential of the relevant particles.
With this functions we can express the number and energy density as

nf/b = g

(2π)3

∫
d3pff/b(~p) , (E.2)

= g

2π2

∫ ∞
m

√
E2 −m2

exp
[
Ei−µ
T

]
± 1

E2dE , (E.3)

ρf/b = g

(2π)3

∫
d3pff/b(~p)E(~p) , (E.4)

= g

2π2

∫ ∞
m

√
E2 −m2

exp
[
Ei−µ
T

]
± 1

EdE , (E.5)

where we used E2 = |~p|2 +m2.

Relativistic Limit For T � m and T � µ we obtain

ρ =


π2

30gT
4 , (Bose-Einstein) ,

7
8
π2

30gT
4 , (Fermi-Dirac) ,

(E.6)

n =


ζ(3)
π2 gT

3 , (Bose-Einstein) ,
3
4
ζ(3)
π2 gT

3 , (Fermi-Dirac) .
(E.7)

Here the Riemann zeta functions occurs. We just state that ζ(3) ≈ 1.20206.
This leads us to the average energy per particles,

〈E〉 ≡
ρf/b
nf/b

=


π4

30ζ(3)T ≈ 2.7T , (Bose-Einstein) ,
7π4

180ζ(3)T ≈ 3.2T , (Fermi-Dirac) .
(E.8)

Non-relativistic Limit For m � T we find no difference between bosons and
fermions,

n = g
(
mT

2π

)3/2
exp [−(m− µ)/T ] , (E.9)

ρ = mn . (E.10)
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F
Calculation of Cross-Sections with

FeynCalc

We always use the Mathematica [70] package FeynCalc [69] for the squaring of long
amplitudes and the calculation of cross-sections. Here we present the framework of
such an Mathematica notebook as an example.
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Calculation of Cross-Sections with FeynCalc

Preamble

Load FeynCalc:

$LoadFeynArts = False;

<< HighEnergyPhysics`FeynCalc`

Feynman Rules, Kinematics, Assumptions and necessary Substitution Rules

$Assumptions =

Κ > 0 && m3�2 > 0 && G > 0 && s > 0 && t > 0 && u > 0 && mphotino > 0 && Mp > 0 && c > 0 && d > 0;

GravitonPropagator@Μ_, Ν_, Α_, Β_, q_D :=

I

2 ScalarProduct@q, qD
HMT@Μ, ΑD MT@Ν, ΒD + MT@Ν, ΑD MT@Μ, ΒD - MT@Μ, ΝD MT@Α, ΒDL;

FermionPropagator@p_, m_D :=
I H DiracSlash@pD + mL

ScalarProduct@p, pD - m2
;

ScalarPropagator@p_, m_D :=
I

ScalarProduct@p, pD - m2
;

PhotonPropagator@Μ_, Ν_, p_D :=
- I MT@Μ, ΝD

ScalarProduct@p, pD
;

polarizationsums =

8FCI@Pair@LorentzIndex@Α_D, Momentum@Polarization@x_, äDDD Pair@LorentzIndex@Β_D,
Momentum@Polarization@x_, -äDDD :> PolarizationSum@Α, ΒDD<;

kinematicsET = :ScalarProduct@p1, p1D ScalarProduct@p2, p2D ScalarProduct@k1, k1D

ScalarProduct@k2, k2D ® 0, ScalarProduct@p1, p2D ScalarProduct@k1, k2D ®
s

2

,

ScalarProduct@p1, k1D ScalarProduct@p2, k2D ®
s

4

H1 - Cos@ΦDL,

ScalarProduct@p1, k2D ScalarProduct@p2, k1D ®
s

4

H1 + Cos@ΦDL>;

kinematics = :ScalarProduct@p1, p1D ScalarProduct@p2, p2D ® 0,

ScalarProduct@k1, k1D ScalarProduct@k2, k2D ® m3�2
2
,

ScalarProduct@p1, p2D ®
s

2

, ScalarProduct@k1, k2D ®
s

2

- m3�2
2
,

ScalarProduct@p1, k1D ScalarProduct@p2, k2D ®
s

4

-
s

2

s

4

- m3�2
2
Cos@ΦD,

ScalarProduct@p1, k2D ScalarProduct@p2, k1D ®
s

4

+
s

2

s

4

- m3�2
2
Cos@ΦD>;

PolarizationTensorV@Μ_, Ν_, p_, m_D := -HGS@pD - mL. MT@Μ, ΝD -
FV@p, ΜD FV@p, ΝD

m
2

-

1

3

DiracMatrix@ΜD -
FV@p, ΜD

m
2

GS@pD . DiracMatrix@ΝD -
FV@p, ΝD

m
2

GS@pD ;



PolarizationTensorU@Μ_, Ν_, p_, m_D := -HGS@pD + mL. MT@Μ, ΝD -
FV@p, ΜD FV@p, ΝD

m
2

-

1

3

DiracMatrix@ΜD -
FV@p, ΜD

m
2

GS@pD . DiracMatrix@ΝD -
FV@p, ΝD

m
2

GS@pD ;

replaceindices = 8Α ® Α2, Β ® Β2, Γ ® Γ2, ∆ ® ∆2, Μ ® Μ2, Ν ® Ν2, Ρ ® Ρ2, Σ ® Σ2,

Λ ® Λ2, Ξ ® Ξ2, Ω ® Ω2, i1 ® i12, i2 ® i22, i3 ® i32, i4 ® i42, j1 ® j12, j2 ® j22,

l1 ® l12, l2 ® l22, m1 ® m12, m2 ® m22, n1 ® n12, n2 ® n22, o1 ® o12, o2 ® o22<;

Amplitudes:

Write the amplitudes here:

M = Amplitude;

Cross-Section

Insert the amplitudes, the number of identical particles in the final state and the correct weight of the 

spin average and decide if you want to use the ET:

TimeS = SessionTime@D;
IPFS = 2;H*Identical Particles in the Final State*L
M

H*J 2

3m3�22
FV@k1,ΝDFV@k2,ΜDNM�.8POT®0<*L

% * ComplexConjugate@% �. replaceindicesD �� Expand;

"Averaging over the Photon Spins..."

1

4

%% ��. polarizationsums �� Contract;

Time1 = SessionTime@D;
Row@8"Done H", Time1 - TimeS,

"sL. Insert aL Completion Relation and bL contract the Result:"<D
FermionSpinSum@%%% �� ExpandDH*��FullSimplify*L;
H*%��Contract��FullSimplify;*L
Time2 = SessionTime@D;
Row@8"Overall Time: H", Time2 - Time1, "sL. Substitute the Polarization Tensor:"<D
%%% �. 8H-POT + DiracGamma@Momentum@k1DDL -> PolarizationTensorV@Ν, Ν2, k1, m3�2D,

HPOT + DiracGamma@Momentum@k2DDL -> PolarizationTensorU@Μ2, Μ, k2, m3�2D<;
Row@8"Done. Calculating Traces..."<D
%% �. DiracTrace ® Tr �� Contract;

Time3 = SessionTime@D;
Row@8"Done H", Time3 - Time2, "sL. Substituting Kinematics..."<D
%%% �. kinematics �� Simplify;

Time4 = SessionTime@D;
Row@8"Done H", Time4 - Time3, "sL. Integrating..."<D

2     Untitled-1



IntegrateB
Sin@ΦD
16 Π s

3�2

s

4

- m3�2
2

%%%, 8Φ, 0, Π<, GenerateConditions ® FalseF;

Time5 = SessionTime@D;
Row@8"Done H", Time5 - Time4, "sL. The result for the Cross Section:"<D

SimplifyBCrossSection =
1

Factorial@IPFSD
%%%, TimeConstraint ® 600F �� StandardForm

Row@8"Series Expansion for light gravitinos:"<D
FullSimplify@Series@%%, 8m3�2, 0, -4<D �� Normal,

Assumptions ¦ s > 0 && mphotino > 0D �� StandardForm

TimeE = SessionTime@D;
Row@8"Overall Time: H", TimeE - TimeS, "sL."<D
NotebookSave@D;
H*Quit@D;*L

Untitled-1    3
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