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1. Introduction

At the end of the 20th century, J. Bros and D. Buchholz proposed an axiomatic pro-
gram for the study of structural properties of thermal correlation functions in a model
independent Wightman-like setting, aiming to show the validity and consistency of the
perturbative real- and imaginary-time approaches to thermal quantum field theory [8].
The basic idea in their work is to view the KMS condition and its stronger form, the
relativistic KMS condition [10] as the thermal equilibrium analogon to the relativistic
spectrum condition of vacuum theories, which allows the study of correlation functions
in terms of their analyticity properties.

Among their findings is that there holds a thermal version of the Källén-Lehmann rep-
resentation, allowing to expand thermal two-point function into free thermal two-point
functions of varying masses. This representation, referred to as the Bros-Buchholz ex-
pansion in this work, provides the basis for a possible answer to the conceptual question
of what massive, particle-like excitation in a thermal setting should be, as well as to
the subsequent mathematical question of how to infer the particle content of a given
thermal theory [7],[8]. In the vacuum case these questions are answered by Wigner’s
criterion, which identifies particles with irreducible representation of the Poincaré group
[2]. Here, the particle content of a given vacuum theory is encoded in discrete mass-shell
contributions to the Fourier transformed two-point function.
A result by H. Narnhofer, M. Requardt and W. Thirring states that an adaption of the
Wigner criterion for thermal theories, ascribing particles to dispersion laws defined by
discrete contributions to the Fourier transformed two-point function, is only meaningful
in the case of trivial interaction, due to the dissipative effects of an omnipresent ther-
mal background [5]. A particle criterion proposed by J. Bros and D. Buchholz solves
these difficulties by taking into account the anticipated damping effects of a thermal
background on the propagation of particle-like excitations. Such a criterion is not only
interesting from a conceptual point of view, but may also have concrete applications.
Under “normal” conditions quarks are only found in spatially confined pairs or triplets;
single quarks alone in space cannot exists. As a consequence, there is no a priori (Wigner)
concept of quarks as massive particles. However, experimental evidence suggests the ex-
istence of a deconfinement phase, in which quarks and gluons are no longer in a bound
state [18]. This phase only emerges at high temperatures and the proposed criterion
may give an interpretation of quarks as massive particles in such high energy scenarios.

Though the Bros-Buchholz criterion is well motivated, no fully interacting theory exist
in four space-time dimensions to which it could be applied [13]. However, the authors
showed that the leading order contribution to two-point functions at asymptotic times
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stems from the presence of massive particles and exploited this insight to compute how
such particles would propagate through a thermal background for a class of effective
models with polynomial interaction [9]. Their findings exhibit the features one might
expect from particles traveling through a dissipative background.

In recent times, C. Gérard and C. Jäkel constructed a class of full fledged thermal theo-
ries for polynomial interactions in two space-time dimensions [11] and it is of interest to
test the formalism of J. Bros and D. Buchholz in these theories. In order to do this it is
necessary to extend their formalism to the said number of dimensions. This is the sub-
ject of the work at hand. In addition to the proof of the two-dimensional Bros-Buchholz
expansion, this thesis contains a study of asymptotic dynamics of effective theories in
analogy to [9] which may serve as a starting point for comparing the dissipative propa-
gation in effective and fully developed theories. In the following an outline of the thesis
is given.

Chapter 2 is devoted to setting a notational convention and stating some well-known
facts on mathematical objects used throughout this thesis. In addition, an overview of
the used quantum field theoretic framework is given.
Chapter 3 contains the proof of the Bros-Buchholz expansion in two space-time dimen-
sions. Some properties of the “expansion coefficients” are studied and the Bros-Buchholz
particle criterion is stated and motivated.
Chapter 4 is dedicated to the study of time-asymptotics of thermal correlation func-
tions. Their asymptotic structure is captured in an algebra which admits KMS states
for arbitrary positive temperatures.
Chapter 5 makes use of the condition of asymptotic compatibility to single out those
KMS states which fulfill the field equation of an underlying effective model in an asymp-
totic sense. In turn, this helps infer the effects of a thermal background on the propa-
gation of massive particles in effective models.
Chapter 6 concludes the discussion of effective theories by translating the established
results into the language of retarded, advanced, time-ordered and anti-time-ordered
propagators used in other approaches to thermal quantum field theory.
Chapter 7 returns to original motivation for extending the formalism by J. Bros and
D. Buchholz to two dimensions, namely its application to the models of C. Gérard and
C. Jäkel, and offers a sketchy outline of how this application might be performed.
Appendices A-C cover some of the mathematical tools used throughout this work and
provide proofs deemed too lengthy or uninstructive to be placed in the main text.
Appendix D discusses in detail the quantum field theoretical framework employed in
this thesis.
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2. Preparation

2.1. Preliminaries

The goal of this section is to introduce a variety of mathematical objects and to set a
notational convention to be used throughout this thesis. Fundamental facts about these
objects are stated here so that they may later be employed in a non-digressive manner.

2.1.1. Units

Natural (Planck) units are used. Of relevance are c � 1, ~ � 1 and kB � 1, where
c, ~ and kB denote the speed of light, reduced Planck constant and Boltzmann constant
respectively.

2.1.2. Minkowski Space

The pn � 1q-dimensional Minkowski space Mn�1 is Rn�1 endowed a non-degenerate
symmetric bilinear form η of signature p1, nq.
By Sylvester’s Inertia Theorem there exist bases pejqj�0,...,n of Rn�1 such that

ηpej, ekq �

$'&'%
0, otherwise

1, j � k � 0

�1, j � k ¡ 0 .

A choice of such a basis is called a Lorentz frame. With respect to a fixed Lorentz
frame, an element in Mn�1 is written as

x � px,xq ,

where

x � ηpx, e0q and x �
ņ

j�1

xjej, xi � �ηpx, eiq .

x is called the time component and x the space component of x. With this con-
vention it is

ηpx, yq � x y � x � y � x y �
ņ

j�1

xj yj .
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ηpx, xq is called Lorentz square of x P Mn�1 and will be denoted by x2 to lighten
the notation. Similarly, xy is written instead of ηpx, yq when there is little danger of
confusion. A vector x P Mn�1 is called

timelike ô x2 ¡ 0 ,

spacelike ô x2   0 ,

lightlike ô x2 � 0 .

Two vectors x, y P Mn�1 are called spacelike separated :ô
x� y is spacelike.
Two subsets X, Y � Mn�1 are called spacelike separated :ô
@x P X, y P Y : x� y is spacelike.
The notation x ' y, X ' Y is used to denote spacelike separation.
The cones V �, V � in Mn�1 defined by

V � :� t x P Mn�1 |x is timelike, x ¡ 0 u ,
V � :� t x P Mn�1 |x is timelike, x   0 u

are called forward and backward light-cone respectively.

Throughout this work n denotes the number of spatial dimensions in physical contexts.

2.1.3. The Poincaré Group

Definition 2.1. The pn � 1q-dimensional Lorentz group Ln�1 is the subgroup of
Gln�1pRq leaving the bilinear form η invariant:

@Λ P Ln�1, x, y P Mn�1 : ηpΛx,Λyq � ηpx, yq .
Elements of the Lorentz group have determinant �1. The subgroup of the Lorentz group
of elements with determinant �1 and leaving the sign of the time component unchanged
is called proper orthochronous Lorentz group and is denoted by L �,Ò

n�1.
In a given Lorentz frame, the 2-dimensional Lorentz group is generanted by spatial
reflections px,xq ÞÑ px,�xq, temporal reflections px,xq ÞÑ p�x,xq and boosts of rapidity
θ P R �

cosh θ � sinh θ
� sinh θ cosh θ



.

The 2-dimensional proper orthochronous Lorentz group only consists of boosts.

Definition 2.2. The pn � 1q-dimensional Poincaré group Pn�1 � Ln�1 
 Rn�1 is a
semi-direct product of the pn � 1q-dimensional Lorentz group and Rn�1 defined by its
action on Mn�1:

@ pΛ, aq P Pn�1, x P Mn�1 : pΛ, aq � x :� Λx� a .

Analogously, the pn� 1q-dimensional proper orthochronous Lorentz group is defined to
be P�,Ò

n�1 � L �,Ò
n�1 
 Rn�1.
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2.1.4. Schwartz Space

Definition 2.3. The Schwartz space on Rn is defined to be

SpRnq :� tϕ P C8pRnq | @α, β P Nn
0 : ||ϕ||α,β   8u ,

where ||ϕ||α,β :� supxPRn
��xαpBβϕqpxq�� and xα � xα1

1 . . . xαnn , Bβ � Bβ1

1 . . . Bβnn for mul-
tiindices α � pα1, . . . αnq, β � pβ1, . . . βnq are the Schwartz semi-norms. C8pRnq
denotes the space of smooth, complex valued function on Rn.

Equipped with the initial toplogy with respect to the family of semi-norms p||�||α,βqα,βPNn0 ,
SpRnq is a Fréchet Space.
SpRnq is closed under addition, pointwise multiplication and convolution: for ϕ, ψ P
SpRnq the maps

x ÞÑ pϕ� ψqpxq :� ϕpxq � ψpxq ,
x ÞÑ pϕ � ψqpxq :� ϕpxq � ψpxq ,
x ÞÑ pϕ � ψqpxq :�

»
Rn

dy ϕpyqψpx� yq ,
x ÞÑ qϕpxq :� ϕp�xq

lie also in SpRnq. Elements of SpRnq are called Schwartz functions. The closed
subspace of real valued Schwartz functions is denoted by SRpRnq.

2.1.5. Test Functions

Definition 2.4. The space of test functions on Rn is defined to be

DpRnq :� tϕ P C8pRnq | supppϕq is compact u

equipped with the topology of uniform convergence of all derivatives on compact sets.
This topology is the initial topology with respect to the family of semi-norms p||�||α,Cqα,C ,
where C � Rn compact, α P Nn

0 and

||ϕ||α,C :� sup
xPC

|Bαϕ| .

DpRnq is a dense subspace of SpRnq and the inclusion is continuous.

2.1.6. Distributions

Definition 2.5. The space of distributions on Rn is definied to be to be continuous
dual of DpRnq:

D1pRnq :� tT P homCpDpRnq,Cq |T is continuous u .

D1pRnq is equipped with the weak-� topolgy.
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For the value of a distribution T on a test function ϕ the notation

  T, ϕ ¡:� T pϕq

is used.

Definition 2.6. A distribution T P D1pRnq vanishes on U � Rn :ô
@ϕ P DpRnq : supppϕq � U ñ   T, ϕ ¡� 0 .

Definition 2.7. The support supppT q of a distribution T P D1pRnq is defined to be
the complement in Rn of the largest open subset on which T vanishes.

Definition 2.8. A distribution T P D1pRq is called even iff for all ϕ P DpRq one has

  T, ϕ ¡�  T, ϕeven ¡ .

Accordingly T P D1pRq is called odd iff there holds for all ϕ P DpRq

  T, ϕ ¡�  T, ϕodd ¡ .

ϕeven and ϕodd denote the even/odd parts of ϕ which are defined as

ϕeven{odd � ϕ� qϕ
2

. (2.1)

Definition 2.9. The space of tempered distributions on Rn is definied to be to be
continuous dual of SpRnq:

S 1pRnq :� tT P homCpSpRnq,Cq |T is continuous u .

S 1pRnq is also equipped with the weak-� topolgy. By duality the inclusion of S 1pRnq into
D1pRnq is continuous. Also S 1pRnq is dense in D1pRnq.
A distribution T P D1pRnq is called tempered iff it extends to a tempered distribution.
Such extensions are unique.

Schwartz functions include naturally into their continuous dual: Given ϕ P SpRnq define
Tϕ P S 1pRnq by

  Tϕ, ψ ¡:�
»

Rn
dxϕpxqψpxq .

The map ϕ ÞÑ Tϕ is linear, continuous and has dense image. Polynomially bounded
continuous functions can be embedded into tempered distributions in the same manner.
When there is no danger of confusion, ϕ is used to both denote the function and the
corresponding distribution Tϕ.

Tempered distributions can be convoluted with Schwartz functions: For T P S 1pRnq and
ϕ, ψ P SpRnq define

  ϕ � T, ψ ¡:�  T, qϕ � ψ ¡ . (2.2)
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This definition is compatible with the natural inclusion of Schwartz functions into tem-
pered distributions in the sense that ϕ � Tψ = Tϕ�ψ holds for all ϕ, ψ P SpRnq. Fur-
thermore ϕ � T is given by the natural inclusion of the polynomially bounded smooth
function x ÞÑ  T, qϕx ¡, where qϕxpyq � ϕpx� yq.

It is a useful fact that all maps in the following sequence are injective, linear, continuous
maps with dense image:

DpRnq Ñ SpRnq Ñ S 1pRnq Ñ D1pRnq .
Theorem 2.1 (Structure Theorem for Tempered Distributions). Let T P S 1pRnq. Then
there exist finitely many multiindices α P Nn and polynomially bounded continuous func-
tions Tα such that

@ϕ P SpRnq :  T, ϕ ¡�
α̧

finite

»
dxTαpxqpBαϕqpxq .

Conversely, if Tα are finitely many polynomially bounded continuous functions, then

ϕ ÞÑ
α̧

finite

»
dxTαpxqpBαϕqpxq (2.3)

defines a tempered distribution.

A proof along with other distribution-theoretic facts stated here can be found in [14].

2.1.7. Fourier Transform

Definition 2.10. For ϕ P SpRn�1q define the Fourier transform pϕ of ϕ:

pϕppq :�
»

Rn�1

dxϕpxqeixp �
»

R
dx

»
Rn

dxϕpx,xqeixpe�ixp ,

where p � pp,pq.
The Fourier transform is a linear homeomorphism

F : SpRn�1q Ñ SpRn�1q, ϕ ÞÑ pϕ
with inverse given by

F�1 : SpRn�1q Ñ SpRn�1q, ϕ ÞÑ pϕ�1

,

pϕ�1 pxq � p2πq�pn�1q
»

Rn�1

dpϕppqe�ixp .

The Fourier transform extends to a unique linear homeomorphism of tempered distri-
butions compatible with the natural inclusion S Ñ S 1

F : S 1pRn�1q Ñ S 1pRn�1q, T ÞÑ pT
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given by   pT , ϕ ¡�  T, pϕ ¡.

Partial Fourier transforms with respect to time-energy variable pair or space-momentum
variable pairs will be denoted bypx,p andpx,p respectively.

The Fourier transform of the convolution of two Schwartz functions is the product of
the Fourier transforms of these functions:zf � g � pf � pg .
Since the natural inclusion of Schwartz functions is compatible with the Fourier trans-
form and convolution it also is zf � T � pf � pT .
2.1.8. Bessel Functions

Definition 2.11. Bessel functions are solutions to the Bessel differential equation

z2 � f p2qpzq � z � f p1qpzq � pz2 � k2qfpzq � 0 .

As a second order ODE, the Bessel differential equation has two linearly independent
solutions. A common choice for a pair of such solutions is Jk and Yk, which are called
Bessel functions of the first and second kind respectively. In the following only Jk is of
interest. For k P N0 one defines Jk as follows (cf. [17]):

Jkpzq :�
8̧

l�0

p�1ql
pk � lq!l!

�z
2

	k�2l

.

The series converges absolutely on C. For negative k P Z set Jk :� p�1qkJ�k. All Jk are
entire functions.

The following integral representation holds for k P N0:

Jkpzq � 1

2πi

�z
2

	k »
p

dζ eζ�
z2

4ζ ζ�pk�1q ,

where p is any closed piecewise continuously differentiable path in Czt0u homotopic
to r0, 2πs Q t ÞÑ eit. Compatibility to the defining representation of Jk can be seen
expanding the integrand into its Laurent series, computing the �1st coefficient and
applying the residue theorem.

2.2. Framework

For the purpose of this work a generalized Wightman framework for real scalar quantum
fields according to [6] will be adopted. This framework takes the �-algebra A gener-
ated by symbols φpfq, f P SpRn�1q, only subject to φpfq� � φpfq and the locality
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relation f ' g ñ rφpfq, φpgqs � 0, as a starting point. The algebra A is equipped
with a natural automorphic action of the Poincaré group Pn�1: for Λ P Pn�1 the map
αΛ : φpfq ÞÑ φpfΛq, fΛpxq :� fpΛ�1 � xq extends to an automorphism of A.

An pn � 1q-dimensional quantum field theory is given by a state ω on A, which
imposes further relations on the field encoded in the kernel of the GNS representa-
tion associated to ω. States are required to satisfy a regularity condition, which en-
sures that the maps f1, � � � , fm ÞÑ ωpφpf1q � � �φpfmqq extend to tempered distributions
Wm P S 1pRm�pn�1qq, giving access to a range of distribution-theoretic methods for the
analysis of quantum field theories. The tempered distributions Wm are called corre-
lation functions, m-point functions or Wightman functions. These distributions
form a family pWMqmPN, which contains all the information of the associated quantum
field theory.

States ω on A may have the property to be invariant under a subgroup G of Pn�1. For
the corresponding theories, G then is unitarily implemented in the GNS representation
associated to ω. In this case, one parameter subgroups of G correspond to self-adjoint
operators on the GNS Hilbert spaces by Stone’s theorem.

Of particular interest for the studies in this work are vacuum states and states of (global)
thermal equilibrium which are characterized by the relativistic spectrum condition and
the (relativistic) KMS condition respectively.

An overview of this settings, including detailed accounts of the various notions introduces
above, can be found in appendix D. If not stated otherwise, n � 1 is assumed.
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3. General Representation of Thermal
two-point Functions

As part of their program to study model independent structural properties of thermal
correlation functions, J. Bros and D. Buchholz found that there exists an integral repre-
sentation of thermal two-point function analogous to the Källen-Lehmann representation
in vacuum theories (cf. [8]). This Bros-Buchholz representation is based on a continuous
expansion of a commutator function C in terms of free mass m commutator functions
Cm. The “expansion coefficients” are given in terms of a distribution Dpm,xq, which
weights the contributions Cm and modifies their x-dependence. Using that a thermal
two-point function W can be essentially recovered from the commutator function, it can
be show that the former can be expanded into free mass m thermal two-point func-
tions Wβ,m with the same “expansion coefficient” D. In light of the expected abatement
of two-point correlations increasing with spatial distance due to the interaction with a
thermal background, D is called damping factor. It describes how local excitations
over distance dissipate into a thermal background.

Is this chapter the validity of the Bros-Buchholz representation in two dimensions is
proven using a top down approach. The damping factor is first defined and then shown
to exhibit the desired properties.

For the remainder of this chapter let ω be a regular state on the two-dimensional field
algebra A satisfying the following properties:

• ω satisfies the relativistic KMS condition (cf. D.19) at inverse temperature β.

• ω is homogeneous and invariant under spatial reflection.

• ω is time-clustering (cf. D.18).

Homogeneity implies the existence of the reduced two-point function W and the commu-
tator function C. By definition, C is an odd distribution, and invariance under spatial
reflections implies that C is even in the spatial- and odd in the time-variable. It assumed
that ω has vanishing one-point functions.

From a mathematical viewpoint, all that is required to define the damping factor D is
that the commutator function C is a tempered distribution with support in V � Y V �.
To show that the representation formula for the commutator function (equation 3.2)
holds, C is required to be odd in the time variable. For the Bros-Buchholz expansion of
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W , the KMS condition, time-clustering and vanishing one-point functions are required.
The implications of the relativistic KMS conditon are examined separately.

3.1. The Damping Factor

Proposition 3.1. The map D given by

D : SpRq b SevenpRq Ñ C ,

  D,ϕb ψ ¡:�  ixC, px,xq ÞÑ ϕpxqT ψp
?
x2q ¡

defines a distribution (i.e. is continuous), which is even in ϕ. T denotes the Hankel
transform (cf. appendix B).

Proof. The definition of D requires clarification as
?
x2 is only defined on V �YV �. The

map T ψ is an even Schwartz function which implies that there exists a Schwartz function
σ P SpRq such that T ψpsq � σps2q for all s P R. It follows that px,xq ÞÑ ϕpxqT ψp

?
x2q

can be extended to the Schwartz function px,xq ÞÑ ϕpxqσpx2q. Causality implies that
the support of C is contained in V �YV �. Splitting C into two parts with support in the
forward and backward light-cone respectively, an application of the Bros-Epstein-Glaser
lemma (cf. [4]) yields that D is independent of the choice of such an extension: there
exist continuous functions ck on R2, k P N2

0 with support in the union of the closure of
the light-cones such that for all Φ P SpR2q it is

  C,Φ ¡�
¸
kPN2

0
finite

»
dx ckpxqBkΦpxq , (3.1)

where Bk � Bk1
x Bk2

x . With some care and exploiting the support properties of the ck, one
can estimate |   C, px,xq ÞÑ xϕpxqσpx2qx ¡ | in terms of Schwartz semi-norms of ϕ and
T ψ using relation 3.1. These estimates involve two arguments:

• For small arguments, the derivatives of s ÞÑ T ψps 1
2 q can be estimated in terms of

suprema of moduli of higher derivatives. This involves Taylor expanding the even
function (all odd derivatives vanish at 0) T ψ in s

1
2 about the origin and estimating

the Lagrange remainder term for arguments close to zero (e.g. in r0, 1s).
For large arguments, derivatives of s ÞÑ T ψps 1

2 q can be estimated in terms of

derivatives of T ψ, as the additional inverse powers of s�
1
2 due to differentiation of

s ÞÑ s
1
2 accelerate the decay for large arguments.

• The second argument concerns the mixing of variables px,xq ÞÑ px, x2 � x2q. The
general strategy for estimating the integrals in equation 3.1 works as follows: ex-
tract sufficiently high powers of 1

1�x2 and 1
1�x2 from BkΦ to a) suppress the poly-

nomial growth of the ck and, b) make the integral converge all by itself so that
the supremum of the appropriate derivative of Φ multiplied by the respective in-
verse powers of 1

1�x2 and 1
1�x2 can be pulled out of the integral giving the desired

Schwarz semi-norm estimate.
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In the case at hand, this procedure works with slight modifications. Derivatives of
px, x2 � x2q generate polynomials which can be controlled by powers of 1

1�x2 and
1

1�x2 . It remains to estimate appropriate products of powers of 1
1�x2 and 1

1�px2�x2q
such that their moduli are less than prescribed powers of 1

1�x2 and 1
1�x2 . This

can be achieved by splitting the light-cones into two types of regions. The first
kind is a sharp cone in which the modulus of the time variable is at least twice
that of the spacial variable. Here powers of 1

1�px2�x2q can be estimated in terms

of prescribed powers of 1
1�x2 . The other type of region are complements of the

sharp cones within their respective light-cones. In this case powers of 1
1�x2 can be

converted into powers of 1
1�x2 .

Along with the continuity of of T : SevenpRq Ñ SevenpRq this proves that D is continuous.

Remark: By the Hahn-Banach extension theorem, it is possible to extend D continu-
ously to SpR2q. This extension, however, may be non-unique.

To prove that D is even in the spatial argument note that C is even in the spatial
argument. This is a consequence of C being odd altogether and odd in the time variable.
It follows

  D, qϕb ψ ¡
�   ixC, px,xq ÞÑ qϕpxqT ψpax2 � x2q ¡
�   ixC, px,xq ÞÑ qϕpxqT ψpax2 � p�xq2q ¡
�   ixC, px,xq ÞÑ ϕpxqT ψp

a
x2 � x2q ¡

�   D,ϕb ψ ¡ .

Definition 3.1. The tempered distribution D P pSpRqbSevenpRqq1 is called the damp-
ing factor.

Theorem 3.2. The damping factor D satisfies for φ, ϕ P SpRq

  C, φb ϕ ¡�  D, px,mq ÞÑ ϕpxq
»

dxCmpx,xqφpxq ¡ ,
where Cm is the free mass m commutator function.

Proof. The proof of this theorem is quite technical. Essentially, it relies on establishing
the asserted equality for a class of Schwartz functions ω ÞÑ ωe�λω

2
, λ P C� and applying

Corollary A.4 to extend it all of SpRq as in [8]. In the following, extensive use of the
results in appendix A is made.
For ϕ, ψ P SpRq define

  ρ, ϕb ψ ¡ :� 1

π
  D,ϕb pψ � id2q ¡ ,

  Dϕ, ψ ¡ :�   D,ϕb ψ ¡ ,
  ρϕ, ψ ¡ :�   ρ, ϕb ψ ¡ .
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Since ψ � id2 is always even, ρ extends uniquely to a tempered distribution on R2. If
supppψq �s�8, 0r then ψ � id2 � 0, so ρϕ has support in r0,8r. This allows to take the
Laplace transform Lρϕ. For λ P C� define

Φϕpλq :� Lρϕ1pλq � λ � Lρϕpλq .
Claim: It is

Φϕpλq � i

2π
  xC, x ÞÑ exp

��x2

4λ



ϕpxq ¡ .

Proof: Let fλ P SpRq such that fλ|r0,8rpsq � e�λs. Compute

Φϕpλq
� λ   ρϕ, s ÞÑ fλpsq ¡
� λ

π
  Dϕ,m ÞÑ e�λm

2 ¡

� λ

π
  ixC, x ÞÑ ϕpxqT pm ÞÑ e�λm

2qp
?
x2q ¡

� λi

π
  xC, x ÞÑ ϕpxq 1

2π
$ � F � ιpm ÞÑ e�λm

2qp
?
x2q ¡

� λi

2π2
  xC, x ÞÑ ϕpxqFppa, bq ÞÑ e�λpa

2�b2qqp
?
x2, 0q ¡

� λi

2π2
  xC, x ÞÑ ϕpxqπ

λ
exp

��x2

4λ



¡

� i

2π
  xC, x ÞÑ exp

��x2

4λ



ϕpxq ¡ .

exp
�
�x2

4λ

	
is to be understood restricted to V � Y V � and smoothly extended to a func-

tion hλ on all of R2 such that x ÞÑ hλpxqϕpxq is a Schwartz function. This is possible by
a mixing of variables argument analogous to the the one found in the proof of 3.1. The
identity T � $ � F � ι can be found in appendix B.

To make the following computation more accessible, introduce the even Fourier pair

gλpxq � p4πλq� 1
2 exp

�
�x2

4λ



,

pgλpuq � e�λu
2

.

It is

  pC, p ÞÑ pe�λp
2

ϕppq ¡

�   C, x ÞÑ ix

2λ

�π
λ

	 1
2

exp

��x2

4λ


 pϕpxq ¡
�
�π
λ

	 3
2 i

2π
  xC, exp

��x2

4λ



exp

��x2

4λ


 pϕpxq ¡
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� 2π
�π
λ

	
Φgλ pϕpλq

� 2π
�π
λ

	
λLρgλ pϕpλq

� 2π   Dgλ pϕ,m ÞÑ e�λm
2 ¡

� 2π   D, px,mq ÞÑ gλpϕpxqe�λm2 ¡
� 2π   pDx,p, pp,mq ÞÑ ygλpϕ �1

x,p ppqe�λm2 ¡
� p2πq2   pDx,p, pp,mq ÞÑ pgλ � ϕppqe�λm2 ¡
� p2πq2   pDx,p, pp,mq ÞÑ

»
duϕpuqe�λpp�uq2eλm

2 ¡

� p2πq2   pDx,p, pp,mq ÞÑ
»

duϕpuqe�λrpp�uq2�m2s ¡ .

The next step is to connect the function p ÞÑ e�λpp
2�m2q to the free mass m commutator

function Cm. Define
  pCφ

m, ϕ ¡:�  pCm, φb ϕ ¡ .

Note that for φ P SpRq the distribution pCφ
m is given by the canonical inclusion of the

Schwartz function p ÞÑ 2πφoddppp2 �m2q 1
2 q � pp2 �m2q� 1

2 into S 1pRq:
  pCφ

m, ϕ ¡
�   pCm, φb ϕ ¡
� 2π

»
dp

»
dp εppqδpp2�m2qφppqϕppq

� 2π

»
dpϕppq

»
dp

δpp�
a

p2�m2q � δpp�
a

p2�m2q
2
a

p2�m2
φppq

� 2π

»
dpϕppqφoddp

a
p2 �m2qa

p2 �m2
.

Denote this Schwartz function also by pCφ
m. It follows

pCpÞÑpe�λp
2

m ppq � 2πe�λpp
2�m2q ,

which, inserted into the previous expression for   pC, p ÞÑ pe�λp
2
ϕppq ¡, gives

  pC, p ÞÑ pe�λp
2

ϕppq ¡

� 2π   pDx,p, pp,mq ÞÑ pCp ÞÑpe�λp
2

m � ϕppq ¡ .

The key argument now is that for fixed ϕ P SpRq both sides define odd tempered
distributions

φ ÞÑ   pC, p ÞÑ φppqϕppq ¡ ,
φ ÞÑ 2π   pDx,p, pp,mq ÞÑ pCφ

m � ϕppq ¡ ,
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which agree for all p ÞÑ φλppq :� pe�λp
2
, λ P C�. It follows from the result obtained in

corollary A.4 that they are identical, i.e.

  pC, φb ϕ ¡� 2π   pDx,p, pp,mq ÞÑ pCφ
m � ϕppq ¡ (3.2)

for all φ, ϕ P SpRq.
The final step consists in taking the inverse Fourier transform and simplifying the ob-
tained expression:

  C, φb ϕ ¡
�   pC, pφ�1b pϕ�1 ¡
� 2π   pDx,p, pp,mq ÞÑ pC pφ�1

m � pϕ�1ppq ¡
� 2π   D, px,mq ÞÑ pFx,p

pC pφ�1

m qpxq � ϕpxq ¡ .

If pσnqnPN is a sequence which converges weakly to δx,   δx, ϕ ¡� ϕpxq in S 1pRq, then
it is

Fx,p
pC pφ�1

m pxq
� lim

n
  Fx,p

pC pφ�1

m , σn ¡

� lim
n
  pC pφ�1

m , pσn ¡
� lim

n
  Cm, pφ�1 b pσn ¡

� 1

2π
lim
n
  Cm, φb qσn ¡

� 1

2π
lim
n
  Cφ

m, σn ¡ ,

where the last step involves exploiting that Cm is even in the spatial argument. It
follows that Cφ

m is also given by the canonical inclusion of a Schwartz function (denoted
by x ÞÑ Cφ

mpxq) into S 1pRq and that

Fx,p
pC pφ�1

m pxq � 1

2π
Cφ
mpxq .

Inserting this into the above expression for   C, φb ϕ ¡ yields

  C, φb ϕ ¡�  D, px,mq ÞÑ Cφ
mpxqϕpxq ¡ .

Noting that Cφ
mpxq �

³
dxCmpx,xqφpxq in the heuristic notation used to state the the-

orem concludes the proof.

Corollary 3.3 (Bros-Buchholz Representation). The damping factor D satisfies for
φ, ϕ P SpRq:

  W,φb ϕ ¡�  D, px,mq ÞÑ ϕpxq
»

dxWβ,mpx,xqφpxq ¡ ,
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where Wβ,m is the reduced two-point function of free mass m β-KMS state (cf. equation
D.7).

Proof. The time-clustering property and vanishing one-point functions ensure that

xW � 1

1� e�βp
pC

is an unambiguous relation between tempered distributions (cf. derivation of equation
D.6). The same relation holds between the free mass m reduced two-point and commu-
tator function.

Reconsider equation 3.2

  pC, φb ϕ ¡� 2π   pDx,p, pp,mq ÞÑ pCφ
m � ϕppq ¡

taken from the proof of theorem 3.2. In light of the above arguments it is possible to
divide φ by p1� e�βpq to obtain

  xW,φb ϕ ¡� 2π   pDx,p, pp,mq ÞÑ xW φ
β,m � ϕppq ¡ .

Noting that xW φ
β,m is a Schwartz function in p, one can proceed as in the proof of theorem

3.2 from equation 3.2 onward to show

  W,φb ϕ ¡�  D, px,mq ÞÑ ϕpxqW φ
β,mpxq ¡ .

3.2. Properties of the Damping Factor

The KMS and the relativistic KMS condition imply certain regularity and analyticity
properties of the reduced two-point function W . These properties and their implications
for the damping factor D are studied in the first part of this section. In the second part
an estimate giving an upper bound on how far the damping factor Dpx,mq is from being
a measure in m is stated.

3.2.1. Regularity and Analyticity in x

Proposition 3.4. Let ωβ be a β-KMS state on A. Let f � f b f , g � g b g P SpR2q,
where the underlined functions denote time components and the boldface functions spatial
ones. Let Ff,g be the function holomorphic on Sβ for a � φpfq, b � φpgq as defined in
the KMS condition. The limit

lim
f,gÑδ

Ff,gpzq

exists for z0 P Sβ and there defines a holomorphic function denoted Ff ,g.
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Proof. For x P R it is

Ff,gpxq � ωpφpfqφpgxqq
�   W, f � qg

x
b f � qg ¡

� p2πq2   xW,
qpf � pg

x
bqpf � pg ¡

� p2πq2   xW, p ÞÑ qpf � pgppqeixp �qpf � pgppq ¡ .

By the KMS condition this extends to x� iy for 0 ¤ y ¤ β. In particular it is

Ff,gpx� iβq � p2πq2   xW, p ÞÑ qpf � pgppqeixpe�βp �qpf � pgppq ¡   8 . (3.3)

For general 0   y   β it is

Ff,gpx� iyq � p2πq2   xW, p ÞÑ qpf � pgppqeixpepβ�yqpe�βp �qpf � pgppq ¡ .

Note that this implies that the tempered distribution Q given by

h ÞÑ  Q, h ¡:�  xW, p ÞÑ hp expepβ�yqe�βp � pfqpgppq ¡
decays exponentially for large |p|: for p Ñ �8, the function p ÞÑ epβ�yqp decays expo-

nentially and e�βpxW is tempered by the KMS condition (cp. equation 3.3). Similarly,

for p Ñ 8, the function p ÞÑ epβ�yqpe�βp � e�yp decays exponentially and xW is tem-
pered. One can find a nowhere vanishing Schwartz function r P SpRq, dominated by
minte�yp, epβ�yqpu, such that Q

r
is still tempered. This allows to use theorem C.3 to prove

that limf,gÑδ Ff,gpzq exists for z P Sβ and is given by

lim
f,gÑδ

Ff,gpzq � p2πq2   xW, p ÞÑ eizp �qpf � pgppq ¡ .

An application of Morera’s theorem shows that z ÞÑ limf,gÑδ Ff,gpzq �: Ff ,gpzq is holo-
morphic in Sβ.

The domain of analyticity of Ff ,g can be further extended in two ways:

• Suppose f ,g have compact support and x P R is such that ptxu � supppgq � t0u �
supppfqq X pV � Y V �q � H. As a consequence of locality it is

  xW, p ÞÑ eixpe�yp �qpf � pgppq ¡�  xW, p ÞÑ e�ixpeyp � pf � qpgppq ¡ , (3.4)

which means the decay of xW must be sufficiently rapid to compensate the expo-
nential growth of both p ÞÑ eyp and p ÞÑ e�yp. The limit y Ñ 0 exists. This
allows to extend Ff ,g to the domain t z P C | � β   y   β u z t z P C | y �
0, ptxu � supppgq � t0u � supppfqq X pV � Y V �q � Hu.
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• As a direct consequence of the KMS condition it is

lim
yÑβ

  xW, p ÞÑ eixpe�yp �qpf � pgppq ¡
� lim

yÑ0
  xW, p ÞÑ e�ixpeyp � pf � qpgppq ¡ ,

which again exists if ptxu � supppfq � t0u � supppfqq X pV � Y V �q � H and by

equation 3.4 coincided with limyÑ0   xW, p ÞÑ eixpe�yp �qpf � pgppq ¡. This allows
to extend Ff ,g as an iβ periodic function to C z t z P C | y P βZ, ptxu � supppgq �
t0u � supppfqq X pV � Y V �q � Hu.

The relativistic KMS condition allows to further refine the above results.

Proposition 3.5. Let ωβ be a relativistic β-KMS state on A. Let f � f b f , g � gbg P
SpR2q, where the underlined functions denote time components and boldface functions
spatial ones. Let Ff,g be the function holomorphic on Rβe for a � φpfq, b � φpgq as
defined in the relativistic KMS condition. The limit

lim
f,gÑδ

Ff,gpzq

exists for z P Rβe and there defines a holomorphic function denoted F .

The proof can be carried out using arguments analogous to those in the (non-relativistic)
KMS case, which here also apply to the spatial variable. The function F is given by

F pzq � p2πq2   xW, p ÞÑ eizp ¡ ,
where eizp � eiηpp,zq � eiηpp,xqe�ηpy,pq for z � x� iy. Note that the above equation means
that F is an analytic continuation of W . In particular if F can be extended analytically
to a region in R2, then W is regular in that region.
As before, the domain of analyticity of F can be extended using locality and the KMS
condition:

• First extend F as an iβe periodic function to
�
kPZRβe � kiβe.

• If x is spacelike, then locality implies that

  xW, eipxe�yp ¡�  xW, e�ipxeyp ¡ .

As before, this allows to perform the limit V � Q y Ñ 0 and extend F continuously
to the edges tx � ikβe | k P Z, x spacelike u connecting the Z indexed union of
translated tubes Rβe. The continuity of this extension is due to

lim
yÑβe

yPβe�V�

  xW, eipxe�yp ¡� lim
yÑ0

yPV�

  xW, e�ipxeyp ¡ ,

which follows directly from the relativistic KMS condition.
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• By the edge-of-the-wedge theorem (cf. [1]) there exist open neighborhoods Nk �
C2 of the edges tx� ikβe |x spacelikeu, such that F is holomorphic on the domain�
kPZpRβe � kiβeq YNk.

It can be shown that these analyticity properties are sufficient for the distribution W to
be regular in the spatial component, i.e. for each f P SpRq the tempered distribution

f ÞÑ  W f , f ¡:�  W, f b f ¡ is given by a polynomially bounded smooth function

also denoted W f . From this it can also be shown, that the damping factor D admits an
analytic continuation and hence is regular in the spatial variable (see [7] and [8]).

3.2.2. Mass Dependence of D

In light of the particle criterion stated in section 3.3 it would be satisfying from an inter-
pretational point of view, if D were a measure m, i.e. if D extended continuously from
even Schwartz functions to compactly supported continuous functions. The problem in
approaching the question whether D is a measure, is that one has little information on
the commutator function pC, except for its support properties and the fact that, by the
Bochner-Schwartz theorem, pC is the difference of the polynomially bounded positive

measure xW and
|xW . It is assumed that the underlying state ω satisfies the relativistic

KMS condition, so that W,C and D are analytic in x. In light of the latter assumption
one has by definition 3.1

  D, δy b ψ ¡
� i   C, x ÞÑ xδypxq

» 8

0

dmmψpmqJ0p
a
x2�x2mq ¡

� i

p2πq2  
pC, p ÞÑ eipy

»
Rzr�|y|,|y|s

dx e�ixpx
» 8

0

dmmψpmqJ0p
a
x2�y2mq ¡ .

The factor x disallows performing the Fourier transform inside the m-integral in a rea-
sonable way. However, using the relation J 1kpxq � Jk�1pxq � k

x
Jkpxq, which can be

derived from the integral representation of Jk in 2.1.8, one obtains the following identity
by integration by parts:» 8

0

dmmJ0pamqψpmq � �1

a

» 8

0

dmmJ1pamqψ1pmq .

Insertion into the above expression for   D, δy b ψ ¡ yields

�i
p2πq2  

pC, p ÞÑ eipy

»
Rzr�|y|,|y|s

dx e�ixp x?
x2�y2

J1p
a
x2�y2mq

» 8

0

dmmψ1pmq ¡ .

To estimate this in terms of ψ, additional information on pC is needed. It is assumed

here that, as in the free case, | pC|
|p|δ is finite for 0   δ ¤ 1. Unfortunately the expression»

Rzr�|y|,|y|s
dx e�ixp x?

x2�y2
J1p
a
x2�y2mq



24 3. General Representation of Thermal two-point Functions

is difficult to handle and its behavior in p and m is not obvious. However, as
a
x2 � y2

asymptotically behaves like |x| and the integrand remains bounded for |x| close to |y|,
one may hope that the p andm dependence is similar to that in the computationally more
convenient case of y � 0. Here the above integral can be evaluated in a distributional
sense (cf. [15]):

�2ipm2 � p2q� 1
2 � p
m
θp|m| � |p|q .

Substituting mÑ m|p| in the m integral yields

  D, δ0 b ψ ¡
� �2

p2πq2  
pC, εppq » 8

1

dm |p|ψ1pm|p|q pm2 � 1q� 1
2 ¡

� �2

p2πq2  
pC
|p|δ , εppq

» 8

1

dm
|p|1�δ

p|p|mq1�δ pm
2 � 1q� 1

2 ¡ �p|p|mq1�δψ1pm|p|q .

In this form one can make use of the assumption that | pC|
|p|δ is a finite, positive measure

to estimate

|   D, δ0 b ψ ¡ |

¤ 2

p2πq2
�����  | pC|

|p|δ , 1 ¡
����� �
» 8

1

dm
1

m1�δ pm2 � 1q� 1
2 � sup

xPR�

��x1�δψ1pxq��
�: AC,δ � sup

xPR�

��x1�δψ1pxq�� .
This estimate is a bit disappointing, as it involves the first derivative of ψ. An explicit
computation of D in the free mass M case reveals that D � δpm �Mq, as one should
expect from the representation formula given in theorem 3.2. Here one can of course
estimate |   D, δy bψ ¡ | ¤ supxPR� |ψpxq|, but in the explicit computation, one has to
exploit the specific structure of the free commutator function.

3.3. Particle Interpretation

In vacuum theories, Wigner’s criterion provides a concept of particles [2]. According to
this criterion, a vacuum theory describes particles if the unitary representation of the
proper orthochronous Poincaré group contains an irreducible one with discrete weight.
This definition is in part motivated by the fact that the joint spectrum of the self-adjoint
generators of the space-time translations in an irreducible representation is confined to
a hyperboloid t p P R2 | p2 � m2 u, where the parameter m is to be interpreted as a rest
mass. Irreducible parts of the representation of space-time symmetries carrying discrete
weight manifest themselves as contributions of the form θppqδpp2 �m2q to the Fourier

transformed, reduced two-point function xW .
An analogous criterion in theories induced by homogeneous thermal states is not sensible.
This due to a theorem by H. Narnhofer, M. Requardt and W. Thirring which states



3.3. Particle Interpretation 25

that entities corresponding to singular contributions to xW do not scatter [5]. As a
consequence, such entities described by sharp dispersion laws do not couple to a thermal
background and only provide a suitable notion of massive particles in the case of trivial
interaction. However, another criterion has been proposed by J. Bros and D. Buchholz
in [7] and [8].

Criterion 3.2. A theory induced by a homogeneous KMS state invariant under spatial
reflections and satisfying the time-clustering property is said to describe particles of
mass M if the damping factor Dpx,mq contains a discrete contribution of the form
δpm�MqDdpxq.
The Bros-Buchholz criterion is motivated by several heuristic considerations.

• In the free case, the two-point function Wβ,m can be interpreted in terms of prop-
agation of particles/holes. The positive/negative frequency parts of Wβ,mpxq cor-
respond to the probability amplitude of particles/holes created the field φ acting
at 0 to be found at x (Wβ,m coincides with the time-ordered propagator T outside
ofV �, see chapter 6). In the presence of interaction, particles/holes of mass m can
collide with other constituents of the thermal background resulting in excitations
which are expected to primarily contribute to higher correlation functions. Hence
the spatial part of the interacting two-point function Wβ is subject to additional
abating effects, which result in a decrease of propagation amplitude. This can be
modeled by the relation

Wβpxq � DpxqWβ,mpxq ,
where the damping factor D accounts for the additional propagation hindering
effects.

• The Bros-Buchholz representation theorem states that Wβ can be represented in
the form

Wβpxq �
» 8

0

dmDpx,mqWβ,mpxq .

The manifest interpretation of Dpx,mq is that of the above damping factor for
possible particles of mass m. If Dpx,mq vanishes for a certain M then the cor-
responding theory would be void of particles of mass M . However not all M for
which Dpx,mq does not vanish should correspond to masses of particles present in
that theory. Suppose Dpx,mq is continuous in a mass interval, then for each M in
that interval Dpx,MqWβ,Mpxq only contributes infinitesimally to Wβpxq. Omitting
countably many of such contributions leaves Wβpxq unchanged, which is not an
expected characteristic of particle contributions. Discrete parts δpm �MqDdpxq
of Dpx,mq contribute non-negligibly to Wβ and behave as outlined in the previous
point. It appears natural to identify particles of mass M with such contributions.

• As shown in chapter 4, discrete contributions to Dpx,mq of the form δpm �
MqDdpxq give rise to leading order contributions in Wβpx,xq for asymptotic |x|.
This further corroborates the interpretation of contributions Wβpx,xq being due to
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particles, as they correspond to the most stable possible excitations of the thermal
background.

Adopting the Bros-Buchholz criterion, determining the particle content of a thermal the-
ory is a matter of computing the damping factor by means of formula 3.1 and identifying
the singular contributions.
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4. Asymptotic Fields

In this chapter, it is shown in analogy to [9] that, suppressing low energy contributions,
the leading part in thermal two-point functions for asymptotic times are due to discrete
contributions to the damping factor. Under the assumption that no collective memory
effects manifest themselves in higher correlation functions, the asymptotically dominant
contributions to the latter are shown to exhibit the structure of a quasifree state, which
can be realized as an actual KMS state on an algebra of asymptotic fields.

4.1. Analysis of Asymptotic Thermal Correlation
Functions

Definition 4.1. For g P SpRq define the time-regularized fields

φgpfq :� φpg �x fq ,
where �x denotes convolution in the time variable. In a more heuristic notation, this
reads

φgpxq �
»

dygpy � xqφpy,xq .

It is noteworthy that if ω is a regular homogeneous relativistic β-KMS state, then the
limit

lim
f1Ñδx1
f2Ñδx2

ωpφg
1
pf1qφg

2
pf2qq

exists. This can be seen as follows: it is

ωpφg
1
pf1qφg

2
pf2qq �  W, g

1
�x f1 � �g2

�x f2 ¡�  p qg
1
� g

2
q �xW, qf1 � f2 ¡ .

Since the relativistic KMS condition implies regularity of W in the spatial variable, the
time-regularized distribution p qg

1
� g

2
q �xW is regular. The corresponding polynomially

bounded, smooth function will also be denoted p qg
1
� g

2
q �xW .

The time-regularization of the fields allows to to formalize the suppression of low energy
contributions to the two-point function. Suppose the Schwartz functions g

1
, g

2
have

Fourier transforms which vanish at the origin. Then Fppqg
1
� g

2
q �x W q � qpg

1
pg

2
� xW .

As xW is a measure, multiplication by p ÞÑ qpg
1
pg

2
ppq suppresses low energy (small |p|)

contributions to xW .
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Lemma 4.1. Let ω be a regular homogeneous β-KMS state invariant under spatial
reflection and W the corresponding reduced two-point function. It then is

  pqg
1
� g

2
q �xW, f b f ¡�  D, px,mq ÞÑ fpxq

»
dx pqg

1
� g

2
q �xWβ,mpx,xqfpxq ¡ .

Proof. The statement is a straightforward consequence of corollary 3.3 using pqg
1
� g

2
q �x

W f � W pg
1
�qg

2
q�f .

Theorem 4.2. Let µ P N0 and h P SpRq such that ph has a double zero at the origin.
Then there exist

• K� : R Ñ C rapidly decreasing, i.e. @N P N0 : supmPR |K�pmqp1�mqN |   8,

• r : r0,8r�pr0,8r�Rq Ñ C such that @K � R compact, N P N0 DCN,K @m P
r0,8r, x P R : supx�K |rpm,xq|   CN,K |x|�µ�1

2
�δp1�mq�N , where 0   δ   1

2
,

with the property that for m P r0,8r, x P r0,8r,x P R it is

h �x BµxWβ,mpxq � x�
µ�1

2

¸
σ��

e�σimxKσpmq � rpm,xq .

An analogous result holds for x Ps � 8, 0s.
Proof. Cf. Appendix C.

The statement of the theorem is that for asymptotic times and suppressing low energy
contributions, Wβ,mpxq behaves like |x|� 1

2 for x varying in compact sets. With the help
of the Bros-Buchholz representation, it can be shown that a general thermal W behaves
similarly and that the leading order asymptotic contributions are due to discrete parts
of the damping factor D.

For the remainder of this chapter, assume that ω is a homogeneous time-clustering
relativistic β-KMS state and that the damping factor is of the form

Dpx,mq � δpm�MqDdpxq �Dacpx,mq (4.1)

for fixed M ¡ 0. Both the discrete part Dd of D and Dac are analytic in x as a
consequence of the relativistic KMS condition and Dac is assumed to be Lebesgue abso-
lutely continuous. As a consequence of D being tempered, Dac and Dd are polynomially
bounded in x and Dac is polynomially bounded in m.

Define (in the sense of distributions in x):

Wdpxq :� DdpxqWM,βpxq .
Wd is the part of the reduced two-point function corresponding to the discrete contri-
bution δpm�MqDd to the damping factor.
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Claim 4.3. For K � R compact and g
1
, g

2
P SpRq, pg

1
p0q � pg

1
p0q � 0 it is

lim
xÑ8

|x| 12 |pqg
1
� g

2
q �xW pxq � pqg

1
� g

2
q �xWdpxq| � 0

uniformly for x P K.

Proof. Define h :� qg
1
� g

2
. Using the Bros-Buchholz representation, it is in light of 4.1

and 4.2

lim
xÑ8

|x| 12 |h �xW pxq � h �xWdpxq|

� lim
xÑ8

|x| 12
����» 8

0

dmDacpx,mqh �xWβ,mpxq
����

� lim
xÑ8

|x| 12
���� » 8

0

dmDacpx,mqpx� 1
2

¸
σ��

e�σimxKσpmq � rpm,xqq
����

¤
¸
σ��

lim
xÑ8

����» 8

0

dmDacpx,mqe�σimxKσpmq
����

� lim
xÑ8

|x| 12
����» 8

0

dmDacpx,mqrpm,xq
���� .

By the Riemann-Lebesgue lemma, the first term vanishes uniformly for x P K, as
supxPK |Dacpx,mq|kσpmq is integrable. To see that the second term vanishes uniformly
for x P K, note that Dac is polynomially bounded, so there exists N P N0 such that
supxPK |Dacpx,mq|p1 �mq�N is integrable. But for this N there exists CN,K such that

supx�K |rpm,xq|   CN,K |x|� 1
2
�δp1�mq�N , so that one can estimate

sup
xPK

|x| 12
����» 8

0

dmDacpx,mqrpm,xq
����

¤ |x|�δ
» 8

0

dm sup
xPK

|Dacpx,mq|p1�mq�N ,

which vanishes as xÑ 8.

This shows that h �xW pxq behaves like h �xWdpxq for asymptotic x, i.e. suppressing low
energy contributions, the asymptotically leading part of the reduced two-point function
corresponds to discrete contributions in the damping factor. As such discrete contri-
butions are associated to particle content of the theory, it is natural to interpret the
asymptotically dominant part of W pxq to be due to the exchange of particles between
two points in space-time separated by x.

As a general representation of higher correlation functions in thermal states has not
been developed, no analogous statement for the asymptotic behavior of general m-point
functions can be derived. The further analysis relies on the assumption, that the asymp-
totically dominant contributions to higher m-point functions with suppressed low energy
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contributions again stem from the exchange of constituent particles between space-time
positions at which field measurements are performed and do not encode collective mem-
ory effects decaying only slowly in time. In mathematical terms this is formulated as
follows:

For m P N let ϑ :� mint|xj � xk| | 1 ¤ j, j ¤ m, j � ku denote the minimal time
separation between points x1, � � � , xm in space-time. For the (regular) m-point functions
of fields regularized in time by Schwartz functions whose Fourier transform vanish at 0,
it is assumed that

lim
ϑÑ8

ϑ
m�1

2
�δ
� mâ
j�1

qg
j



�xWT

mpx1, � � � , xmq � 0

for all δ ¡ 0. Here �x denotes convolution in all time variables and T truncation.
This mathematical formulation of the physical situation described above may require
some explanation. First note that for f1, � � � , fm P SpR2q it is ωp±m

j�1 φgjpfjqq � 
Wm,

Âm
j�1 gj �x fj ¡� 

Âm
j�1 qgj �x Wm,

Âm
j�1 fj ¡, so the expression

�Âm
j�1 qgj	 �x

WT
mpx1, � � � , xmq describes the correlated part of the time-regularized m-point function.

The above assumption means that this quantity decays at least like ϑ
m�1

2 for large time
separation of the x1, � � � , xm, which is the rate expected from correlations due to particle
exchange. This assumption has the following implications:

Lemma 4.4. Assuming vanishing one-point functions it is (using the same notation as
in section D.4 and definition D.10)

lim
ϑÑ8

ϑ
m
4

���� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

¹
SPT

pâ
jPS

ordered

qg
j
q �xW|S|ppxS1 ,� � �, pxSmq���� � 0 ,

where pxSj denotes omission if j R S.

Proof. By the assumption of vanishing one-point functions it is

qg �xWT
1 pxq � qg �xW1pxq � 0

and

qg
1
b qg

2
�xWT

2 px1, x2q
� qg

1
b qg

2
�xW2px1, x2q � qg1

�xW1px1q � qg2
�xW1px2q

� qg
1
b qg

2
�xW2px1, x2q .

Let P1 denote the set of partitions of Mm � t1, � � � ,mu containing a set with a single
element, i.e. T P P1 ô DS P T : |S| � 1. It is
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mâ
j�1

qgj �xWmpx1,� � �, xmq

�
¸

TPP2

¹
SPT

â
jPS

ordered

qg
j
�xW|S|ppxS1 ,� � �, pxSmq

�
mâ
j�1

qg
j
�xWmpx1,� � �, xmq

�
¸

TPP2

¹
SPT

â
jPS

ordered

qg
j
�xWT

|S|ppxS1 ,� � �, pxSmq
�
¸

TPP1

¹
SPT

â
jPS

ordered

qg
j
�xWT

|S|ppxS1 ,� � �, pxSmq
�

¸
TPPzpP1YP2q

¹
SPT

â
jPS

ordered

qg
j
�xWT

|S|ppxS1 ,� � �, pxSmq .
As T P PzpP1 Y P2q contains no sets containing just one element and is not entirely
composed of sets containing two elements, T contains at most m�1

2
elements. Let each

Si P T contain mi elements, 1 ¤ i ¤ |T|. Since T is a partition, it is
°l
i�1mi � m. This

leads to the estimate

m

4
  m� 1

4
� 1

2

�
m� m� 1

2



¤ 1

2
pm� |T|q �

|T|̧

i�1

mi � 1

2
.

The sharpness of this inequality implies that there exists δi ¡ 0, 1 ¤ i ¤ m such that

m

4
 

|T|̧

i�1

�
mi � 1

2
� δi



.

It follows that for ϑ ¡ 1 one has

ϑ
m
4   ϑ

°|T|
i�1pmi�1

2
�δiq �

|T|¹
i�1

ϑ
mi�1

2
�δi ,

which finally implies

lim
ϑÑ8

ϑ
m
4

���� mâ
j�1

qg
j
�xWmpx1,� � �, xmq

�
¸

TPP2

¹
SPT

â
jPS

ordered

qg
j
�xW|S|ppxS1 ,� � �, pxSmq����

� lim
ϑÑ8

ϑ
m
4

���� ¸
TPPzpP1YP2q

¹
SPT

â
jPS

ordered

qg
j
�xWT

|S|ppxS1 ,� � �, pxSmq����
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¤
¸

TPPzpP1YP2q
lim
ϑÑ8

�����ϑm
4

|T|¹
i�1

â
jPSi

ordered

qg
j
�xWT

|Si|ppxSi1 ,� � �, pxSimq
�����

¤
¸

TPPzpP1YP2q

�����
|T|¹
i�1

lim
ϑÑ8

ϑ
mi�1

2
�δi â

jPSi
ordered

qg
j
�xWT

|Si|ppxSi1 ,� � �, pxSimqlooooooooooooooooooooooooomooooooooooooooooooooooooon
�0

�����
� 0 .

The statement of this lemma can be rewritten as

lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

|T|¹
i�1

Si�pji,kiq

pqg
ji
� g

ki
q �xW pxji� xkiq

����� � 0 .

Combined with the result that for asymptotic times the pqg
ji
� g

ki
q �x W behaves like

pqg
ji
� g

ki
q �x Wd, this can be used to show that ω is asymptotically quasifree in the

following sense:

Theorem 4.5.

lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

|T|¹
i�1

Si�pji,kiq

pqg
ji
� g

ki
q �xWdpxji� xkiq

����� � 0 .

Proof. For odd m this can be seen from lemma 4.4 and noting that P2 is empty for sets
containing an odd number of elements. For even m and T P P2 it is |T| � m

2
. In this

case define J :� t1, � � � , m
2
u, hjk :� qg

j
� g

k
and compute

lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

|T|¹
i�1

Si�pji,kiq

hjiki �xWdpxji� xkiq
�����

� lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

|T|¹
i�1

Si�pji,kiq�
hjiki �xW pxji� xkiqlooooooooooomooooooooooon

:�ai

�phjiki �xWdpxji� xkiq � hjiki �xW pxji� xkiqlooooooooooooooooooooooooooomooooooooooooooooooooooooooon
:�bi

q
�����

� lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

¸
I�J

�¹
iPI

ai �
¹
iPJzI

bi

������
� lim

ϑÑ8
ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

�¹
iPJ

ai�
¸
I�J

�¹
iPI

ai �
¹
iPJzI

bi

�
�����
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¤ lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

¹
iPJ

ai

�����looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
�0

�
¸

T�P2

¸
I�J

�¹
iPI

sup
ϑ
ϑ

1
2 |ai|loooomoooon

 8


�¹
iPJzI

lim
ϑÑ8

ϑ
1
2 |bi|loooomoooon

�0




� 0 .

The first term vanishes by lemma 4.4, ϑ
1
2 |ai| is bounded as a consequence of theorem

4.2 and limϑÑ8 ϑ
1
2 |bi| � 0 by virtue of claim 4.3.

4.2. Algebra of Asymptotic Fields

It has been seen in the preceding section that m-point functions of thermal states with
suppressed low energy contributions behave, for large time separation of the measure-
ments, like sums of products of those contributions to two-point functions stemming
from discrete parts of the damping factor. This sections aims to capture that asymp-
totic structure algebraically by introducing an algebra of asymptotic fields, suitable to
model asymptotic dynamics for effective models.

The definition of the algebra of asymptotic fields takes some preparation. Let AM be
the free mass M field algebra (see definition D.14). In order to lighten the notation, an
abstract formulation of AM is given. This formulation is equivalent to the represented
field algebra πpAq, where π is the GNS representation corresponding to the free mass m
vacuum state on A.

Definition 4.2 (Abstract mass M free field algebra). The abstract mass M free field
algebra in two dimensions, denoted AM , is given by the unital �-algebra generated by
symbols φpfq for f P SpR2q, subject to relations

φpλ1f1 � λ2f2q � λ1φpf1q � λ2φpf2q ,
φpfq� � φpfq ,

rφpf1q, φpf2qs �   CM , f1 � qf2 ¡ 1

for f, f1, f2 P SpR2q, λ1, λ2 P C. CM denotes the mass M free commutator function,
which is given by

  CM , f1 � qf2 ¡� p2πq�1

»
dp εppqδpp2 �m2q qpf1 � pf2ppq .

Definition 4.3 (Extension algebra). The extension algebra Z is the free unital �-
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algebra generated by symbols Zpfq for f P SpRq subject to the relations

Zpλ1f1 � λ1f1q � λ1Zpf1q � λ2Zpf2q ,
Zpfq� � Zpqfq ,
Zpqfq � Zpfq ,

rZpf1q, Zpf2qs � 0

for f , f1, f2 P SpRq, λ1, λ2 P C.

Definition 4.4 (Algebra of asymptotic fields). The algebra of asymptotic fields
A0 is the free unital �-algebra generated by symbols Z0pfq for f P SpRq and φ0pfq for
f P SpR2q subject to the following relations

φ0pλ1f1 � λ2f2q � λ1φ0pf1q � λ2φ0pf2q ,
Z0pλ1f1 � λ1f1q � λ1Z0pf1q � λ2Z0pf2q ,

φ0pfq� � φ0pfq ,
Z0pfq� � Z0pqfq ,
Z0pqfq � Z0pfq ,

rφ0pf1q, φ0pf2qs � Z0pf1 M f2q ,
rZ0pf1q, Z0pf2qs � 0 ,

rZ0pfq, φ0pfqs � 0

for f, f1, f2 P SpR2q, f , f1, f2 P SpRq, λ1, λ2 P C. The bilinear map M : SpR2q � SpR2q Ñ
SpRq is defined as follows:

f1 M f2pxq :� p2πq�2 �

F�1
x,p

�
p ÞÑ Fx,ppf1� qf2qp�

a
p2�M2,xq�Fx,ppf1� qf2qp

a
p2�M2,xq

2
a

p2 �M2

�
pxq .

Heuristically this reads f1 M f2pxq �
³

dxCMpxqf1 � qf2pxq. From the rigorous expression
it can be inferred that f1 M f2 is a test function.

Note that f1 M f2 satisfies �f1 M f2 � �f2 M f1 and f1 M f2 � �f1 M f2. It can be
checked that the defining relations for A0 are consistent in the sense that the sum of the
two-sided ideals they generate is not too large and A0 is not trivial. In particular it is

Z0pf1 Mf2q��rφ0pf1q, φ0pf2qs��rφ0pf2q, φ0pf1qs�Z0p�f2 Mf1q�Z0p�f2 Mf1q ,

Z0p�f1 Mf2q� �Z0pf2 Mf1q��rφ0pf2q, φ0pf1qs�rφ0pf1q, φ0pf2qs�Z0pf1 Mf2q ,

Z0pfqZ0pf1 M f2q � Z0pfqrφ0pf1q, φ0pf2qs
� rφ0pf1q, φ0pf2qsZ0pfq � Z0pf1 M f2qZ0pfq .
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The algebra of asymptotic fields A0 can be viewed as a central extension of A by Z is
the following way:

The map Zpfq ÞÑ Z0pfq �
³

dx fpxq1 extends to an injective �-algebra homomorphism

ι : Z Ñ A0 .

Similarly the map Z0pfq ÞÑ
³

dx fpxq1, φ0pfq ÞÑ φpfq extends to a surjective �-algebra
homomorphism

π : A0 Ñ Z0 .

It is straightforward to check that ι and π map the defining ideals in Z,A0 respectively,
to zero and thus are well-definied. The algebras fit into a sequence

Z ιÑ A0
πÑ A

and it can be checked that imapιq generates kerpπq. If I denotes the ideal in A0 gener-
ated by imapιq, then A is isomorphic to A0{I. Furthermore imapιq is central in A0.

Space-time translations act automorphically on A0. For a P R2 define αa on the gener-
ators of A0 by

αapφ0pfqq :� φ0pfaq ,
αapZ0pfqq :� Z0pfq .

This map extends to a homomorphism on the free algebra generated by φ0pfq, Z0pfq,
preserves the defining ideals ofA0 and hence defines an endomorphism ofA0. As αa�αb �
αa�b, α is a representation of R2. In particular each αa is an automorphism of A0.

The action of R2 on A0 is compatible with that on AM with R2 seen as a subgroup of
the Poincaré group, i.e. π intertwines the actions of R2: αapπpφ0pfqqq � πpαapφ0pfqqq.
In this sense, the action of R2 on A0 extends that on AM .

4.2.1. KMS States on the Algebra of Asymptotic Fields

In section D.8, KMS states are defined only on the field algebra A. As the definition
makes no specific reference to generators of A and only requires an action of R, a gener-
alization of the KMS condition to A0 is at hand. The same is true for the definition of
time-clustering. The definition of regularity has to be extended in the sense that words
in Z0 and φ0 extend to tempered distributions in regular states.

The set of possible β-KMS states on A0 can be computed by means of standard methods:
Let ω be a regular, time-clustering β-KMS state. Since @ t P R : ft M gt � f M g, it
is αtprφ0pf1q, φ0pf2qsq � rφ0pf1q, φ0pf2qs. Assuming vanishing one-point functions, time-
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clustering then implies for f1, f2, g1, � � � gk P SpR2q

0 � lim
tÑ�8

�
ω

� k¹
l�1

φ0pgkq � αtprφ0pf1q, φ0pf2qsq



�ω
� k¹
l�1

φ0pgkq


ωprφ0pf1q, φ0pf2qsq

�

�
�
ω

� k¹
l�1

φ0pgkq � rφ0pf1q, φ0pf2qs



�ω
� k¹
l�1

φ0pgkq


ωprφ0pf1q, φ0pf2qsq

�
,

i.e.

ω

� k¹
l�1

φ0pgkq � rφ0pf1q, φ0pf2qs


� ω

� k¹
l�1

φ0pgkq


� ωprφ0pf1q, φ0pf2qsq . (4.2)

Corollary 4.6. For f, g1, � � � , gk P SpRq it is

ω

�� k¹
l�1

φ0pgkq, φ0pfq
�


�
ķ

l�1

ω

� k¹
j�1
j�l

φ0pgkq


� ωpZ0pgl M fqq .

Proof. Since for 1 ¤ l ¤ k the commutators rφ0pglq, φ0pfqs � Z0pgl M fq are central in
A0, the statement is derived by considering ωpφ0pg1q � � �φ0pgkqφ0pfqq, permuting φ0pfq
to the left and applying relation 4.2 to the commutator terms.

Set a :� ±k
l�1 φ0pglq and b :� φ0pfq. Let Fa,b be the function t ÞÑ ωpaαtpbqq extended

to the strip Sβ using the KMS condition. It is

Fa,bptq �  Wk�1, g1 b � � � b gk b ft ¡
�   xW �1

k�1, pg1 b � � � b pgk b eitp pf ¡
and by the KMS condition

Fa,bpt� iβq �  Wk�1, ft b g1 b � � � b gk ¡
�   xW �1

k�1, pg1 b � � � b pgk b eitpe�βp pf ¡ .

Define the tempered distribution Ck,1 by

  Ck,1, g1 b � � � b gk b f ¡:� ω

�� k¹
l�1

φ0pglq, φ0pfq
�


.
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In light of the preceding computations it is

  pC �1

k,1 , pg1 b � � � b pgk b pf ¡
�   Ck,1, g1 b � � � b gk b f ¡
� Fa,bp0q � Fa,bpiβq
�   xW �1

k�1, pg1 b � � � b pgk b p1� e�βpq pf ¡
�   p1� e�βpqxW �1

k�1, pg1 b � � � b pgk b pf ¡ .

As a consequence of time-clustering, xW �1

k�1 does not have a discrete contribution in the
pk � 1qth energy variable p :

0 � lim
tÑ�8

ω

� k¹
l�1

φ0pglq � αtpφ0pfqq



� lim
tÑ�8

  eitpxW �1

k�1, pg1 b � � � b pgk b pf ¡ .

This would not be possible in the presence of a discrete contribution at p � 0.

The relation pC �1

k,1 � p1 � e�βpqxW �1

k�1 can hence be writte as xW �1

k�1 � p1 � e�βpq�1 pC �1

k,1 in
an unambiguous way. Using a somewhat sloppy notation, compute

ω

� k¹
l�1

φ0pglq � φ0pfq



�   xW �1

k�1, pg1 b � � � b pgk b pf ¡
�   p1� e�βpq�1 pC �1

k,1 , pg1 b � � � b pgk b pf ¡
�   Ck,1, g1 b � � � b gk b F�1

x,ppp1� e�βpq�1 pfq ¡
� ω

�� k¹
l�1

φ0pglq, φ0pF�1
x,ppp1� e�βpq�1 pfqq�


�
ķ

l�1

ω

� k¹
j�1
j�l

φ0pgkq


� ωpZ0pgl M F�1

x,ppp1� e�βpq�1 pfqqq
�

ķ

l�1

ω

� k¹
j�1
j�l

φ0pgkq


� ωpZ0pgl Mβ fqq ,

where Mβ is given by f1 Mβ f2pxq �
³

dxWM,βpxqf1 � qf2pxq for f1, f2 P SpR2q. A more
rigorous, but lengthy expression can be given for f1 Mβ f2 P SpRq in analogy to f1 M f2.
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A combinatorial argument now shows that for f1, � � � , fm P SpR2q one has

ω

� m¹
j�1

φ0pflq


�
¸

TPP2

¹
ps1,s2qPT
s1 s2

ωpZ0pfs1 Mβ fs2qq . (4.3)

It follows that time-clustering β-KMS states on A0 are homogeneous and quasifree with
two-point functions given by

ωpφ0pfqφ0pgqq � ωpZ0pf Mβ gqq . (4.4)

The set of KMS states for a given inverse temperature β is degenerate with a residual de-
gree of freedoms in the choice of ωpZ0pfqq. For prescribed ωpZ0pfqq it has to be checked,
whether ω defines an actual state as the positivity condition need not be automatically
satisfied.

Now consider the following comparison between KMS states on A0 and the asymptotic
time structure of correlation functions in general thermal states with suppressed low
energy contributions:
In the sense of distributions equation 4.3 reads

W0,mpx1, � � � , xmq �
¸

TPP2

|T|¹
i�1

Si�pji,kiq

ωpZ0pxji � xkiqqWm,βpxji � xkiq .

Recall the result previously obtained for time-regularized correlation functions

lim
ϑÑ8

ϑ
m
4

����� mâ
j�1

qg
j
�xWmpx1,� � �, xmq �

¸
TPP2

|T|¹
i�1

Si�pji,kiq

pqg
ji
� g

ki
q �xWdpxji� xkiq

����� � 0

with Wdpxq � DdpxqWM,βpxq. Time-regularizing the asymptotic fields, it becomes ap-
parent that, identifying the tempered distributions ωpZ0pxqq and Ddpxq, the algebra A0

captures the asymptotic time structure of general thermal correlation functions. In the
following, the normalization ωpZ0p0qq � Ddp0q � 1 is assumed.

4.2.2. Vacuum State on the Algebra of Asymptotic Fields

By similar methods, vacuum states on A0 can be computed. It turns out to be essentially
unique. Let ω be a vacuum state on A0. As a consequence of the relativistic spectrum
condition it is

  pC �1

k,1 , pg1 b � � � b pgk b pf ¡
�   Ck,1, g1 b � � � b gk b f ¡
�   θppqxW �1

k�1, pg1 b � � � b pgk b pf ¡ .
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With this modification in mind and using spatial- instead of time-clustering, the method
for computing KMS states on A0 can be applied in the vacuum case. It turns out that
vacuum states on A0 are quasifree with two-point function

ωpφ0pfqφ0pgqq � ωpZ0pf M8 gqq ,

where f M8 g is formally given by f M8 gpxq �
³

dxWM,8pxqf � pgpxq. In the vacuum
case, Poincaré invariance further restricts the possibilities for ωpZ0pf M8 gqq to multiples
of
³

dxWM,8pxqf � pgpxq. With a suitable normalization it is Z0pxq � 1 and

ωpZ0pf M8 gqq �  WM,8, f � pg ¡ ,
or equivalently in heuristic notation

W0pxq � Z0pxqWM,8pxq � WM,8pxq .

In short, identifying φ0pfq P A0 with φpfq P A, the vacuum state on A0 coincides with
the free mass M vacuum. This is not surprising: The identification ωpZ0pxqq Ø Ddpxq
leads to the expectation that the residual degree of freedom in the choice of ωpZ0pfqq in
KMS states on A0 does not persist in the vacuum case, as the vacuum does not admit
a non-trivial damping factor.
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5. Asymptotic Dynamics

Assuming the original field obeyes a dynamical law given by a field equation of the form
pl �M2qφ � P pφq � 0 for some polynomial P in the sense of an effective theory, the
condition of asymptotic compatibility imposes restrictions on the admissible KMS
states on the algebra of asymptotic fields A0. As in the four-dimensional case (cf. [9]),
these restrictions are sufficiently strong to recover the discrete parts of the damping
factor and thus to identify the particle content of such an effective theory.

5.1. Normal-Ordering

The formulation of a field equation pl �M2qφ � P pφq � 0 requires a notion of powers
of a field. For the purposes of describing the asymptotic dynamics of a thermal theory
satisfying the assumptions made in 4.1, such a notion of powers is needed for the field
φ0. The“naive” power φ0pfqm turns out to be too singular in KMS states on A0, when
considering to the limit f Ñ δx required to formulate the condition of asymptotic com-
patibility. A way out lies in subtracting from φ0pfqm a suitable combination of vacuum
expectation values corresponding to singular parts in φ0pfq for increasingly localized f .
This procedure, called normal-ordering, is defined as follows:

Definition 5.1. Let κ be a regular, quasifree state on A0. For f P SpR2q, normal-
ordering is a map from tφ0pfqm |m P N0 u to A0 given by

Nκpφ0pfqmq :�
tm

2
u¸

k�0

p�1qk
�
m

2k



κpφ0pfq2kqφ0pfqm�2k ,

where t m
2
u is the largest integer less or equal than m

2
. Nκ extends linearly to the space

spanptφ0pfqm |m P N0uq. Nκpφ0pfqmq is called mth normal-ordered power of φ0pfq
with respect to κ.

Lemma 5.1. Let κ, ω be quasifree states on A0 and f1, � � � , fm1 , � � � , fm2 , f P SpR2q.



5.2. Asymptotic Field Equation 41

Define M :� t1, � � � ,m1 �m2u and Kf :� ωpφ0pfqφ0pfqq � κpφ0pfqφ0pfqq. It is

ω

�m1¹
k�1

φ0pfkq �Nκpφ0pfqmq �
m2¹

k�m1�1

φ0pfkq



�
¸

m�pm1�m2q
¤2k¤m

m!

2kk!
Kk
f

¸
S�M

|S|�m�2k

ω

� ¹
pPMzS
ordered

φ0pfpq



�
¹
pPS
p¤m1

ωpφ0pfpqφ0pfqq �
¹
pPS
p¡m1

ωpφ0pfqφ0pfpqq .

Proof. The statement can be proven by combinatorial methods exploiting the quasifree-
ness of ω and κ. However, the combinatorial arguments are difficult to present in a
comprehensible manner. The proof given in appendix C.4 makes use of generating func-
tionals for normal-ordered powers.

Definition 5.2. Let κ, ω be two regular, quasifree states on A0. ω is called κ-regular
:ô The following limits exist for all g P SpR2q and x P R2:

limfÑδx ωpφ0pfqφ0pfqq � κpφ0pfqφ0pfqq
limfÑδx ωpφ0pfqφ0pgqq
limfÑδx ωpφ0pgqφ0pfqq .

Lemma 5.2. Let κ be a regular quasifree and ω a regular, κ-regular, quasifree state on
A. If πω denotes the GNS representation on H with invariant dense domain D and
inner product x�|�y, then for x P R2

lim
fÑδx

xa|πωpNκpφ0pfqmqq � by, a, b P D

defines a sesquilinear form on D �D.

Proof. Let a, b P D. xa, πωpNκpφ0pfqmqq � by can be decomposed into summands ωp� � � q
as in lemma 5.1. The κ-regularity of ω then guarantees the existence of the f Ñ δx
limit. Sequlinearity follows from the sesquilinearity of x�|�y.
In the following all normal-orderings are with respect to the vacuum sate ω0,8 in A0.
The index in Nω0,8 is omitted.

5.2. Asymptotic Field Equation

Now suppose P � °l
m�0 cmX

m is the polynomial interaction term of a modified Klein-
Gordon equation pl�M2qφ�P pφq � 0 satisfied by original field φ in the GNS represen-
tation π of a relativistic KMS state as in 4.1. This is to say that given a suitable notion
of powers of fields on πpAq, it is πpφppl�M2qfqq � πpP pφpfqqq � 0 for any f P SpR2q.
In fact, no such thermal state or notion of powers of fields need exist. The original fields
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satisfying a field equation serves only as a starting point for heuristic considerations and
it suffices if the field equation is satisfied in the sense of an effective theory.
The asymptotic field φ0 cannot satisfy the field equation exactly in any finite tempera-
ture KMS state on A0, as the kernels kerpπq of the corresponding GNS representation do
not contain the ideal generated by φ0ppl�M2qfq �°l

m�0 cmNpφ0pfqmq, unless P � 0.
However, it is reasonable to assume that φ0 satisfies the field equation in an asymptotic
sense in suitable KMS states on A0. This leads to the notion of asymptotic compatibil-
ity. The exact formulation requires some preparation.

The field equation map

L : SpR2q Ñ A0 ,

f ÞÑ Lpfq :� φ0ppl�M2qfq �
ļ

m�0

cmNpφ0pfqmq

can be used to measure how badly φ0 fails to satisfy the field equation in a given β-KMS
state ω0,β on A0. Let π0,β be the GNS representation of A0 induced by ω0,β on the
Hilbert space H with dense invariant subspace D and inner product x�|�y . If π0,β �L was
the zero map, then φ0 would satisfy the field equation in ω0,β. The condition π0,β �L � 0
is equivalent to @ a, b P D, f P SpR2q : xa|π � Lpfqby � 0, which in turn means that
@ f1, � � � , fm1 , � � � , fm2 , f P SpR2q :

ω0,βpφ0pf1q � � �φ0pfm1qLpfqφ0pfm1�1q � � �φ0pfm2qq � 0 .

This motivates the use ω0,βpφ0pf1q � � �φ0pfm1qLpfqφ0pfm1�1q � � �φ0pfm2qq as a basis for
formulating an asymptotic field equation.

Lemma 5.3. Let ω0,8 be the vacuum state and ω0,β a β-KMS state on A0 such that the
tempered distribution f ÞÑ ω0,βpZ0pfqq is given by a smooth function ω0,βpZ0pxqq �: Ddpxq
with Ddp0q � 1. Then ω0,β is ω0,8-regular.

Proof. Because of temperedness, Dd is polynomially bounded and hence a multiplier in
S 1pR2q. Using the results on β-KMS states on A0 it is

ω0,βpφ0pfqφ0pfqq
� ω0,βpZpf Mβ fqq
�
»

dxDdpxqf Mβ fpxq

�   WM,β, Dd � f � qf ¡ ,
were WM,β is the free, reduced mass M β-KMS two-point function. It follows that

ω0,βpφ0pfqφ0pfqq � ω0,8pφ0pfqφ0pfqq
�   W0,β, f � qf ¡ �   W0,8, f � qf ¡
�   WM,β, Dd � f � qf ¡ �   WM,β, f � qf ¡
� p  WM,β, Dd � f � qf ¡ �   WM,β, Dd � f � qf ¡q

�p  WM,β, Dd � f � qf ¡ �   WM,β, f � qf ¡q .
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In the limit f Ñ δx the first summand in the latter expression converges to a constant
only depending on M and β and the second vanishes as shown below. Convergence is
to be understood in a weak sense and the computations can be made rigorous using
arguments similar to those in theorem C.3.

First summand: Using that Dd � f � qf and consequently F�1pDd � f � qfq are even in x, p
respectively, it is in slightly sloppy notation

  WM,β, Dd � f � qf ¡ �   WM,8, Dd � f � qf ¡
�   xWM,β �xWM,8,F�1pDd � f � qfq ¡
� 2π   εppqδpp2 �M2q

1� e�βp
� θppqδpp2 �M2q,F�1pDd � f � qfq ¡

� 2π   2θppq
eβp � 1

δpp2 �M2q,F�1pDd � f � qfq ¡ .

For f Ñ δx, f � qf converges to δ. As Ddp0q � 1, F�1pDd � f � qfq then converges to the
constant function p2πq�2. Consequently

lim
fÑδx

  WM,β, Dd � f � qf ¡ �   WM,8, Dd � f � qf ¡
� lim

fÑδx
p2πq

»
dp
F�1pDd � f � qfqpap2 �M2qa

p2 �M2 � peβ
?

p2�M2 � 1q
� p2πq�1

»
dp

1a
p2 �M2

1

peβ
?

p2�M2 � 1q
�:Kβ .

(5.1)

Second summand: Similarly one gets

  WM,β, Dd � f � qf ¡ �   WM,β, f � qf ¡
�   xWM,β,F�1ppDd � 1q � f � qfq ¡ .

Using again that Ddp0q � 1, the expression F�1ppDd � 1q � f � qfq vanishes as f Ñ δx,
which implies

lim
fÑδx

  WM,β, Dd � f � qf ¡ �   WM,β, f � qf ¡� 0 .

Altogether it is

lim
fÑδx

ω0,βpφ0pfqφ0pfqq � ω0,8pφ0pfqφ0pfqq � Kβ .

It remains to show that limfÑδx ω0,βpφ0pfqφ0pgqq and limfÑδx ω0,βpφ0pgqφ0pfqq exist.
Since ω0,βpφ0pfqφ0pgqq �  WM,β, Dd � f � qg ¡ and f � qg Ñ qgx as f Ñ δx it is

lim
fÑδx

ω0,βpφ0pfqφ0pgqq �  WM,β, Dd � qgx ¡ .
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Interchanging f, g, the same argument shows that

lim
fÑδx

ω0,βpφ0pgqφ0pfqq �  WM,β, Dd � g�x ¡ .

Lemma 5.4. Let ω0,β be a β-KMS state on A0 such that the tempered distribution
f ÞÑ ω0,βpZ0pfqq is given by a smooth function ω0,βpZ0pxqq �: Ddpxq with Ddp0q � 1. If
π0,β is the GNS representation on the Hilbert space H with dense invariant domain D,
associated to ω0,β, then π0,β � φ0ppl �M2qfq admits the limit f Ñ δx in the sense of a
sesquilinear form on D �D.

Proof. Let f1, � � � , fm1 , � � � , fm2 , f P SpR2q. It is by quasifreeness of ω0,β:

ω0,β

�m1¹
k�1

φ0pfkq � φ0ppl�M2qfq �
m2¹

k�m1�1

φ0pfkq



�
m1̧

j�1

ω0,βpφ0pfjqφ0ppl�M2qfqq � ω0,β

�m2¹
k�1
k�j

φ0pfkq



�
m2̧

j�m1�1

ω0,βpφ0ppl�M2qfqφ0pfjqq � ω0,β

�m2¹
k�1
k�j

φ0pfkq


.

This shows that it is sufficient to prove that the limit f Ñ δx exists in the two-point
functions

ω0,βpφ0pgqφ0ppl�M2qfqq
and

ω0,βpφ0ppl�M2qfqφ0pgqq .
It is

ω0,βpφ0pgqφ0ppl�M2qfqq
�   Dd �WM,β, g � ppl�M2q qfq ¡
�   Dd �WM,β, pl�M2qg � qf ¡
�   pl�M2qDd �WM,β, g � qf ¡ .

In this form it is obvious that the limit f Ñ δx exists and that

lim
fÑδx

ω0,βpφ0pgqφ0ppl�M2qfqq �  pl�M2qDd �WM,β, g�x ¡ .

Similarly it is

lim
fÑδx

ω0,βpφ0ppl�M2qfqφ0pgqq �  pl�M2qDd �WM,β, qgx ¡ .
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It follows from lemmata 5.2 and 5.4 that π0,β � Lpfq admits the limit f Ñ δx for x P R2

in the sense of sesquilinear forms on D � D. The resulting sesquilinear form, denoted
π0,β � Lpxq can be time-regularized by a Schwartz function g P SpRq, whose Fourier
transform vanishes at zero, resulting in the sesquilinear form π0,β � Lgpxq:

ω0,βpφ0pf1q � � �φ0pfm1qLgpxqφ0pfm1�1q � � �φ0pfm2qq
:�

»
dx gpxqω0,βpφ0pf1q � � �φ0pfm1qLpxqφ0pfm1�1q � � �φ0pfm2qq .

It seems natural to assume that if φ0 is to satisfy the field equation L in ω0,β in an
asymptotic sense, π0,β � Lgpxq should decay more rapidly than its components, namely
the field π0,βpφ0pxqq and its normal-ordered powers. The decay is to be understood in
the sense of decay of the respective sesquilinear form applied to arbitrary a, b P D. For
the field φ0 to share the asymptotic time behavior in thermal states with the original
time-regularized field φg, it also needs to be time-regularized by a Schwartz function
g P SpRq, whose Fourier transform vanishes at zero. These considerations allow to
formulate an asymptotic field equation:

Definition 5.3. Let ω0,β be a β-KMS state on A0 such that the tempered distribution
f ÞÑ ω0,βpZ0pfqq is given a by smooth function ω0,βpZ0pxqq �: Ddpxq with Ddp0q � 1. Let
π0,β be the GNS representation associated to ω0,β. The field π0,β � φ0 is said to comply
with the asymptotic field equation :ô
For all f1, � � � , fm1 , � � � , fm2 P SpR2q, g

1
, � � � , g

m1
, � � � , g

m2
, g P SpRq with pg

i
p0q � pg � 0

and m P N0:

ω0,βpφ0,g
1
pf1q � � �φ0,g

m1
pfm1qLgpxqφ0,g

m1�1
pfm1�1q � � �φ0,g

m2
pfm2qq

decays more rapidly in x than

ω0,βpφ0,g
1
pf1q � � �φ0,g

m1
pfm1qNgpφ0pxqmqφ0,g

m1�1
pfm1�1q � � �φ0,g

m2
pfm2qq , (5.2)

where Ngpφ0pxqmq is the sesquilinear form associated to the mth normal-ordered power of
φ0pfq in the limit f Ñ δ time-regularized by g. If π0,β �φ0 complies with the asymptotic
field equation, ω0,β is said to be asymptotically compatible with L.

By determining the asymptotic behavior of 5.2, the asymptotic field equation can be
formulated in a more convenient way.

Lemma 5.5. In the situation of definition 5.3, the leading order in the x-asymptotic
behavior of 5.2 is at most � |x|� 1

2 . The cases of slowest possible rate of decay in x exhibit

a � |x|� 1
2 asymptotic behavior.
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Proof. It follows from lemma 5.1 and the proof of 5.3, that

ω0,βpφ0,g
1
pf1q � � �φ0,g

m1
pfm1qNgpφ0pxqmqφ0,g

m1�1
pfm1�1q � � �φ0,g

m2
pfm2qq

�
¸

m�pm1�m2q
¤2k¤m

m!

2kk!
Kk
β

¸
S�M

|S|�m�2k

ω0,β

� ¹
pPMzS
ordered

φ0,g
p
pfpq



�
»

dy gpyq
¹
pPS
p¤m1

ω0,βpφ0,g
p
pfpqφ0px�y,xqq �

¹
pPS
p¡m1

ω0,βpφ0px�y,xqφ0,g
p
pfpqq ,

(5.3)

where

ω0,βpφ0,g
p
pfpqφ0px�y,xqq �   g

p
�xWM,β, Dd � qfp,px�y,xq ¡ ,

ω0,βpφ0px�y,xqφ0,g
p
pfpqq �   qg

p
�xWM,β, Dd � fp,�px�y,xq ¡ .

By the asymptotic properties of the free reduced mass M β-KMS two-point function
WM,β, each such factor vanishes for asymptotic x. Consequently the time-regularized
product of these factors can be estimated from above by applying the time-regularization
to only one factor. Time-regularization of one such factor with g gives

  pg
p
� qgq �xWM,β, Dd � qfp,x ¡ (5.4)

and

  pg � qg
p
q �xWM,β, Dd � fp,�x ¡ (5.5)

respectively. As the appearance of the time independent Dd does not impact the time
asymptotic behavior of WM,β, these terms exhibit a � |x|� 1

2 asymptotic behavior (cp.
theorem 4.2). The remaining non-time-regularized factors still vanish for asymptotic x,

though their rate of decay is possibly slower than � |x|� 1
2 , as low energy contributions

are not as strongly suppressed.

This can be used to determine the asymptotic behavior of each summand in
°

S�M
|S|�m�2k

appearing in 5.3:

• If |S| � 0, the corresponding summand contains no factor depending on y. Aspgp0q � 0, such a summand vanishes as a result of time-regularization.

• If |S| � 1, then the summand contains precisely one factor of the form 5.4 or 5.5

and consequently exhibits a � |x|� 1
2 asymptotic behavior.

• If |S| ¡ 1, then the summand can estimated from above by one factor of the form
5.4 or 5.5 and additional factors vanishing for large |x|. Such summands decay

faster than |x|� 1
2 .
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Corollary 5.6. A state ω0,β as in definition 5.3 is asymptotically compatible with a field
equation L ô for all f1, � � � , fm1 , � � � , fm2 P SpR2q, g

1
, � � � , g

m1
, � � � , g

m2
, g P SpRq withpg

i
p0q � pg � 0:

lim
|x|Ñ8

|x| 12ω0,β

�m1¹
k�1

φ0,g
k
pfkq � Lgpxq �

m2¹
k�m1�1

φ0,g
k
pfkq



� 0 .

This reformulation of the condition of asymptotic compatibility has an interesting conse-
quence: it implies that in a asymptotically compatible thermal state on A0, Dd satisfies
a differential equation, which essentially fixes the state.

Theorem 5.7. Let ω0,β be a β-KMS state on A0 such that the tempered distribution f ÞÑ
ω0,βpZ0pfqq is given by a smooth function ω0,βpZ0pxqq �: Ddpxq with Ddp0q � 1. Then
if ω0,β is asymptotically compatible with a field equation L, Dd satisfies the differential
equation �

B2 �
¸
kPN0

2k�1¤l

p2k�1q!
2kk!

Kk
βc2m�1

	
Dd � 0 .

Proof. Let f1, � � � , fm1 , � � � , fm2 P SpR2q, g
1
, � � � , g

m1
, � � � , g

m2
, g P SpRq with the prop-

erty pg
i
p0q � pg � 0. Consider

ω0,β

�m1¹
k�1

φ0,g
k
pfkq � Lgpxq �

m2¹
k�m1�1

φ0,g
k
pfkq



� ω0,β

�m1¹
k�1

φ0,g
k
pfkq � pl�M2qφ0,gpxq �

m2¹
k�m1�1

φ0,g
k
pfkq



looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

:�Apxq

�
ļ

m�0

cm � ω0,β

�m1¹
k�1

φ0,g
k
pfkq �Ngpφ0pxqmq �

m2¹
k�m1�1

φ0,g
k
pfkq



looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

:�Bmpxq

.

Making use of the computations in the proof of lemma 5.4 it is

Apxq

�
m1̧

j�1

  pqg
j
� gq �y pl�M2qDd �WM,β, fj,�x ¡ �ω0,β

�m2¹
k�1
k�j

φ0,g
k
pfkq




�
m2̧

j�m1�1

  pg
j
� qgq �y pl�M2qDd �WM,β, qfj,x ¡ �ω0,β

�m2¹
k�1
k�j

φ0,g
k
pfkq



.

Note that since WM,β satisfies the mass M Klein-Gordon equation, it is

pl�M2qDd �WM,β � p�B2
yDdqWM,β � 2pByDdqpByWM,βq ,
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where the first term decays like |x|� 1
2 and the second like |x|�1 when time-regularized

by qg
j
� g or g

j
� qg, as a result of theorem 4.2. Consequently, it is

lim
|x|Ñ8

|x| 12Apxq

� lim
|x|Ñ8

|x| 12
m1̧

j�1

  pqg
j
� gq �y WM,β,�pB2

yDdqfj,�x ¡ �ω0,β

�m2¹
p�1
p�j

φ0,g
p
pfpq



� lim
|x|Ñ8

|x| 12
m2̧

j�m1�1

  pg
j
� qgq �y �WM,β,�pB2

yDdq qfj,x ¡ �ω0,β

�m2¹
p�1
p�j

φ0,g
p
pfpq


.

Now recall (proof of lemma 5.5) that

Bmpxq
�

¸
m�pm1�m2q
¤2k¤m

m!

2kk!
Kk
β

¸
S�M

|S|�m�2k

ω0,β

� ¹
pPMzS
ordered

φ0,g
p
pfpq



�
»

dy gpyq
¹
pPS
p¤m1

ω0,βpφ0,g
p
pfpqφ0px�y,xqq �

¹
pPS
p¡m1

ω0,βpφ0px�y,xqφ0,g
p
pfpqq ,

where the summands with m�2k � |S| � 1 give rise to the leading order |x|� 1
2 behavior.

Further using results from the proof of lemma 5.5 it follows that

lim
|x|Ñ8

|x| 12Bmpxq

�
¸

m�pm1�m2q
¤2k¤m

m!

2kk!
Kk
β � δm�2k,1 �

lim
|x|Ñ8

|x| 12
m1̧

j�1

  pqg
j
� gq �y WM,β, Dd � fj,�x ¡ �ω0,β

�m2¹
p�1
p�j

φ0,g
p
pfpq



� lim
|x|Ñ8

|x| 12
m2̧

j�m1�1

  pg
j
� qgq �y �WM,β, Dd � qfj,x ¡ �ω0,β

�m2¹
p�1
p�j

φ0,g
p
pfpq


.

Combining the obtained expressions for lim
|x|Ñ8

|x| 12Apxq and lim
|x|Ñ8

|x| 12Bmpxq, the asymp-
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totic field equation can be expressed as follows:

0 � lim
|x|Ñ8

|x| 12ω0,β

�m1¹
k�1

φ0,g
k
pfkq � Lgpxq �

m2¹
k�m1�1

φ0,g
k
pfkq




� lim
|x|Ñ8

|x| 12
�
Apxq �

ļ

m�0

cm �Bmpxq



� lim
|x|Ñ8

|x| 12
m1̧

j�1

  pqg
j
� gq �y WM,β, fj,�x �

�
�B2

y �
¸
kPN0

2k�1¤l

p2k�1q!
2kk!

Kk
βc2k�1

	
Dd ¡

�ω0,β

�m2¹
p�1
p�j

φ0,g
p
pfpq



� lim
|x|Ñ8

|x| 12
m2̧

j�m1�1

  pg
j
� qgq �y �WM,β, qfj,x � ��B2

y �
¸
kPN0

2k�1¤l

p2k�1q!
2kk!

Kk
βc2k�1

	
Dd ¡

�ω0,β

�m2¹
p�1
p�j

φ0,g
p
pfpq


,

which is satisfied iff �
B2 �

¸
kPN0

2k�1¤l

p2k�1q!
2kk!

Kk
βc2k�1

	
Dd � 0 .

The constant ξP,β :� ° kPN0
2k�1¤l

p2k�1q!
2kk!

Kk
βc2k�1 depends only on the interaction polynomial

P and the inverse temperature β. In light of the identification of Dd with the discrete
part of the damping factor, Dd is even. Along with the normalization condition Ddp0q �
1 and the assumed smoothness of Dd, this guarantees that the differential equation
D2

d � ξP,βDd � 0 has unique solutions:

• If ξP,β   0, then Ddpxq � cospa�ξP,βxq.
• If ξP,β � 0, then Ddpxq � 1.

• If ξP,β ¡ 0, then Ddpxq � coshpaξP,βxq.
In the latter case Dd is not tempered, which means that the identification with the
discrete part of a damping factor cannot be valid. Under the assumptions made on Dd,
the method of asymptotic analysis is not suitable to detect the particle content of a
thermal theory with interaction P at temperatures such that ξP,β ¡ 0. If one is willing
to consider non-relativistic KMS states, the smoothness condition on Dd can be eased
and solutions like Ddpxq � e�ξP,β |x| become admissible for ξP,β ¡ 0. This ansatz is not
pursued further in this thesis.
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For ξP,β � 0, the asymptotically compatible β-KMS state behaves like the free β-KMS
state in the sense that their reduced two-point functions define the same tempered dis-
tribution. It is noteworthy that P need not be trivial for this case to occur at special
temperatures β. In this scenario attractive and repulsive influences of constituents of
the thermal background on particles would statistically. The interaction would only
manifest itself in quickly decaying contributions to correlation functions due to unstable
excitations.

In the ξP,β   0 case, ωβ,0 with Ddpxq � cospa|ξP,β|xq defines in fact a state. It suffices
to check positivity:

ω0,βpφ0pfq�φ0pfqq
�   WM,β, Dd � f � qf ¡
�   WM,β, x ÞÑ cosp

b
|ξP,β|xq � f � qfpxq ¡

�   WM,β, x ÞÑ fc � qfcpxq � fs � qfspxq ¡
�   WM,β, fc � qfc ¡ �   WM,β, fs � qfs ¡ ,

where fspxq :� fpxq sinpa|ξP,β|xq and fcpxq :� fpxq cospa|ξP,β|xq. The used identity

cospa|ξP,β|xq � f � qfpxq � fc � qfcpxq � fs � qfspxq is a consequence of angle sum identities

for sin and cos.   WM,β, fc � qfc ¡ 0 and   WM,β, fs � qfs ¡ are non-negative, as WM,β

is of positive type. The damping factor being spatially periodic is an indication for
W0,β exhibiting a standing wave character. It is also apparent that no interaction of
the considered form essentially dampens particle propagation for asymptotic times: At
certain distances (namely integer multiples of 2π?

|ξP,β |
) the propagation amplitudes are

as if they were in the absence of interaction. Computing the Fourier transform of W0,β

one obtains (using Fpcosqppq � πpδp1� pq � δp1� pqq):

xW0,βppq�2π2
εppq

1� e�βp
�
δpp2�pp�a|ξP,β|q2�M2q�δpp2�pp�a|ξP,β|q2�M2q�. (5.6)

This expression defines a sharp dispersion law

pppq � �1

d�
p�2

b
|ξP,β|


2

�M2 .

The choice of sign in �1 also appears in the free, undamped case and corresponds to par-
ticles/holes. The second choice of sign in �2 is due to the periodic damping and can be
ascribed to incoming/outgoing waves responsible for the standing wave character of W0,β.

The singular nature of xW0,β does not stand in contradiction to the Narnhofer-Requardt-
Thirring theorem: the contribution Wd � DdWM,β to the full two-point function of
the original theory due to the exchange of stable particles of mass M - here identified
with W0,β - already subsumes the collective effects of the interaction with the thermal
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background into the damping factor Dd. The statement of the theorem is only that
this subsumption of interaction possibilities is complete and no “residual interaction” is
encoded in the asymptotic time structure of the truncated m-point functions.

The occurrence of the incoming/outgoing wave structure can be attributed to scattering
of a wave created by φ at 0 off a complex vector potential A. For given Dd the vector
potential ansatz �B2

x � pBx � Apxqq2 �M2
�
DdpxqWM,βpx,xq � 0 (5.7)

has the solution Apxq � BxDdpxq{Ddpxq. In the case at hand (Ddpxq � cospa|ξP,β|xq)
it is

Apxq � �|ξP,β| tanpa|ξP,β|xq .
The ansatz in equation 5.7 corresponds to the Klein-Gordon equation for a free charged
particle in the presence of a magnetic field with A as its vector potential. However,
the magnetic analogy introduces interpretational difficulties: in the present case of one
spatial dimension, no magnetic fields exist. In addition, Apxq is real, resulting in a
non-hermitian canonical momentum.
A different interpretation presents itself when expanding the term in equation 5.7 con-
taining the vector potential:

pBx � Apxqq2 � B2
x � Apxq2 � pApxqBx � BxApxqq .

Apxq2 then plays the role of a regular potential and pApxqBx � BxApxqq that of an
anti-hermitian, velocity-dependent potential. The anti-hermitian potential is related to
dissipative effects in the following way:
One can associate to the “particle part” DdWM,β of the full two-point function (DdWM,β

is due to the discrete part of the damping factor, which, according to the Bros-Buchholz
criterion, stems from stable massive particles) a “particle Hamiltonian” corresponding
to iBt in equation 5.7. This “particle Hamiltonian” describes the non-unitary time evo-
lution of massive particles in the theory. Mathematically, the non-unitarity of this time
evolution is due to the anti-hermitian term in the potential. The physical interpretation
is that massive particles are subjected to dissipative effects of the thermal background
and an energy transfer between the particle and the background takes place in the as-
sociated collision processes. As the resulting excitations of the thermal background are
expected to only contribute to the continuous part of the two-point function or to higher
correlation functions, this exchange of energy with the thermal background will be re-
flected in the “particle part” of the two-point function. The full Hamiltonian takes both
sides of the process - particle excitations and the thermal background - into account and
the time evolution of the entire system is of course unitary.
The notable periodicity of A can be interpreted in terms of a mean particle distribu-
tion. In a statistical average, constituent particles of the thermal background are spaced
equidistantly giving rise to the periodic vector potential A with poles at the expected
particle positions. In this picture |ξP,β|� 1

2 can be given meaning as a mean free path
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length. The fact that the damping factor does not essentially decay in x is expected
to be a feature of particles not having additional spatial directions in which they can
disperse.

In light of the difficulties plaguing the ξP,β ¡ 0 case, it comes as a relief that the restric-
tion ξ ¤ 0 is still capable of describing a range of physically interesting situations. To
illustrate this, consider an effective, stable φ6 theory, where the leading order coefficient
c5 of the interaction polynomial P appearing in the field equation pl�M2qφ�P pφq � 0

is positive. In this case ξP,β �
°

kPN0
2k�1¤l

p2k�1q!
2kk!

Kk
βc2k�1 takes the form

ξP,β � 3c1Kβ � 15c3K
2
β � 21c5K

3
β . (5.8)

As ξP,β is linear in P , one can divide by the positive leading order coefficient without
changing the sign εpξP,βq of ξP,β, i.e. 21c5 � 1 can be assumed without loss of generality.
Modifying c1, c3 by their respective combinatorial factor to obtain new constants d1, d3,
equation 5.9 can be written as

ξP,β � d1Kβ � d3K
2
β �K3

β . (5.9)

Recall that Kβ was given by (cp. equation 5.1)

Kβ � 1

2π

»
dp

1a
p2 �M2

1

eβ
?

p2�M2 � 1
.

For all β Ps0,8r the integrand is positive and becomes monotonously larger for increasing
T � β�1. By the Lebesgue dominated convergence theorem, Kβ vanishes in the limit
T Ñ 0. In addition, T ÞÑ Kβ is unbounded, continuous and consequently extends to a
continuous, monotonously increasing bijection of r0,8r onto itself. Excluding the T � 0
case where ξP,β ¤ 0 is trivially satisfied and W0,β becomes the free mass M vacuum
two-point function, the condition ξP,β ¤ 0 can be phrased as d1� d3Kβ �K2

β ¤ 0, which
is equivalent to

d2
3

4
¥ d1 ^ Kβ ¤

c
d2

3

4
� d1 � d3

2
^ Kβ ¥ �

c
d2

3

4
� d1 � d3

2
.

• For d1   0 and arbitrary d3, this condition is satisfied for small temperatures up

to a boundary temperature Tb determined by the K1{Tb �
b

d2
3

4
� d1 � d3

2
.

• For d1 ¥ 0 and d3 ¤ �2d1 the condition is satisfied for temperatures T P rTb�, Tb�s,
where the boundary temperatures Tb� are determined by

K1{Tb� �
c
d2

3

4
� d1 � d3

2
and K1{Tb� � �

c
d2

3

4
� d1 � d3

2
.

• In all other cases the condition ξP,β ¤ 0 is not met for any temperature.

Part of this result qualitatively generalizes to arbitrary interactions: as long as c1 (or the
lowest non-vanishing odd coefficient) is negative, the condition ξP,β is always satisfied
for sufficiently low temperatures.
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6. Asymptotic Green’s Functions

The approaches of real time and imaginary time formalism to thermal quantum field
theory rely on the study of certain functions, namely the retarded, advanced, time-
ordered and anti-time-ordered propagators. It is the goal of this chapter to translate
the results established for asymptotic thermal two-point functions into this framework
by computing these functions. Computations are performed with a KMS state ω0,β on
the algebra of asymptotic fields in mind.

6.1. General Computation

By locality the commutator function C � W�|W has support in V
�YV �

. The advanced
and retarded propagators A,R are obtained by splitting the commutator function C into

parts with support in V
�

and V
�

respectively such that

iC � R � A .

In the cases of interest this splitting can be performed unambiguously by setting

Rpxq � iθpxqCpxq ,
Apxq � �iθp�xqCpxq .

These products of distributions are to be understood in the following sense: In the cases
considered, C becomes a smooth, polynomially bounded function x ÞÑ Cf pxq if smeared
with a Schwartz function f P SpRq in the spatial argument. The product x ÞÑ θpxqCf pxq
can then be integrated with a Schwartz function f P SpRq defining   θ � C, f b f ¡.

The support properties of R and A imply that their Fourier transforms pR, pA are dis-
tributional boundary values of holomorphic functions on the respective tube domains
R� :� tz P C2 | Impzq P V �u (cf. [4]). These holomorphic functions are also denotedpR, pA.

Lemma 6.1. If pC vanishes on a open set E � R2, then there exists an open set D � C2

containing R� YR� Y E and a holomorphic function

pG : D Ñ C ,

such that pG|R� � pR and pG|R� � pA.
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Proof. pC|E � 0 means that pR|E � pA|E . Hence, for any test function f with support in E
it is

lim
ε×0

εPV�

»
dp pRpp� iεqfppq � lim

εÕ0

εPV�

»
dp pApp� iεqfppq .

The statement of the lemma follows from an application of the edge-of-the-wedge theo-
rem.

Definition 6.1. The holomorphic function pG from the preceding lemma is called Green’s
function.

As the Green’s function allows to recover the commutator function via

i pCppq � pRppq � pAppq � lim
ε×0

εPV�

pRpp� iεq � lim
εÕ0

εPV�

pApp� iεq

� lim
ε×0

εPV�

pGpp� iεq � lim
εÕ0

εPV�

pGpp� iεq ,

and in time-clustering, translation invariant thermal states, the two-point function can
be computed form the commutator function, the Green’s function contains complete
information about two-point correlations of theories induced by such states. If the state
in question is quasifree, the entire theory can be recovered from the Green’s function.

The time-ordered and anti-time-ordered propagators are defined as the following
distributions:

T :� W � iA � |W � iR ,

S :� W � iR � |W � iA .

6.2. Concrete Computation

Using the general results of the previous section, advanced, retarded, time-ordered and
anti-time-ordered propagators are computed for asymptotic thermal fields in the case of
“ood coupling”, where the two-point function is W0,βpxq � cospa|ξ|xq �WM,βpxq. The
Fourier transform of W0,β is given by equation 5.6, which can be used to compute the
Fourier transform of the commutator function:

pC0,βppq� 2π2εppqrδpp2 � pp�
a
|ξ|q2 �M2q � δpp2 � pp�

a
|ξ|q2 �M2qs .

The support of pC0,β is contained in tp P R2 | p2 ¥ M2u, so for E :� tp P R2 | p2   M2u
ones has pC0,β|E � 0 and lemma 6.1 applies, which guarantees the existence of a Green’s
Function as defined in the previous section.
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The Green function pG0,β can be computed by means of a comparison to the free mass
M case. Note that in the sense of distributions it is C0,βpxq � cospa|ξ|qxqCMpxq. If
iCM � RM � AM , then

R0,βpxq � cosp
a
|ξ|qxqRMpxq ,

A0,βpxq � cosp
a
|ξ|qxqAMpxq .

It is known [6] that the free mass M advanced and retarded propagators have the limit
representation (as distributions)

pRMppq � lim
ε×0

εPV�

1

pp� iεq2 �M2
,

pAMppq � lim
εÕ0

εPV�

1

pp� iεq2 �M2
.

Multiplication by cospa|ξ|xq acts as a sum of translations of p by �a|ξ| in momentum
space. It follows that

pR0,βppq � lim
ε×0

εPV�

�
1

pp� p0,a|ξ|q � iεq2 �M2
� 1

pp� p0,a|ξ|q � iεq2 �M2

�
,

pA0,βppq � lim
εÕ0

εPV�

�
1

pp� p0,a|ξ|q � iεq2 �M2
� 1

pp� p0,a|ξ|q � iεq2 �M2

�
.

In this form it is obvious that pR0,β and pA0,β are distributional boundary values of the
holomorphic function pG0,βpkq � 1

k2� �M2
� 1

k2� �M2
,

where k� � p�� is and p� � p�pa|ξ|, 0q. The following lemma shows that the domain
of holomorphy contains R� YR� Y E and is in fact the Green’s function.

Lemma 6.2. If k P R� YR� Y E, then k2
� �M2 � 0 and k2

� �M2 � 0.

Proof. First note that for k � p� is it is

k2
� �M2 � 0

ô p2
� � s2 �M2 � 2isp� � 0

ô p� � s2 �M2 ^ sp� � 0 .

Now let k P R�. As s P V � it is s ¡ |s| ¥ 0. Assume that sp� � 0.

sp� � 0 ñ ps � p�s ñ p � p�
s

sloomoon
|�| 1

.
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Using this, one obtains the estimate

p2
� � p2 � p2

� � p2
�

��s
s

	2

� 1



¤ 0   s2   s2 �M2 ,

so p� � 0 and consequently k2
� �M2 � 0.

In the case of k P R�, it is �s ¡ |s| ¥ 0 and again
�
s
s

�2   1. The above argument thus
also holds in this case and it is k2

� �M2 � 0.

Finally, for k P E it is s � 0, so

p2
� � p2 � p2  M2 � p2 ¤M2 � s2 �M2

and p2
� � s2 �M2 which implies k2

� �M2 � 0.

The time-ordered and anti-time-ordered propagators can be computed from pG0,β in a
straightforward manner:

pT0,βppq � xW0,βppq � i pA0,βppq

�
pC0,βppq

1� e�βp
� i pA0,βppq

� i
pA0,βppq � pR0,βppq

1� e�βp
� i pA0,βppq

� �i
� pA0,βppq

1� eβp
�
pR0,βppq

1� e�βp

�

� �i lim
ε×0

εPV�

� pG0,βpp� iεq
1� eβp

�
pG0,βpp� iεq

1� e�βp

�
.

Similarly, the anti-time-ordered propagator is given by

pS0,βppq � i

� pA0,βppq
1� e�βp

�
pR0,βppq
1� eβp

�

� i lim
ε×0

εPV�

� pG0,βpp� iεq
1� e�βp

�
pG0,βpp� iεq

1� eβp

�
.
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7. Summary and Outlook

At the core of this work is the Bros-Buchholz expansion in two-dimensional thermal
quantum field theory. A large class of thermal two-point functions can be expanded
in terms of free thermal two-point functions of varying masses, weighted by a damping
factor. This representation gives rise to a natural criterion for a thermal theory to de-
scribe massive particles and provides the basis for the analysis of asymptotic dynamics
in effective theories. The effective theories need not be full fledged quantum field the-
ories, only the heuristic input that the fields in question in some sense satisfy a field
equation with polynomial interaction is needed. These heuristic considerations mani-
fest themselves in the condition of asymptotic compatibility, which allows to compute
the contributions to the damping factor responsible for the leading order of the two-
point function at asymptotic times. However, there is no guarantee that these “andiate”
contributions, computed on the basis of heuristic assumptions, do in fact match their
rigorous counterparts in full theories with polynomial interaction.

The expansion of thermal two-point function and the analysis of asymptotic dynamics
in four-dimensional quantum field theory is a feat that has been accomplished by J. Bros
and D. Buchholz in 1992 ([7], [8], [9]). The motivation for extending the four-dimensional
formalism to two dimensions is found in the fact that, to date, no rigorous non-trivial
four-dimensional quantum field theory exists. This is not the case in two dimensions.
In 2004 C. Gérard and C. Jäkel rigorously constructed thermal quantum field theories
with polynomial interaction ([11]). They later showed that two-point functions of these
theories satisfy the relativistic KMS condition, making them good candidates for the
application of the methods established in this work ([12]). In particular, two questions
arise naturally.

• In theory, the damping factor D can be computed for two-point functions in such
theories via the formula given in proposition 3.1. Does the damping factor contain
discrete parts of the form δpm � MqDM and, consequently, the corresponding
theory describe particles according to the proposed criterion?

• If the first question has a positive answer, the formalism of asymptotic analysis can
be applied using the field equation of the full theory and the resulting “candidate”
DM can be compared to the corresponding discrete contributions to D. Is the
method of asymptotic dynamics capable of describing the full particle content of
the rigorous theories?

A starting point for the computation of D is the two-point function of a full theory
provided in [12]:
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g
1
� qg

2
�xWβpx,xq �  πβpφpg1

qqΩβ|eixLβαxpπβpφpg2
qqqΩβ ¡ ,

Here πβ is the GNS representation of the underlying state ωβ, Ωβ the GNS vector and
g

1
, g

2
P DRpRq. πβpφpgqq has to be understood as the limit limgÑδ πβpφpg b gqq, which

already defines an operator on the dense invariant domain Dβ, as ωβ satisfies the rela-
tivistic KMS condition. The dynamical information (the field equation) is contained in
the Liouvillian Lβ, which generates time translations and is constructed using Euclid-
ian methods. The challenge in computing D lies in a) finding an accessible expression
for Lβ and b) using the definition of the damping factor to obtain a useful expression
for D.
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A. Distributional Laplace Transform

Proposition A.1. Let T P S 1pRq with supppT q � r0,8r. For λ P C� let fλ P SpRq
such that fλ|r0,8rpsq � e�λs. Then the map

LT : C� Ñ C ,

λ ÞÑ   T, fλ ¡
is well-defined, holomorphic and polynomially bounded on the shifted half planes Cγ :�
tλ P C | Reλ ¡ γ u, γ ¡ 0.

Proof. LT is well-definied: for a P R, let τa : x ÞÑ x � a be the translation by a on R.
For ϕ P SpRq the map

R Ñ SpRq ,
a ÞÑ ϕ � τa

is continuous. If fλ, gλ P SpRq have the property fλ|r0,8rpsq � gλ|r0,8rpsq � e�λs, then
pfλ � gλq � τa has support in s �8,�as. The support properties of T ensure that for all
a ¡ 0 it is   T, pfλ � gλq � τa ¡� 0. Hence

  T, pfλ � gλq ¡� lim
a×0

  T, pfλ � gλq � τa ¡� 0 .

This shows that LT is well-defined.

Since s0,8r is an open convex cone in R, by the Bros-Epstein-Glaser lemma can be
applied and T has the form

@ϕ P SpRq :  T, ϕ ¡�
¸
kPN0
finite

»
ds TkpsqpBkϕqpsq ,

where the Tα have support in r0,8r and are polynomially bounded. Hence it is

LT pλq �
¸
kPN0
finite

» 8

0

ds Tkpsqp�λqke�λs .

In order to prove that LT is holomorphic on C�, it is sufficient to show that all line
integrals over closed paths p in C� vanish (Morera’s theorem). As suprema in λ of the
integrands |Tkpsqp�λqke�λs| over compact sets K � C� remain integrable with respect
to s, Fubini’s theorem allows the interchange of line- and ds-integration. Since for each
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s the integrands are holomorphic in λ, the line integrals vanish. This proves the holo-
morphy of LT on C�.

Polynomial boundedness of LT in each Cγ is a consequence of the polynomial bound-
edness of the continuous functions Tk: there exist constants Ck and exponents mk such
that @ s P R : Tkpsq   Cks

mk . mk-fold integration by parts yields����» 8

0

ds Tkpsqp�λqke�λs
����   » 8

0

dsCks
mk |λ|ke�sReλ � Ck

|λ|k
Reλmk�1

.

Definition A.1. Let T P S 1pRq with supppT q � r0,8r. The holomorphic map LT :
C� Ñ C is called the (distributional) Laplace transform of T .

Theorem A.2. Let pC�q denote the set of holomorphic functions on C� which are
polynomially bounded on each Cγ, γ ¡ 0 and let S 1pr0,8rq denote the set of tempered
distributions on R with support in r0,8r. The map

L : S 1pr0,8rq Ñ HpbpC�q ,
T ÞÑ LT

is injective.

Proof. There is a map
L�1 : HpbpC�q Ñ D1pr0,8rq

such that L�1 �L is the inclusion map S 1pr0,8rq Ñ D1pr0,8rq, where D1pr0,8rq denotes
the set of distributions on R with support in r0,8r. L�1 is given by

  L�1h, ϕ ¡:� 1

2πi

» γ�i8
γ�i8

dζ hpζq
» 8

�8
ds esζϕpsq

for γ ¡ 0, h P HpbpC�q and ϕ P DpRq.
Write ζ � γ � iν and define ϕγ :� eγsϕpsq P DpRq. ϕγ depends continuously on ϕ and
it is

  L�1h, ϕ ¡�
» 8

�8
dν hpγ � iνqxϕγ �1 pνq .

Since xϕγ �1

is a Schwartz function, which depends continuously on ϕ, and ν ÞÑ hpγ� iνq
is continuous and polynomially bounded, this defines a distribution.

An application of Cauchy’s integral theorem shows that for h P HpbpC�q, the dis-
tribution L�1h has support in r0,8r: for R ¡ 0, consider the line integral of the

holomorphic function ζ ÞÑ hpζq ³0�8 ds esζϕpsq along the closed path given by the line
rγ � iR, γ � iRs connected to a semicircle of radius R extending into Cγ. By Cauchy’s
integral theorem it is zero. In the limit R Ñ 8 the line contribution converges to
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³γ�i8
γ�i8 dζ hpζq ³0�8 ds esζϕpsq, while the semi-circle contribution vanishes by an application

of the Lebesgue dominated convergence theorem. Hence,
³γ�i8
γ�i8 dζ hpζq ³0�8 ds esζϕpsq �

0 and

  L�1h, ϕ ¡:� 1

2πi

» γ�i8
γ�i8

dζ hpζq
» 8

0

ds esζϕpsq .

In this form, it is obvious that L�1h has support in r0,8r. Also, by a similar application
of Cauchy’s integral theorem, it can be shown that L�1h is independent of the choice of
γ ¡ 0.

To see that T |DpRq � L�1pLT q compute for ϕ P DpRq:
  L�1pLT q, ϕ ¡

� 1

2πi

» γ�i8
γ�i8

dζ   T, fζ ¡
» 8

�8
ds esζϕpsq

� 1

2πi

» γ�i8
γ�i8

dζ
¸
k

» 8

0

dt TkptqpBkt fζqptq
» 8

�8
ds esζϕpsq

� 1

2πi

¸
k

» γ�i8
γ�i8

dζ

» 8

0

dt Tkptqp�ζqke�tζ
» 8

�8
ds esζϕpsq

�
¸
k

» 8

�8
dν

» 8

0

dt Tkptqe�tγe�itνp�1qkpγ � iνqkxϕγ �1 pνq .

The integrand is integrable with respect to dpν, tq since xϕγ �1

is a Schwartz function
and Tk is polynomially bounded. Hence, by Fubini’s theorem, integration order can be
interchanged:

  L�1pLT q, ϕ ¡
�

¸
k

» 8

0

dt

» 8

�8
dν Tkptqe�tγe�itνp�1qkpγ � iνqkxϕγ �1 pνq

�
¸
k

» 8

0

dt Tkptq 1

2πi

» γ�i8
γ�i8

dζ p�ζqke�tζ
» 8

�8
ds esζϕpsq

�   T, t ÞÑ 1

2πi

» γ�i8
γ�i8

dζ e�tζ
» 8

�8
ds esζϕpsq ¡

�   T, t ÞÑ 1

2πi

» γ�i8
γ�i8

dζ

» 8

�8
ds esζϕps� tq ¡

γÑ0�   T, t ÞÑ 1

2π

» 8

8
dν

» 8

�8
ds eisνσtpsq ¡

�   T, t ÞÑ
» 8

8
dν pσt �1 pνq ¡

�   T, t ÞÑ σtp0q ¡
�   T, ϕ ¡ ,
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where σtpsq :� ϕps� tq has been used. It follows that T |DpRq and therefore T itself (by
continuity) can be recovered from LT . This proves the injectivity of L.

Theorem A.3. Let T P S 1pRq. The distribution T � 1
2 defined by

  T � 1
2 , ϕ ¡:�  T, s ÞÑ sϕps2q ¡

is tempered and has support in r0,8r. Furthermore the restriction of the map T ÞÑ T � 1
2

to odd distributions is injective.

Proof. ϕ ÞÑ idϕ � 2 defines a continuous map SpRq Ñ SpRq. Hence, T � 1
2 is tempered.

If supppϕq �s � 8, 0r then idϕ � 2 vanishes, so supppT q � r0,8r. Now let T be odd.
Given ϕ P SpRq define for s ¡ 0:

ψpsq :� ϕoddps 1
2 q

s
1
2

.

Taylor expanding ϕodd about 0, it can be seen that ψ can be extended to a Schwartz
function on R. Note that idψ � 2 � ϕodd. Therefore it is

  T � 1
2 , ψ ¡�  T, ϕodd ¡�  T, ϕ ¡ ,

which proves the injectivity of T ÞÑ T � 1
2 on odd distributions.

Corollary A.4. Let T P S 1pRq be odd. The function

λ ÞÑ  T, s ÞÑ se�λs
2 ¡

is holomorphic on C� and allows to recover T .

Proof. It is   T, s ÞÑ se�λs
2 ¡�  T � 1

2 , fλ ¡� LpT � 1
2 qpλq, where fλ P SpRq, such that

fλ|r0,8r � e�λs. Being tempered, T � 1
2 can be recovered from LpT � 1

2 q, and since T is

odd it can be recovered from T � 1
2 .
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B. Hankel Transform

Proposition B.1. Let ϕ P SevenpRq. The function

T ϕ : R Ñ C ,

x ÞÑ T ϕpxq :�
» 8

0

dmmϕpmqJ0pmxq

lies again SpRq and the map

T : SevenpRq Ñ SevenpRq
ϕ ÞÑ T ϕ

is continuous in the topology of SpRq.

Proof. Let ϕ P SevenpRq. There exists a Schwartz function ψ P SpRq such that ϕpxq �
ψpx2q. This can be seen as follows: for s ¡ 0 define ψpsq :� ϕp?sq. Noting that all odd
derivatives of even functions vanish at the origin, it can be seen by Taylor expanding ϕ
in
?
s about 0, that ψ can be extended to a Schwartz function.

This will help to prove that even Schwartz functions in one variable are in one-to-one
correspondence with rotationally symmetric Schwartz functions in two variables. Let
SrspR2q denote the space of the latter. Define the map

$ : SrspR2q Ñ SevenpRq, $Φpxq :� Φpx cosϑ, x sinϑq

for any ϑ P R. Because of the rotational invariance of Φ, this is well-defined and even
(consider ϑ � 0 and ϑ � π). Since the Schwartz semi-norms of $Φ can be easily
estimated in terms of corresponding semi-norms of Φ, the map $ is continuous. Now
define

ι : SevenpRq Ñ SrspR2q, ιϕpx, yq :� ϕp
a
x2 � y2q .

Using the above result on even Schwartz functions and writing ϕp
a
x2 � y2q � ψpx2�y2q,

where ψ P SpRq, it becomes apparent that ιϕ P SrspR2q.
Note that ι and $ are inverse to each other and that SevenpRq and SrspR2q are Fréchet
spaces as closed subspaces of Fréchet spaces. As $ is a continuous linear bijection
between Fréchet spaces, it is also open by the open mapping theorem ([3]). Hence ι is
continuous.

Note that the Fourier transform F is continuous and maps rotationally invariant Schwartz
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functions into themselves. Showing that 2πT � $ � F � ι hence concludes the proof.

$ � F � ιϕpsq
� pιϕps, 0q
�
»

dx

»
dy e�ixsϕp

a
x2 � y2q

�
» 8

0

dm

» 2π

0

dϑme�ism cosϑϕpmq

� 2π

» 8

0

dmmϕpmq 1

2π

» 2π

0

dϑ eism sinϑ

� 2π

» 8

0

dmmϕpmqJ0pmsq
� 2πT ϕpsq .

The identity J0pzq � 1
2π

³2π
0

dϑ eism sinϑ can be derived from the integral representation
of Bessel functions provided in 2.1.8 by choosing the path ppϑq :� z

2
eiϑ, ϑ P r0, 2πs. T ϕ

is even since J0 is.

Definition B.1. Let ϕ P SevenpRq. The map T ϕ P SevenpRq is called the Hankel
transform of ϕ.
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C. Various Proofs

C.1. Translationally Invariant Distributions

Proposition C.1. Let T P S 1pR2nq such that for all ϕ, ψ P SpRnq, a P Rn :   T, ψa b
ϕa ¡�  T, ψ b ϕ ¡, where ψapxq � ψpx � aq. Then there exists rT P S 1pRnq such that

for ϕ, ψ P SpRnq it is   T, ψ b ϕ ¡�  rT , ψ � qϕ ¡.

This proposition can be considered a distributional version of the following lemma:

Lemma C.2. Let f : Rn � Rn Ñ C be a function such that for all x, y, a P Rn it is
fpx� a, y � aq � fpx, yq. Then there exists rf : Rn Ñ C such that for all x, y P Rn it is

fpx, yq � rfpx� yq.
Proof of the Lemma. Rn acts by translation on both factors on Rn � Rn. Let π : Rn �
Rn Ñ Rn � Rn{Rn the canonical map to the orbit space. A function f satisfying
the requirements in the lemma is invariant under that action and hence there exists a
function rf on the orbit space satisfying rf � π � f . The orbit space Rn Ñ Rn � Rn{Rn

stands in bijection to Rn by mapping the equivalence class px � a, y � aq to x � y.
Identifying the two sets concludes the proof.

Proof of the Proposition. By the structure theorem for tempered distributions (2.1),
there exist finitely many continuous, polynomially bounded functions ck1,k2 : R2n Ñ C,
such that for ψ, ϕ P SpRnq it is

  T, ψ b ϕ ¡�
¸

pk1,k2q

»
dxdy ck1,k2px, yqpBk1

x ψqpxqpBk2
y ϕqpyq .

Since   T, ψa b ϕa ¡�  T, ψ b ϕ ¡ for all a P Rn, it is, again for all a P Rn,

  T, ψ b ϕ ¡�
¸

pk1,k2q

»
dxdy ck1,k2px�a, y�aqpBk1

x ψqpxqpBk2
y ϕqpyq .

As this is true for arbitrary ψ, ϕ P SpRnq, it can be shown that for all x, y, a P Rn, k1, k2 P
N0 there holds

ck1,k2px� a, y � aq � ck1,k2px, yq .
The preceding lemma implies the existence of rck1,k2 , such that ck1,k2px, yq � rck1,k2px� yq
and the rck1,k2 are continuous and polynomially bounded. Define for ψ P SpRnq:

  rT , ψ ¡:�
¸

pk1,k2q

»
dxrck1,k2pxqpBk1�k2

x ψqpxq .
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By the structure theorem for tempered distributions, rT is tempered and it is

  T, ψ b ϕ ¡ �
¸

pk1,k2q

»
dxdy rck1,k2px� yqpBk1

x ψqpxqpBk2
y ϕqpyq

�
¸

pk1,k2q

»
dxdy rck1,k2pxqpBk1

x ψqpx� yqpBk2
y ϕqpyq

�
¸

pk1,k2q

»
dxrck1,k2pxq

»
dy pBk1

x ψqpx� yqpBk2
y ϕqpyq

�
¸

pk1,k2q

»
dxrck1,k2pxqpBk1

x ψq � pBk2
y qϕqpxq

�
¸

pk1,k2q

»
dxrck1,k2pxqBk1�k2

x ψ � qϕpxq
�   rT , ψ � qϕpxq ¡ .

C.2. A Regularity Theorem for Distributions

Intuitively, the regularity of an eligible object, e.g. a function or a distribution, is
encoded in the decay property of its Fourier transform. The following theorem uses
correspondence to establish a sufficient condition for a tempered distributions to be
given by a function.

Theorem C.3. Let T P S 1pRq be a tempered distribution, such that its Fourier transformpT has the following decay property: there exists a nowhere vanishing Schwartz function

g P SpRq, such that S :� pT
g

is again a tempered distribution. Then for any sequence ϕn
in SpRq converging weakly to δ in S 1pRq, the limit limn   T, ϕn ¡ exists and is given by

lim
n
  T, ϕn ¡�  S, g ¡�  pT , 1 ¡ .

Proof. Define φn :� pϕn. The Fourier transform is a homeomorphism of S 1pRq, so the

weak convergence ϕn Ñ δ is equivalent to the weak convergence φn Ñ pδ � 1 and

lim
n
  T, ϕn ¡� lim

n
  pT , φn ¡� lim

n
  S, gφn ¡ .

By the structure theorem for tempered distributions (theorem 2.1), there exist continu-
ous, polynomially bounded functions sk, such that for all f P SpRq it is

  S, f ¡�
¸
k

finite

»
dx skpxq � pBkxfqpxq �

¸
k

finite

  sk, f
pkq ¡ .
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Using the Leibniz rule one obtails

  S, gφn ¡ �
¸
k

finite

»
dx skpxq � pBkxgφnqpxq

�
¸
k

finite

ķ

l�0

�
k

l


»
dx skφ

plq
n pxq � gpk�lqpxq

�
¸
k

finite

ķ

l�0

�
k

l



  skφ

plq
n , g

pk�lq ¡ .

Since differentiation and multiplication by polynomially bounded, continuous functions
are continuous maps of S 1pRq onto itself, the tempered distributions skφ

plq
n converge

weakly to sk1
plq in the limit nÑ 8. Noting that 1plq � 0 for l ¡ 0 yields

lim
n
  S, gφn ¡ �

¸
k

finite

ķ

l�0

�
k

l



  sk1

plq, gpk�lq ¡

�
¸
k

finite

  sk, g
pkq ¡

�   S, g ¡ ,

which concludes the proof.

C.3. Asymptotic Behavior of BµxWM,β

The study of the asymptotic structure of thermal correlation function for large times
mainly relies on the analysis of BµxWM,β, where WM,β is the free mass M β-KMS reduced
two-point function. Due to its technical and unenlightening nature, this analysis is per-
formed here rather than in the main text. The analysis is largely based on the outline
given in [9].

Let h P SpRq be such that the Fourier transform of h has a double zero at the origin (i.e.
limxÑ0 x

�2hpxq   8). In the main text this h arises by convolution of two Schwartz
functions whose Fourier transforms vanish at the origin. These Schwartz function serve
the purpose of reflecting the suppression of low energy contributions, which would oth-
erwise give rise to an unwanted leading order contributions to the two-point function.
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Compute for x ¡ 0:

h �x BµxWM,βpxq
� F�1pph �{BxµWM,βqpxq

� p�iqµ
2π

»
dp

εppqδpp2 �M2q
1� e�βp

phppqpµe�ipx
�

¸
σ��1

σ
p�iqµ

2π

»
dp

2ωppqp1� e�σβωppqq�1phpσωppqqpµe�iσxωppqeixp

�
¸
σ��1

σ
p�iqµ

2π

» 8

0

dp

2ωppqp1� e�σβωppqq�1phpσωppqqpµe�iσxωppqeixp

�
¸
σ��1

σ
p�iqµ

2π

» 8

0

dp

2ωppqp1� e�σβωppqq�1phpσωppqqp�pqµe�iσxωppqe�ixp ,

with ωppq �
a

p2 �M2. Substitute w � x �
�b

p2 �M2 �M2
	

to get

¸
σ��

σ
p�iqµ

2π

» 8

0

dw
1

x

�
w

x


µ�1
2
�
w

x
�2M


µ�1
2 ph�σ�w

x
�M




e�iσxpwx�Mq

�
�

1� e�σβpwx�Mq
	�1

�
e
ix

c
pwx q2�2Mpwx q � p�1qµe�ix

c
pwx q2�2Mpwx q

�

�
¸
σ��

p�iqµ
2π

e�iσxMx�
µ�1

2

» 8

0

dw e�iσww
µ�1

2 kσ

�
w

x
;m



,

where

kσpv;Mq � σpv � 2Mqµ�1
2 p1� e�σβpv�Mqq�1phpσpv �Mqq

�
�
eix

?
v2�2Mv � p�1qµe�ix

?
v2�2Mv

�
.

Define:

• A :� pv � 2Mqµ�1
2 ,

• B :� p1� e�σβpv�Mqq�1phpσpv �Mqq,

• C :� eix
?
v2�2Mv � p�1qµe�ix

?
v2�2Mv.

With these definitions it is kσpv;Mq � σA �B �C. Note that B is a Schwartz function in
v�M which vanishes at zero. This can be used to show that kσ is bounded and rapidly
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decreasing in both v and M varying in r0,8r:

|kσpv;Mq| � |A| � |B| � |C|
¤ 2|A| � |B|
¤ pv �Mqpv � 2Mqµ�1

2 � |B|
v �M

¤ pv �Mqµ�1
2 �
���� B

v �M

���� .
Since B{pv � Mq is a Schwartz function in v � M and pv � Mqµ�1

2 grows at most
polynomially, it follows that for any N P N and suitable constants CN it is

|kσpv;Mq| ¤ CNp1� pv �Mq�N .

Definition C.1. Let U � Rm be open. On the set of functions U Ñ R define the
following transitive relation

f À g :ô DC ¡ 0 @x P Rm : fpxq ¤ Cgpxq

for f, g : U Ñ R.

This definition serves to lighten the notation on the estimates to follow.

Lemma C.4. For 0   δ   1
2

and m,N P N it is

sup
v¡0

��vm�δBmv kσpv;Mq�� À p1�Mq�N .

Proof. The only property of B used for this proof is that B{pv � Mq is a Schwartz
function in v �M . Hence the case σ � � can be treated simultaneously.

Note that derivates Bmv kσ are sums of products of BmAv A, BmBv B and BmCv C, where mA �
mB �mC � m. The individual factors can be estimated as follows:

• Estimates for A: It is

|BmAv A| À pv � 2Mqµ�1
2 pv � 2Mq�pmA�1q À pv �Mqµ�1

2 pv �Mq�pmA�1q .

• Estimates for B: As B{pv � Mq is a Schwartz function in v � M , one gets for
βpv �Mq ¤ 1:

|BmBv B| À pv �Mqmaxt0,1�mBu .

For generic v �M and any N P N it is

|BmBv B| À p1� pv �Mqq�N .
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• Estimates for C: From the definition of C, it is immediately obvious that

|BmCv | ¤ 2
���BmCv eix

?
v2�2Mv

��� .
Define gpvq � efpvq with fpvq � ix

?
v2 � 2Mv. One shows by induction, that

derivates gplq, l ¡ 0 are a product of g itself and a finite linear combination of
products of the form

¹
i

finite

f pkiq where
¸
i

finite

ki � l.

Also by induction, derivates f pkq can be shown to be linear combinations of pv �
Mqk�2jpv2 � 2Mvq�pk�k� 1

2
q where 0 ¤ 2j ¤ k. This allows the estimate

|f pkq| À
¸

0¤2j¤k
pv �Mq 1

2
�kv�pk�j�

1
2
q ,

which in turn can be used to show that¹
i

finite

f pkiq À pv �Mq 1
2v

1
2
�l .

Using |gpvq| � 1 and the above arguments, this gives the following estimates for
derivatives of C:

|BmCv C| À 1, ifmC � 0 ,

|BmCv C| À pv �Mq 1
2v

1
2
�mC , ifmC ¡ 0 .

Let 0   δ   1
2
. For 0   βpv �Mq ¤ 1, combining the above estimates gives

|vm�δBmv kσpv;Mq|
À

¸
mA�mB�mC�m

|vn�δBmAv A| � |BmBv B| � |BmCv C|

À
¸

mA�mB�mC�m
mC�0

vm�δpv�Mqµ�1
2 pv�Mq�pmA�1qpv�Mqmaxt0,1�mBu

�
¸

mA�mB�mC�m
mC�0

vm�δpv�Mqµ�1
2 pv�Mq�pmA�1qpv�Mqmaxt0,1�mBupv�Mq 1

2v
1
2
�mC

À
¸

mA�mB�mC�m
mC�0

pv�Mqµ2�p 1
2
�δq�pm�mA�1�maxt0,1�mBuq

�
¸

mA�mB�mC�m
mC�0

v
1
2
�δpv�Mqµ2�pm�mA�mC�maxt0,1�mBuq

À 1 .

Similarly one obtains for βpv �Mq ¥ 1:
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|vm�δBmv kσpv;Mq| À p1� pv �Mqq�N À p1�Mq�N .

Along with the boundedness for small pv �Mq, this proves the lemma. Note that the
estimates for C, and therefore also for kσ, hold uniformly for x varying in a compact set.

Corollary C.5. The following chain of inequalities holds for 0   δ   1
2

and N P N:

|kσpv;Mq � kσp0;Mq| ¤ δvδ sup
u¡0

|u1�δBukσpu;Mq| À vδp1�Mq�N .

Proof. The second inequality follows from lemma C.4. The first inequality can be proven
as follows:

Define t ÞÑ gptq � ptvqδ�1
and t ÞÑ hMptq � kσpgptq;Mq. In the case v � 0 the inequality

in question is trivial. For v ¡ 0 the map g is invertible and it is g�1puq � v�1uδ. Also
note that g1ptq � δ�1vδ

�1
tδ
�1�1. Set tv � vδ�1 and t0 � 0. It is gptvq � v and gpt0q � 0.

By the mean value theorem it is

|hMptvq � hMpt0q| � |tv � t0| � sup
tPst0,tvr

|h1Mptq| .

The left hand side is nothing but |kσpv;Mq�kσp0;Mq|. For the right hand side compute

|tv � t0| � sup
t0 t tv

|h1Mptq| ¤ vδ�1 sup
tPst0,tvr

|g1ptq � pB1kσqpgptq;Mq|

� vδ�1δ�1vδ
�1

sup
uPsgpt0q,gptvqr

|g�1puqδ�1�1Bukσpu;Mq|

� δ�1vδ sup
uPs0,vr

|u1�δBukσpu;Mq|

¤ δ�1vδ sup
u¡0

|u1�δBukσpu;Mq| .

Recall that for x ¡ 0 the following equation holds:

h �x BµxWM,βpxq �
¸
σ��

p�iqµ
2π

e�iσxMx�
µ�1

2

» 8

0

dw e�iσww
µ�1

2 kσ

�
w

x
;m



.

Lemma C.4 and its corollary are used to identify the asymptotically leading contribution
in x from the integral appearing in the above relation. Define

kpmqσ pv;Mq :� Bmv rkσpv;Mq � kσp0;Mqs
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and split the the integral in question as follows» 8

0

dw e�iσww
µ�1

2 kσ

�
w

x
;M



� lim

ε×0

» 8

0

dw ep�iσ�εqww
µ�1

2 kσ

�
w

x
;M



� kσp0;Mq lim

ε×0

» 8

0

dw ep�iσ�εqww
µ�1

2looooooooooooooomooooooooooooooon
First limit

� lim
ε×0

» 8

0

dw ep�iσ�εqww
µ�1

2 kp0qσ

�
w

x
;M



loooooooooooooooooooooooomoooooooooooooooooooooooon

Second limit

.

The first equality is due to the Lebesgue dominated convergence theorem. The splitting
of the limit is justified below by showing that the individual limits exist. To ease the
notation a bit, set a � iσ � ε.

First limit:
This part is independent of x and gives rise to the asymptotically leading contribution to
h �x BµxWM,β. The integral

³8
0

dw ep�iσ�εqww
µ�1

2 can be computed explicitly: Set z � µ�1
2

.
It is » 8

0

dw ep�iσ�εqww
µ�1

2 �
» 8

0

dt e�attz�1 �Mpt ÞÑ e�atqpzq � a�zΓpzq ,

whereM denotes the Mellin transform and Γ the Gamma function. The identityMpt ÞÑ
e�atqpzq � a�zΓpzq for Repaq ¡ 0, Repzq ¡ 0 can be found in integral tables (e.g. [15]).
In the limit ε× 0 this becomes

lim
ε×0

» 8

0

dw ep�iσ�εqww
µ�1

2 � e�σπ
µ�1

4 Γ

�
µ� 1

2



.

Second limit:
The goal of this analysis is to show that the second limit decays in x and gives rise to
asymptotically suppressed contribution to h �x WM,β. This requires some work. First
define

uµpwq :� w
µ�1

2 kp0qσ

�
w

x
;M



,

so that
³8
0

dw ep�iσ�εqww
µ�1

2 k
p0q
σ

�
w
x

;m
	
� ³8

0
dw ep�iσ�εqwuµpwq.

Lemma C.6. For ν P N0 it is

uνµpwq � w
µ�1

2
�ν

ν̧

l�0

�
ν

l


�
w

x


l
kplqσ

�
w

x
;M


 ν�l�1¹
j�0

�
µ� 1

2
� j



.
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Proof. The statement follows from induction on ν and repeated application of the chain
rule.

Lemma C.7. For l P N0 and 0   δ   1
2

it is

lim
v×0

vl�δkplqσ pv;Mq � 0 .

Proof. Choose δ   ρ   1
2
. For l ¡ 0, it is supv¡0

���vl�ρkplqσ pv;Mq
���   8 by lemma C.4 and

thus
lim
v×0

��vl�δkplqσ pv;Mq�� � lim
v×0

vρ�δ
��vl�ρkplqσ pv;Mq�� � 0 .

For l � 0, corollary C.5 gives
���kp0qσ pv;Mq

��� À vρ. Consequently it is
���v�δkp0qσ pv;Mq

��� À vρ�δ

and
lim
v×0

��v�δkp0qσ pv;Mq�� � 0 .

Corollary C.8. For κ P N0 and 0   δ   1
2

it is

lim
w×0

wκ�
µ�1

2
�δupκqµ pwq � 0 .

Proof. This follows immediately from the previous two lemmata:

lim
w×0

wκ�
µ�1

2
�δupκqµ pwq

�
κ̧

l�0

�
κ

l



x�ρ lim

w×0

�
w

x


l�ρ
kplqσ

�
w

x
;M



looooooooooooooomooooooooooooooon

�0

κ�l�1¹
j�0

�
µ� 1

2
� j




� 0 .

Claim C.9. For integer µ�1
2
  η ¤ µ�1

2
it is» 8

0

dw e�awup0qµ pwq � a�η
» 8

0

dw a�awupηqµ pwq .

Proof. First show that for integer 0 ¤ κ   η it is limw×0 u
pκq
µ pwq � 0. Let 0   δ   1

2
.

As κ   η and η ¤ µ�1
2

, it is δ � µ�1
2
� κ ¡ 0. It follows that

lim
w×0

upκqµ pwq � 0 � lim
w×0

wδ�
µ�1

2
�κloooomoooon

Ñ0

� wκ�µ�1
2
�δupκqµ pwqlooooooooomooooooooon

Ñ0 by preceding corollary

� 0 .

The claim is then proven by η-fold partial integration. The boundary terms vanish due
to the small argument behavior of u

pκq
µ established above.
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Claim C.10. For integer µ�1
2
  ν ¤ µ�3

2
it is» 8

0

dw e�awup0qµ pwq � a�ν
» 8

0

dw pe�aw � 1qupνqµ pwq .

Proof. Since µ�1
2
  ν � 1 ¤ µ�1

2
it is» 8

0

dw e�awup0qµ pwq � a�pν�1q
» 8

0

dw a�awupν�1q
µ pwq

by the previous result. Further analyzing the integral on the right hand side yields» 8

0

dw a�awupν�1q
µ pwq

� lim
ζ×0

» 8

ζ

dw a�awupν�1q
µ pwq

� lim
ζ×0

�
�1

a
e�awupν�1q

µ pwq
���8
ζ
� 1

a

» 8

ζ

dw e�awupνqµ pwq
�

� 1

a
lim
ζ×0

�
e�aζupν�1q

µ pζq�

0hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj» 8

ζ

dw upνqµ pwqloooooomoooooon
�upν�1q

µ pζq

�
» 8

ζ

dw upνqµ pwq�
» 8

ζ

dw e�awupνqµ pwq
�

� 1

a
lim
ζ×0

�
pe�aζ � 1qupν�1q

µ pζq �
» 8

ζ

dw pe�aw � 1qupνqµ pwq
�

� 1

a
lim
ζ×0

pe�aζ � 1q
ζ

� lim
ζ×0

ζupν�1q
µ pζqlooooooomooooooon

�0 by C.8

�1

a

» 8

0

dw pe�aw � 1qupνqµ pwq

� 1

a

» 8

0

dw pe�aw � 1qupνqµ pwq .

It follows immediately that» 8

0

dw e�awup0qµ pwq � a�ν
» 8

0

dw pe�aw � 1qupνqµ pwq

All the previous work goes into the following estimate, which establishes that the second
limit in fact decays in x and is rapidly decreasing in M . Assuming 0   δ   1

2
and

N P N0 it is
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����» 8

0

dw e�awup0qµ pwq
����

� |a�ν |
����» 8

0

dw pe�aw � 1qupνqµ pwq
����

� |a�ν |
����» 8

0

dw pe�aw�1qw µ�1
2
�ν

ν̧

l�0

�
ν

l


�
w

x


l
kplqσ

�
w

x
;M


ν�l�1¹
j�0

�
µ�1

2
�j

����

À

» 8

0

dw |e�aw�1|w µ�1
2
�ν�δ|x|�δ

ν̧

l�0

�����wx

l�δ

kplqσ

�
w

x
;M


����
À |x|�δp1�Mq�N

» 8

0

dw |e�aw�1|w µ�1
2
�ν�δ .

It remains to show that the integral
³8
0

dw |e�aw�1|w µ�1
2
�ν�δ and its limit ε × 0 exit.

To see this, note that as µ�1
2
  ν ¤ µ�3

2
it is �2   µ�1

2
� ν � δ   �1. It is convenient

to split the integral into two parts, which can be analyzed with relative ease:» 8

0

dw |e�aw�1|w µ�1
2
�ν�δ �

» 1

0

dw |e�aw�1|w µ�1
2
�ν�δ �

» 8

1

dw |e�aw�1|w µ�1
2
�ν�δ .

For the first part, note that for ε   1 and w ¥ 0 the term |e�aw�1| can be estimated as
follows:

|e�aw�1| � |e�pσ�εqw�1|

�
���� 8̧
l�0

�1l

l!
piσ � εqlwl

����
� w

���� 8̧
l�0

�1l�1

pl � 1q!piσ � εql�1wl
����

¤ w
8̧

l�0

1

pl � 1q!2
l�1wl

¤ w sup
wPr0,1s

8̧

l�0

1

pl � 1q!2
l�1wl .

Since w
µ�1

2
�ν�δ P L1pr0, 1sq, an application of the Lebesgue dominated convergence

theorem yields

lim
ε×0

» 1

0

dw |e�aw�1|w µ�1
2
�ν�δ À

» 1

0

dww
µ�1

2
�ν�δ   8 .

For the second part, also assume ε   1 and estimate

|e�aw�1| � |e�pσ�εqw�1| ¤ 2 .
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Using w
µ�1

2
�ν�δ P L1pr1,8sq, the Lebesgue dominated convergence theorem gives

lim
ε×0

» 8

1

dw |e�aw�1|w µ�1
2
�ν�δ À

» 8

1

dww
µ�1

2
�ν�δ   8 .

This proves limε×0

³8
0

dw |e�aw�1|w µ�1
2
�ν�δ   8 which concludes the discussion of the

second limit.

The preceding results can be summarized into the following theorem:

Theorem C.11. Let µ P N0 and h P SpRq such that ph has a double zero at the origin.
Then there exist

• K� : R Ñ C rapidly decreasing, i.e. @N P N0 : supMPR |K�pMqp1�MqN |   8,

• r : r0,8r�pr0,8r�Rq Ñ C such that @K � R compact, N P N0DCN,K@M P
r0,8r, x P R : supx�K |rpM,xq|   CN,K |x|�µ�1

2
�δp1�mq�N , where 0   δ   1

2
,

with the property that for M P r0,8r, x P r0,8r,x P R it is

h �x BµxWβ,Mpxq � x�
µ�1

2

¸
σ��

e�σiMxKσpMq � rpM,xq .

An analogous result holds for x Ps � 8, 0s.

Proof. Define:

K�pMq :� p�1qµ
2π

k�p0;Mq lim
ε×0

» 8

0

dw e�p�1�εqww
µ�1

2 ,

rpM,xq :�
¸
σ��

p�1qµ
2π

e�σMxx�
µ�1

2 lim
ε×0

» 8

0

dw e�p�1�εqww
µ�1

2 kp0qσ

�
w

x
;M



.

The computations leading up to this theorem prove that K� and r have the desired

properties. In the case of x   0 substitute w � �x
�b

p2 �M2 �M2
	

instead of

w � x
�b

p2 �M2 �M2
	

in the computation of h�xBµxWβ,Mpxq. The rest of the analysis

can the be performed analogously.

C.4. Combinatorics of Normal Ordering

It is the aim of this section to prove the lemma 5.1, giving an explicit expression for
expectation values of normal-ordered powers of φ0 in arbitrary quasifree states. The
lemma is restated here for convenience.
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Claim C.12. Let κ, ω be quasifree states on A0 and g1, � � � , gm1 , � � � , gm2 , f P SpR2q.
Define M :� t1, � � � ,m1 �m2u and Kf :� ωpφ0pfqφ0pfqq � κpφ0pfqφ0pfqq. It is

ω

�m1¹
k�1

φ0pgkq �Nκpφ0pfqmq �
m2¹

k�m1�1

φ0pgkq



�
¸

m�pm1�m2q
¤2k¤m

m!

2kk!
Kk
f

¸
S�M

|S|�m�2k

ω

� ¹
pPMzS
ordered

φ0pgpq



�
¹
pPS
p¤m1

ωpφ0pgpqφ0pfqq �
¹
pPS
p¡m1

ωpφ0pfqφ0pgpqq .

The idea of the proof is to proceed to generating functionals of normal-ordered powers
which can be expressed in terms of Weyl operators. It turns out that expectation values
of products of Weyl operators and their normal-ordered equivalent can be easily com-
puted, bypassing combinatorial difficulties. The expectation values of products of field
operators and a ordered power can then be recovered by differentiation.

In the following, let πω be the GNS representation of A0 on the GNS Hilbert space
Hω with GNS vector Ωω, dense invariant domain Dω and scalar product x�|�y of a
quasifreestate ω. The notation   f, g ¡ω:� ωpφ0pfqφ0pgqq is used for f, g P SpR2q.
Exploiting the quasifreeness of ω, it is straightforward to compute the expectation val-
ues of Weyl operators Wωpfq, f P SRpR2q.
Lemma C.13.

Let f P SRpR2q. For expectation values of Weyl operators there holds

xΩω|Wωpfq � Ωωy � e�
1
2
 f,f¡ω .

Proof. Exploiting the quasifreeness of ω, one obtains for k P N0:

ωpφ0pfqkq �
#

0, otherwise

pk � 1q!!ωpφ0pfqφ0pfqqk{2, k is even .

Using this, compute

xΩω|Wωpfq � Ωωy

�
8̧

k�0

ik

k!
xΩω|πωpφ0pfqkq � Ωωy

�
8̧

k�0

ik

k!
ωpφ0pfqkq

�
8̧

k�0

i2k

p2kq!p2k � 1q!!   f, f ¡k
ω
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�
8̧

k�0

p�1qk
2kk!

  f, f ¡k
ω

� e�
1
2
 f,f¡ω .

Lemma C.14. For f1, � � � , fm P SRpR2q it is

xΩω|
m¹
k�1

Wωpfkq � Ωωy � e�
°

1¤l k¤m fl,fk¡ωe�
1
2

°m
k�1 fk,fk¡ω .

Proof. This is proven by induction on m using the Weyl relations and the preceding
lemma.

This lemma will be used in the following form:

Corollary C.15. For g1, � � � , gm1 , � � � , gm2 , f P SRpR2q it is

xΩω|
m1¹
k�1

Wωpgkq �Wωpfq �
m2¹

k�m1�1

Wωpgkq � Ωωy

� e�
1
2
 f,f¡ω�

°m1
k�1 gk,f¡ω�

°m2
k�m1�1 f,gk¡ω

�xΩω|
m2¹
k�1

Wωpgkq � Ωωy .

Proof. The relation in question is verified by expressing the expectation values on both
sides as products of exponentials using the previous lemma.

Now recall the definition of normal-ordered powers of φ0pfq with respect to the quasifree
state κ:

Nκpφ0pfqmq :�
tm

2
u¸

k�0

p�1qk
�
m

2k



  f, f ¡k

κ φ0pfqm�2 .

The next lemma serves to compute a generating functional for normal-ordered powers
of φ0pfq.

Lemma C.16. On Dω the following identity holds:

NκpWωpfqq :�
m̧

k�8

ik

k!
πωpNκpφ0pfqkqq � e

1
2
 f,f¡κWωpfq .

In particular, NκpWωpfqq extends to all of H and t ÞÑ NκpWωptfqq is strongly continuous.
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Proof. By quasifreeness of κ, it is κpφ0pfq2lq � p2lq!
2ll!

  f, f ¡k
κ. Using this, compute on

Dω:

m̧

k�0

ik

k!
πωpNκpφ0pfqkqq

�
8̧

k�0

ik

k!

t k
2
u¸

l�0

p�1ql
�
k

2l


p2lq!
2ll!

  f, f ¡l
κ πωpφ0pfqqk�2l

�
8̧

k�0

t k
2
u¸

l�0

ik

k!
piq�2l k!

p2lq!pk � 2lq!
p2lq!
2ll!

  f, f ¡l
κ πωpφ0pfqqk�2l

�
8̧

k�0

t k
2
u¸

l�0

1

l!

�1

2
  f, f ¡κ

	l
� ik�2l

pk � 2lq!πωpφ0pfqqk�2l

�
8̧

l�0

1

l!

�1

2
  f, f ¡κ

	l
�
8̧

j�0

ij

j!
πωpφ0pfqqj

� e
1
2
 f,f¡κWωpfq .

The resummation in the second to the last step is done by setting j � k � 2l.

The lemma allows to express normal-ordered Weyl operators in terms of multiples of
Weyl operators. Using the previous corollary, C.15, it is straightforward to compute ex-
pectation values of products of normal-ordered and non-normal-ordered Weyl operators:

xΩω|
m1¹
k�1

Wωpµkgkq �NκpWωpλfqq �
m2¹

k�m1�1

Wωpµkgkq � Ωωy

� e�
1
2
λ2p

:�Kfhkkkkkkkkkkkkkikkkkkkkkkkkkkj
  f, f ¡ω �   f, f ¡κq�λ

°m1
k�1 µk gk,f¡ω�λ

°m2
k�m1�1 µk f,gk¡ω

�xΩω|
m2¹
k�1

Wωpµkgkq � Ωωy ,

where µ1, � � � , µm1 , � � � , µm2 , λ P R. This can be used to prove the original claim:
ω
�±m1

k�1 φ0pgkq �Nκpφ0pqfmq
±m2

k�m1�1 φ0pgkq
�

can be recovered by differentiation form
the above expression.

Proof. Assume m1 � m2 for computational simplicity. In the case of real valued
Schwartz functions, this represents no loss of generality as the relative position of the
Wωpµkgkq to NκpWωpλfqq does not matter. The correct generalization for complex val-
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ued Schwartz functions and arbitrary m1,m2 is evident. It is

ω

�m2¹
k�1

φ0pgkq �Nκpφ0pqfmq



� p�iBλqm|λ�0

m2¹
k�1

p�iBµkq|µk�0

�
�
xΩω|

m2¹
k�1

Wωpµkgkq �NκpWωpλfqq � Ωωy
�

� �piBλqm|λ�0

m2¹
k�1

p�iBµkq|µk�0

�
�
e�

1
2
λ2Kf�λ

°m2
k�1 µk gk,f¡ω xΩω|

m2¹
k�1

Wωpµkgkq � Ωωy
�
.

To compute the Bµk derivates, it is useful to prove the following lemma by induction on
q: Let 0 ¤ q ¤ m2. Define M2 :� t1, � � � ,m2u, Q :� t1, � � � , qu �M2. It is:

q¹
k�1

p�iBµkq|µk�0

�
e�

1
2
λ2Kf�λ

°m2
k�1 µk gk,f¡ω xΩω|

m2¹
k�1

Wωpµkgkq � Ωωy
�

� e�
1
2
λ2Kf�λ

°
kPM2zQ

µk gk,f¡ω

�
q̧

l�1

piλql
¸
S�Q
|S|�l

¹
kPS

 gk, f¡ω � xΩω|
¹
kPQzS

πωpφ0pgkqq �
¹

kPM2zQ
Wωpµkgkq � Ωωy.

For q � 0 this is true. Assume the statement is true for q. In order to make the induction
step somewhat presentable, use the following abbreviations: q1 :� q � 1, Q1 :� QY tq1u,
Kpλq :� �1

2
λ2Kf , Pk :�  gk, f ¡ω, πk :� πωpφ0pgkqq, Wkpµkq :� Wωpµkgkq. It is

q�1¹
k�1

�iBµk |µk�0

�
eKpλq�λ

°m2
k�1 µkPk xΩω|

m2¹
k�1

Wkpµkq � Ωωy
�

� �iBq�1

�
eKpλq�λ

°
kPM2zQ

µkPk

�
q̧

l�1

piλql
¸
S�Q
|S|�l

¹
kPS

Pk � xΩω|
¹
kPQzS

πk �
¹

kPM2zQ
Wkpµkq � Ωωy

�

� eKpλq�λ
°
kPM2zQ

1 µkPk

q̧

l�1

piλql�1
¸
S�Q
|S|�l

Pq1
¹
kPS

Pk

�xΩω|
¹
kPQzS

πk �
¹

kPM2zQ1
Wkpµkq � Ωωy
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� eKpλq�λ
°
kPM2zQ

1 µkPk

q̧

l�1

piλql
¸
S�Q
|S|�l

¹
kPS

Pk

�xΩω|
¹
kPQzS

πk � πq1 �
¹

kPM2zQ1
Wkpµkq � Ωωy

� eKpλq�λ
°
kPM2zQ

1 µkPk

q1¸
l�1

piλql
¸
S�Q1

|S|�l,q1PS

¹
kPS

Pk

�xΩω|
¹

kPQ1zS
πk �

¹
kPM2zQ1

Wkpµkq � Ωωy

� eKpλq�λ
°
kPM2zQ

1 µkPk

q1¸
l�1

piλql
¸
S�Q1

|S|�l,q1RS

¹
kPS

Pk

�xΩω|
¹

kPQ1zS
πk �

¹
kPM2zQ1

Wkpµkq � Ωωy

� eKpλq�λ
°
kPM2zQ

1 µkPk

q1¸
l�1

piλql
¸
S�Q1

|S|�l

¹
kPS

Pk

�xΩω|
¹

kPQ1zS
πk �

¹
kPM2zQ1

Wkpµkq � Ωωy .

This proves the lemma. Setting q � m2 evaluates the Bµk derivatives:

m2¹
k�1

p�iBµkq|µk�0

�
xΩω|

m2¹
k�1

Wωpµkgkq �NκpWωpλfqq � Ωωy
�

�
m2̧

l�0

piλql
¸

S�M2

¹
kPS

  gk, f ¡ω �ω
� ¹

kPM2zS
ordered

φ0pgkq


� e� 1

2
λ2Kf .

It remains to compute the Bmλ derivative:

ω

�m2¹
k�1

φ0pgkq �Nκpφ0pqfmq



� p�iBλqm|λ�0

m2¹
k�1

p�iBµkq|µk�0

�
xΩω|

m2¹
k�1

Wωpµkgkq �NκpWωpλfqq � Ωωy
�

� p�iBλqm|λ�0

�m2̧

l�0

piλql
¸

S�M2

¹
kPS

  gk, f ¡ω �ω
� ¹

kPM2zS
ordered

φ0pgkq


� e� 1

2
λ2Kf

�

� p�iqm
m̧

q�0

�
m

q


 m2̧

l�0

Bm�qλ |λ�0

�piλql� ¸
S�M2

¹
kPS

  gk, f ¡ω
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�ω
� ¹

kPM2zS
ordered

φ0pgkq


� Bqλ|λ�0

�
e�

1
2
λ2Kf

�

� p�iqm
¸

0¤2p¤m

�
m

2p


 m2̧

l�0

Bm�2p
λ |λ�0

�piλql� ¸
S�M2

¹
kPS

  gk, f ¡ω

�ω
� ¹

kPM2zS
ordered

φ0pgkq


� p�Kf qp p2pq!

2pp!

�
¸

m�m2¤2p¤m

m!

2pp!
Kp
f

¸
S�M2

|S|�m�2p

¹
kPS

  gk, f ¡ω �ω
� ¹

kPM2zS
ordered

φ0pgkq


.

For arbitrary m1 and m2 and complex valued Schwartz functions, this generalizes to

ω

�m1¹
k�1

φ0pgkq �Nκpφ0pqfmq �
m2¹

k�m1�1

φ0pgkq



�
¸

m�m2¤2p¤m

m!

2pp!
Kp
f

¸
S�M2

|S|�m�2p

¹
kPS
k¤m1

 gk, f¡ω �
¹
kPS
k¡m1

 f, gk¡ω �ω
� ¹

kPM2zS
ordered

φ0pgkq


.
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D. Basics of Quantum Field Theory

It is the goal of this appendix to provide a systematic overview of the quantum field
theoretical notions used throughout this thesis. The framework presented is based on
[6] and considers a single scalar, hermitian field.

D.1. General Considerations and Definitions

For the purpose of stating a framework for quantum field theory, it is convenient to
define a quantum field φ by means of a class of measuring devices. For a sufficiently nice
real valued function f on space-time (assumed to be given by Minkowski space Mn�1),
φpfq is to be thought of as a measurement performed by a device of that class indexed
by f .
To justify the heuristic picture of φpfq � ³Mn�1 dx fpxqφpxq being a weighted average of
measurements performed at points x P Mn�1, the symbols φpfq are given the structure
of a real vector space by defining φ to be linear in f . In particular, the measurement
φpfq takes place in supppfq � Mn�1.

In a setting where a field is defined in terms of measurement, the information about the
state of the a system needs also be phrased in terms of measurement. All information an
observer can obtain about the state of a system is given by the value of measurements
performed in that state. This motivates the definition of a state ω as a map from the set
of possible measurements to real numbers, associating to each observable its expectation
value.

To describe correlation measurements, an additional multiplicative structure on the sym-
bols φpfq, such that one obtains an algebra, is required. This, however, entails some
conceptual problems. It’s a basic fact of quantum mechanics that no uncorrelated states,
i.e. states where all expectation values of products equal the products of the factors’
expectation values, exist. This forces the algebra to be non-commutative and having
two non-commuting observables brings forth the question of how to measure their prod-
uct. No satisfactory operative prescription exists, since, in general, expectation values
of products depend on their order.

The way out lies in acknowledging that the algebra generated by symbols φpfq also
contains unobservable elements, which in turn imposes the need for a criterion to iden-
tify the observable ones. Allowing the functions f in φpfq and states to be complex
valued and replacing R-linearity by C-linearity, such a criterion is given by equipping
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the resulting algebra with the involution φpfq� � φpfq extended to the whole algebra.
Observables are then defined to be fixed points of the involution. In particular, this
definition includes all φpfq for real valued f as observables. Also, if the product of two
oberservables a, b is again observable, then ab � pabq� � b�a� � ba, so a, b commute.
This allows to define the measurement ab for commuting a, b as performing measurement
a and b and multiplying their results.

An involution also allows to introduce a natural notion of positivity: positive elements
in the algebra are those, which can be written in the form a�a. A state is required to be
non-negative on positive elements. If one also imposes the condition that in every state
the empty measurement gives the result 1, states become involutive, i.e. for all a in the
algebra one has ωpa�q � ωpaq. This has two relieving consequences:

• Expectation values of observables are real.

• States are fully determined by their values on observables.

This is conceptually satisfying, as it means that a state cannot contain information in-
trinsically inaccessible to the observer.

In order to keep the framework as generic as possible, no a priori dynamical relation is
imposed on the algebra. However, all physically reasonable theories should disallow ef-
fects propagating faster than light. That is to say that all two measurements performed
in spacelike separated regions should be uncorrelated, or in mathematical terms that
rφpfq, φpgqs � 0, if supppfq ' supppgq.

These considerations lead to the following definition:

Definition D.1. The field algebra A of a single hermitian field φ is the free unital
algebra generated by symbols φpfq, f P SpRn�1q, subject to the following relations:

• Linearity:
@ f1, f2 P SpRn�1q, λ1, λ2 P C : φpλ1f1 � λ2f2q � λ1φpf1q � λ2φpf2q,

• Causality:
@ f1, f2 P SpRn�1q : supppf1q ' supppf2q ñ rφpf1q, φpf2qs � 0

and endowed with an involution

• φpfq� � φpfq extended anti-automorphically to A.

Definition D.2. A state ω on a unital �-algebra is a map ω : A Ñ C satisfying the
following properties:

• Linearity:
@ a1, a2 P A, λ1, λ2 P C : ωpλ1a1 � λ2a2q � λ1ωpa1q � λ2ωpa2q.
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• Positivity:
@ a P A : ωpa�aq ¥ 0.

• Normalization:
ωp1q � 1.

States with the following continuity property exhibit desirable properties

Definition D.3. A state ω on the field algebra A is called regular :ô

@ k,m P N, 1 ¤ k ¤ mf1, � � � fm P SpRn�1q : fk ÞÑ ωpφpf1q � � �φpfmqq

is a continuous map SpRn�1q Ñ C.

By the nuclear theorem (cf. [1] and references therein), there exisst for each m P N, a
unique tempered distribution Wm P S 1pRmpn�1qq such that for f1, � � � , fm it is

 Wm, f1 b � � � b fm ¡� ωpφpf1q � � �φpfmqq .

These tempered distributions are called correlation functions or m-point functions.

The Poincaré group acts automorphically on A in a canonical way:
For pΛ, aq P Pn�1, define αpΛ,aq P autpAq on generators of A by

αpΛ,aqpφpfqq :� φpfpΛ,aqq

and extend it as a �-homomorphism to all of A, where fpΛ,aqpxq :� fppΛ, aq�1 � xq. αpΛ,aq
is well-defined, since it preserves the (two-sided) �-ideal generated by t rφpfq, φpgqs P
A | f, g P S 1pRn�1q, f ' g u.

Within this framework, specific theories are given by representations π of the field algebra
A. By the fist isomorphism theorem, the represented algebra πpAq is isomorphic to
A{ kerpπq. In this manner, a representation imposes new relations kerpπq on the field
algebra, which may include dynamical laws. A natural way to construct representations
from states is given by the GNS construction.

D.2. The GNS Construction

The Cauchy-Schwarz inequality is usually stated for spaces equipped with an inner
product. In the following a slightly stronger version will be needed.

Lemma D.1. Let V be a vectorspace over C equipped with a (possibly indefinite) positive
hermitian sesquilinear form p�|�q. Then for a, b P V there holds

|pa|bq|2 ¤ pa|aqpb|bq .
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Proof. For λ P C, a, b P V it is 0 ¤ pa � λb|a � λbq � pa|aq � 2 Reλpa|bq � |λ|2pb|bq. If
pb|bq � 0 set λ :� pa|bqpb|bq�1 to get the desired result. If pb|bq � 0, consider λ of the
form λ � α

2
pa|bq for α P R. It follows that α|pa|bq|2 ¤ pb|bq for all α P R which is only

possible, if pa|bq � 0.

Lemma D.2. Let A be a unital �-algebra and ω a state on A. Then ω is involutive.

Proof. Exploiting the positivity property of ω it is ωppa � 1q�pa � 1qq � ωpa�aq � 1 �
ωpa�q � ωpaq P R and thus

ωpa�q � ωpaq � ωpa�q � ωpaq . (D.1)

Similarly it is ωppa� i1q�pa� i1qq � ωpa � aq � 1 � ipωpa�q � ωpaqq P bR and

ωpa�q � ωpaq � �ωpa�q � ωpaq . (D.2)

Adding D.1 and D.2 gives ωpa�q � ωpaq.

Theorem D.3. Let A be a unital �-algebra and ω a state on A. Then there exist a
Hilbert space (H, x�|�yq, a dense domain D � H, a �-representation π of A as closable
unbounded operators on H with stable domain D (i.e. πpAqD � D) and a cyclic vector
Ω P D, such that for all a P A it is ωpaq � xΩ|πpaqΩy.

Proof. On the C-vector-space A consider the sesquilinear form

p�|�q : A�A Ñ C ,

pa, bq ÞÑ pa|bq :� ωpa�bq .

For a P A it is pa|aq � ωpa�aq ¥ 0, i.e. p�|�q is positive. There also holds pa|bq �
ωpa�bq � ωpb�aq � pb|aq, so p�|�q is hermitian. Define the set I :� t a P A | pa|aq � 0 u.
I � A is a sub-vector-space: for a P I and λ P C it is pλa|λaq � |λ|2pa|aq � 0 and for
a, b P I, the Cauchy-Schwarz inequality gives pa|bq � 0 and hence pa� b|a� bq � pa|aq�
pa|bq � pb|aq � pb|bq � 0. Now let b P A, a P I. It is pba|baq � ωppbaq�baq � ωpa�b�baq �
ωppb�baq�aqq � pb�ba|aq � 0, again by virtue of the Cauchy-Schwarz inequality. This
shows that I is a left ideal in A. On the vector space D :� A{I define

x�|�y : D �D Ñ C ,

pa{I, b{Iq ÞÑ xa{I|b{Iy :� pa|bq .

Since for a, b P A and a1, b1 P I it is pa� a1|b� b1q � pa|bq� pa|b1q� pa1|bq� pa1|b1q � pa|bq
(Cauchy-Schwarz), x�|�y is well-defined. It inherits positivity, hermicity and sesquilinear-
ity from p�|�q and is in addition positive definite: Suppose xa{I|a{Iy � 0. Then it is
pa|aq � 0, so a P I and a{I � 0. In conclusion, pD, x�|�yq is a pre-Hilbert space, which
can be completed to a Hilbert space H.
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A acts on H as unbounded operators with common domain D in the following way:
For a P A, b{I P D define πpaq � b{I :� pabq{I. Note that πpaq � b{I P D, so πpaq P
homCpD,Dq. It can be readily seen that

π : A Ñ homCpD,Dq ,
a ÞÑ πpaq

is a homomorphism of associative algebras.

For b{I, c{I P D, a P A it is xb{I|πpaq � c{Iy � xb{I|pacq{Iy � ωpb�acq � ωppa�bq�cq �
xpa�bq{I|c{Iy � xπpa�q � b{I|c{Iy. It follows that D lies in the domain of πpaq� and that
πpaq�|D � πpa�q. In particular the domain of πpaq� is dense in H, so πpaq is closable.
Understanding πpaq� as πpaq�|D, π is a �-homomorphism.

Lastly define Ω :� 1{I P D. Apparently πpAq � Ω � D, so Ω is cyclic. Furthermore it is
xΩ|πpaqΩy � x1{I|a{Iy � p1|aq � ωp1�aq � ωpaq.

Given a state ω on A, it is possible to look for states that are “not too different”
from ω by constructing states on the represented algebra πωpAq, where πω is the GNS
representation of A on the GNS Hilbert space Hω. States ρ on πωpAq give rise to new
states on A by composition: ωρ :� ρ � πω is again a state on A.
Elements Φ P D � Hπ, for instance, define vector states on πωpAq by ρΦpAq :�
xΦ|A � Φy{xΦ|Φy, A P πpAq. Note that for a P A it is ωρΦ

paq � xΦ|πpaq � Φy{xΦ|Φy.
Furthermore there exists b P A such that Φ � πpbq � Ω. This bears the interpretation
that ωρΦ

arises from ω � ωρ1 by local excitations created by physical operations b.

Another method of constructing new states out of old ones is taking convex combinations.
If ω1, � � � , ωm are finitely many states on A and q1, � � � , qm P r0, 1s satisfy

°m
k�1 qk � 1,

then ω :� °m
k�1 qkωk is again a state on A. The set of states on A is convex.

Remark: The theory corresponding to ω may be realized on the direct sum of the GNS
Hilbert spaces Hk of the ωk via the representation

Àm
k�1 qkπk. However, this is not in

general the GNS representation induced by ω. E.g. in the case ω � 1
2
ω � 1

2
ω the rep-

resentation 1
2
π ` 1

2
π has the closed, invariant subspace t pΦ,Φq |Φ P H u � H `H and

the corresponding subrepresentation is equivalent to the GNS representation π onH of ω.

States which can be constructed from a state ω on A by finite application of the two
above constructions constitute the folium of ω.

D.3. Invariant States and Implementation of
Symmetries

Definition D.4. Let G � Ln�1 be a subgroup of the Poincaré group. A state ω on the
observable algebra A is G -invariant :ô
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@ g P G , a P A : ωpαgpaqq � ωpaq .
Invariant states are of interest, because they describe situations, where an active in
setup of measuring devices has no impact on measuring results. In Rn-invariant states,
for instance, the shift of measuring devices has no impact on measurement results. In
R-invariant states, the time at which the measurement is performed does not matter,
such states are static.

The following theorem exhibits another feature of the GNS representation.

Theorem D.4. Let A be a �-algebr, G � autpAq a subgroup of the �-automorphisms of
A and ω a G -invariant state on A. Then there exists a unitary representation U of G
on the GNS Hilbert space H of the GNS representation induced by ω, leaving D � H
invariant, such that @ a P A, g P G : πpαgpaqq � UpgqπpaqUpgq�1.

Proof. For g P G and a{I P D define Upgq�a{I :� αgpaq{I (here α stands for the defining
representation of G as automorphisms on A. This notation is used to be consistent
with notation used to describe the action of Pn�1 on the field algebra, where α is the
representation of the Poincaré group as automorphisms of the field algebra). This is
well-defined since αg preserves left-ideals of A. Each Upgq leaves D invariant and for
g1, g2 P G one has

Upg1qUpg2q � a{I � αg1pαg2pa{Iqq � αg1g2pa{Iq � Upg1g2q � a{I .
This shows that U is a group representation of G on D. In particular, it is Upgq �D � D.
To show that each Upgq is an isometry, compute

||Upgq � a{I||2 � xUpgq � a{I|Upgq � a{Iy
� xαgpaq{I|αgpaq{Iy
� ωpαgpaq�αgpaqq
� ωpαgpa�aqq
� ωpa�aq
� xa{I|a{Iy
� ||a{I||2 .

Upgq extends uniquely to an isometry onH with dense range. This extension is a unitary
operator on H. Finally for a P A, g P G and b{I P D one has

UpgqπpaqUpgq�1 � b{I
� Upgqπpaq � αg�1pbq{I
� Upgq � pa � αg�1pbqq{I
� αgpa � αg�1pbqq{I
� pαgpaqbq{I
� πpαgpaqq � b{I .

This means that UpgqπpaqUpgq�1 � πpαgpaqq on D.
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Theorem D.5. Let G � Pn�1 be a Lie subgroup of the Poincaré group, A the field
algebra and ω a regular G -invariant state on A. Then the unitary representation U of
G on the GNS Hilbert space is strongly and weakly continuous.

Proof. Since U is a unitary representation, weak and strong continuity are equivalent
and it suffices to prove that U is weakly continuous. Note that for monomials a �
φpf1q � � �φpfm1q, b � φph1q � � �φphm2q and Ψ :� a{I, Φ :� b{I it is

xa{I|Upgq � b{Iy � ωpφpfm1
q � � �φpf 1qφph1,gq � � �φphm2,gqq ,

which is continuous in g, as g ÞÑ hg P SpRn�1q is continuous and f1, � � � , fm ÞÑ
ωpφpf1q � � �φpfmqq is continuous by regularity of ω. This continuity extends to the case
of generic Φ,Ψ P D and, since D � H is dense and ||Upgq|| � 1, to Φ,Ψ P H.

The strong continuity of the representation U of G allows the application of Stone’s
theorem:

Theorem D.6 (Stone). Let t ÞÑ Uptq be a strongly continuous unitary representation
of R on a Hilbert space H. Then there exists a self-adjoint operator H on H such that
Uptq � eitH . Conversely if H is a self-adjoint operator on a Hilbert space H, then
Uptq :� eitH defines a strongly continuous representation of R on H.

So if G is a one-parameter subgroup of P and ω is a G -invariant state on the field alge-
bra A, then there exists a self-adjoint generator H which implements the unitary action
of G in the GNS representation induced by ω. In the case of space-time translations,
this allows to define the Hamiltonian P0 and impulse operators Pk.

A proof of Stone’s theorem can be found in [3].

D.4. Correlation Functions

For m P N, the correlation- or m-point functions Wm, defined by

 Wm, f1 b � � � b fm ¡� ωpφpf1q � � �φpfmqq ,

are of special interest, as their knowledge allows to fully reconstruct a theory. Given the
family pWmqmPN, one can recover the state ω, which in turn defines a representation of
A using the GNS construction.

The information of how measurements consequent excitations influence other measure-
ments, is encoded in the correlation functions. A convenient way to measure the degree
of influence various measurements have upon each other is given by the truncated cor-
relation functionsWT

m. They can be defined as the difference of the m-point functions
and their respective uncorrelated parts. The uncorrelated part of a m-point function
expresses the expectation value of the measurements in question, under the assumption
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of these measurements not perturbing each other. A precise definition of WT
m requires

some preparation.

For a set X, let PpXq denote the power set of X.

Definition D.5. Let X be a set. A subset T � PpXq is called a partition of X :ô¤
SPT

S � X and @S1, S2 P T : S1 X S2 � H ñ S1 � S2 .

In other words a partition of X is a collection of disjoint subsets of X whose union is
all of X. Denote the set of partitions of X by PpXq.
Definition D.6. For m P N let Mm :� t1, � � �mu. Define the truncated correlation
functions by WT

1 �W1 and

 Wm, f1 b � � � b fm ¡�
¸

TPPpMmq

¹
SPT

 WT
m,
pf1

S b � � � bxfmS ¡ ,
where f1, � � � , fm P SpRn�1q and pfjS denotes omission if j R S.

This implicit definition of the W is to be understood as a recurrence relation in m and
defines the WT

m uniquely.

Proposition D.7. Let ω be a regular Rn�1-invariant state. There exists a tempered
distribution W P S 1pRn�1q such that for f, g P SpRn�1q there holds

 W2, f b g ¡�  W, f � qg ¡ .

Proof. Since ω is invariant under space-time translations there holds for all a P Rn�1

and f, g P SpRn�1q : W2, fa b ga ¡� W2, f b g ¡. It remains but to apply C.1.

Definition D.7. W is called the reduced two-point function.

Definition D.8. C :� W �|W is called the commutator function.

Definition D.9. Let T P D1pRnq. T is of positive type :ô
@ f P DpRnq :  T, f � qf ¡¥ 0 .

Theorem D.8 (Bochner-Schwartz Theorem). Let T P D1pRnq. T is of positive type iff

T is tempered and pT is a polynomially bounded positive measure.

A proof can be found in [4].

Corollary D.9. Let ω be a regular Rn�1-invariant state. Then the reduced two-point
function W is of positive type and xW is a polynomially bounded positive measure.

Proof. Since ω is regular, W is tempered and for f P SpRn�1q it is

  W, f � qf ¡� W2, f b f ¡� ωpφpfq�φpfqq ¥ 0 .

The rest follows from the Bochner-Schwartz theorem.
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D.5. Quasifree States

A fairly accessible class of states on the field algebra A is given by those states, which
are fully determined by their two-point function.

Definition D.10. A partition into pairs of X is a partition T of X, such that

@S P T : |S| � 2 .

Denote the set of partitions into pairs of X by P2pXq.

Definition D.11. For m P N let Mm :� t1, � � �mu. A state ω on the field algebra A is
called quasifree :ô @m P N @ f1, � � � fm P SpRn�1q :

ωpφpf1q � � �φpfmqq �
¸

TPP2pMmq

¹
ps1,s2qPT
s1 s2

ωpφpfs1qφpfs2qq .

Note that for odd m there are no partitions into pairs of Mm, so ωpφpf1q � � �φpfmqq � 0.
It is apparent, that a quasifree state is entirely determined by its two-point function.
Conversely, it is possible to define a quasifree state prescribing only the two-point func-
tion.

Theorem D.10. Let

ξ : SpRn�1q � SpRn�1q Ñ C

be bilinear such that

• @ f P SpRn�1q : ξpf, fq ¥ 0,

• @ f, g P SpRn�1q : supppfq ' supppgq ñ ξpf, gq � ξpg, fq.

Then there exists a unique quasifree state ω on the field algebra A, such that for all
f, g P SpRn�1q : ωpφpfqφpgqq � ξpf, gq. Furthermore, if ξ is separately continuous, then
ω is regular.

Sketch of proof. For m P N, f1, � � � fm P SpRn�1q define

ωpφpf1q � � �φpfmqq �
¸

TPP2pMmq

¹
ps1,s2qPT
s1 s2

ξpfs1 , fs2q ,

which extends linearly to the field algebra A. The second condition on ξ in the statement
of the theorem is used to show that this is well-defined (causality). The first (positivity)
condition is used to show that ω, extended in this way, is in fact positive and thus
defines a state on A. ω is by definition quasifree with two-point function ωpφpfqφpgqq �
ξpf, gq.
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D.6. Weyl Operators and Relations

Quasifree states have the property, that for f P SRpRn�1q the operator πpφpfqq on the
GNS Hilbert space is essentially self-adjoint and has a unique closure πpφpfqqc. By
Stone’s theorem the unitary operator W pfq :� eiπpφpfqqc allows to recover πpφpfqqc by
differentiation. The Weyl operators W pfq obey Weyl relations, which fully contain
the structure of the algebra πpAq. The algebra generated by W pfq, subject to the Weyl
relations, is a C�-algebra, called the Weyl algebra. Proceeding to the weak closure
of the Weyl algebra, one can resort to W �-algebraic methods to study quantum field
theories. Here, the complete theory is neither fully developed nor applied, but a brief
introduction is given and some results will be used.

Lemma D.11. Let m P N, f, g, h1, � � �hm P SpRn�1q and ω be a quasifree state on the
field algebra A. The following holds for 1 ¤ k ¤ m:

ωpφph1q � � �φphkqrφpfq, φpgqsφphk�1q � � �φphmqq
� ωprφpfq, φpgqsqωpφph1q � � �φphmqq .

Sketch of proof. It is

ωpφph1q � � �φphkqrφpfq, φpgqsφphk�1q � � �φphmqq
� ωpφph1q � � �φphkqφpfqφpgqφphk�1q � � �φphmqq

�ωpφph1q � � �φphkqφpgqφpfqφphk�1q � � �φphmqq .

Partitions into pairs of the latter two terms either pair φpfq and φpgq together, or pair
both with one of the φphjq. In the latter case, there exists for each partition of the first
term φph1q � � �φphkqφpfqφpgqφphk�1q � � �φphmq a corresponding partition of the second
term φph1q � � �φphkqφpgqφpfqφphk�1q � � �φphmq appearing with the opposite sign, so the
only non-cancelling contributions arise for partition into pairs in which φpfq and φpgq
are paired together. These sum to the r.h.s of the equation in the claim.

This has the consequence that commutators of generators of A are multiples of the
identity in GNS representations induced by quasifree states:

Proposition D.12. Let A be the field algebra, ω a quasifree state on A and π the GNS
representation of A on H. For f, g P SpRn�1q it is πprφpfq, φpgqsq P C1.

Proof. Let a{I, b{I P D � H. Write

a�{I �
¸
i

finite

¹
ki

finite

φpha,kiq

b{I �
¸
j

finite

¹
lj

finite

φphb,ljq .
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Using the preceding lemma it is

xa{I|πprφpfq, φpgqsq � b{Iy
�

¸
i,j

finite

ω
�¹

ki
finite

φpha,kiqrφpfq, φpgqs
¹
lj

finite

φphb,ljq
	

� ωprφpfq, φpgqsq
¸
i,j

finite

ω
� ¹

ki
finite

φpha,kiq
¹
lj

finite

φphb,ljq
	

� ωprφpfq, φpgqsqxa{I|b{Iy
� xa{I|ωprφpfq, φpgqsq1 � b{Iy .

πprφpfq, φpgqsq and ωprφpfq, φpgqsq1 agree on the dense subspace D � H, so they are
the same in πpAq.

It is clear (cf. proof of the GNS construction) that for f P SRpRn�1q the operator πpφpfqq
is hermitian. The proof that it is also essentially self-adjoint relies on Nelson’s analytic
vector theorem (cf. [4]) and the observation that every element in D is analytic for
πpφpfqq. Since the operators πpφpfqq are essentially self-adjoint, they possess a unique
self-adjoint closure, denoted πpφpfqqc. By Stone’s theorem, these self-adjoint operators
give rise to a strongly continuous representation of R as unitary operators given by
t ÞÑ eitπpφpfqqc .

Definition D.12. Let ω be a quasifree state on the field algebra A and π the GNS
representation induced by ω. For f P SRpRn�1q define the unitary Weyl operator:

Wπpfq :� eiπpφpfqqc

Theorem D.13. The Weyl operators satisfy the Weyl relations:

WπpfqWπpgq � e�
1
2
σpf,gqWπpf � gq ,

Wπpfq� � Wπp�fq ,

where f, g P SRpRn�1q and σpf, gq :� ωprφpfq, φpgqsq.

Sketch of proof. Noting that t ÞÑ Wπptfq is the unitary representation of R associated
to the self-adjoint operator πpφpfqqc, the second relation is a consequence of the repre-
sentation being a group homomorphism and U�1 � U� for unitary U .

The first relation can be proven by considering the Lie group generated by the Wπpfq
and establishing that the universal enveloping algebra of its Lie algebra is generated by
πpφpfqq for f P SRpRn�1q. The relation is then a consequence of the BHC formula using
that rπpφpfqq, πpφpgqqs � ωprφpfq, φpgqsq1 is central.

Definition D.13. The �-algebra generated by Wπpfq is called the Weyl algebra.
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Remark: The Weyl algebra is a �-subalgebra of BpHq, the algebra of bounded operators
on H. Hence, its closure in the operator norm of BpHq is a C�-algebra.

The Weyl algebra contains all information necessary to recover the algebra πpAq. For
f P SRpRn�1q, the operator πpφpfqqc can be recovered by differentiation. For general f P
SpRn�1q, the operator πpφpfqq is given by πpφpRe fqq � iπpφpIm fqq, where Re f, Im f P
SRpRn�1q.

D.7. Vacuum States

Theorem D.14. For f, g P SpRn�1q and m ¡ 0 define

ξpf, gq :� p2πq�n
»

dp θppqδpp2 �m2q qpf � pgppq .
This ξ fulfills all conditions of theorem D.10 and thus defines a regular quasifree state
on A.

Proof. Clearly ξ is bilinear. dp θppqδpp2�m2q defines a positive measure, so it is ξpf, fq �
p2πq�n ³ dp θppqδpp2 � m2q | pf |2ppq ¥ 0. Let supppfq ' supppgq. To see that ξpf, gq �
ξpg, fq, first note that qf � g vanishes on V � Y V �:
Let x P V � Y V �. For y P R2 it is fpyq � 0 or gpx � yq � 0 (if both fpyq � 0 and
gpx� yq � 0 then y P supppfq and x� y P supppgq and consequently x � px� yq � y R
V �YV � since supppfq ' supppgq), which implies that qf � gpxq � ³ dy fpyqgpx� yq � 0.

By continuity, qf � gpxq vanishes on V � Y V �. It is

ξpf, gq � ξpg, fq � p2πq�n   εppqδpp2 �m2q, qpf � pgppq ¡
� p2πq�n   εppqδpp2 �m2q,Fpg � qfqppq ¡
� p2πq�n   Fpp ÞÑ εppqδpp2 �m2qqpxq, g � qfpxq ¡

in a slightly sloppy notation. The distribution εppqδpp2 � m2q is proportional to the

difference of two distributions pG� who are given as boundary values of holomorphic
functions: pG�ppq � lim

ε×0

εPV�

1

pp� iεq2 �m2
.

An argument involving the residue theorem and Lorentz invariance of pG� shows that
ppG�

has support in V 	, i.e. G� has support in V �. It immediately follows that the support
of Fpp ÞÑ εppqδpp2 � m2qq lies in V � Y V �. Since qf � gpxq vanishes on V � Y V � it is
ξpf, gq � ξpg, fq � 0.
As θppqδpp2�m2q is a tempered distributions and the Fourier transform and convolution
are continuous on SpR2q, ξ is separately continuous, so the quasifree state given rise to
by ξ is regular.
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Definition D.14. The state on A defined by the above two-point function is called the
free mass m vacuum state and is denoted by ω8,m. If π8,m is the GNS representation
induced by ω8,m, then Am :� π8,mpAq is called the free mass m field algebra. The
reduced two-point function is denoted by W8,m and the commutator function by Cm. A
theory is called free, iff it is given by a state on Am.

The free vacuum state on A has a few remarkable properties:

• ω8,m is a P�,Ò
n�1-invariant state on A (Poincaré invariance). This means that the

vacuum is stationary, homogeneous and looks the same for every Lorentz observer.

• The joint spectrum of the generators Pν is contained in V � (relativistic spectrum
condition). Consequently, in every Lorentz frame the spectrum of the Hamiltonian
(self-adjoint generator of time translations) is a positive operator.

• If αy denotes spatial translation by y P Rn and a, b are in A, then

lim
|y|Ñ8

|ω8,mpaαypbqq � ωpaq0,mωpbq0,m| � 0

(spatial clustering). The spatial clustering property ensures the uniqueness of the
vacuum state in its folium. More generally, the folium of a Poincaré invariant state
satisfying the relativistic spectrum condition and the spatial clustering property
contains no other such state. In a stronger W �-theoretic setting this is a feature
of purity of ω8,m.

The Poincaré invariance can be directly computed. The clustering property is shown by
noting that ξpf, gyq vanishes in the limit of large |y| and exploiting the quasifreeness of
ω8,m. To prove the relativistic spectrum condition note that, by the spectral theorem,
it is ω8,mpaαxpbqq �

³
σpP q dµa,bppq eipx, where σpP q is the joint spectrum of the Pν . The

right hand side is the Fourier transform of the density of the measure µa,b, so σpP q lies
is the union of supports of the the inverse Fourier transforms of x ÞÑ ω8,mpaαxpbqq as
a, b range though A. These supports can be shown to all lie in in V �, so σpP q � V �.

Poincaré invariance, the relativistic spectrum condition and the spatial clustering prop-
erty are expected to be features of any physical vacuum and motivate the definition of
a vacuum state on A.

Definition D.15. A state ω on the field algebra A is a vacuum state :ô
ω is Poincaré invariant, satisfies the relativistic spectrum condition and has the spatial
clustering property.

Vacuum states are of special importance, as one expects states describing local excita-
tions of the vacuum to cover a wide range of physically interesting situations and to be
suitable (under additional assumptions) to describe scattering processes.

The relativistic spectrum condition implies analyticity properties of the correlations
functions which provide a strong tool for the study of vacuum states.
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Theorem D.15. Let ω be a state on A invariant under time- and spatial translations
satisfying the relativistic spectrum condition. Then for all a, b P A the map

Fa,b : Rn�1 Ñ C
x ÞÑ ωpaαxpbqq

admits an analytic continuation (also denoted F ) to the domain R :� tz P Cn�1 | Im z P
V �u.
Sketch of proof. It follows from the spectral theorem and the relativistic spectrum con-
dition that for a, b P A it is

Fa,bpxq �
»
V �

dµa,bppq eixp . (D.3)

For z � x�iy P Cn�1, p P Rn�1 define ηpz, pq � ηpp, zq :� ηpx, pq�iηpy, pq (zp � xp�iyp
in short). The map z ÞÑ eizy � eixpe�yp is holomorphic and uniformly bounded inR for p
varying in V �, as ηpy, pq ¥ 0 if p P V �, y P V �. Partial derivatives Bzj of the integrand
exist and differentiation and integration can be interchanged. Hence z ÞÑ Fa,bpzq is
holomorphic in R.

Another consequence of the relativistic spectrum condition is that the two-point function
can be recovered from the commutator function: Assuming ω is a vacuum state, it is

Ff,gpxq :� ωpφpfqαxpφpgqq �  xW, p ÞÑ qpf � pgppqeipx ¡ .

A comparison of this equation to D.3 shows that xW has support in V �. The spatial

clustering property implies that xW has no discrete part at the origin. Hence pC � xW�|xW
can be split without ambiguity into two parts with support in V � and V � respectively.
It is clear that the former is given by xW , i.e.

xW � θppq pC .
D.8. KMS States

Another interesting class of states is that of thermal equilibrium states, which are char-
acterized by the KMS condition (named after R. Kubo, P. Martin, J. Schwinger, see [2]).
It is well established and motivated that the KMS condition is the good generalization
of the Gibbs- von Neumann condition ωpaq � trpe�βHaq{ trpe�βHq surviving, in contrast
to the latter, the thermodynamic limit.

Definition D.16 (KMS condition). Let β ¡ 0. A state ω on the field algebra A is
called a β-KMS state or said to have the KMS property at inverse temperature β
:ô
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For all a, b P A there exists a continuous function

Fa,b : Sβ Ñ C ,

which is holomorphic on Sβ :� t z P C |, 0   Im z   β u and for t P R satisfies

Fa,bptq � ωpaαtpbqq, Fa,bpt� iβq � ωpαtpbq aq ,
where αt denotes time translation.

Definition D.17. A β-KMS state is called proper :ô
@ a, b P A : Fa,b is bounded in the boundary of Sβ and D c, γ P R @ z � x � iy P Sβ :
|Fa,bpzq| ¤ c � |x|γ.
Properness is a technical assumption made to ensure that KMS states are stationary:
by renaming the field φpfq � ωpφpfqq Ñ φpfq it can w.l.o.g. be assumed that one-point
functions vanish. For a P A, the map t ÞÑ F1,aptq � ωpαtpaqq can be extended to
Sβ by the KMS condition and it is F1,apt � iβq � F1,aptq. It follows that F1,a can be
further extended to a continuous function on C, which is iβ periodic and holomorphic
on Cz�kPZ R � ikβ and thus entire. Properness implies that one can apply Lindelöf’s
theorem (cf. [16]) to show that F1,a is bounded on Sβ , so by periodicity F1,a is bounded
on C. Liouville’s theorem states that F1,a is constant, which means that ω is stationary.
In a stronger C�-algebraic setting the properness assumption is not needed to show this.
In this work, all KMS states are assumed to be proper.

There is a variety of arguments corroborating that KMS states describe thermal equi-
librium. One is that in settings where e�βHa is defined and has finite trace, Gibbs-
von Neumann states are KMS states and that the KMS property is a distinctive feature
of Gibbs- von Neumann states. A number of arguments exist intrinsically motivating
the KMS condition as characteristic of thermal equilibrium by linking it to passivity or
stationarity and stability under small perturbations ([2], [6]).

Definition D.18. A state ω on A is time-clustering :ô @ a, b P A :

lim
tÑ�8

|ωpaαtpbqq � ωpaqωpbq| � 0 .

In a stronger W �-theoretic setting, the set of KMS states is a simplex. The time-
clustering property can there be shown to be satisfied by states which are extremal in
set of KMS states. These are interpreted to describe pure phase ([2]). A simple inter-
pretation of the time-clustering property is given by the heuristic idea that the nature
of a thermal background is such that two measurements performed in a thermal state
become uncorrelated in the limit of the time elapsed between the two measurements
tending to infinity.

For some existing relativistic theories, the map t ÞÑ ωpaαtpbqq can even be further
extended and exhibits stronger analyticity properties beyond those conveyed by the
KMS property. It is expected that states with this extended analyticity properties cover
a wide range of thermal equilibrium situations (cf. [10]).
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Definition D.19 (Relativistic KMS condition). Let β ¡ 0. A state ω on the field
algebra A is called a relativistic β-KMS state or said to have the relativistic KMS
property at inverse temperature β :ô
There exists e P V �, e2 � 1, such that for all a, b P A there is a continuous function

Fa,b : Rβe Ñ C ,

which is holomorphic on Rβe :� t z P Cn�1 | Im z P V � X pβe � V �q u and for x P Rn�1

satisfies

Fa,bpxq � ωpaαxpbqq, Fa,bpt� iβeq � ωpαxpbq aq ,
where αx denotes space-time translation.

The relativistic KMS condition implies the KMS condition (choose a Lorentz frame in
which e lies on the time axis). A relativistic β-KMS state is defined to be proper, if it
is proper as a β-KMS state. Properness is assumed for all relativistic KMS states.

The relativistic KMS condition can be seen as the thermal counterpart to the relativistic
spectrum condition of vacuum states. If the temperature tends to 0, i.e. β Ñ 8,
then the domain of analyticity Rβe of the function x ÞÑ ωpaαxpbqq tends to R. The
analogy can also be seen from the regular KMS condition in the Fourier transform of
the commutator function. Assuming the underlying thermal state ω is invariant under
space-time translations, it is

ωpφpfqqαtpφpgqqq �  xW, p ÞÑ qpf � pgppqeitp ¡ (D.4)

and by the KMS condition

ωpαtpφpgqqφpfqqq �  xW, p ÞÑ qpf � pgppqeitpe�βp ¡ .

Setting t � 0 one obtains |xW � xWe�βp

and consequently pC � xW �|xW � p1� e�βpqxW . (D.5)

Further assuming vanishing one-point functions and time-clustering, the positive mea-
sure xW does not have a discrete part at 0 (If it did, the right hand side of equation
D.4 could not vanish for all f, g), so equation D.5 can be divided unambiguously by
p1� e�βpq: xW � 1

p1� e�βpq
pC . (D.6)

In the limit of zero temperature, i.e. β Ñ 8 equation D.6 becomes

xW � θppq pC ,
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which is characteristic for states satisfying the relativistic spectrum condition.

Relation D.6 allows to recover quasifree KMS states from the commutator function in
that state. Since rφpfq, φpgqs is a multiple of the identity in the free field algebra Am
(i.e. π8,mprφpfq, φpgqsq P C1 � Am), the free mass m commutator function Cm is the
same for all free theories (theories which aries from states on Am). It follows that if there
are translationally invariant β-KMS states on Am, their reduced two-point functions are
fixed by xWβ,m :� 1

1� e�βp
pCm � 2π

εppqδpp2 �m2q
1� e�βp

, (D.7)

which is to be understood in the sense of distributions. Wβ,m satisfies the conditions of
theorem D.10 and gives in fact rise to a quasifree KMS state on A.

Definition D.20. The quasifree β-KMS state given by the reduced two-point function
Wβ,m is called free mass m β-KMS state.
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