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Notation

We work in the geometrized unit system with the speed of light c, the gravitational constant G,
the Boltzmann constant kB , and the reduced Planck constant ~ equal to unity. The signature of
the metric gµν used throughout this thesis is − + + +. The index notation uses Greek indices
µ, ν, · · · = 0, 1, 2, 3 to indicate 4-dim. spacetime indices, Latin indices i, j, . . . describe the spatial
part and run from 1 to 3. We exploit Einstein’s summation convention. If not explicitly mentioned,
we assume to be in 3+1-dim. Minkowski space. The (complex) Hilbert spaces we are dealing with
are supposed to be separable (only in appendix A this assumption is explicitly stated whenever it
is necessary). For the benefit of the reader, we list below a number of symbols appearing more or
less frequently in the course of this thesis.

H,K, . . . (separable) Hilbert spaces
A,B, . . . operators (observables)
D(A) domain of the operator A
A ⊂ B D(A) ⊂ D(B) and A|D(A) = B|D(A)

A ≤ B A−B is a positive operator
ker(A) kernel of the operator A
ran(A) rank of the operator A
E(λ) spectral decomposition
ρ(A) resolvent of A
Rλ(A) resolvent of A at λ, Rλ(A) = (λ−A)−1

σ(A) spectrum of A
P,Q projection operators
PΩ projection operator on the subspace generated by the vector Ω ∈ H
O spacetime region
O′ causal complement of O
O1 ⊂⊂ O2 closure of O1 is contained in the interior of O2

M Minkowski space
D double-cone
W wedge region
V± forward / backward lightcone
A algebra
A+ positive cone of A
A (quasi-local) C∗-algebra
R von Neumann algebra
M, N von Neumann algebras, mostly type I factors
R′ commutant of R
R∗ dual space of R
R∗ predual space of R
Γ(R) Connes spectrum
S(R) spectral invariant
∨iRi (∪iRi)′′
B(H) von Neumann algebra consisting of all bounded operators acting on H
O 7→ A(O) abstract local net
O 7→ R(O) weak closure of the representation of an abstract net
ω state
ρ density matrix associated with a normal state
ω � R(O) partial state obtained from the restriction of ω on R(O)
Cω centralizer of ω
ωP pertubed state, constructed from a perturbation P = P ∗ ∈ R of ω
π representation
(Hω, πω,Ωω) GNS representation induced by ω
(H0, π0,Ω0) vacuum representation
Ω0 ∈ H0 vacuum vector
ω0 = 〈Ω0, ·Ω0〉 vacuum state

v



τt one-parameter group of ∗-automorphisms
Rτ fixed point algebra of τ
Rτ set of entire analytic elements for τ
spec τ Arveson spectrum
δ(A) infinitesimal generator of τt, δ(A) = d

dtτt(A)
∣∣
t=0

τPt perturbed ∗-automorphism group with perturbation P = P ∗ ∈ R
αt physical time flow
H (physical) Hamiltonian
Ad(eiHt) Ad(eiHt)(A) = eiHtAe−iHt

Hc covariant Hamiltonian
S = J∆1/2 Tomita operator
∆ modular operator

∆̃ modular function
K modular / thermal Hamiltonian
σωs modular flow / thermal time flow induced by ω
ΛOs automorphism group describing a geometrical action of the modular group in O
σs(O) modular flow acting on R(O);

we reserve this expression for the vacuum modular flow
σ̃s canonical flow associated with a von Neumann algebra
J modular conjugation
jω ∗-anti-isomorphism from R onto R′ induced by ω
s modular parameter / thermal time

P↑+ proper orthochronous Poincaré group
Λ(λ) Lorentz boost with boost parameter λ
L generator of the unitary representation of the Lorentz boosts
a acceleration
τ proper time
T clock time
Γ phase space
Γex extended phase space
Γc covariant phase space
β inverse temperature
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Chapter 0
Introduction

“I strongly suspect that the key is time.”
Lee Smolin, American physicist (*1955)

It is a long-standing dream of mankind to disclose the most fundamental secrets of Nature and
to understand how it works. The ultimate goal is a “theory of everything” which gives a compre-
hensive picture how Nature is build up. In a first step one would like to unify general relativity
with the principles of quantum theory into a theory of quantum gravity. One of the main issues
appearing in attempts to do that is an incompatible treatment of the notion of time underlying
both theories. A complete formulation of quantum gravity requires an understanding of the true
nature of physical time in order to resolve this so-called problem of time in quantum gravity. One
possible approach, advocated by several physicists, is to adopt the position that time is not a
fundamental concept, which means that a theory of quantum gravity can be formulated and fully
interpreted without the distinction of some flow of time. In fact, there is the hope that certain
issues which have obstructed the unification of general relativity and quantum theory so far will
disappear that way. However, perception of a flow of time is an everyday-experience. Time plays
an utmost crucial role in the way we experience and describe the world, and it appears in many
well-established physical theories, wherein it seems to be an indispensable ingredient. So if time is
accepted as a “real” component of the physical world, how can this be combined with the expected
universal timelessness of Nature? How does time emerge to become such a characteristic part of
our macroscopic world?

A solution to this problem was suggested by Connes and Rovelli in 1994 in form of the
thermal time hypothesis (TTH), which is the subject of this thesis. According to that hypothesis
time is state-dependent and emerges on a thermodynamical scale: Given a physical system one
generically does not know its precise microscopic state. By measurements of macroscopic observ-
ables one can assign a density matrix to the system instead, which contains all the knowledge the
observer gained about the system and permits a statistical treatment as the best description avail-
able. Following the reasoning of Connes and Rovelli it is this ignorance about the microscopic
details of the system, expressed via the mixed state, which distinguishes a flow on the algebra of
observables. This thermal time flow is selected in such a way that the state becomes a thermal
equilibrium state relative to this flow. An equilibrium flow has a variety of physical properties,
which is the main reason why this flow is postulated to be a physical time flow. The TTH says
that it is this flow which we perceive as the flow of time and which is best suitable to evolve the
system. Thermal time represents a time concept as in surroundings of a thermalised system.

The TTH can be formulated under very general conditions in the algebraic scheme of quantum
field theory where it is supported by strong and profound mathematical results such as the Tomita-
Takesaki theorem and the cocycle Radon-Nikodým theorem. In this setting it is the modular flow
induced by a faithful normal state on a local von Neumann algebra R(O) which is identified with
the physical time flow of an observer who is confined to a spacetime region O. This identification
is due to the surprising discovery that the modular flow satisfies the KMS condition, which is
usually consulted to characterise equilibrium states, and thus equips the state in view with KMS
equilibrium dynamics. The modular flow has its origin in a symmetry structure revealed by the
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CHAPTER 0. INTRODUCTION

Tomita-Takesaki theory and is up to now a little understood quantity. Under certain conditions
it shows a geometrical realisation in the underlying spacetime manifold. In such a case the TTH
predicts a local temperature which is supposed to be measurable by observers moving along the
modular flow lines.

While the TTH has been successfully applied to a couple of examples, where it leads to
reasonable physical time flows and recovers theoretically well-founded phenomena such as the
Unruh effect or the Gibbons-Hawking effect, there are doubts if it can generally expected to give
rise to a physical flow, in the sense that it is really exploited by an observer to describe the
evolution of the system. In this thesis it is our intention to make a comprehensive analysis of the
thermal time concept and the peculiarities of thermal time. We want to investigate to what extent
the proceeding of Connes and Rovelli to justify the thermal time flow as a thermodynamical,
physical time concept is plausible. In chapter 7 we study the relation between thermal time and
ordinary notions of time such as Newtonian time or proper time (in the limit where the latter
ones exist), and if thermal time defines a natural time concept in spite of the presence of those
well-established times. We analyse further to what extent the thermal time flow shows physically
meaningful properties, in particular we are interested whether the thermal time postulate suffices
to distinguishes indeed an equilibrium flow with all its characteristics. Only a flow with typical
dispersive properties can justify a thermal time concept in the proper sense. Moreover, we take
a look at the physical content of the thermal time flow. Are the motivations leading to the TTH
sufficient to permit an interpretation as physical time in the sense that this flow is realised in the
system, that is observable? In our discussion we analyse the thermal time flow on local algebras
appearing in algebraic quantum field theory, but we also address the mathematically much more
tractable quantum mechanical limiting case of the thermal time postulate.

The thesis is organized as follows. In chapter 1 we describe the various notions and aspects
of time appearing in physical theories but also in our conscious awareness. In particular we give a
detailed account on the conceptually different appearance of time in general relativity and quantum
theory which ultimately leads us to the problem of time in quantum gravity. Moreover, we motivate
the fundamental timelessness approach being the starting point for the formulation of the TTH.
Chapter 2 contains an introduction into algebraic quantum field theory. We present some main
motivations and results, explain the emergence of local nets of von Neumann algebras, which
are crucial for the applicability of the TTH, and we justify a useful property of local nets, the
split property, which later admits some (heuristic) considerations concerning the behaviour of
the thermal time flow on local algebras. In chapter 3 we introduce the KMS condition as a
generalisation of the Gibbs condition to distinguish thermal equilibrium states. The main purpose
of this chapter is to analyse properties of KMS states concerning above all their stability properties
and to investigate to what extent the KMS condition alone is really a suitable selection criterion
for physical equilibrium states. Modular theory is the subject of chapter 4. We state the Tomita-
Takesaki theorem as well as the cocycle Radon-Nikodým theorem and explain the deep relation
between modular theory and KMS theory, which altogether provide the mathematical input into
the TTH. With regard to applications of the TTH and its discussion we treat physical implications
and examples of modular theory afterwards, like e.g. a possible geometrical meaning of the modular
objects. All these chapters provide the basis for studying the TTH and are intended to be self-
contained introductions into the respective subject.

Eventually we come to the formulation of the TTH as it was postulated by Connes and
Rovelli in chapter 5. We explicate in detail the motivations and ideas underlying the TTH and
take a look at extensions and alternative formulations. All its various successful applications are
discussed in chapter 6. An interpretation of thermal time turns out to be quite simply possible in
these examples, which is why a main emphasis lies on the temperature aspect and a recovery of the
above mentioned effects. Chapter 7 then contains the critical discussion of the TTH we already
made some comments about. The thesis is closed by conclusions as well as an outlook.

We refer to appendix A for the most important mathematical tools appearing in the main
text, like for instance the Borel functional calculus, the theory of almost periodic functions, and
an overview over C∗-algebras, von Neumann algebras, their classification theory, states and repre-
sentations. In appendix B we present covariant approaches to classical and quantum mechanics,
which among other things are supposed to underline that on a mechanical level the notion of time
is not as much linked to the respective theories as it is suggested in their standard formulations,
which may be rated as another hint for a fundamental timelessness of Nature.
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Chapter 1
The Notion of Time

“If nobody asks me, I know what time is, but if I am asked then I am at a loss what to say.”
St. Augustine of Hippo, Romanized Berber philosopher and theologian (345-430)

1.1 Introduction

What is time? Perception of a flow of time seems to be an elementary experience. Everybody
agrees that time has something to do with change, growth and decay. But what is the precise
nature of time, and why does time seem to play such an important role in our physical world as
well as in our consciousness? What is the origin of time? All these fascinating questions belong
to the most foundational ones aiming at the deepest secrets of our world. To quote Barbour,
“nothing is more mysterious and elusive than time” ([8], p. 11).

Astonishingly, although the concept of time shows tantalising paradoxes and largely unresolved
issues, physicists (and philosophers) have not worked much on this subject. Undoubtedly, one can
find a huge variety of literature having the word “time” in their title, but very few elaborations
really try to discuss the notion of time on a fundamental and scientific level. Most writers on
this subject take time, or rather the most basic aspects of time, as being already well-understood.
They primarily deal with descriptions of the various notions of time appearing in physics (and also
biology, awareness, psychology, philosophy, etc.), they discuss measurement procedures, notions of
simultaneity, the emergence of certain properties of time (like the arrow of time), how a metrization
of a topological time may be realised, or they analyse the role of consciousness in the perception-of-
time process as well as other epistemological problems. Nonetheless they do not give an idea what
the very concept of (a flow of) time actually is, why it is fundamental, or if not, how it ultimately
emerges to become such a “real” ingredient of our experience.

In most physical theories time is assumed to be an a priori given quantity, whose origin is
not explained in the context of the respective theory. For instance, when Newton brought time
into the domain of scientific inquiry, it proved a fruitful method of analysing physical processes,
though little about time itself was taught. Anyway, there have been great contributions, apart
from Newton by e.g. Galilei, Leibniz, Kant, Mach, Poincaré, Einstein, Reichenbach
or Grünbaum, which altogether led to a better insight into some mysteries around the notion of
time. Only in the last few decades this subject received increasing attention, when it turned out
that an understanding of the nature of time is crucial for the development of more fundamental
physical theories like a still hypothetical theory of quantum gravity. A topical treatment on the
subject of time took place within the scope of the FQXi essay contest on The Nature of Time in
2008,1 where many threads around the origin of time are discussed [9, 37, 48, 75, 111].

In this chapter it is our intention to describe various notions and properties of time as they
appear in physics. In particular, we want to go in detail into the role of time in the two most
important theories reflecting our knowledge about the world, general relativity and quantum theory,
and explain the so-called problem of time in quantum gravity, which results from an incompatible
treatment of time in these two theories. We shall also justify one possible ansatz to solve the
problem of time, advocated by a couple of physicists, which is to abandon the notion of time

1www.fqxi.org
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CHAPTER 1. THE NOTION OF TIME

from fundamental physics. This way we provide the starting point for the introduction of the
TTH. In the past, there has been for centuries a deep and fruitful connection between physics and
philosophy to investigate fundamental questions in science. In a thesis which deals with such an
issue, it seems reasonable to continue this tradition (at least for one section), which is why we want
to begin with some rather philosophical considerations, which, to anticipate that, will immediately
lead us to physics.

1.2 Time and Philosophy

How do we know about time [99]? The psychological perception of time to be flowing is of the
very essence of time as experienced by us. It is rooted in the sense of an ongoing, allied with
the conscious awareness of a transient state of affairs, the present, or Now, which appears to
flow through time. According to Whitrow ([134], p. 77), “awareness of the present is the most
fundamental temporal experience”. Each person is confined to a Now and cannot experience other
parts of time. Yet we speak of other parts called future and past, even if they are not real, and
this brings us to another evidence of time. The Now causes a psychological distinction between
past and future, which are completely different entities in our consciousness. We have memories of
the past, and none of the future; we feel we cannot change the past, but can influence the future.
The present has the character of a passing moment which separates the past from the future, it
is the instant of transition between them. While it slips away, we enter into a new present, thus
always remaining in the eternal Now. Preceding in time, a part of the undetermined, unreal future
becomes real (this is also expressed by the term Becoming), and as soon as it is real, it slides
into the past to become unreal again. The present is the only reality. All we have of time is
this Now, gliding with us through the current of events that flows from the unchangeable past to
the unknowable future. There is nothing whatever we can do to prevent time passing, to prevent
events sliding into the past. This aspect expresses a third important property of experienced time,
its (psychological) irreversibility, the sense of a unidirectional ongoing. It concerns the process of
perception and cognition, once we have seen or known something we can never unsee or unknow
it.2 Besides these rather inner experiences, we believe to know about time from various (periodic)
motions and changes in the external world, which already suggests that there is a link between
the physical and the mental. A notion of time with all these very familiar peculiarities is called
common sense time.

On the other hand, the introduction of a mathematical time with a different and more elemen-
tary structure turned out to be an extremely fruitful ingredient in physical theories. It drives the
dynamics of a system, creates and destroys correlations between the various dynamical degrees of
freedom, and defines an ordering relation on the experiments that have been done. The fact that
notions of time which entered physics have mostly been regarded as very similar to space, but of a
simpler character, because time is only one-dimensional, is the reason why problems concerning the
nature of time have been much less investigated than those of space. According to Reichenbach
[100] this is wrong, time is much more associated with our consciousness than space. We feel a
flow of time with all the peculiarities pointed out above, and we time-order not only events of the
external world, but also all our subjective experiences occur in time, to which no spatial relation
exist. Our observations of physical things, our feelings and emotions, and our thinking processes
extend through time. Minkowski’s fusion of space and time seems to suggest that time is on an
equal footing as space. Reichenbach argues that this unification does by no means imply that the
special role of time is lost (in the physical objective world). It is indicated by a different sign with
which the time-part enters the spacetime-metric, and it is incorporated in the causal structure;
the lightcones define a chronological future and a chronological past, while all spacelike directions
are on an equal footing. Most importantly, spacelike separated objects are necessarily different,
whereas timelike separated particles might be the same particle at different times. Reichenbach
comes to the conclusion that time is much more fundamental than space, and even in the physical
world it has a structure much more special than that of space.

Time plays a decisive role to give a physical description of our world, but at the same time it
seems to be closely related to our consciousness. This rises the substantial question to what extent
time really belongs to the external world and to what extent it is rather a construction of our

2“to know” in the sense of “to experience”
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1.2. TIME AND PHILOSOPHY

mind. According to Whitrow [134] the idea of time is closely associated with the human mind.
St. Augustine considered purely temporal phenomena (auditory rather than visual) to conclude
that the source of time is related to the mind. In his famous work Kritik der reinen Vernunft
Kant believed (cf. [134]) that time is merely a part of our mental apparatus for imagining and
visualising the world; it is essential to our experience of things in the world, but it has no claim of
reality. He interpreted the flow of time as the form in which human beings experience reality.

However, following Reichenbach [99, 100], emotive reaction to a time flow cannot reveal the
true features of time. An understanding of time can only be achieved in a profound, scientific
analysis of the nature of time in physics. Only in this frame a logical clarification becomes ac-
cessible. He argues that a reduction of the notion of time to a purely physical one, disregarding
psychological aspects, is possible and in fact advantageous ([99], pp. 17-18):

“There is no other way to solve the problem of time than the way through physics. [. . . ] If time
is objective the physicist must have discovered that fact, if there is Becoming the physicist must
know it; but if time is merely subjective and Being is timeless, the physicist must have been able to
ignore time in his construction of reality and describe the world without the help of time. [. . . ] It
is a hopeless enterprise to search for the nature of time without studying physics.”

Most scientists believe [134] that our perception of time is based on an objective factor that provides
an external control for the timing of our psychological processes. This objective part is what we
call physical time. The path we follow in the course of this chapter and chapter 5 combines
the alternatives of the quotation: On a fundamental level the physical world is assumed to be
describable in a timeless language. Nevertheless, the thermal time hypothesis claims that time
is not a subjective product of our mind, but emerges on a thermodynamical level; the statistical
state of a physical system singles out a time flow which causes our perception of a flowing time.

As mentioned before, the most vital feature of our experience of time concerns the notion of
a Now shifting through time. At some instant certain things exist and others do not. In most
physical theories however this notion disappears completely. The time that enters bears only the
vaguest resemblance to the common sense time of our everyday experience (no transient Now,
no flowing, no arrow of time). Time is modelled as a dimension of reality similar to the spatial
dimensions; all events, past, present and future, are treated as equally real. The theory describes
them as simply being and sustaining relations of earlier and later, but not as “coming-into-being”.
The “fact” that we come across events, experiencing them to take place, has to be regarded as a
mere peculiarity of consciousness. By abstracting time into a mathematical parameter, it has been
robbed much of its original, human content.

It is extensively discussed in the literature (cf. [54] for more details) if the transiency of the Now
passing through time should be regarded as a feature of physical time (as argued by Grünbaum)
or exclusively as a part of common sense time (as demanded by Reichenbach), and in which
way it could be implemented in physical theories. For Einstein the notion of a Now is important,
though it cannot be grasped by science, “there is something essential about the Now which is just
outside the realm of science” ([8], p. 143). Reichenbach puts forward that the transient Now
of common sense time has an objective significance and hence that an essential content of time is
omitted so far in physical theories.

This view is supported by some physicists, as well. Eddington, Penrose and Davies hold
the view [44] that the impression of the flow of time is so central to our experience that it must
correspond to something in the objective world, and that we are missing a vital aspect of great
significance from the physics of time and our perception thereof. Eddington, Reichenbach and
Whitrow argue [44] that the indeterminism in the quantum collapse process provides the key
structure to model a physical flow of time. While there is no flow of time in deterministic theories,
the passage of time transforms statistical expectations into real events. Penrose [94] regards the
flow of time as restricted to the human brain which gives the sense of the passage of time. He
claims that the flowing is due to quantum processes and certain still mysterious cerebral processes
in the brain, irreducibly quantum-mechanical in nature, that accompany acts of observation of the
world. But Penrose also takes into account that common sense time with all its very special
features might have a conception quite different from that of a physical time determining physical
reality. The temporal perception of consciousness may not coincide with the temporality of the
external (relative to consciousness) time of physical reality. In that case the flow of time would be
physical, though not a part of fundamental physics. Even more, Grünbaum says that due to its
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inherent dependence on consciousness, the transient Now is not at all a feature of physical time.
It has no significance apart from the egocentric perspectives of a conscious organism [54], p. 324:

“The coming-into-being or becoming of an event, as distinct from its merely being, is thus no more
than the entry of its effect(s) into the immediate awareness of a sentient organism.”

Becoming is an illusion, it is the way human beings experience time, but there is nothing in Nature
which corresponds to it. The passing Now of our conscious awareness is a subjective phenomenon.
The dependence of coming-into-being on consciousness is expressed by Weyl (cf. [54], p. 326):

“The objective world simply is, it does not happen. Only to the gaze of my consciousness, crawling
upward along the [. . . ] [world-]line of my body, does a section of this world come to life as a fleeting
image in space which continuously changes in time.”

From this point of view a time concept appearing in physical theories which does not incorporate
the notion of a transient Now, a flowing time, or the psychological distinction between past and
future, should be still suitable to capture all physical, objective features of the “true” notion of time
(nevertheless for stylistic convenience we shall frequently speak of a “time flow”). The richness of
common sense time derives entirely from subjective factors and is unrelated to intrinsic qualities of
the physical time. Dealing with a physical time disentangled from consciousness, one may disregard
all these features, and in fact such “reduced” notions of time appears in many physical theories.

As opposed to that thermal time is regarded as something which does flow in the proper sense,
and this way the thermal time hypothesis is intended to provide an explanation of the roots of
one component of common sense time in the physical world. Anyway, what we conclude from this
section is that the issue of the true nature of time has to be attacked in the objective physical
world, where certain aspects of time might not be of primary significance.

1.3 Properties Ascribed to Time

The notion of time is associated with a number of peculiar features that make it a very special
physical variable, some of which have already been mentioned above. The numerous properties
come from our everyday experience. It is the aim of this section to make them more precise.
We assort to what extent these properties are maintained in the various theoretical frameworks
afterwards. Based on a classification of Rovelli [110], we assign the following possible structure
to the set of all time instants, T :

• Set structure – distinction between various instants of time

• Topological structure – existence of a notion of two time instants being close to each other

• 1-dimensionality – possibility of arranging the instants of time in a one dimensional manifold

• Metric structure – possibility of stating that two distinct time intervals have equal duration

• Ordering relation – distinction between past and future (arrow of time)

• Preferred instant of time – selection of a preferred instant of time, representing the Now

Disregarding the countable time of the pre-Newtonian-era, all the concepts of time we are going to
take a look at show the first four properties. The common sense time of our everyday experience
includes all the features listed so far. If time is represented as a variable t in T = R all the above
properties are captured (the notion of a present corresponds to t = 0). A given notion of time may
be characterised by some further properties we shall make extensively use of:

• Absoluteness – time is a per se existing reality

• Uniqueness – existence of one single distinguished time variable

• External time – independence of the notion of time from dynamical variables of the theory
Internal time – the notion of time is affected by the dynamics, it is state-dependent

• Spatial globality – possibility of defining the same time variable in all space points
Temporal globality – every motion passes every value of the time variable once and only once
Globality – the notion of time is spatially and temporally global

6



1.4. NON-GENERALLY COVARIANT NOTION OF TIME

1.4 Non-Generally Covariant Notion of Time

Newtonian Time and Classical Mechanics

Mechanics is usually understood to describe the laws of the change of physical systems in time.
Thus, time is one of the fundamental ingredients in terms of which it is built. The notion of
time has already been created by the ancients to cope with the fact that things are changing
(cf. [134]). However, for a long time those aspects of time which were of primary significance
for the human mind were not duration or irreversibility, but repetition, periodicity, rhythm and
simultaneity. It was a countable time having its psychological origin in the fact that the time line
consists of discrete moments of attention. Even for Greek philosophers time remained something
vague and mysterious, a matter of mythology rather than mathematics, in particular is was not a
mathematical parameter. The heavenly bodies were regarded as representatives of time.

In the 17th century Galilei established time as a fundamental, measurable quantity. His
invention of the pendulum clock provided mankind with an accurate timekeeper and strengthened
belief in homogeneity of time. Another milestone in the Galileian era was to associate time with a
continuum, represented as a geometrical straight line. This mathematical abstraction, the so-called
spatialization of time, is one of the most basic concepts of modern science. It was Newton’s great
achievement to create a conceptual clarification of the notion of time in his Philosophiae naturalis
principia mathematica from 1687, where he claimed time to be of an independent existence (cf.
[54], p. 5):

“Absolute, true, and mathematical time, of itself, and from its own nature, flows equably [=̂ uni-
formly] without relation to anything external, and by another name is called duration; relative,
apparent, and common time, is some sensible and external (whether accurate or unequable) mea-
sure of duration by the means of motion, which is commonly used instead of true time; such as an
hour, a day, a month, a year.”

Newton postulated the existence of a unique, continuous, external, global quantity called time,
which flows absolute and equal to itself. Newtonian time, t, is supposed to march on with perfect
uniformity and without relation to anything external for ever and nothing in the world affects its
flow. Newton introduced his absolute time as a correlative to absolute space and absolute motion
to ensure the principle existence of an ideal rate-measurer (in contrast to days or years). We do
not analyse here the consistency of this definition, in the sense of what is meant by a uniform
flow if there is no relation to anything external, see [54, 134]. Newton’s concept of time was
necessary for his formulation of mechanics, and is still close to the way many people think about
time. However, by definition one cannot directly access Newton’s absolute time and it might well
be that there is no equable motion whereby it may be accurately measured. It is unobservable.

What actually can be done is to construct suitable measuring devices, called clocks, which
are supposed to approximate t within a certain accuracy (even Newton was aware of this point,
though he claimed that his time can be deduced from relative motions). A clock is a physical object
which refers to one specific observable quantity, T , which has a simple behaviour in t. A good clock
shows for instance a linear behaviour, T (t) = αt. Good clocks may be constructed from monotone
or periodic processes. For this it is crucial, that there is no dynamical interaction between the clock
and other degrees of freedom, an accomplishable assumption in classical mechanics. The evolution
of observable quantities cannot be measured in terms of t, but only against the clock time T .
Hence, in classical mechanics one really measures the correlation A(T ) of observables A with clock
variables T ; in other words, it is the relative evolution between the variables constituting the proper
system and a clock which is observable. Since t does never appear in laboratory experiments, A(t)
or T (t) do not. The relation between T and t can never be verified, the problem of constructing
clocks is a delicate and non-trivial problem.

Absolute Newtonian time is an abstraction about which we have only an imprecise knowledge
due to inadequate realisations by concrete physical processes. We never exactly know the “true”
duration between two events. Any realistic physical clock emulates t merely down to a suitable
scale. Below that scale higher-order physical effects, systematic or statistical errors jeopardise the
performance of any clock. Nonetheless, Newtonian mechanics is grounded on the assumption that
such an unobservable, absolute time with a unique topological and metrical structure exists, in
terms of which the dynamics is defined.
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It is a non-trivial empirical result of pre-relativistic physics that all the observations agree
with what one computes using the evolution equations in t, which is why one came up to the
conclusion that Newtonian time does exist and is uniquely defined (up to affine transformations).
Indeed, this assumption makes classical mechanics mathematically elegant. A classical mechanical
system can be cast into a Hamiltonian system, defined by a phase space and a Hamilton function.
The latter one generates the evolution in Newtonian time and codes all dynamical information.

Note that despite the fact that Newtonian time is represented as a variable in R, it does not
capture all the properties ascribed to R via the above classification. Owing to the symmetries
t 7→ −t and t 7→ t + a, Newtonian time is just a 1-dimensional metric space, which does neither
provide an arrow of time nor a preferred instant representing the present.

Criticism of Newton’s Absolute Time

Since antiquity there has been physical and philosophical debates concerning the reality of time.
Aristotle regarded time (in the sense of coming-into-being) as a fundamental and irreducible
aspect of Nature; for him all motion was ultimately referred to the uniform circular motion of
the celestial bodies. Later it was Archimedes who argued for the elimination of time. It is no
surprise that also Newton’s concept of absolute time (and space) was heavily criticised by his
contemporaries and descendants, above all by Leibniz and by Mach [8, 54, 88, 134].

Newton believed that absolute time exists in its own right, independently of the existence of
material clocks. The theory, that events are more fundamental than moments, which do not exist
in their own right, but are classes of events defined by the concept of simultaneity, is known as the
relational theory of time. It was formulated by Leibniz (∼ 1716) who founded it on the principles
of sufficient reason, identity of indiscernibles, and pre-established harmony. According to Leibniz
neither absolute time nor space exist. The world is to be understood in terms of more fundamental
entities that fuse space and matter into relative configurations of simultaneously existing bodies.
Bodies and events define points and instants by conferring their identity upon them, and thus
enabling them to serve as the loci of other bodies and events. The world does not contain things,
it is things. Time is merely supposed to be the succession of such instantaneous configurations,
and not something that flows quite independently of the bodies in the universe. The dynamics is
exclusively based on observable elements. The disjoint viewpoints of Newton and Leibniz led
to a historical debate whether time and space exist as real objects (absolute), or whether they are
merely orderings upon actual objects (relational). It was held in a famous correspondence between
Leibniz and Clark, a follower of Newton, known as the Leibniz-Clark correspondence.

It was particularly Mach who criticised that Newtonian time cannot be determined directly by
experiment [88, 134], and for this reason cannot be of any practical and hence scientific use. It has
to be regarded as a metaphysical concept. He was the first who demanded that one should only
use those notions in physics which have a direct empirical meaning. All statements concerning
the temporal behaviour of an object necessarily refer to a clock time, i.e. to a specific physical
process. The impression that absolute Newtonian time exists, arises from many apparently periodic
processes in Nature (like the motion of celestial bodies or the oscillations of a pendulum) which
seem to march in step with Newtonian time: When they are used to measure time, Newton’s
laws are found to hold. According to Mach these processes only feign the existence of an abstract
time, for instance we cannot decide if the period of a pendulum varies in Newtonian time.

The time variables defined by two equally well suitable clocks emulating Newtonian time can be
related as T2 = f(T1), where f is some monotonically increasing function. To get a unique measure
of duration, one needs some universal criterion which fixes time up to some affine transformation.
Although we know that one event is anterior to another, we cannot assign the same precise meaning
to saying by how much it was anterior, unless there is a definition of duration. If the laws of Nature
singled out some specific process, this could be used to define a distinguished metrization of time.
Since this does not seem to be the case, the choice cannot be made physically and should be chosen
by convention. Mach proposed to use a (subjective) physiological time.

Poincaré realised that periodic processes in Nature fix the metrization of time such that
the equations of motion in classical mechanics take on their simple Newtonian form. As a general
principle he proposed that time has to be defined in such a way, that the fundamental laws of physics
become as simple as possible. This is the so-called principle of simplicity. There are powerful
reasons of mathematical tractability and convenience for greatly preferring the time-metrization
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in which all accelerations w.r.t. inertial frames are of dynamical origin, that is attributable to the
action of specific masses (see [54, 88]). To make these considerations consistent one needs a weaker
definition of an inertial frame, which does not fall back upon the notion of Newtonian time. In
fact, it can be shown that in classical mechanics the principle of simplicity distinguishes Newtonian
time (otherwise one has to deal with fictitious forces causing secular accelerations), which therefore
represents an idealized clock time: If the motion of a body is uncoupled from external, distracting
forces, one may regard the resulting motion as a measure of absolute Newtonian time. In principle,
this gives a prescription to approximate Newtonian time. Every inertial motion may be regarded
as a good clock to measure it.

By way of summary, Newtonian time, albeit of a rather metaphysical nature, is a powerful
tool of much theoretical relevance which permits an elegant formulation of physical theories. The
assumption that one can construct suitable idealized clocks to approximate it seems to be plausible.
Historically, Newtonian time provided the starting for the construction of other modified notions
of time.

Time in Quantum Mechanics

In classical mechanics a special status is assigned to the concept of time in the sense that it is
treated as a background parameter, external to the system itself. This special role of time is
reflected in standard quantum mechanics, as well (in the formulation of Schrödinger or Heisen-
berg, see [39]). Time is not represented as an operator acting on the relevant Hilbert space, i.e. it
is not a physical observable. Rather, it is regarded as part of an a priori given classical background
with a well-defined value. It is the Newtonian notion of time which is used in quantum mechanics.
In fact, the classical treatment of time is deeply intertwined with the Copenhagen interpretation
of quantum mechanics, and, thus, with the conceptual foundations of quantum theory: All mea-
surements of observables are made at certain instants of time and probabilities are only assigned
to such measurements. The inner product on the Hilbert space is required to be conserved in
time. Newtonian time is further needed to make sense of a complete set of observables commuting
at a fixed value of time, or of the canonical equal-time commutation relations. Analogously to
classical mechanics, the system can be described by a phase space and a Hamilton operator. The
Hamiltonian generates the evolution relative to the classical external Newtonian time.

As in the classical case, one may ask if there are suitable observables, quantum clocks, which
can be used as internal times to approximate the Newtonian background time. However, it could be
shown by Unruh and Wald [131] that quantum observables, which serve as good quantum clocks,
do not exist. No quantum clock provides an adequate measure of Newtonian time. More precisely,
the authors excluded the existence of an observable, T , which has a non-vanishing probability of
running forward in Newtonian time, and a vanishing probability of running backward, provided
that the energy of the physical system is bounded from below. There is no good quantum clock in
the sense that its observed values increase monotonically with Newtonian time.

Time in Special Relativity and Quantum Field Theory

In the special theory of relativity, formulated by Lorentz, Poincaré, Einstein and Minkowski,
time is physically unified with space to a four-dimensional spacetime continuum, the Minkowski
space, where spatial and temporal aspects are entangled. Minkowski space still constitutes an
absolute, rigid background arena, but even more than the Newtonian notions of space and time,
it is envisaged as a kind of hyperspace in which events do not happen, but are laid out all at once
and one merely comes across them (“block spacetime picture”). The absolute Newtonian time is
replaced by a class of related times, the Lorentz times. There is one external time for each Lorentz
observer. Each observer has his own specific separation of spacetime into space and time.

Special relativity has modified the notion of time in several surprising ways, concerning par-
ticularly the relativity of simultaneity. The unique temporal order of events is lost, causing new
phenomena such as time dilatation or the twin paradox. Clocks are affected by motion, and since
physical time is measured by clocks, one has to conclude that time is stretched, as well (as opposed
to the uniform unique Newtonian time). Anyway, from a fixed Lorentz observer’s viewpoint time
remains a distinguished, absolute, external, and global parameter. The Newtonian notion of time
essentially carries over to special relativistic systems, where it is hidden in the spacetime structure.
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Relativistic quantum field theory is the extension of quantum mechanics to systems with
infinitely many degrees of freedom – in consideration of special relativity (cf. section 2.1). It is
formulated on a background spacetime with fixed metric structure, namely Minkowski space. The
peculiar time variable of a particular Lorentz frame is used to describe the evolution, which is
generated by a Hamiltonian. The resulting QFT is consistent with the equivalence of Lorentz
frames. This is expressed by the Poincaré covariance due to which QFTs constructed in different
Lorentz frames are unitarily equivalent. Altogether, the external Lorentzian time is also the well-
established concept of time prevalent in QFT. For convenience we shall from now on also include
Lorentz times when we speak of the Newtonian notion of time.

1.5 General Covariance and the Notion of Time

Next, we want to describe the notion of time in the general theory of relativity (cf. [105, 110]),
created by Einstein up to the end of 1915. Therein, gravity is treated as a manifestation of
the spacetime geometry. There is a reactio of all matter and fields onto spacetime, and even an
interaction of spacetime with itself (expressed by e.g. gravitational waves). Spacetime is no longer
an absolute background object, but is dynamical. The dynamical nature of spacetime has far
reaching consequences for the notion of time.

The Principle of General Covariance

Before we come to the treatment of time, let us pay attention to the peculiarities of generally
covariant theories. These are theories which transform covariantly w.r.t. the action of the group of
diffeomorphisms, Diff(M), acting on the underlying spacetime manifold (which does not necessarily
need to be equipped with a metric). The principle of general covariance formalises the idea that
the laws of Nature should be the same in all reference systems. General relativity is based on
this ground-breaking idea, which according to Rovelli [110] “reveals the true magic of general
relativity”. The principle of general covariance is by no means restricted to general relativity, which
undoubtedly constitutes the prime example of a generally covariant theory. General covariance
refers to an invariance w.r.t. a relabelling of the underlying spacetime manifold, a structure which
is usually expected to be preserved also in a theory of quantum gravity (cf. section 1.7).

Einstein’s field equations describe the evolution of the gravitational field in terms of a co-
ordinate time, usually denoted by x0 (supplemented by the spatial coordinates xi), but due to
the diffeomorphism covariance the coordinate time has no physical meaning. A coordinate time
is not gauge invariant. It was emphasized by Dirac [45] that an observable quantity has to be
gauge invariant, which in this case means it has to be independent of the coordinates. This is
closely related to Einstein’s hole argument (see [106]): General covariance implies that there is
no physical meaning in talking about an individual point in spacetime, but only in talking about
locations determined by the dynamical elements of the theory (like the intersection point of two
one-particle-wordlines). Motion is entirely relative. The spacetime manifold itself has no physical
significance, it is a gauge artefact. According to Einstein, “the requirement of general covariance
takes away from space and time the last remnant of physical objectivity” (cf. [110], p. 74).3 Be-
cause of the existence of gauge degrees of freedom, the same physical situation can be described by
different solutions of the field equations. A state does not correspond to a configuration of fields
located in spacetime, but to a gauge equivalence class of field configurations.

Time in General Relativity

Because of general covariance, coordinate time is out of question as candidate for a physical time.
It is a highly non-trivial question in which physical time (if at all) the evolution of the gravita-
tional field is given. In non-generally covariant physics one has the notion of the idealized external
Newtonian time, which is emulated by suitable classical clocks whose dynamics is assumed to be

3In particular scalar quantities at a certain spacetime point are not regarded as observable. In fact, there is no
agreement in the literature concerning the question what precisely is observable in general relativity [106]. It is
argued by some authors that the gauge reflects just a particular reference frame and, since any measurement can
only be contemplated after a distinguished frame has been identified in the small region in which the measurement is
to be made, different spacetime points are physically distinguishable, so that scalars would be observable quantities.
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completely uncoupled from the proper system. Due to the dynamical nature of spacetime, such
an assumption is not possible in general relativity; there are no non-dynamical objects that break
diffeomorphism covariance. In general relativity, as in any other generally covariant theory, all
variables including any clocks inevitably interact, they are affected by the gravitational field. Irre-
spective of the existence of some distinguished external time, there will be in general no observable
which serves as a suitable clock to measure it (globally), whence such a time is neither directly nor
indirectly accessible by observations. General relativity seems to be incompatible with the very
idea of an external time [107]. If only gauge-invariant quantities are regarded as observable, any
physical time to be in the run has to be identified with one of the degrees of freedom of the theory
itself, i.e. with an internal time. In addition to the notion of internal times, the Lorentz metric
equips the spacetime manifold with a causal structure, such that one can distinguish between
timelike and spacelike separated regions, which is clearly much weaker than a notion of time.

The most important internal notion of time in general relativity is proper time, denoted by τ .
It is defined along any timelike worldline xµ(s) parametrised by an arbitrary parameter s,

τ :=

∫ √
−gµνdxµ(s)dxν(s) =

∫ √
−gµν ẋµ(s)ẋν(s) ds. (1.1)

Given a solution of the field equations, proper time provides the definition of a time quantity along
every timelike worldline. It is a complicated non-local function of the gravitational field. Proper
time does not capture all the properties of Newtonian time, it is neither spatially global4 nor
external or unique, but dynamical and state-dependent. Since proper time is only defined along
timelike curves, the full dynamics of the theory cannot be expressed as evolution in proper time.
However, if one studies a system sufficiently localised in space, its evolution may be described in
terms of τ . Due to the dynamical nature of proper time, it may happen that it ends after a finite
interval (and is not continuable), i.e. its range is not necessarily the whole real line. In that case
the corresponding trajectory runs into a spacetime singularity (see e.g. [63]).

Again, a priori there is no natural, physical time metric related to a distinguished concrete
physical process. However, Poincaré’s principle of simplicity leads directly to proper time as the
preferred time in general relativistic systems [88]: In general relativity inertial motion is replaced
by geodesic motion. It turns out that the geodesic equations of motion take on their simplest form
when the system is parametrised w.r.t. an affine parameter, which precisely recovers proper time.
Proper time is the natural generalisation of absolute Newtonian time. Moreover, it is supposed
to flow along a given worldline independently of the presence of any clock. Hence, proper time
resembles Newtonian time also in the sense that it is absolute [138]. As in the Newtonian case, one
assumes that there exist ideal clocks, whose rate is unaffected by acceleration and which measure
proper time along their worldlines. This is the clock hypothesis of general relativity. It can be moti-
vated by an analogous clock hypothesis of special relativity together with the equivalence principle.
By no means all clocks meet this criterion, but it was stressed by Sexl that the absoluteness of
acceleration ensures that ideal clocks can be built, in principle, cf. [103].

Like in non-relativistic physics, one may select any observable quantity, T , as the independent
one and describe the evolution of any other observable, A, as a function of it. Typically such an
internal clock time will behave as a good clock at most in special states or for a limited amount of
time, where it provides an approximate notion of time. Clock times will generally neither be global
nor monotonically increasing along each orbit, and the theory does not single out one of them. A
clock is a physical object and thus reacts on the metric and changes the geometry. In contrast
to non-general relativistic physics, where one can choose a clock which is completely disentangled
from the proper system and solve the dynamics for the clock independently, one has to consider the
full coupled gravity-clock system in order to predict the evolution in clock time. To this end (cf.
[42]) let us denote the solutions of the equations of motion in some reference system by fa(x0, xi),
where the index a labels all the fields fa of the theory. Starting from these solutions one has to
construct coordinate-independent, gauge-invariant quantities. Let us assume that suitable physical
reference objects are given by f0, . . . , f3, in particular f0 is supposed to be a clock (representing
a laboratory clock, the pulses of a pulsar, etc.). At least locally the coordinates x0, xi can be
expressed in terms of the fields f0, . . . , f3,

f0(x0, xi), . . . , f3(x0, xi) −→ x0(f0, . . . , f3), xi(f0, . . . , f3). (1.2)

4 In suitable reference frames proper time can be extended to a global time [78], cf. section 7.2.
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Consider now any arbitrary field fa, a > 3, and write f0 ≡ T for the clock variable. Then

A(T ) ≡ fa(T, f1, f2, f3) = fa(x0(f0, . . . , f3), xi(f0, . . . , f3)) (1.3)

describes the evolution of an observable A in clock-time, A(T ), which is measurable – similar to
non-relativistic physics.

We have seen that there are certain weaker notions of time available in general relativity.
None of them incorporates all features of Newtonian time, and none of them can generally be used
to evolve the system globally, i.e. leads to a fully deparametrised dynamical system. A general
relativistic system cannot be formulated as a Hamiltonian system evolving in a physical time
parameter (at least such a formulation is neither known nor expected). This led to the statement
that general relativity is a timeless theory. Its physical interpretation does not rely on the concept
of time. The notion of time plays a secondary role. This becomes particularly apparent in the
canonical covariant formulation of general relativity, which is briefly sketched in appendix B.1. A
Newtonian-like time is actually not needed, in different physical contexts one simply falls back on
different clock times.

1.6 Some Special Notions of Time

Cosmic Time

General relativity seems to destroy the ancient concept of a universal time. In a universe full of
chaotic motion and random concentrations of matter, there would be no global time. Mysteriously,
on the largest scales the universe is not chaotic, the distribution of galaxies and their pattern
motion, when averaged out, are surprisingly uniform (evidence for this uniformity is provided by
the cosmic background radiation). Because of this special structure, in cosmological models a
preferred global time variable can be restored in form of the cosmic time [134]. Weyl postulated
that in every region of the universe which is sufficiently extensive there is a definite mean motion
of matter. The proper times associated with these motions are expected to fit together into a
cosmic time (although there are, at least mathematically, counter-examples like the homogeneous
Gödel universe). Cosmic time is not fundamental, since its existence depends on peculiarities of
the state.

In isotropic models, described by the Robertson-Walker metric, the smoothed-out universe
(the cosmic background radiation), distinguishes an ultimate frame of reference on a cosmological
scale. Cosmic time does give rise to a preferred well-defined global time. It is the proper time of
the isotropic observers (cf. section 6.3). Imposing a suitable gauge condition, i.e. choosing suitable
coordinates, one obtains a coincidence between T and the coordinate time t.

Arrow of Time and Thermodynamical Time

Let us come back to the Newtonian notion of time. The laws of classical and quantum mechanics
are reversible and do not distinguish between past and future. There is no preferred direction
of time, while it is an empirical observation that there exists a time asymmetry in Nature. One
can find many processes which single out a preferred direction of time, an arrow of time, among
them a psychological, a thermodynamical, and a cosmological arrow of time; moreover, the weak
interaction provides a phenomenon on the microscale which is not invariant under time reversal.
The utmost important thermodynamical arrow of time (expressed in form of the second law) can
be understood in the context of statistical mechanics: It is overwhelmingly likely that the entropy
of a closed system increases, defining thereby a preferred direction of time. In thermodynamical
systems the Newtonian notion of time can therefore be extended to a time concept which does
possess a distinguished direction of time, the thermodynamical time. The thermodynamical arrow
might be related to the irreversible character of mental processes, and, thus, ultimately explain
the psychological arrow of time, the sense of a unidirectional ongoing.

The anisotropy of time is the subject of many treatises, [95, 99, 138] just to mention a few.
Prigogine [95] suggests to replace the traditional time-reversible laws by slight modifications
leading to time-irreversible equations, which build in a temporal directionality at the most basic
level. Penrose [94] sees the origin of the arrow of time in certain asymmetries in quantum
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measurement processes. On the other hand, it is discussed in [54] if the anisotropy of time expressed
by the existence of irreversible processes really justifies to speak of “the” direction of time.

In this thesis we are little concerned with the arrow of time. We just remark that a direction
of time might be justified independently of the existence of a notion of time [74, 138]. The basic
idea is to exploit a certain asymmetry in the Wheeler-DeWitt equation in quantum cosmological
models w.r.t. a scale factor that describes the size of the universe.5

Time as an Operator

Time enters quantum mechanics not as an observable, i.e. as an operator, but as a parameter that
has a well-defined value. We have mentioned that every realistic quantum clock has a non-vanishing
probability of running backward. Even more fundamentally one may ask why the notion of time
is not implemented as a Hamiltonian time observable in the sense that [T,H] = i. In that case
T would be a function of the position and momentum operators derived from the corresponding
classical expression (in general there is no unique way to construct T , which is already a drawback).
This would also imply at once [69, 93] that the expectation value of T coincides with t, and that
eiHt1 |t2〉 = |t1 + t2〉, where T |t〉 = t |t〉, which is precisely the type of behaviour required for
a perfect clock; moreover, the energy-time uncertainty relation could be derived in a rigorous
manner. T would represent an internal time, defined by the dynamical behaviour of the system
itself (as opposed to the Newtonian time t measured by a macroscopic clock which has nothing
to do with the system under consideration). However, by the Stone-von Neumann uniqueness
theorem self-adjoint operators satisfying commutation relations of the above kind are known to
have a continuous spectrum which coincides with the whole real line, and thus are incompatible
with the requirement that a physical Hamiltonian has a spectrum bounded from below. The only
way to circumvent this is to deal with a time operator with an abnormal domain of definition as
well as a couple of other unphysical properties such that the uniqueness theorem does not apply.
Using the example of the free particle Paul [93] comes to the following conclusions: In physically
typical states the expectation value does not have a finite value, and small perturbations of the
state lead to arbitrarily large changes in the expectation value of T . Hence, only special states
permit a time measurement, that is an application of T . Since the expectation value of T is defined
only for a very restricted class of states the energy-time uncertainty relation looses its significance.

An alternative, more promising way is to introduce time operators which are not observables
and which act on a different space. This is realised in the covariant approach to quantum mechanics
(appendix B.2), and it is also suggested by Prigogine [95] who introduces time as the conjugate
variable to the Liouville operator L = i[H, · ]. His motivation is to capture the complexity at the
microscopic level. The average value of Prigogine’s operator time coincides with the ordinary
time, however, it takes the age of the phase space distribution into account.

Summary

We have met several physical notions of time arising in various physical theories with different
complexities. In the following we shall compare them by their characteristic properties:

• Thermodynamical time: Unique, global, absolute, external time with a preferred direction.

• Newtonian time: Unique, global, absolute, external time.

• Lorentzian time: Global, absolute, external time.

• Cosmic time: Unique, global, internal time.

• Proper time: Temporally global, absolute, internal time.

• Clock time: Internal time.

5The Wheeler-DeWitt equation is due to Wheeler and DeWitt, cf. [74]. Roughly speaking it is the quantum
version of a Hamiltonian constraint, a generalisation of the time-independent Schrödinger equation.
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1.7 The Problem of Time in Quantum Gravity

Quantum Gravity

Two seminal, path-breaking theories, general relativity and quantum theory, have drastically
changed and widened our understanding of the world we live in. Both theories work in differ-
ent regimes and explain different aspects of our world. It is a natural aim to combine them into a
new one which incorporates all the knowledge about our world we have. In particular, one would
like to develop a quantum version of general relativity, quantum gravity. Since it is strongly sus-
pected that gravity, like all the other interactions, has a quantum nature, such a theory is expected
to exist.

There are several motivations for developing a theory of quantum gravity (see e.g. [69]): First
of all such a theory will be applicable in broader regimes, so there is the well-grounded hope to gain
new insights into physics. This concerns for instance the nature of (quantum) spacetime, or the
early history of our universe. It also may become possible to resolve inner problems of quantum
theory (like the presence of certain infinities or the state reduction in measurement processes).
Moreover, quantum gravity effects may clarify the existence of spacetime singularities, or the true
origin of time. Unfortunately, the subject of quantum gravity turned out to be exceptionally
difficult, both in regard to mathematical and conceptual issues. There have been many attempts
to combine general relativity and quantum theory, just to mention the currently most popular
ones:

• Direct quantisation of general relativity: loop quantum gravity. This scheme exemplifies the
strategy of starting with a classical theory to which some quantisation algorithm is applied.

• Unified quantum theory of all interactions: superstring theory. This programme starts with
a theory whose basic items are quantised one-dimensional strings propagating in a continuum
spacetime; general relativity emerges in a low-energy limit from the theory.

More details and further literature on this subject may be found in [69, 76]. The source of problems
in combining general relativity and quantum theory lies in incompatibilities between both theories,
concerning above all the way they treat time (see below) and the absence of an absolute background
structure in general relativity, such that a sweeping success has not yet been accomplished. A
deeper understanding of both theories and what they really can tell us is necessary.

Another issue is to what extent one should assume a continuum manifold structure of the
underlying spacetime in a theory of quantum gravity. For a general access towards this problem
the following hierarchy structure was suggested by Butterfield and Isham [35]:

point set of events → topological structure → smooth manifold → Lorentzian manifold

In many approaches the manifold structure is fixed. For instance string theory assumes an under-
lying spacetime manifold, and it is also assumed in generally covariant AQFT (cf. section 2.8).

Origin of the Problem of Time

As discussed before, quantum theory relies on the notion of an external, non-dynamical Newtonian
time, an absolute element of the theory, generated by a Hamiltonian. Such a time concept is
manifestly incompatible with general covariance, but also with the idea of the quantum theory
of a truly closed system (as it is required e.g. in quantum cosmology). General relativity, as a
generally covariant theory, provides merely the notion of internal, dynamical times, coupled to the
gravitational field. In particular, these internal times will generally fail to be global. That is no
problem in the classical context, where one can simply choose a new clock. In quantum theory this
is not possible, if one wants to define the operators on a dense subset of the entire Hilbert space,
and if the time evolution is required to be unitary [42].

But even these weak internal notions of time are not transferable to a quantised theory because
of their dynamical nature. Quantum fluctuations of the metric tensor and quantum superposition
of different metric structures are a source of problems:6 The concept of a trajectory disappears,
there is no Lorentzian structure, and time becomes fuzzy. The notion of proper time and the

6According to Zeh [138] the metric itself is a clock, so that quantising the metric may be seen as quantising time.

14



1.8. FUNDAMENTAL TIMELESSNESS

whole causal structure are lost. A meaningful treatment of commutation relations is impossible
(this concerns in particular the commutator of the quantised metric tensor). For most pairs of
points on a manifold one can find a Lorentz metric w.r.t. which they are not spacelike separated,
i.e. taking quantum fluctuations into account one could never demand a commutator to vanish
[69]. Note that very similar problems arise when one studies general relativistic statistical systems
(cf. [107]). If one describes a system in terms of a density matrix, one has to struggle with a
superposition of geometries, and the whole causal structure is lost again.

Anyway, time is external, global and absolute in quantum theory, but internal and local in
general relativity. The concepts of time contained in general relativity and quantum theory are
drastically different, or to put it more dramatically they are incompatible. A true physical time,
whatever it is, must be either dynamical or non-dynamical, it must be either absolute or non-
absolute. For a theory of quantum gravity one has to bring together these disparate concepts of
time. One has to understand the true origin of physical time. This conceptual issue is referred to
as the problem of time in quantum gravity. It is one of the deepest issues that must be addressed
in the search for a coherent theory of quantum gravity. At this stage we refer to the comprehensive
reviews of Isham [69] and Kuchař [76]. Basically one distinguishes three solutions to the problem
of time [76] when quantising general relativity:

(i) Determining the notion of time before quantisation,

(ii) determining the notion of time after quantisation, or

(iii) assuming a fundamental timelessness of Nature.

In both cases (ii) and (iii) the theory can be quantised without the notion of time. The difference
is that only in (iii) it is possible to construct a technically coherent and conceptually complete
quantum theory including a full interpretation without needing to make any reference to the
concept of time. In this thesis we shall focus on the third option. We shall use the term fundamental
timelessness when the notion of time is not defined on a fundamental level, or at the very last plays
no fundamental role in the scope of the theory. A theory which admits various internal times, such
that none of them can be preferred, neither requires the concept of time, nor admits a meaningful
time concept which corresponds to our intuitive notion of time. It thus seems reasonable to regard
those theories as timeless, as well.

1.8 Fundamental Timelessness

One did not succeed in constructing a global, absolute time for a general relativistic system.
Evolution can only be defined w.r.t. one of the internal degrees of freedom of the theory itself,
that is w.r.t. an internal time. Accepting general relativity to be indeed of a timeless nature, it
seems plausible that also a theory of quantum gravity is timeless. To quote Rovelli [105], “the
only way out that we see is to completely abandon the idea of absolute time”. The notion of (a
preferred) time is supposed to be not definable on a fundamental level. There is the hope that
some important problems in physics arise from the assumption that time does exist fundamentally
and can be resolved this way. In certain physical situations one may idealize internal clock times
by an absolute, external time as a useful tool in order to formulate physical theories.

The idea that the notion of time is not fundamentally tied to the foundations of physics has
been traced by many scientists, among others by Rovelli [105, 110, 111], Kiefer [74, 75], Mc-
Taggart [87], or Barbour [8, 9], see [105] for some more references. While the two last mentioned
authors adopt the point of view that, since the concept of time is riddled with contradictions, it
makes more sense to assume that time is unreal, an illusion of our mind, it is particularly argued
by Rovelli that, albeit time is not an ingredient of fundamental physics, it does emerge physically
on larger scales, namely in the context of thermodynamics.7 However, we do not want to conceal

7 This is the subject of this thesis. To make things complete, Kiefer proposes that time emerges as an approxi-
mate semi-classical concept through the process of decoherence from the separation of a system into two subsystems,
one of such determines the time w.r.t. which the other evolves. Another opportunity to recover time is to treat it
as an approximate concept which is due to very special initial conditions of our universe [44]. In [35] various ways
are discussed how the notion of time might emerge, in particular the meaning of the expression “emergence” itself
is investigated.
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that there are critics [37, 48, 118] who argue that the notion of time is irreducible and crucial for
a fundamental description of Nature. The starting point of this thesis is a fundamentally timeless
world, which is why we adopt this hypothesis here rather uncritical. Nonetheless, we provide some
arguments to justify the assumption of a fundamental timeless world in what follows.

As indicated by Unruh and Wald [131] there are no good quantum clocks. All physical
clocks suffer from the same uncertainty, the same quantum fuzziness. The attempts of quantising
general relativity suggest that in quantum gravity not just clocks but time itself will be subject to
quantum fuzziness, which may be rated as a hint that there is indeed no meaningful time available.

In a fundamentally timeless world one has to make sense of the whole quantisation procedure,
and one has to be able to interpret the resulting quantum theory. This is an open challenge
for quantum gravity. However, it turns out, that even classical and (at least to a certain degree)
quantum mechanics can be cast into a form in which the notion of time is not needed. This indicates
that time is not as intrinsically linked to these theories as the standard formulations suggest, and
it shows that the assumption of a timeless theory of quantum gravity could be meaningful. We
present the timeless formulations of classical and quantum mechanics in appendix B.

Let us outline another heuristic argument supporting fundamental timelessness [110], advo-
cated first by Fraser. Time seems to loose features when the theory becomes more fundamental.
To describe Nature on an elementary level the physical laws do not need many properties of a
concept of time and certain typical features of time seem to emerge only in specific regimes. So it
is possible that on the bottom level even the remaining attributes assigned to the notion of time
are lost, and that there does not exist any time concept at all. We give three examples to underline
this.

• The uniqueness of time is only observable in ensembles of bodies moving slowly w.r.t. each
other, in the Newtonian regime. In special relativity time becomes observer-dependent.

• In cosmological models there does exist a preferred global internal time variable, the cosmic
time. As discussed above, in arbitrary general relativistic models one does not expect the
existence of a distinguished global time variable.

• In statistical systems the time flow has a preferred direction, there is a thermodynamical
arrow of time. Considering only a few particles, described via classical or quantum mechanics,
both time directions are on an equal footing, cause and effect are interchangeable.

Another argument was put forward by Kiefer [75]. He draws conclusions about the nature of
time in quantum gravity without having the final theory. To do so, he makes two assumptions
about the hypothetical theory. Firstly, he assumes the universality of the superposition principle of
quantum theory, and secondly he supposes that general relativity can be recovered in the classical
limit. Then Kiefer argues that the Wheeler-DeWitt equation must hold, at least approximately
on scales sufficiently large in comparison with the Planck scale. Since this equation does not make
use of any time concept, he concludes that quantum gravity must be fundamentally timeless.

There remains one decisive question: If one accepts our world to be fundamentally timeless,
how does time emerge? As explained at the beginning of this chapter, (the flow of) time is very
familiar to our perception of the world and is a crucial ingredient of most physical theories. How
can the timelessness on a fundamental level be related to our intuition of an (at least locally)
distinguished unique physical time flow? What is it that singles out a particular flow as the
physical time flow? What characterises physical time? One possible solution to this issue was
suggested first by Rovelli [107] in the classical context and later by Connes and Rovelli [42]
in the algebraic setting of quantum field theory in form of the thermal time hypothesis, which
is the subject of this thesis and which regards time as a real macroscopic phenomenon tied to
thermodynamics.
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Chapter 2
Algebraic Quantum Field Theory

“There is no quantum world. There is only an abstract physical description. It is wrong to think
that the task of physics is to find out how nature is, physics concerns what we can say about nature.”

Niels Bohr, Danish physicist (1885-1962)

2.1 A Historical Look Back at Quantum Field Theory

After the formulation of quantum mechanics there were attempts to generalise quantum theory to
systems with infinitely many degrees of freedom. At the same time the special theory of relativity
was incorporated into the quantum framework. As the result relativistic quantum field theory
(QFT) came out. The concepts of QFT were used for the formulation of the standard model of
elementary particle physics, which is up to now the best description of our world available on small
scales. It explains the electroweak as well as the strong interaction, and with it three of the four
fundamental interactions known to penetrate our world. The standard model includes quantum
electrodynamics (QED), which is one of the most successful theories at all.

Standard QFT is described by means of a Lagrangian, a well-established concept known from
classical mechanics. The Lagrangian is constructed for instance from the free Dirac Lagrangian by
exploiting the local gauge principle. Starting from the Lagrangian one derives the full system of
field equations. The development of a manifestly covariant form of perturbation theory and the
idea of renormalization to remove all infinities permitted computations of higher order corrections,
which were in spectacular agreement with the experimental results and increased faith in QFT.

However, in spite of all successes, there remained open problems which caused dissatisfaction.
Haag’s theorem said that the interaction picture used throughout QFT does not exist mathemat-
ically, the expressions appearing in the Lagrangian merely had a formal meaning, and it was not
understood how computations could be done without falling back upon perturbation expansions.
A theory based entirely on perturbation theory was conceptually unsatisfactory, intensified by the
fact that it was generally not applicable in cases in which the strong interaction was involved.
In addition, perturbation theory as well as the renormalization procedure, which was regarded as
very unnatural, turned out to be highly complicated. All these grievances led physicists to look
for a deeper understanding of the underlying principles and to create a more concise mathematical
foundation for QFT.

After the second world war many powerful mathematical tools have been developed, which
on the one hand comprised the theory of distributions, and on the other hand the theory of C∗-
algebras. Both tools found an application in QFT when it was put onto an axiomatic framework.
The theory of distributions was used for the Wightman approach [120], while the theory of C∗-
algebras was the crucial input for the algebraic formulation of QFT in the sense of Haag, Kastler
and Araki [60, 5], a facet of QFT which is known as algebraic quantum field theory (AQFT), or,
to emphasize that fields are not a primary concept anymore, local quantum physics (LQP). Both
settings led to a mathematically much more rigorous access towards QFT and helped to gain more
insights into the fundamentals of physics.

The thermal time hypothesis is formulated in the algebraic scheme of QFT. Hence, it seems to
be useful to review the basic ideas and concepts which contributed to the development of AQFT
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and to describe some of the main results. A comprehensive presentation of AQFT is given in
the textbook of Haag [60], a purely mathematical access towards this subject is contained in
[10]. For a nice review article suppressing technical details we refer the reader to [34]. Since some
applications of the time hypothesis are rested on those theories which are locally associated with
Wightman fields, we shall also briefly recall the Wightman axioms. An outline over C∗-algebras
and von Neumann algebras as well as states and representations can be consulted in appendix A.

2.2 The Wightman Framework

In 1952 Gårding and Wightman started to isolate those features of quantum field theory which
could be stated in mathematically precise terms and to extract physically trustworthy postulates.
This ended up in the Wightman axioms [120], which have been proposed for charged fields of any
spin. It turned out that not only observable fields, as counterpart of the quantum mechanical
observables, but also unobservable fields, which are not gauge-invariant, are of interest in order to
explain the existence of superselection rules.

We shall be concerned with a finite component Wightman field theory, described in terms of a
finite number of fields each having a finite number of components, which can be associated with a
local net of von Neumann algebras in the vacuum representation obeying the Haag-Kastler axioms
(cf. section 2.3 and 2.4). Since Wightman fields are in general unbounded operators this entails
technical difficulties. Using a strengthened form of the Wightman axioms, which we are going to
present for convenience only for a neutral scalar field φ, the transition to von Neumann algebras
is immediately possible [56]. For a general and comprehensive discussion when a quantum field is
associated to a local net see [20]. Therein specific positivity properties of the n-point functions
are isolated, which are required for the passage to algebras. A detailed physical discussion of the
Wightman axioms may be found in [120].

Wightman Axioms

(W1) The states of the theory are described by unit rays in a separable Hilbert space H, which
carries a strongly continuous unitary representation U(g) of the (universal covering of the)1

proper orthochronous Poincaré group satisfying the spectrum condition.2 Moreover, there is
precisely one state Ω0, the physical vacuum, which is invariant under U(g) for all g ∈ P↑+.

(W2) The field φ is an operator valued tempered distribution over Minkowski space (the test
function space is usually taken to be the Schwartz space). For all real-valued test functions
f , the field operators φ[f ] are essentially self-adjoint operators f acting on a common dense
domain D in H, which contains Ω0 and is invariant under the action of U(g) and φ[f ].

(W3) Under the representation of the Poincaré group the field transforms as

U(g)φ[f ]U(g)∗ = φ[fg], fg(x) = f(Λ−1(x− a)) for all g = (Λ, a) ∈ P↑+ = L↑+ nR4.

(W4) If the supports of f1 and f2 are spacelike separated, φ[f1] and φ[f2] commute as self-adjoint
operators.

2.3 Issues of Conventional Approaches and the Local View-
point

The quantisation procedure in quantum mechanics consists of replacing the Poisson brackets {·, ·}
by commutators −i[·, ·]. Doing that for the coordinates qi of the classical configuration space and
their conjugate momenta pi, one obtains algebraic relations, the canonical commutation relations

[pi, qj ] = −iδij , [qi, qj ] = 0 = [pi, pj ], i, j = 1, . . . , n. (2.1)

1The occurrence of a representation of the covering group stems from the fact that states correspond to rays
rather than vectors in H, so that one actually has to deal with a ray representation of the symmetry group.

2That means that the spectrum of the energy-momentum operators is confined to the closed forward cone.
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It is established by the Stone-von Neumann uniqueness theorem that under mild assumptions these
commutation relations fix the representation of the operators qi and pi up to unitary equivalence
as long as n <∞. Thus, from the physical point of view it does not matter which representation
is chosen. If the system has infinitely many degrees of freedom, as it is prevalent in QFT or in the
thermodynamical limit of statistical mechanics, the theorem does not hold anymore. The canonical
commutation relations admit inequivalent irreducible representations, and considerable attention
was attracted to the issue which representation has to be chosen. As we shall see, the algebraic
approach provides the appropriate scheme to understand the existence of unitarily inequivalent
representations.

In ordinary quantum mechanics a physical observable is represented in mathematical terms
by a self-adjoint, in general unbounded operator, A say, acting on some separable Hilbert space
[39, 91]. However, unbounded operators are somewhat nasty, since one has to struggle carefully
with domain problems. It was von Neumann [91] who emphasized that it is possible to replace
the unbounded observables by bounded functions of them: Observables are measured by suitable
measuring devices. The outcome of such a measuring procedure is a number which lies in the
spectrum of the observable. Considering the observable f(A) instead of A, f being a real-valued,
Borel function, relabels the possible measuring results, f(a) instead of a, but it does not change
the apparatus with which the observable is measured, so that one does not give away something
when working with bounded functions of A.

Guided by this result, Segal proposed in 1947 to use the algebra generated by all bounded
observables equipped with the norm topology, i.e. a C∗-algebra, as the primary object in the math-
ematical formalism of quantum theory, while the Hilbert space merely appeared as representation
space of the algebra. Due to the Stone-von Neumann uniqueness theorem, the C∗-algebra approach
is equivalent to the ordinary Hilbert space formulation. This idea was adopted and enhanced by
Haag in 1959.3 One can use the Wightman fields to associate to each open region O in spacetime
an algebra A(O) of operators acting on a Hilbert space. To do so, let us consider an operator of
the form

Q =
∑
n

∫
fn(x1, . . . , xn)φ(x1) . . . φ(xn) d4x1 . . . d

4xn. (2.2)

Q is called local, with localisation region O, if supp(fn) ⊂ O×n. A(O) is the polynomial algebra
generated by all operators localised in O. According to Haag, the elements of the local algebra
A(O) are to be interpreted as physical operations performable in O. Given the net O 7→ A(O)
of local algebras one can for instance compute collision cross sections, which suggests that the
intrinsic structure of the theory is already characterised by the algebraic relations in the net [60];
the primary physical interpretation of the theory is given in terms of local operations. Quantum
fields are merely regarded as a kind of coordinatization of the net of local algebras. Choosing
another field system which defines the same net simply corresponds to another coordinatization, the
physics remains the same.4 This break with quantum fields fits with an observation by Borchers
that certain Wightman field systems are equivalent [120].

To avoid the use of polynomial algebras A(O) of unbounded operators, for which, in addition,
no physically reasonable topology is available, one passes again to bounded operators. Indeed,
algebras of bounded operators admit mathematically as well as physically natural topologies leading
to concrete C∗-algebras and von Neumann algebras. The local algebras are generated by the
spectral projections of quantum fields φ[f ], where φ and f run over all possibilities in a given
region O.5 When we consider algebras generated that way in the remainder of this thesis, we
speak of a net locally associated with a Wightman quantum field theory. Further developments and
abstractions of these considerations finally resulted in the framework of AQFT in the sense of [57],
which we are going to present next.

3As pointed out by Rudolf Haag on the conference on AQFT Algebraic Quantum Field Theory – the first 50
years in Göttingen 2009, this already happened in 1957.

4Note that this is quite a radical viewpoint, the field concept looses its physical significance.
5For unobservable fields one may have to take polynomials.
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2.4 The Algebraic Approach

Haag-Kastler Axioms

The algebraic approach to QFT is concerned with states and operations (or their idealizations,
observables, which also imply suitable limits of an infinite number of operations [57]). A state
is a prescription for the preparation of a physical system, or equivalently, stands for a statistical
ensemble. The term operation is used for a physical apparatus which may act on the systems of an
ensemble producing a transformation from an initial state to a final state. If the operation is defined
by means of laboratory experiments, an experimenter can gather pieces of information about
the state by the determination of transmission probabilities. Now, each realistic measurement is
performed in some specific limited spacetime domain, that is each physical operation is localised in
some finite region O. The key idea is to consider these local operations mathematically abstracted
as self-adjoint elements of an abstract C∗-algebra A(O), whereby the Hilbert space concept is
completely dropped. This yields a local netO 7→ A(O) of observable algebras, labelled by spacetime
regions. The algebraic relations between the observables move to the centre of the theory.

From now on we call all the elements of A(O) (local) observables. The C∗-algebra A which
contains all observables is called the algebra of quasi-local observables. Mathematically it is the
unique C∗-algebra obtained by the norm-completion of the set-theoretical union of all local algebras
A(O), i.e. A is the C∗-inductive limit of the local net. The quasi-local algebra A is assumed to
contain all observables of interest. States are identified in mathematical terms as normalized
positive linear functionals over A, namely as elements in A∗+ with norm 1. The restriction of a
state on a local algebra A(O) is said to be a partial state. The net of algebras is supplemented by
some natural axioms, the Haag-Kastler axioms [57, 60], which specify the scheme.

Haag-Kastler Axioms Let O 7→ A(O) be a net of abstract C∗-algebras, where O denotes an
open subset of Minkowski space with compact closure, a so-called finite region. For an arbitrary
open set Õ the C∗-algebra A(Õ) is defined to be the C∗-inductive limit of all A(O) for which
O ⊂ Õ. The net O 7→ A(O) is subject to the following conditions:

(HK1) Isotony : O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

(HK2) Locality : O1 ⊂ O′2 ⇒ A(O1) ⊂ A(O2)′ 6

(HK3) Covariance: The proper orthochronous Poincaré group is realised by a group of automor-

phisms of the net with the geometrical significance αgA(O) = A(gO) for all g ∈ P↑+.7

(HK1)-(HK3) form a minimal set of requirements on a local quantum theory, and are completed
by the demand for the existence of a vacuum representation (see below). The algebraic framework
is convenient in dealing with conceptual issues and provides a general framework where suitable
tools have to be developed for specific situations. The axioms show clear physical interpretations
within the setting of quantum theory and special relativity. Thereto let us add some remarks.

(HK1) is a clear necessity by taking the interpretation of the self-adjoint elements in the local
algebras A(O) as localised physical operations performable in O into account. Postulate (HK2)
is a manifestation of Einstein causality. If all the points in two regions O1 and O2 are mutually
spacelike separated, measurements of observables localised in these regions cannot disturb each
other, because signals and causal influences cannot propagate faster than the speed of light; the
operators representing these observables must commute. (HK3) says that if an observable localised
in O is transformed by αg, the resulting observable is localised in the transformed region gO.

The intrinsic structure of the theory is determined by the algebraic relations in the local net of
abstract C∗-algebras, which is regarded as the most fundamental object in the algebraic approach.
Even more, one makes the assumption that the physical system is fully characterised by the local
net, which contains all the relevant physical information. Once the net is given, in principle, an
analysis of the physical properties and predictions can be carried out. For instance the net allows
to construct the mathematical counterparts of coincidence arrangements of detectors. Exploiting

6 The causal complement O′ of an arbitrary subset O is the set of all points which lie spacelike to all points of
O. O′′ is called the causal completion of O. O is causally complete if O′′ = O. O′ is always causally complete.
The commutant of an algebra is introduced in appendix A.4.

7αg(A) is usually assumed to be continuous in g in the norm-topology for all A ∈ A(O).
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the axioms one can extract information about the energy-momentum range of the detector as well
as about its placement in spacetime. This suffices to disentangle particle structure and collision
cross sections from the net structure.

In general one has to expect that a local net admits mathematical states which are physically
meaningless; think e.g. of states which carry an infinite amount of energy in a finite spacetime
region. Therefore, it could be meaningful to add a criterion which selects certain (folia of) states,
or representations, as physically realisable (see [60] for a further discussion). Anyway, one considers
particularly two classes of states: In particle physics one is interested in states differing from the
vacuum only by (quasi-)local disturbances (cf. chapter IV in [60]); in quantum statistical mechanics
one studies states which are close to thermal equilibrium, idealized by a medium with non-vanishing
matter and energy distributions at infinity (cf. chapter V in [60] and the subsequent chapter).

Inequivalent Representations and Superselection Rules

Given a net of abstract C∗-algebras O 7→ A(O) one is interested in faithful representations of the
quasi-local algebra A by operator algebras acting on some Hilbert space H.8 A representation
π of the quasi-local algebra A induces a representation of the net O 7→ A(O) by restriction,
and, thus, gives rise to a net of operator algebras O 7→ π(A(O)) over H. This way one obtains
back the conventional framework, though generally there will exist many unitarily inequivalent
representations. One reason for their appearance can be heuristically explained as follows: Two
states generate inequivalent representations via the GNS construction (cf. appendix A.3), if they
cannot be transformed into each other by (quasi-)local operations. This is expected to occur
if two states look different when restricted to arbitrary local algebras, which happens e.g. if the
representations are induced by equilibrium states at different temperatures in an infinitely extended
system; another important example stems from particle physics, when states carry different charge
quantum numbers. However, it turns out that unitary equivalence is a too fine distinction to be
of physical relevance.

One can never perform infinitely many experiments, nor can any experiment have an unlimited
accuracy. Hence, it is not possible to determine the exact state of a physical system. Only a weak∗

neighbourhood in the set of all states, A∗+, is experimentally accessible, so that the weak∗ topology
may be regarded as the physical topology. Recalling that every state on A defines a folium of states
over A (cf. appendix A.4), we refer to an intriguing theorem proven by Fell in 1960:

Theorem 2.4.1 (Fell’s Equivalence Theorem [60]). The folium of a faithful representation of a
C∗-algebra is weakly∗ dense in the set of all states.

Consequently, one cannot find out by experiment in which folium the state of the system lies; all
faithful representations of A are physically equivalent. Any state in another representation can
be approximated by states in the representation under consideration. Inequivalent representations
differ only in global aspects of their states which do not matter as long as one is interested in finite
regions. The choice of a particular representation is largely a matter of convenience, the represen-
tation problem is irrelevant for physics. Nevertheless, the existence of inequivalent representation
plays an important role, above all to give a natural explanation for the emergence of superselection
rules.

It was recognised by Wigner that the superposition principle cannot hold universally.9 This
led to the concept of superselection rules. In conventional QFT superselection rules are linked to
the existence of operators commuting with all observables. Typical examples of such superselec-
tion operators, or (generalised) charges, are the total electric charge, the total baryon number, or
thermodynamical quantities of infinite systems. In that case the relevant Hilbert space can be de-
composed into a direct sum of subspaces, the superselection sectors, such that the full superposition
principle holds for each sector, whereas phase relations between different sectors are meaningless.
One has to deal with observable and unobservable fields. The observable fields transform each
sector into itself, while the unobservable, charge carrying fields lead from one sector into another.

8Actually it is physically meaningful to restrict oneself to faithful representations. If a non-faithful representation
πn contained all the physical information, one could argue that the C∗-algebra A/ ker(πn) should have been taken
as the relevant algebra instead of A [57].

9For example the relative phase between two state vectors carrying different electric charges is unobservable.
The phase is changed by an appropriate gauge transformation which has no effect on the observables.
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It is a fundamental feature of the algebraic approach, that superselection rules can be un-
derstood in a natural way on the level of abstract observable algebras, without the appearance
of unobservable fields. They arise whenever the abstract net possesses inequivalent Hilbert space
representations. The equivalence classes of irreducible representations correspond to the superse-
lection sectors. The charge structure with its composition laws as well as the exchange symmetry
are encoded in the global algebra A and its inequivalent representations. Different sectors cannot
be distinguished by experiments confined to a finite region. They are distinguished by charges,
which are global quantities.10 The charge of a state can be changed by adding a charge arbitrarily
far away (“on the moon”) from the finite region O under consideration, which will change the
physical situation in O arbitrarily little (Haag’s “behind-the-moon argument”). In fact, this is an
illustration of Fell’s equivalence theorem: Each sector contains all accessible information (see [60]
for more details).

The Vacuum Sector

To characterise the notion of vacuum, i.e. the absence of matter, we fall back upon the definition
given in [22, 56]:

Vacuum Representation We assume that the local net O 7→ A(O) is equipped with a faithful
representation π0 acting on a separable Hilbert space H0 with the following properties:

(V1) Covariance. There exists a strongly continuous unitary representation U of the Poincaré

group P↑+ such that

U(g)π0(A(O))U(g)∗ = π0(A(gO)) for all g ∈ P↑+. (2.3)

(V2) Vacuum. There is an up to a multiplicative constant unique vector Ω0 which is Poincaré
invariant (sometimes the vacuum is only required to be invariant under the translation group),

U(g)Ω0 = Ω0 for all g ∈ P↑+. (2.4)

(V3) Spectrum Condition. The joint spectrum of the self-adjoint generators of the translation
subgroup (energy-momentum spectrum) is contained in the closed forward lightcone.

(V4) Weak Additivity. For every O the following relation holds:

π0(A)′′ =
∨
a∈R4

π0(A(O + a))′′. (2.5)

The representation (H0,Ω0, π0) is called vacuum representation, or vacuum sector of the net of
observable algebras. ω0 ≡ 〈Ω0, π0(·)Ω0〉 is called the vacuum state. Vacuum representations have
been explicitly constructed for many models (cf. [122] for the relevant literature).

Again, let us add some remarks concerning these additional axioms. (V1) and (V2) express the
idea, that the vacuum should appear to be the same at every position and in every direction for all
inertial observers. The physical vacuum is characterised by the property that one cannot extract
energy from it, so that it should be the lowest possible energy state. The spectrum condition (V3)
reflects a relativistically invariant way of requiring that the total energy is non-negative w.r.t. every
inertial frame, and that the quantum system is stable in the sense that it cannot decay to energies
below the vacuum state. Let us envisage a fixed inertial frame. Then the positive self-adjoint
operator H = P0 generating the time translation subgroup U(t), i.e. the Hamiltonian, carries the
interpretation of the total energy operator. According to (V2) it annihilates the vacuum, which
therefore is the state of lowest energy. (V4) is a weak technical assumption, satisfied in most
models. It holds e.g. in theories where the net is locally associated with Wightman fields [122].

Conformal Covariance We shall also deal with local nets of observable algebras which are
supposed to be conformally covariant. In that case the Poincaré group has to be replaced in the
axioms by the local conformal group (see [55] for more details).

10 We remark that total energy, total charge, etc., are considered as unobservable, they are not contained in A.
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2.5 AQFT in Terms of von Neumann Algebras and Reeh-
Schlieder Theorem

The Appearance of von Neumann Algebras

Given any state ω over the quasi-local algebra A, one can construct from a net of abstract C∗-
algebras O 7→ A(O) a net of von Neumann algebras O 7→ R(O). To do that, denote by πω the
corresponding GNS representation and put

R(O) ≡ πω(A(O))′′, R ≡ πω(A)′′. (2.6)

The net obtained this way satisfies (HK1)-(HK3). Mathematically it is sometimes more convenient
to work with a local net of von Neumann algebras instead of a net of concrete C∗-algebras O 7→
πω(A(O)). Modular theory for example, which we shall extensively meet in chapter 4, works
exclusively on von Neumann algebras. That is the reason why we focus our attention mainly on
nets of von Neumann algebras. An approach which is completely based on them has been developed
by Araki [2]. Some care is needed concerning the total von Neumann algebra R, which turns out
be too big to include only quasi-local elements. We shall come back to this issue in chapter 3.

Dealing with a net of von Neumann algebras induced by a state ω, physicists are usually
contented to work only with normal states, constituting the folium of the state ω. A normal state
can be associated to a density matrix and its GNS representation again leads to a von Neumann
algebra (cf. appendix A.4). Consider a local von Neumann algebra R(O) together with the set of
normal partial states on R(O). It is a typcial situation in AQFT that R(O) admits a separating
vector in the underlying Hilbert space. For instance in the vacuum sector this is guaranteed by the
Reeh-Schlieder theorem (coming next), and it is also known to be true in the thermal sector induced
by a KMS state (see the next chapter, in particular theorem 3.3.9 and the remark thereinafter). In
such a situation every normal state is represented as a vector, and it is possible to work exclusively
with vector states (cf. theorem A.4.24 and proposition A.4.23).

Reeh-Schlieder Theorem

Consider the vacuum sector O 7→ R(O), and let ω0 = 〈Ω0, ·Ω0〉 be the vacuum state. One might
expect that the vector AΩ0, A ∈ R(O), describes a state localised in O, which looks like the
vacuum w.r.t. measurements in O′. Assuming certain clustering properties this is qualitatively
true if A is picked up randomly and one carries out measurements at large spacelike distances from
O. However, a striking result shows that this interpretation has to be handled with care.

Theorem 2.5.1 (Reeh-Schlieder Theorem [5]). Let O 7→ R(O) be a local net of von Neumann
algebras in the vacuum sector. Then, for any non-void open region O the vacuum vector Ω0 is
cyclic for R(O). If the interior of O′ is non-empty, Ω0 is also separating for R(O).11

The Reeh-Schlieder theorem was originally proven by Reeh and Schlieder [98] in the Wightman
framework. The positivity of the energy leads to an analyticity property of the Wightman functions
which in turn implies the stated cyclicity of the vacuum. In the algebraic setting the theorem is
due to Borchers [17].

In fact, the Reeh-Schlieder theorem holds for any vector in the vacuum representation which
is analytic for the energy (cf. [10, 17]). A vector ψ ∈ H0 is called analytic for the energy operator
P0 if ψ is in the domain of Pn0 for all n ∈ N and the series∑ 1

n!
‖Pn0 ψ‖zn (2.7)

has a non-zero radius of convergence. The set of analytic vectors is dense in H0, in particular
any vector of the form E(I)ψ, with ψ ∈ H0, I ⊂ R any bounded interval and E the spectral
decomposition of P0, is analytic. In particular, the Reeh-Schlieder theorem is valid for any vector
state with finite energy content, and thus for all physically realisable vector states in the vacuum
representation.

11For the proof of the theorem the weak additivity assumption is needed. Weak additivity and Reeh-Schlieder
property are actually equivalent.
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The cyclicity of the vacuum state Ω0 implies that for any vector ψ ∈ H0 one finds an operator
A ∈ R(O) which, applied to Ω0, produces a state arbitrarily close to ψ, no matter how small O may
be. The physical reason for this feature lies in small non-local correlations existing in the vacuum.
Indeed, rigorous results, like the Reeh-Schlieder theorem, indicate that the vacuum is a highly
entangled state (cf. [122] for an overview). As a consequence, for all non-empty spacelike separated
regions O1, O2 with non-empty causal complements, there exist many projections Pi ∈ R(Oi)
which are positively correlated in the vacuum state ω in the sense that ω(P1P2) > ω(P1)ω(P2).
Note that these non-local vacuum fluctuations do not influence the commensurability of observables
localised in spacelike separated regions. However, they permit a preparation of any prescribed
vector state in the vacuum representation up to any given accuracy by experiments designed to
exploit them judiciously. Thus, an experimenter in a laboratory on Earth could, in principle, build
a house on the moon. The class of states resulting from the action of arbitrary operations upon
the vacuum is practically indistinguishable from that resulting from operations performed in an
arbitrarily small spacetime region upon the vacuum.

The separability of the vacuum means that non-vanishing local observables cannot annihilate
Ω0. Let A ∈ R(O) be a non-vanishing, positive operator. Then there exists a self-adjoint B ∈ R(O)
such that A = B2. This entails ω0(A) = ‖BΩ0‖2 > 0. Any event represented by a positive operator
A ∈ R(O) has a non-vanishing expectation value in the vacuum state, i.e. in the vacuum any local
event can occur [122].

2.6 Nuclearity Condition and Split Property

Buchholz-Wichmann Nuclearity Condition

The basic postulates of AQFT provide just a general setting for studying QFT. They do not exclude
models with manifestly unphysical properties. Therefore, one is looking for further conditions
which restrict the possible theories to a certain class of physically interesting ones. Guided by the
goal to characterise those theories which entail a reasonable particle interpretation,12 Buchholz
and Wichmann proposed the so-called nuclearity condition [29], which imposes restrictions on
the number of local degrees of freedom. It is a physically well-motivated condition which reflects
specific phase space properties of a particle theory. The underlying idea can be expressed as follows:
If the theory describes particles, the number of states, which can be accommodated within some
bounded region of configuration space, should be limited.

For its precise formulation (see [29, 60] for the details) one has to consider the analogue
of classical phase space volumes, which describe those parts of state space corresponding to a
simultaneous limitation of energy and space volume. As will be described in the next section, local
algebras R(O) are not of type I, i.e. not unitarily equivalent to B(H1) ⊗ 1l ⊂ B(H). That is the
reason why it is not possible to define a subspace H1 ⊂ H which corresponds to the states localised
in O. While the localisation of observables is a fundamental concept of AQFT, the localisation
of states is rather involved. To describe the set of states “well-localised” in a diamond Dr whose
base is a ball with radius r at time t = 0, the vacuum Ω0 is needed as a reference state, which
is why we focus our attention to the vacuum sector. First of all, a state ψ, well-localised in Dr,
should be generated from the vacuum by some local operation in Dr, that is ψ ∈ R(Dr)Ω0, where
R(Dr) = π0(A(Dr))

′′. Secondly ψ should be indistinguishable from the vacuum by measurements
in the causal complement of Dr,

〈ψ,A′ψ〉 = 〈Ω0, A
′Ω0〉 for all A′ ∈ R(D′r). (2.8)

These requirements eventually lead to the identification of the set of well-localised states in Dr as

Lr = {WΩ0 : W ∈ R(Dr), W
∗W = 1}, (2.9)

which characterises precisely those states. The “localisation” in momentum space is best realised
by a smooth cut off function of the energy, so that the relevant sets whose size is to be analysed
are of the form e−βHLr, β > 0, H the Hamiltonian. A natural assumption concerning the size of
these sets is motivated by an analogy to the Gibbs ensembles (cf. section 3.1): If the operator e−βH

12Particles are regarded as stable quasi-local excitations of the vacuum.
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is restricted to excitations of the vacuum in a bounded region, properties at spacelike infinity are
not tested. Accordingly, if one confines the theory to a large (in comparison with Dr) but finite
volume V , the size of e−βHLr should not vary substantially. Then e−βH is replaceable by the
density matrix e−βHV representing the Gibbs ensemble in V . The localised states corresponding
to the finite volume theory are given by the unit ball HV,1 of the relevant Hilbert space HV . e−βHV

is a trace-class operator, for which the set e−βHVHV,1 is known to be small, namely nuclear.

Definition 2.6.1 ([29]). A subset N of a Hilbert space H is called nuclear if there is a sequence
of linear functionals ln on the linear span of N , and a sequence of unit vectors en, such that

(i)
∑
n λn <∞, where λn = sup{|ln(ψ)| : ψ ∈ N},

(ii)
∑
n ln(ψ) · en = ψ for all ψ ∈ N .

The nuclearity index of N is defined to be ν(N ) := inf
∑
n λn, where the infimum is to be taken

w.r.t. all functionals ln and vectors en complying with the above conditions.

Assuming that the theory has a reasonable number of local degrees of freedom, the nuclearity
property should persist for the sets e−βHLr, as well, which provides a heuristic motivation for the
sets e−βHLr to be nuclear. That is the core of the nuclearity condition.

Definition 2.6.2 ([29]). The (Buchholz-Wichmann) nuclearity condition is said to hold, if the
sets e−βHLr are nuclear for all β > 0 and r > 0, and if there exist positive constants c, n, r0 and
β0 such that

ν(e−βHLr) ≤ ecr
3β−n for all r ≥ r0 and 0 < β ≤ β0. (2.10)

In the high temperature limit the nuclearity index of e−βHLr for fixed r is regarded as a measure of
the asymptotic energy-level density of the well-localised states, which governs the nature of correla-
tions between observables in spacelike separated regions. The estimate of the nuclearity index orig-
inates from the finite case, too, and is linked to thermodynamical properties: ν(e−βHLr) is dom-
inated by tr e−βHV , and there is the expectation that the pressure p(V,β) = (βV )−1 log(tr e−βHV )

stays bounded in the thermodynamical limit, which enforces ν(e−βHLr) ≤ er
3φ(β). In the rele-

vant cases φ(β) is supposed to be bounded by some cβ−n. Hence, requiring nuclearity for the
sets e−βHLr together with a energy-level density which does not increase too fast with the energy
as expressed via the bound on the nuclearity index, ensures sensible thermodynamical proper-
ties. Consequently, the nuclearity condition seems to be an adequate condition to distinguish
local QFTs which admit a meaningful interpretation in terms of particles and exhibit a regular
thermodynamical behaviour. It is rigorously proven to hold in free theories [29, 31].

There exist a couple of variants and generalisations of the nuclearity condition. One of them
is the energy nuclearity condition proposed in [32], which can equivalently be expressed by using
only modular operators (which will be introduced in chapter 4), without any knowledge of the
global Hamiltonian. This modular nuclearity condition is a purely local one, in the sense that it
only requires information about the restriction of a suitable state (not necessarily the vacuum) on
local algebras. It thus permits and extension to QFTs on curved spacetimes or generally covariant
QFTs. Our main intention to introduce the nuclearity condition is to physically motivate the split
property, and it is the Buchholz-Wichmann nuclearity condition from which the split property can
be deduced in a sufficiently strong form to meet our purposes.13

Split Property

Consider two spacelike separated spacetime regions O1 and O2, such that there is a region O which
properly contains O1 and is disjoint from O2 [34, 60]. Let us assume that the von Neumann algebra
generated by the local algebras R(O1) and R(O2) is isomorphic to their tensor product,

R(O1) ∨R(O2) ∼= R(O1)⊗R(O2). (2.11)

This statistical independence between R(O1) and R(O2) may be regarded as a strengthened form
of the locality principle, where algebras associated with spacelike separated regions merely have to

13The alternative version only implies a distal split property.

25



CHAPTER 2. ALGEBRAIC QUANTUM FIELD THEORY

commute. It means that partial states on R(O1) and R(O2) are uncoupled and can be extended
to a state on R(O1) ∨ R(O2) with no correlations between O1 and O2. The underlying Hilbert
space of the corresponding local algebras can be written as a tensor product, H = H1 ⊗H2,

R(O1) ⊂ B(H1)⊗ 1lH2 , R(O2) ⊂ 1lH1 ⊗ B(H2). (2.12)

In particular, there exists a total set of vectors ψ ∈ H, the product states, such that

〈ψ,ABψ〉 = 〈ψ,Aψ〉 · 〈ψ,Bψ〉 for all A ∈ R(O1) and B ∈ R(O2). (2.13)

Thus, for the vector states ω(·) = 〈ψ, ·ψ〉 measurements in O1 and O′2, respectively, are completely
uncorrelated. The factorisation is in analogy to the notion of subsystems in quantum mechanics.
It is a remarkable fact, that this form of statistical independence manifests itself in a specific
algebraic structure of the local net, the so-called split property [29, 60]. One focuses on two
bounded spacetime regions O1 and O2 such that the closure of O1 is contained in the interior of
O2, denoted by O1 ⊂⊂ O2. By isotony this implies R(O1) ⊂ R(O2). The split property asserts
that there exists an intermediate type I factor M such that

R(O1) ⊂M ⊂ R(O2). (2.14)

Note that one cannot assign a definite localisation region toM. Statistical independence and split
property are essentially equivalent (cf. [60], proposition V.5.2.1).

The question of whether local nets have the split property was originally raised by Borchers.
In fact, the split property could be established in various models including theories of non-
interacting particles, or interacting theories which are locally Fock (see [29] for the relevant lit-
erature). But there are also models in which the split property does not hold [29, 60]. These
counter-examples are altogether characterised by a large number of local degrees of freedom. In-
deed, if this number is limited, as it is prevalent in theories with a sensible particle interpretation
and as it is mathematically grasped by the nuclearity condition, the split property holds. This
surprising result, which establishes the split property as a physically very reasonable assumption
on the local net, is due to Buchholz, D’Antoni and Fredenhagen [30].

Theorem 2.6.3 (Buchholz-D’Antoni-Fredenhagen). Let O 7→ R(O) be a local net in the vacuum
sector which satisfies the Buchholz-Wichmann nuclearity condition. Then, the split property holds.

A variation of the nuclearity condition which is supposed to work in charged superselection sectors
and which also implies the split property is due to Borchers and Schumann [18].

2.7 Types of von Neumann Algebras Appearing in AQFT

An important question concerns the type of von Neumann algebras appearing in physics (the
classification of von Neumann algebras is summarised in appendix A.5). For quantum systems with
a finite number of degrees of freedom the simplest possibility, type I factors, is perfectly adequate,
while in relativistic quantum field theory as well as in quantum statistical mechanics of infinite
systems factors of type III occur naturally (see e.g. [60, 137]). Even more, the cumulative effort
of many physicists in the course of several decades has revealed the following striking uniqueness
result about the structure of local algebras appearing in AQFT:

Each local algebra appearing in AQFT is generically ∗-isomorphic to the unique hyperfinite type
III1 factor.

This universality of a local algebra, regardless of whether one considers particle states or thermal
states, may be compared with the type I factors appearing in quantum mechanics, i.e. algebras
which are ∗-isomorphic to B(H), irrespective of the system or subsystem of interest. It is the
change from the materially defined systems in mechanics to open subsystems corresponding to
sharply defined spacetime regions in relativistic local theories which forces the change in nature of
the algebras from type I to type III1.

The uniqueness result is a consequence of general physical requirements of AQFT, supple-
mented by further physically plausible assumptions (above all existence of a scaling limit and
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nuclearity condition), which could be verified in various models. Accordingly, physical information
distinguishing different theories or the algebras associated with different spacetime regions cannot
be contained in the algebraic or topological structure of one single local algebra R(O). The specific
features of a particular theory are encoded in the net structure, in the relation between the various
local algebras, each of which ∗-isomorphic to the hyperfinite type III1 factor. It is the way they
are embedded into each other, which determines the physical properties of the theory, like particle
structure, scattering cross sections, bound states, or superselection sectors (the split property for
instance is a condition on the net, not on single algebras).

Here, we list some decisive works which led to the above uniqueness result.14 The first result
is due to Araki [3] who proved in 1963/64 that the local algebras for relativistic free fields are
type III factors. If a local normality assumption is satisfied, the same holds for interacting fields.
Hugenholtz [67] recognised in 1967 that factors generated by equilibrium states are of type III.
In fact, the weak closure of the representation of the quasi-local algebra induced by an equilibrium
state turned out to be a type III1 factor [73].15 In 1975/77 Driessler [46] established the type
III property for wedge algebras by considering the dimension function of projectors, whenever
the theory is dilatation invariant. This result could be sharpened by Longo [80] in 1979 to
the statement that dilatation invariance forces the wedge algebras to be of type III1. In 1985
Fredenhagen [50] could give a rigorous proof that local algebras associated with double-cones
are of type III1. He needed the additional assumption that the net is locally associated with a
Wightman field with a non-trivial scaling limit,16 as it is expected to be the case for instance in
renormalizable field theories with an ultraviolet fixed point, and hence in particular in all theories
which are asymptotically free. In 1987 Haagerup [61] succeeded to show that up to ∗-isomor-
phisms there is a unique hyperfinite type III1 factor. In the same year Buchholz, D’Antoni and
Fredenhagen [30] proved that the nuclearity condition implies the split property, which in turn
revealed the hyperfiniteness of local algebras. Eventually Buchholz and Verch [33] carried out
a comprehensive analysis of the concept of a scaling limit in the algebraic setting in 1996. They
established that the existence of a non-classical scaling limit in a theory which satisfies wedge
duality implies the type III1 property for all local algebras corresponding to double-cones. Making
the physically plausible assumption that superselection rules are not recognisable within bounded
regions, the local algebras should have a trivial centre, i.e. local algebras should be factors [34].

Other criteria to derive the type III1 property in various cases of physical interest are re-
viewed e.g. in [10]. To a certain degree these criteria are also applicable to curved spacetimes.
Just to mention one example, the result of Fredenhagen concerning the type III1 property for
local algebras with a scaling limit was generalised by Wollenberg to local algebras over curved
spacetimes.

2.8 Generalisations to Curved Spacetimes and Generally
Covariant AQFT

The synthesis between the tenets of quantum physics and general relativity is still an unsolved
problem. Up to now we have only considered quantum field theory in Minkowski space, and if we
do not explicitly mention it, we will always understand under a local net a net which is associated
with open regions in Minkowski space and which satisfies the Haag-Kastler axioms. However, it is
a natural endeavour to look for generalisations. This concerns the semi-classical limit which treats
gravitation as a classical background field, i.e. QFT in curved spacetime (see [12, 133]), but also a
not yet discovered theory of quantum gravity. In the latter case the principle of general covariance
has to be built into the quantum setting (assuming that it is preserved at the quantum level).

Let us begin with some comments about AQFT in curved spacetime (see [60] for some more
details). At this level much structure of Minkowski space is retained. The metric field is given

14Some terms appearing in this section are not explained, since they are not needed anywhere else in this thesis.
We refer to the cited papers for their definitions.

15More precisely, the statement holds for a representation induced by a stationary, hyperclustering, dynamically
stable state over an asymptotically abelian C∗-dynamical system.

16The theory has a non-trivial scaling limit if there exists a positive monotone function N(λ), λ > 0, such that
the scaled n-point functions, Wλ

n = N(λ)n 〈Ω, ϕ(λx1) . . . ϕ(λxn)Ω〉, converge for λ → 0 in the sense of tempered
distributions with limWλ

2 ≡ W 0
2 different from zero. This condition makes sure that the local algebras R(λO) are

large enough for small λ, such that the properties of the theory at different scales can be compared.
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classically in terms of a gravitational background field, so that spacetime, equipped with the fixed
metric field, is a Lorentzian manifold which provides a rigid arena where physics takes place.
The algebraic part of the theory carries over, so that the theory can still be defined in terms
of a local net of observable algebras O 7→ A(O) associated with open regions of the spacetime
manifold, and satisfying isotony and locality. The local metric structure can be used to formulate
the dynamical laws. The main problem which has to be resolved is caused by the absence of
Poincaré (or translation) covariance, or even more of possibly any geometrical symmetry, which in
turn is necessary to give a meaningful definition of energy-momentum, stability, or to distinguish
the vacuum. Moreover, due to the lack of Poincaré symmetry there is no Hamiltonian defined;
the dynamics cannot be formulated in terms of an evolution in a single external time parameter.
However, the net structure, together with the possibility to pass to von Neumann algebras via
the GNS construction, will prove to be rich enough to apply the thermal time hypothesis. In the
course of this thesis we shall meet some examples of QFTs locally associated with Wightman fields
in specific curved spacetimes, and we will go into some more details when it becomes necessary.

To formulate a generally covariant quantum field theory [51, 60] an elimination of the global
features and a characterisation of the theory in terms of allowed germs of families of states is needed.
Spacetime is still modelled as a 4-dimensional manifold. The theory is assumed to be given by a
local net of involutive algebras O 7→ A(O) associated to each open region of the spacetime manifold.
A state ω is described mathematically in the usual manner by a positive linear functional on the net.
Because of the ordering structure provided by the manifold the isotony axiom is still meaningful.
In order to implement the principle of general covariance one cannot make use of an a priori
given Lorentzian metric field, so that the locality axiom does not make sense. General covariance
requires the field equations to be independent of the coordinates, and it is by no means clear that
quantum theory is compatible with this principle, which imposes strong restrictions on the field.
A first step towards an understanding of generally covariant quantum theories was undertaken by
Fredenhagen and Haag [51], who could give an affirmative answer to this question.

Under the additional assumption that the states have a scaling limit when restricted to the
neighbourhood of any point, the authors succeeded to show that each state defines a reduced
theory in the tangent space of each point. While the tangent space theory contains kinematical
information, it lacks to reflect the full dynamical laws. The reduced theory will in general be
invariant under translations. Furthermore, there is the possibility that the physical state (the
relevant folium) determines a macroscopic metric field.

It may happen that observables of an involutive algebra are represented in the GNS space
as unbounded operators. Nevertheless, the transition from unbounded operator algebras to von
Neumann algebras, crucial for our purposes, is still possible in a canonical way by taking account
of the polar decomposition theorem [51]. Again, the opportunity to pass to von Neumann algebras
will suffice for the emergence of thermal time. In fact, this will be the strength of the thermal time
hypothesis, that it is applicable under very general conditions and, thus, opens the opportunity
to define a notion of time in generally covariant theories, where common notions of time are not
expected to exist. One just has to assume the minimal adaption of the algebraic approach that
there is a net of involutive algebras, labelled by some (partially) ordered set, and that states are
positive linear functionals over these algebras, such that QFT in terms of von Neumann algebras
is available.
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Chapter 3
Thermal Equilibrium and the KMS
Condition

“Truth is much too complicated to allow anything but approximations.”
John von Neumann, Austro-Hungarian mathematician (1903-1957)

Thermal equilibrium states arise as the simplest states of interest when one studies the prop-
erties of bulk matter. They are considered as an equally fundamental aspect of microphysics as
vacuum states. For the formulation and motivation of the thermal time hypothesis, just as for
its discussion, the notion of thermal equilibrium is going to play a decisive role. Therefore, we
intend here to present the theory of equilibrium states of matter, that is equilibrium statistical
mechanics. We open the chapter by a short account of the Gibbs prescription as a well-established
equilibrium condition for finitely extended systems, which historically has been the starting point
for equilibrium statistical mechanics. Then, we discuss how time evolution, being a key structure
to define the notion of equilibrium, is modelled in AQFT. After giving some basic tools and defi-
nitions, we continue by introducing the KMS condition which is the natural generalisation of the
Gibbs condition, and analyse several properties which led to the acceptance of this condition as a
reasonable criterion for the selection of states representing thermal equilibrium. But we shall also
underpin that to establish certain typical features of true equilibrium states, concerning above all a
“return to equilibrium”-behaviour, apart from the KMS condition further conditions are necessary
in order to obtain some form of dispersion. This analysis is of great importance with regard to
properties of the thermal time. The main references used in this chapter are [24, 60, 73, 128],
where many more details may be found.

3.1 The Traditional Approach and its Limitations

Gibbs’ Ensemble Theory

The traditional form of statistical mechanics [128] is based on standard Gibbs canonical ensembles
of finite systems, i.e. systems which are enclosed in a box of finite extension. This ansatz goes back
to the path-breaking works of Boltzmann and Gibbs on classical statistical mechanics around
the turn of the 19th century, and has been successfully transferred to quantum mechanics in the
late 1920s. The powerful methods introduced at that time provide a highly satisfactory foundation
for the development of modern statistical mechanics. We shall recall here the Gibbs prescription
for quantum systems. Our motivation to do that is two-fold: We want to show off the need for a
more general description of equilibrium as it is embodied by the KMS condition, but even more
the Gibbs approach will be best suitable to explain the emergence of thermal time.

To make things more concrete, we envisage a system enclosed in a box containing a finite
number N of particles in a finite volume V (typically the system consists of many particles and
has a huge number of degrees of freedom).1 In the usual manner one constructs the separable N -

1The considerations can be readily generalised to those cases where the particle number is not constant.
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particle Hilbert space HN . The dynamical evolution α
(V,N)
t is generated by the box Hamiltonian

H(V,N), which incorporates a description of the interactions and boundary conditions, via the
Heisenberg equation of motion,

α
(V,N)
t (A) = eiH(V,N)tAe−iH(V,N)t. (3.1)

In order to obtain H(V,N) as a well-defined self-adjoint operator, one has to supplement carefully
suitable boundary conditions on the walls of the box. The relevant von Neumann algebra is the
algebra B(HN ) of all bounded operators acting on HN .

Statistical methods have to be employed to predict the behaviour of a system about which
merely an incomplete knowledge is available, not sufficient for a specification of its precise state. In
fact, this is the generic case, both because observations on the state of the system are necessarily
approximate in nature due to the finite resolution of realistic measuring devices, and because
the exact treatment of complicated systems composed of many particles is impracticable due to
computational limitations. Hence, approximate specifications have a better correspondence with
the real situation to be studied than the highly idealized notion of a pure microscopic state.

It was Gibbs’ great insight to treat not the behaviour of a single system, but to consider the
properties of a representative ensemble of systems instead, each of similar constitution to the one
of actual interest. The average behaviour and properties of the systems in this ensemble provide
the best estimates as to those pertaining to the actual system under consideration. The condition
of the ensemble at any time is specified by a density matrix, or statistical operator, denoted by
ρ(V,N), which describes the distribution of the representative systems in phase space. It is assumed
to be a positive trace-class operator acting on HN with tr ρ(V,N) = 1. The evolution of the density
matrix is determined by the Liouville equation

∂tρ(V,N) = −i[H(V,N), ρ(V,N)]. (3.2)

This way one is able to make predictions about the average future behaviour. The predictions are
to be regarded as true on the average for the systems in the ensemble. The ensemble, which is set
up to represent the individual system in its partially specified state, is selected in such a manner
as to agree with the partial knowledge about the precise state of the system of interest, and is
otherwise constructed in accordance with the reasonable postulates of equal a priori probabilities
and random a priori phases (cf. [128]).

We are interested in the properties of those systems, which can be regarded from a gross point
of view, which neglects the behaviour of individual particles, as being in a steady condition of
macroscopic equilibrium. If ρ(V,N) does not explicitly depend on time, the ensemble is said to be
in statistical equilibrium. This can be achieved either by taking an initial distribution with ρ(V,N)

equal to a constant, or equal to some function of the integrals of motion, for which in systems
with a specified number of particles (and assuming total momentum and angular momentum to
vanish) the energy H(V,N) is the only remaining choice. Ensembles being in statistical equilibrium
are important for the representation of systems which are themselves in a condition of macroscopic
equilibrium, though they do not uniquely determine them. The most important ensemble which
does it, is the (canonical) Gibbs ensemble, represented by the distribution

ρ(V,N,β) = Z−1 exp(−βH(V,N)), Z = tr e−βH(V,N) . (3.3)

Note that this formula makes sense, since H(V,N) is typically assumed to be a positive operator
which has a discrete spectrum with level density increasing less than exp(βE) for energies E →∞
[60]. Hence, the distribution ρ(V,N,β) is a trace-class operator for positive β. The Gibbs ensemble
is especially useful to study relations between statistical mechanics and thermodynamics, where
it has been found to provide the appropriate ensemble for a system having a precisely specified
temperature, which is β−1. In the ordinary cases of interest with many degrees of freedom nearly
all systems in the ensemble have energies close to the average energy. Therefore, it is possible
to use Gibbs ensembles also as representatives of systems with an (almost) sharp energy. Most
importantly, Gibbs ensembles are the best appropriate candidates to describe finite systems in a
condition of macroscopic equilibrium at inverse temperature β.

To understand the mechanism by which the approach of a system to equilibrium takes place,
Boltzmann’s H-theorem proved to be very informing. The quantity H is related to the number
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of states defined by equal volumes in phase space that correspond to the specified condition of
the system. The H-theorem establishes that it is overwhelmingly likely that H decreases in time
towards an equilibrium value as a result of particle collisions. An even more powerful method to
study the approach to equilibrium is provided by Gibbs’ generalised H̄-theorem. While H applies
directly to the system of interest, H̄ characterises the condition on the representative ensemble.
Hereto a distinction between fine-grained and coarse-grained probabilities for the possible states
of the members of the ensemble is necessary: Since observations are of only limited accuracy it is
not possible to distinguish between neighbouring states with similar properties. That motivates
the introduction of coarse-grained probabilities for a state, which are defined as the mean of the
fine-grained probabilities taken over neighbouring states of nearly identical properties. H̄ is defined
in terms of the coarse-grained probabilities and shows the same endeavour to decrease with time
towards a steady value, where the ensemble would give a suitable representation for a system in
equilibrium. To study the long time behaviour of an ensemble representing a system in contact
with its surroundings, one applies the generalised H̄-theorem to two interacting systems, modelling
the proper system and its surroundings. Both, in cases of thermal equalisation and essential
isolation suitable coarse-grained distributions of the proper system (resulting from approximate
measurements of so-called nearly steady states [128]) show the tendency to approach an ensemble,
whose fine-grained distribution is appropriately given by the Gibbsian one.

Another method of justifying the Gibbs ensemble as a suitable ensemble to represent thermal
equilibrium is the principle of maximal entropy. In thermodynamics, entropy is a fundamental,
extensive quantity, monotonically increasing for closed systems, whose existence is deduced from
the empirical fact that irreversible processes exist in Nature. A statistical definition of entropy,
which should be some functional of the density matrix, S(t) = S[ρ(V,N)(t)], was given by Gibbs
for the classical case and extended to quantum systems by von Neumann. In quantum statistical
mechanics the Gibbs entropy is given as

SGibbs(t) = −tr(ρ(V,N)(t) log ρ(V,N)(t)). (3.4)

The entropy is a measure for the lack of information about the exact microstate. The Gibbs
ensemble is characterised by the property that it maximizes the Gibbs entropy of all distributions
with the same average energy. In fact, the Gibbs entropy turns out to be a wholly satisfactory
definition for equilibrium ensembles and shows all the properties of the thermodynamical entropy.

A third road to the Gibbs ensemble is obtained by decomposing the system into macroscopic
subsystems. The system is supposed to be in equilibrium if each decomposition leads to subsystems
which are themselves in equilibrium with the same temperature as the whole. This is an intrinsic
characterisation of thermal equilibrium, which we shall meet again in the course of the thesis.

The methods of statistical mechanics provide an explanation for the principles of thermody-
namics, which are devised for giving a phenomenological account on the gross behaviour of physical
systems. The average properties of an appropriately chosen ensemble is in substantial agreement
with the predictions of thermodynamics. The conditions of a thermodynamical system are spec-
ified by the values of a limited number of thermodynamical variables (such as volume, pressure,
energy, or temperature). These are used to construct the representative ensemble which describes
the macroscopic state of the system. Under usual laboratory conditions realistic systems are never
in perfect isolation, but are either purposely placed in thermal contact with some other system
such as a heat reservoir, or are necessarily in contact with their immediate surroundings such as
the walls of a container. Hence, by way of summary, the condition of thermal equilibrium in finite
systems can be best represented by the Gibbs ensemble.

Infinitely Extended Systems and the Breakdown of Gibbs’ Approach

Although Gibbs’ ensemble theory has been enormously successful in relating equilibrium bulk
properties of matter to the laws of microphysics, it does suffer from certain basic deficiencies.
Realistic thermodynamical systems have a couple of features (such a phase transitions, transport
phenomena, etc.) which are absent in the finite model systems. Consequently, standard statistical
mechanics does not possess sufficient structure to provide all phenomena. This is owing to the
fact that a system enclosed in a box is by no means a suitable idealization of matter filling a finite
volume in space. The box Hamiltonian has a discrete spectrum corresponding to excited states
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which persist indefinitely in time, a behaviour quite different from a distinguished equilibrium state
towards which any other excited state tends asymptotically in time (“return to equilibrium”). This
discrepancy is due to the inadequacy of the “system enclosed in a box” as a physical model. What-
ever the boundary conditions on the walls of the box are, they reflect the unphysical assumption
that the system is isolated, neglecting the feeble but essential interaction with the box. It turns
out that a capture of all wished features can be achieved by passing to infinite systems describing
matter that fills all space with finite density. Thus, one is led to the study of states of infinitely
extended systems as adequate approximation for finite systems. The first idea might be to directly
extrapolate Gibbs’ ensemble theory to infinite systems. However, this is not possible, since the
energy operator, which implements the time evolution, becomes meaningless. Moreover, the state
does not need to be described by a density matrix anymore. A generalisation is necessary.

One possibility to get a description for infinite systems is to supplement the Gibbs approach
by the prescription of performing the thermodynamical limit. While the Gibbs ansatz itself gives
at most an approximation of an equilibrium state, the exact thermal state at density d is obtained
as the limit of the Gibbs states when V,N → ∞ such that N/V = d. The attitude is to replace
the walls by the same medium to surround and interact with finite portions of the substance under
investigation. In that case one does not need to care about recurrences caused by reflections from
the walls occurring in the finite case. Only in this limit fluctuations within the ensemble become
zero for intensive quantities and the thermodynamical laws become true for the individual system.
The existence of the thermodynamical limit is essentially a question of choosing a consistent set of
boundary conditions. The sensitivity on these boundary conditions, i.e. on the precise definition
of the box Hamiltonian, is related to the uniqueness of the limit. This ambiguity at certain critical
values of the thermodynamical variables yields the appearance of the thermodynamical behaviour
such as phase transitions in the infinite-volume limit states.

Instead of first considering finite systems and then performing the thermodynamical limit, it
would be much more pleasant to consider the infinite system from the beginning and give a direct
characterisation of equilibrium states. The formal substitute of the Gibbs prescription for infinite
systems turned out to be the KMS condition, subject of the remainder of this chapter.

3.2 Time Evolution in AQFT and the Complementary Role
of C∗- and von Neumann Algebras

Usually one is looking for an approach which characterises an equilibrium state of an infinitely
extended system as a state over the quasi-local algebra, which represents the observable algebra
in the thermodynamical limit. As we shall explicate in the following we are interested in local
dynamics of open subsystems of an infinitely extended system. Anyway, it is necessary to specify
first the dynamical law governing the time evolution of the observables, because equilibrium states
are determined by their properties with respect to the dynamics. This thesis is about time, which
is why we use this occasion to say a few words concerning the time evolution in AQFT and explain
our starting point for the description of equilibrium states.

Thereto let us pick out some inertial frame. The Poincaré group is realised on the quasi-local
algebra A as an automorphism group, acting geometrically on the local net. From this we can
extract the time evolution of the observables, denoted by αt, as used in the chosen inertial frame.
We give the mathematically precise definition of such a dynamical system consisting of the algebra
and a one-parameter group of ∗-automorphisms representing the time translations.

Definition 3.2.1 ([23]). A C∗-dynamical system is a tuple (A, τ), where A is a C∗-algebra and τ
a strongly continuous one-parameter group of ∗-automorphisms.

If we think of a one-parameter group of ∗-automorphisms as the group generating the dynamics
on the observable algebra, i.e. the physical time evolution of the observables, we shall reserve
throughout this thesis the symbol αt; in particular to delimit it from the modular flow, which will
be another important example of a ∗-automorphism group. For an unspecified ∗-automorphism
group, as it is prevalent in this rather mathematical part, we prefer the somewhat more neutral
expression τt; yet we will speak of time translations, as well.

Now, let us consider a representation by a concrete C∗-algebra π(A), as it is defined e.g. by the
GNS construction of the state under consideration. Moreover, we assume the time translation group
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τt to be unitarily implemented (cf. corollary A.3.10). Then, by Stone’s theorem A.1.22, the time
translations are generated by a self-adjoint operator, the Hamiltonian H, αt(A) = eiHtAe−iHt,
A ∈ π(A). This is the usual way time evolution is treated in AQFT. H is a global, extensive
quantity, which is not contained in the algebra π(A) of quasi-local observables, and it generally
cannot be regarded as the energy operator, since the physical energy of an infinitely extended
system can take on an infinite expectation value with infinite fluctuations, both being subtracted
in the construction of H (cf. [58, 60]).

In a next step one may pass from π(A) to the von Neumann algebra R = π(A)′′. The time
translation ∗-automorphism group τt extends to π(A)′′ (see below). Whilst the time translations on
A are directly related to the physical system itself, one is only concerned with the analytical appa-
ratus associated with a particular physical sector of the system after passing to the representation
space [73]. The advantage is that the enriched structure of von Neumann algebras is sometimes
mathematically more convenient. Moreover, the spectral projection of self-adjoint operators belong
to the von Neumann algebra, useful for measurement theory (cf. proposition A.4.10).

Unfortunately, there is a physical deficiency: The von Neumann algebra associated with the
quasi-local algebra is too big. Global quantities cannot be observed locally, and consequently
they cannot be identified as physical observables. While all the elements in π(A) correspond to
physical observables, there are representations which lead to von Neumann algebras containing
non-observable global quantities (such as bounded functions of the Hamiltonian). One should
therefore not regard the von Neumann algebra R, together with the time translation group, as
a physical system, but only as a mathematical extension of the physical system pertaining to
certain particular physical situations (some more details on this are given in [73]). This argument
is usually consulted to explain why equilibrium states on infinitely extended systems have to be
studied on C∗-dynamical systems, rather than on W∗-dynamical systems to be defined below.
The C∗-algebra is the relevant physical object, while the von Neumann algebra is of particular
mathematical importance.

However, it might also be meaningful to study local dynamics, i.e. time evolutions defined on
local subalgebras which represent open subsystems of the infinitely extended medium. In that case
the use of von Neumann algebras does not cause any problems. More specifically, one adopts the
position that the time evolution is defined on the weak closure, R(O) = π(A(O))′′ of the relevant
representation of the local algebra A(O). One important example of a local flow will be the thermal
time flow. The general nature of the dynamical law is inferred from the dynamics of finite systems.
It is assumed to be a σ-weakly continuous one-parameter group of ∗-automorphisms acting on the
local von Neumann algebra

Definition 3.2.2 ([23]). A one-parameter family R 3 t 7→ τt of bounded, linear maps on a von
Neumann algebra R is called a σ-weakly continuous one-parameter group of ∗-automorphisms if

(i) τt1+t2 = τt1τt2 for all t1, t2 ∈ R, and τ0 = 1l.

(ii) ‖τt‖ = 1 for all t ∈ R.

(iii) t 7→ η(τt(A)) is continuous for all A ∈ R and η ∈ R∗ (i.e. for each normal state).

Example 3.2.3 ([23]). We give an important example for such a group of ∗-automorphisms. Let
t 7→ Ut be a strongly continuous group of unitary elements such that UtRU∗t ⊂ R for all t ∈ R,
then one establishes that t 7→ τt(A) ≡ UtAU∗t is a σ-weakly continuous group of ∗-automorphisms.

Requiring continuity of all numerical functions t 7→ η(τt(A)) in definition 3.2.2 means continuity for
the time evolution of all expectation values of the observables. Eventually we make the notion of
a W∗-dynamical system precise, which is intended to model our (locally defined) physical system,
including the dynamical law, on which the notion of equilibrium is to be defined.

Definition 3.2.4 ([23]). A W∗-dynamical system is a tuple (R, τ), where R is a von Neumann
algebra and τ a σ-weakly continuous one-parameter group of ∗-automorphisms.

Example 3.2.5. Consider the quantum theory of a finite system with observable algebra R =
B(HN ) on some separable Hilbert space HN . Let H(N,V ) be the box Hamiltonian of the theory,
which generates the dynamics of the system via

αt(A) = UtAU
∗
t , Ut = eitH(N,V ) . (3.5)
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By Stone’s theorem Ut is a strongly continuous one-parameter unitary group. Thus, by example
3.2.3, t 7→ αt is a σ-weakly continuous group of ∗-automorphisms, and, by the last definition,
(B(HN ), αt) is a W∗-dynamical system.

Indeed, the use of von Neumann algebras might be seen as advantageous, because it can be much
harder to define a one-parameter group of ∗-automorphisms representing the time translations on
a C∗-algebra [73]. While an implementable strongly continuous ∗-automorphism group of a C∗-
dynamical system has a σ-weakly continuous extension to a ∗-automorphism group on the weak
closure of the GNS representation of the C∗-algebra (cf. [24], corollary 5.3.4), such that a KMS
state on a C∗-dynamical system is transformable into a KMS state on a W∗-dynamical system,
the reversed way is in general not available. Hence, this viewpoint offers the opportunity to treat
time translations which are definable only on the weak closure of the representing physical algebra.
Even if this view is not completely in accord with the common one in AQFT, it is an assumption of
the time hypothesis that the physical time flow is solely defined on the representing von Neumann
algebra.

This thesis is devoted to a discussion of the thermal time hypothesis, which is deeply inter-
twined with modular theory working only on von Neumann algebras, and, along with that, it seems
preferable to focus exclusively on von Neumann algebras. Accordingly, we shall develop from the
beginning the KMS theory merely for von Neumann algebras. The main purpose of the remainder
of this chapter is to investigate the compatibility of the KMS condition with the notion of thermal
equilibrium on von Neumann algebras, and to look for properties related to the KMS condition
which later can be assigned to the thermal time flow. These investigations are mainly related to
certain stability properties, irrespectively whether the corresponding von Neumann algebra is as-
sociated to some spacetime region. Possible confluences arising from such a relation will be treated
later. For the time being we regard the W∗-dynamical system above all as a mathematical object
and forget about the precise setting in which it is embedded.

For the corresponding C∗-algebra approach towards the KMS theory we refer the reader to the
literature cited in the introduction. We just note that the mathematical results presented in the
following (apart from certain differences concerning the dynamical stability behaviour) essentially
apply to the C∗-case, as well. Over and above that, dealing with C∗-algebras offers some facets
which are not covered by W∗-dynamical systems. Some of them are mentioned in footnote 5.

3.3 Kubo-Martin-Schwinger Boundary Condition

States obtained from Gibbs ensembles in the thermodynamical limit are called limit Gibbs states.
Limit Gibbs states have an important property which is left over from the ordinary Gibbs states.
This so-called Kubo-Martin-Schwinger boundary condition (or simply KMS condition) was initially
proposed in quantum statistical mechanics by Kubo in 1957, and by Martin and Schwinger in
1959 as a boundary condition determining the solution of an infinite set of differential equations
satisfied by the thermodynamical Green’s functions describing equilibrium states. Haag, Hugen-
holtz and Winnink [60] adapted the KMS condition to the algebraic framework, realised that it
can serve as an adequate substitute to the Gibbs ansatz, and pointed out its importance especially
in the context of quantum statistical mechanics of infinite systems, on which the KMS condition is
directly applicable. The box, the boundary conditions, and the limiting procedures are not needed
anymore. Before we are able to give a mathematically precise definition of the KMS condition, we
need the technical definition of analytic elements.

Definition 3.3.1 ([23]). Let t 7→ τt be a σ-weakly continuous group of ∗-automorphisms. An
element A of a von Neumann algebra R is said to be analytic for τt, if there exists a strip

Iλ = {z : |Im z| < λ} ⊂ C, (3.6)

and a function f : Iλ → R which satisfies the conditions

(i) f(t) = τt(A) for all t ∈ R;

(ii) z 7→ η(f(z)) is analytic for all η ∈ R∗.

The set of all analytic elements for τ is denoted by Rτ .
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Lemma 3.3.2 ([24]). Rτ is a σ-weakly dense, τ -invariant ∗-subalgebra of R.

Example 3.3.3 ([23]). Consider a positive, invertible, self-adjoint operator Ξ, for which τt(A) ≡
ΞitAΞ−it defines a σ-weakly continuous group of ∗-automorphisms of a von Neumann algebra R.
For any analytic element A ∈ R, τt can be extended to complex values in time, and τt(A) gives rise
to a uniquely determined analytic extension into a strip around the real axis, τz(A) = ΞizAΞ−iz

for all z in the strip, when both sides of the equation are viewed as bilinear forms. Note that in
general τz(A) will not be a bounded operator, which implies τz(A) 6∈ R.

Now, after all the preliminary work is done, we introduce the KMS condition.

Definition 3.3.4 ([24]). Let (R, τ) be a W∗-dynamical system. A state ω on R is called a
(τ, β)-KMS state, β ∈ R, if ω is normal and the relation

ω(Aτiβ(B)) = ω(BA) (3.7)

is valid for all A and B in a σ-weakly dense τ -invariant ∗-subalgebra of Rτ . One says that ω
satisfies the KMS condition w.r.t. τ . If the precise value of β is irrelevant, we shall simply speak
of a τ -KMS state.

ω is a (τt, β)-KMS state iff it is an (τβt, 1)-KMS state for all β ∈ R \ {0}. Thus, one can eliminate
β by rescaling the group τt. KMS states do not need to exist for a given W∗-dynamical system.
To ensure their existence additional criterions like the nuclearity condition have to be imposed (cf.
[60]). Consider e.g. a W∗-dynamical system (R, τ) with R = B(H), H a separable Hilbert space,
and τt = Ad(eiHt). Then, a KMS state for positive β exists whenever H has a discrete spectrum,
bounded below, with a density of eigenvalues increasing less that eβE for E →∞.

The KMS condition may be regarded as a generalisation of the defining property of a tracial
state (for which ω(AB) = ω(BA)). For this note that the value β = 0 is distinct from the others,
since ω is merely assumed to be such a trace-state in that case. Conversely, a tracial state is a
(τ, 0)-KMS state. If β 6= 0, τ can be viewed as providing a qualitative measure of the extent to
which a given (τ, β)-KMS state fails to be a tracial state.

The definition of a KMS state given so far in terms of dense sets of analytic elements is
preferred in many cases because it is easy to corroborate, but it is also possible to express the
KMS condition equivalently via time correlation functions. Such a form is more natural and has
the advantage of being statable for arbitrary elements, no analyticity being required.

Theorem 3.3.5 ([24]). Let (R, τ) be a W∗-dynamical system, and let ω be a normal state over
R. Then, the following conditions are equivalent:

(i) ω satisfies the (τ, β)-KMS condition.

(ii) For any given two elements A,B ∈ R there exists a complex-valued function fAB which is
bounded and continuous on the strip {z : 0 ≤ Im z ≤ β} ⊂ C, and analytic on the interior of
that strip,2,3 such that

fAB(t) = ω(Aτt(B)) and fAB(t+ iβ) = ω(τt(B)A) for all t ∈ R. (3.8)

The theorem emphasizes the term “boundary condition”: If the KMS condition holds, the time
correlations functions ω(Aτt(B)) and ω(τt(B)A) are the boundary values of the analytic function
fAB . Later, the width of the analyticity strip associated with a KMS state will be interpreted as
the inverse temperature. What eventually remains from the Gibbs prescription is an analyticity
property of the time correlation functions, though equivalent to it on finitely extended systems as
the subsequent section reveals.

In the next theorem we summarise some further alternative characterisations and formulations
of the KMS condition. For this purpose we make the useful

Definition 3.3.6 ([24]). The infinitesimal generator of the automorphism group τ , denoted by δ,
is defined via δ(A) = d

dtτt(A)|t=0. The domain D(δ) is the set of all A ∈ R for which δ(A) exists.

2For β = 0, fAB is assumed to be bounded and continuous on R.
3In fact, the boundedness-condition may be dropped.
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Theorem 3.3.7 ([24, 60]). Let (R, τ) be a W∗-dynamical system, and let ω be a normal state over
R. Then, the following conditions are equivalent.

(i) ω satisfies the (τ, β)-KMS condition.

(ii) The Fourier transforms of the functions FAB and GAB,4{
FAB(t) ≡ ω(Aαt(B))− ω(A)ω(B)

GAB(t) ≡ ω(αt(B)A)− ω(A)ω(B)
A,B ∈ R (3.9)

satisfy the relation

F̂AB(ε) = exp(βε)ĜAB . (3.10)

F̂AB, ĜAB are considered as distributions over smooth test functions with compact support.

(iii) For all A,B ∈ R and all real functions with smooth, compactly supported Fourier transform
the following relation is valid:∫ ∞

−∞
dt f(t)ω(Aτt(B)) =

∫ ∞
−∞

dt f(t+ iβ)ω(τt(B)A). (3.11)

(iv) −iβω(A∗δ(A)) ≥ ω(A∗A) log(ω(A∗A)/ω(AA∗)) for all A ∈ D(δ).

Theorem 3.3.8 ([24]). Let (R, τ) be a W∗-dynamical system, and ω be a faithful τ -KMS state on
R. Moreover, let ω̃ be any other normal state on R. Then, the following statements are equivalent:

(i) ω̃ is a τ -KMS state.

(ii) There exists a positive operator T affiliated with the centre R∩R′ of R (cf. definition A.4.9),
such that

ω̃(A) = ω(T 1/2AT 1/2) for all A ∈ R. (3.12)

If these conditions are true, then T is unique. In particular, ω is the unique τ -KMS state on R iff
R is a factor.

The theorem shows that on von Neumann factors (which is the generic case in AQFT) faithful
KMS states are unique.5 The next theorem concerns the GNS representation of KMS states.

Theorem 3.3.9 (cf. [24]). Let (R, τ) be a W ∗-dynamical system, ω a (τ, β)-KMS state over R,
and (Hω, πω,Ωω) the corresponding GNS representation. Then, Ωω is separating for πω(R).

The theorem does also hold for C∗-dynamical system (πω(R) has to be replaced by πω(R)′′). It
shows what we already mentioned in the previous chapter: The folium of a KMS state is fully
described by the set of vector states on the algebras obtained from the weak closure of its GNS
representation.

We close this section by taking a look at the classical situation. The KMS condition is not
suitable in the classical limit when R is a commutative algebra, since a non-trivial time flow does
not admit a faithful KMS state (cf. theorem 7.13.4). Nevertheless, it is possible to perform a
classical limit from the quantum KMS condition, cf. [52]. For this purpose it is useful to rewrite
the KMS condition and restore the Planck constant,

ω(Aτi~β(B)) = ω(BA) ⇔ ω

(
− i
~

[A,B]

)
= βω

(
−Aτi~βB −B

i~β

)
. (3.13)

Taking the classical limit prescription ~→ 0, replacing the objects by their classical counterparts,
and using the Hamilton equations, one can convert this formula into the classical KMS condition,

ω({A,B}) = βω(A{B,H}). (3.14)

Some care is needed in order to define Poisson brackets for infinitely extended systems.

4The subtraction of ω(A)ω(B) takes away the uncorrelated part in the expectation value and could be omitted.
5 This is one crucial difference in comparison with C∗-dynamical systems, where the set of KMS states forms a

convex, weak∗-compact set admitting extremal states which are interpreted as pure thermodynamical phases and
which the other mixed KMS states can be uniquely decomposed into. This provides an explanation for the various
thermodynamical phases and their mixtures.
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3.4 Some Basic Properties of KMS States

We start with the following tentative definition:

Definition 3.4.1. An equilibrium state at inverse temperature β > 0 is a state over R satisfying
the (α, β)-KMS condition w.r.t. the physical time translations αt.

Definition 3.4.1 is usually understood to be applicable to the quasi-local C∗-algebra. As discussed
before, we focus our considerations on (local) von Neumann algebras. Although KMS states are
formal extensions of Gibbs states, by no means this implies that they intrinsically possess all the
properties one would attribute to true equilibrium states, in particular under the premise that we
have to deal with time flows whose physical content is not known a priori. Therefore, we want
to investigate next to what extent the KMS condition alone is sufficient to characterise physical
equilibrium situations, so that definition 3.4.1 is a reasonable one. As we shall see, it is necessary
to demand additional conditions related to dispersive properties of the system to make sure that
the KMS state shows the typical “return to equilibrium”-behaviour.

In this section we look into some very fundamental properties KMS states have to satisfy in
order to be justifiable as sensitive physical generalisations of Gibbs states. First of all, the crudest
property, which has most naturally to be expected by any equilibrium state, is stationarity, i.e.
invariance under time translations. This is established by the next proposition.

Proposition 3.4.2 (Winnink, cf. [24]). Let ω be a (τ, β)-KMS state over the W∗-dynamical system
(R, τ), such that β 6= 0. Then, ω is τ -invariant,

ω(τt(A)) = ω(A) for all A ∈ R and t ∈ R. (3.15)

Proof. By the KMS condition we have ω(Aτiβ(B)) = ω(BA) for all A,B ∈ Rτ . Putting A = 1 it
follows that ω(τiβ(B)) = ω(B), whence

ω(τz+iβ(B)) = ω(τiβτz(B)) = ω(τz(B)) (3.16)

⇒ f(z + iβ) = f(z) ∀z for f(z) ≡ ω(τz(B)) (3.17)

f is analytic in the strip 0 ≤ Im z ≤ β, and because of the periodicity analytic for all z ∈ C for all
analytic elements B. Taking advantage of the Cauchy-Schwarz inequality we obtain

|f(z)|2 =|ω(τz(B))|2 ≤ ω(τz(B)∗τz(B))2 = ‖τz(B)‖2 (3.18)

z≡x+iy
= ‖τxτiy(B)‖2 ≤ ‖eiHx‖2‖τiy(B)‖2‖e−iHx‖2 = ‖τiy(B)‖2. (3.19)

M ≡ sup{‖τiy(B)‖2 : 0 ≤ y ≤ β} < ∞, since the interval under consideration is compact. Thus,
f(z) is bounded by M in the strip 0 ≤ Im z ≤ β and due to the periodicity on the whole of C. f(z)
is analytic and bounded on C. We conclude f ≡ const. for all analytic B by applying Liouville’s
theorem. That yields

ω(τt(B)) = ω(B) for all B ∈ Rτ . (3.20)

Since the analytic elements are dense by lemma 3.3.2, we are done.

It is of equal importance to understand the relation between KMS condition and Gibbs prescription,
which is a well-established description of equilibrium states in finite quantum systems. Such
systems are described by the algebra of all bounded operators R = B(H) on a separable Hilbert
space H. The Hamiltonian H generates the time translations group αt acting on B(H). In fact,
the equivalence between both approaches can be ensured:

Proposition 3.4.3 ([60]). Consider a W∗-dynamical system (R, τ) with R = B(H), H a separable
Hilbert space, and τt = Ad(eiHt). The Hamiltonian H is supposed to have discrete spectrum,
bounded below, with a density of eigenvalues increasing less than eβE for E → ∞, β > 0. Then,
the (τ, β)-KMS condition and the Gibbs condition at inverse temperature β are equivalent.
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Proof. One can readily check that the Gibbs state ρ = Z−1 exp(−βH), Z = tr e−βH satisfies the
KMS condition. We sketch the other direction. Let ω be an arbitrary state on R which satisfies
the KMS condition. In particular, ω is a normal state given by a density matrix ρ. Let B be an
invariant element, i.e. τt(B) = B. We exploit that ω is a KMS state (cf. example 3.3.3),

ω(AB) = ω(Aτiβ(B)) = ω(BA) ⇒ tr(ρAB) = tr(ρBA) for all A ∈ Rτ (3.21)

⇒ tr([ρ,B]A) = 0 for all A ∈ B(H) ⇒ [ρ,B] = 0. (3.22)

Each fixed point of τt commutes with the density matrix. Thus, ρ has to be a bounded function of
H, which implies that there exists an ONB {en} consisting of simultaneous eigenvectors of ρ and
H (note that H has a discrete spectrum). We use the following notation:

Ajk := |ej〉 〈ek| , ρ |en〉 = ρn |en〉 , H |en〉 = Hn |en〉 . (3.23)

One more time we take advantage of the fact that ω is a KMS state:

0 = tr(ρ(AlmAjk −Ajkτiβ(Alm)) = ρkδklδjm − e−βHkeβHmρjδjmδkl (3.24)

Choosing k = l and j = m yields

eβHkρk = eβHjρj for all j, k ⇒ eβHρ = λ · 1l for a suitable λ. (3.25)

This condition can only hold because of the assumption about the spectrum of H. ρ is normalized,
hence it must be precisely a Gibbs state.

3.5 Stability Properties and the KMS Condition

We have seen that all states singled out by the KMS condition are invariant under time translations,
and that the KMS condition indeed generalises the Gibbs prescription. These properties justify
the KMS condition at least as a necessary condition for an adequate characterisation of thermal
equilibrium states. However, there are more features one expects from a state which claims to
represent a physical equilibrium situation. Above all that concerns some sort of stability condition.
An equilibrium state should not react too sensitive to small changes in the dynamical law (or
to small perturbations of the state), and should approach the original state when the external
intervention is switched off. In this section we want to analyse stability properties of KMS states,
whereby we get closer to the question if the KMS condition can really be regarded as a physically
meaningful description of thermal equilibrium.

We continue focussing on W∗-dynamical systems, a corresponding treatment for C∗-dynamical
systems may be found in [24, 104]. First we describe a time-independent, kinematical stability
property, an approach which was pursued by Araki [4] in 1973, and then pass to a time-dependent,
dynamical stability concept, which was initiated by Robinson [104] in the same year.

Kinematical Stability

We consider persistent inner perturbations of the dynamics modelled by bounded symmetric deriva-
tions δP (·) = i[P, · ] on R, P = P ∗ ∈ R, which are added to the infinitesimal generator δ of the
σ-weakly continuous group of ∗-automorphisms of a W∗-dynamical system. Physically one would
require that small perturbations P of the dynamical law (“adding a few grains of dust”) do not
essentially modify the equilibrium state ω. Rather one would expect the perturbed system to
admit a state ωP invariant w.r.t. the new dynamics and such that ωλP approximates ω for suffi-
ciently small λ, such that the system can react on the inner perturbation without being affected
globally. This important property one would assign to equilibrium states is expressed by the term
kinematical stability.

Proposition 3.5.1 ([24]). Let (R, τ) be a W∗-dynamical system acting on a Hilbert space H, such
that τ is unitarily implemented,

τt(A) = UtAU
∗
t , (3.26)
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for a strongly continuous one-parameter group of unitaries Ut = eitH . Then, for each P = P ∗ ∈
R there is a perturbed σ-weakly continuous one-parameter group of ∗-automorphisms τP whose
infinitesimal generator is δ+δP , i.e. to each perturbation P one can associate a new W∗-dynamical
system (R, τP ). τP is unitarily implemented,

τPt (A) = UPt AU
P
t

∗
, (3.27)

where UPt = eit(H+P ) is a strongly continuous one-parameter group of ∗-automorphisms of R.
Moreover, one has

τPt (A) = ΓPt τt(A)ΓPt
∗
, (3.28)

where ΓPt = UPt U−t is a unitary one-cocycle.6 If {Pn} is a sequence of self-adjoint elements of R
which converges strongly to zero, then

lim
n→∞

‖(ΓPnt − Γt)ψ‖ = 0, lim
n→∞

‖(τPnt (A)− τt(A))ψ‖ = 0, (3.29)

for all ψ ∈ H and A ∈ R, uniformly for t on compact intervals of R.

Remark. The perturbation of the dynamical law is realised by perturbing the Hamiltonian with
a bounded observable contained in the algebra, hence physically we consider local perturbations.
The perturbed group τP can be computed in terms of τ and P via perturbation theory [24]. Note
that there is a symmetry between τ and τP in the sense that each group is a perturbation of the
other one with perturbation P and −P , respectively.

Definition 3.5.2. Let ω be a state on a W∗-dynamical system (R, τ). We define ω to be kine-
matically stable, whenever there is a map P 7→ ωP , 0 7→ ω, from a neighbourhood U of 0 in the
self-adjoint part of R into the state space over R, fulfilling the following conditions for each P ∈ U :

(i) ωP is τP -invariant (in particular ω is τ -invariant);

(ii) limλ→0 ‖ωλP − ω‖.

Theorem 3.5.3 ([24]). Let (R, τ) a be W∗-dynamical system acting on a Hilbert space H, such that
τ is implemented by unitaries U(t) = exp(itH). Moreover, let Ω be a normalized U -invariant cyclic
vector, such that the associated vector state ω = 〈Ω, ·Ω〉 is a (τ, β)-KMS state. Let P = P ∗ ∈ R,
then Ω ∈ D(e−β(H+P )/2) and the state

ωP ≡ 〈ΩP , ·ΩP 〉 (3.30)

is a (τP , β)-KMS state, where

ΩP ≡ e−β(H+P )/2Ω

‖e−β(H+P )/2Ω‖
. (3.31)

ωP is the unique (τP , β)-KMS state iff R is a factor. Furthermore,

lim
n→∞

‖ωPn − ω‖ = 0 (3.32)

for each sequence Pn = P ∗n ∈ R such that ‖Pn‖ → 0.

Remark. An analogous result is obtained if one replaces ω by an arbitrary KMS state, because the
GNS construction represents ω as a normalized cyclic vector and admits a unitary implementation
of the ∗-automorphism group leaving Ωω invariant. In that case ωP is a vector state of ω, i.e. ωP

is represented as a vector, ΩP , in the GNS space of ω.

Corollary 3.5.4. Let (R, τ) be a W∗-dynamical system, and let ω be a (τ, β)-KMS state on (R, τ).
Then, ω is kinematically stable.

6Since we do not need it here any further, we postpone the definition of a unitary one-cocycle to section 4.4. Let
us just note that it is precisely the cocycle property which makes sure that (R, τP ) is a W∗-dynamical system.
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The corollary verifies kinematical stability of KMS states – without any further assumptions. In
fact, theorem 3.5.3 says that KMS states show a stronger form of kinematical stability in the sense
that for arbitrary perturbations P = P ∗ ∈ R one finds a state ωP , which, in addition, is not only
stationary but satisfies the τP -KMS condition.

However, kinematical stability implies not at all that the system really approaches ωP when
the perturbation is imposed on it, nor does it mean that the system returns to the original state
when it is switched off. For this, a more stringent form of stability is needed.

Dynamical Stability

The time-dependent, dynamical approach starts with a kinematically stable state ω. Again, one
imposes a small perturbation P = P ∗ on the dynamics and assumes that the system somehow
comes into the τP -KMS state ωP , differing only slightly from ω. If the perturbation is switched
off, one wants to identify ω as the evolute of the perturbed state ωP under the original dynamics
(“return to equilibrium”). This concept is formalised as the requirement of dynamical stability.

Definition 3.5.5 (cf. [73]). Let (R, τ) be a W∗-dynamical system. A state ω on (R, τ) is called
dynamically stable, if ω is kinematically stable and if

ω(A) = lim
t→±∞

ωP (τt(A)) (3.33)

for all P ∈ U , where U is the neighbourhood appearing in definition 3.5.2.

Alternatively, one may interpret P as a perturbation of the state, ω = 〈Ωω, πω(·)Ωω〉  ωP =
〈e−β(H+P )/2Ωω, πω(·)e−β(H+P )/2Ωω〉 rather than of the dynamics. But note that the set of per-
turbed states one is led to consider is confined to only those states obtained by the action of
e−β(H+P )/2 on the representing vector Ωω. Pursuing the viewpoint that the system should return
to equilibrium under arbitrary (sufficiently small, local) perturbations of the state, it might be
reasonable to require this behaviour for a larger class of states such as the whole folium. Since
such a view is quite natural, we shall bear in mind this view, as well.

Anyway, dynamical stability does not follow from the KMS condition as one can most easily
see on type I factors (treated in chapter 7). It turns out to depend intimately on some form of
dissipative behaviour of the dynamical system, instead. This is usually realised by an asymptotic
abelianness assumption, a property which corresponds to dispersion of local disturbances in time. A
sufficiently dispersive system is expected to ensure that the perturbed state returns to equilibrium
under the original dynamics.

Definition 3.5.6 ([23]). A W∗-dynamical system (R, τ) is called asymptotically abelian in the
norm sense, if

lim
t→±∞

‖[A, τt(B)]‖ = 0 for all A,B ∈ R. (3.34)

Let ω be a state on R. (R, τ) is said to be asymptotically abelian in the weak sense w.r.t. ω if

lim
t→±∞

〈φ, πω([A, τt(B)])ψ〉 = 0 for all φ, ψ ∈ Hω and A,B ∈ R, (3.35)

where (Hω, πω,Ωω) denotes the GNS representation of ω.

The physical picture behind this algebraic property is as follows (cf. [60]): The mutual influence
of local operations performed in distinct space regions should decrease in strength as the temporal
distance increases, i.e. one demands a decrease of all correlations in time (which limits the type of
interactions and excludes finite systems). Asymptotic abelianness can be justified in free theories,
and there is the hope that the correlations induced by interactions do not dominate the spreading
of wave packets over large times. Norm asymptotic abelianness is a property which characterises
the behaviour of the system itself, independently of any special state, albeit weak asymptotic
abelianness is implied for each state. For our purposes weak asymptotic abelianness turns out to
be a sufficiently strong condition. Since the thermal time flow will be defined as a state-dependent
flow and one thus has to deal with a special state anyway, it is a natural condition, too.
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The next theorem asserts dynamical stability whenever the system is asymptotically abelian.
Since it is usually formulated only for C∗-dynamical systems, and since we present a slightly
different version than the corresponding statement in [24], corollary 5.4.7 (we merely assume weak
asymptotic abelianness), we attach the proof, which yet is closely related to [24].

Theorem 3.5.7. Let (R, τ) be a W∗-dynamical system, where R is assumed to be a von Neumann
factor.7 Furthermore, let ω be a faithful (τ, β)-KMS state, β 6= 0 (which then is unique by theorem
3.3.8), and assume (R, τ) to be asymptotically abelian in the weak sense w.r.t. ω. Let τP be the
perturbed evolution corresponding to the perturbation P = P ∗ ∈ R. We assume the system to be
in the unique (cf. theorem 3.5.3) (τP , β)-KMS state ωP . Then,

ω(A) = lim
t→±∞

ωP (τt(A)) for all A ∈ R. (3.36)

Proof. Consider the GNS representation π induced by ω, where ω is represented by the cyclic and
separating vector Ω. Since ω is faithful and normal, π(R) has to be a factor as well, which implies
π(R) ∨ π(R)′ = B(H). We fix arbitrary A,B ∈ R. ψA ≡ π(A)Ω − ω(A)Ω and Ω are orthogonal,
which is why there exists a self-adjoint operator T ∈ B(H) such that

TψA = 0 and TΩ = Ω. (3.37)

We define the operators

D1 ≡ T (π(A)− ω(A)1l) and D2 ≡ (1l− T )(π(A)− ω(A)1l), (3.38)

which satisfy D1Ω = 0 = D∗2Ω and π(A) = ω(A)1l +D1 +D2. That yields

〈Ω, [D1, π(τt(B))]Ω〉 = ω(Aτt(B))− ω(A)ω(B). (3.39)

Next, we define a unital ∗-subalgebra of B(H),

A := {
k∑
j=1

AjB
′
j : Aj ∈ π(R), B′j ∈ π(R)′, k <∞}. (3.40)

Clearly π(R) ∪ π(R)′ ⊂ A ⊂ B(H) and we have A′′ = B(H). Hence, by the von Neumann density
theorem A.4.7 A is strongly dense in B(H), and we can find for each ε > 0 a finite family of Ai ∈ R
and B′i ∈ π(R)′, i = 1, . . . , n, such that

‖(D1 −
n∑
i=1

π(Ai)B
′
i)Ω‖ ≤ ε/(2 ‖B‖). (3.41)

From this we deduce with the help of the Cauchy-Schwarz inequality

|ω(Aτt(B))− ω(A)ω(B)| = | 〈Ω, [D1, π(τt(B))]Ω〉 | = (3.42)

| 〈Ω,

[(
D1 −

n∑
i=1

π(Ai)B
′
i

)
π(τt(B))− π(τt(B))

(
D1 −

n∑
i=1

π(Ai)B
′
i

)
+ [

n∑
i=1

π(Ai)B
′
i, π(τt(B))]

]
Ω〉 |

≤ ε+

n∑
i=1

| 〈Ω, B′iπ([Ai, τt(B)])Ω〉 | (3.43)

Because of weak asymptotic abelianness that can only happen if

lim
t→±∞

(ω(Aτt(B))− ω(A)ω(B)) = 0. (3.44)

The last expression is the so-called strong clustering condition, which expresses statistical indepen-
dence of any two observables whenever their temporal distance is sufficiently large. Repeating the
whole procedure we obtain

lim
t→±∞

(ω(τt(B)AC)− ω(B)ω(AC) = 0, (3.45)

7Since we are interested in applications in AQFT we do not hesitate to restrict ourselves to factors when it
becomes advantageous.
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which gives

|ω(Aτt(B)C)− ω(AC)ω(B)| ≤ | ω([A, τt(B)]C)︸ ︷︷ ︸
=〈Ω,π([A,τt(B)])·π(C)Ω〉

|+ |ω(τt(B)AC)− ω(AC)ω(B)| t→±∞−→ 0.

π(τt(B)) thus converges to ω(B)1l in the weak sense for all B ∈ R. According to theorem 3.5.3
and the remark thereinafter ωP is a vector state of ω, so that the desired result comes out,

ω(A) = lim
t→±∞

ωP (τt(A)) for all A ∈ R.

Corollary 3.5.8. Let (R, τ) be a W∗-dynamical system, where R is assumed to be a factor. Then,
a faithful (τ, β)-KMS state ω is dynamically stable, supposed that (R, τ) is asymptotically abelian
in the weak sense w.r.t. this state.

In fact, weak asymptotic abelianness implies even more, and this leads us eventually to the study
of reactions of the system to perturbations of the state.

Theorem 3.5.9. Let (R, τ) be a W∗-dynamical system, where R is assumed to be a factor. More-
over, let ω be a τ -invariant faithful normal state and suppose that the system is asymptotically
abelian in the weak sense w.r.t. ω. Denote by ω̃ any state in the folium of ω. Then,

ω(A) = lim
t→±∞

ω̃(τt(A)) for all A ∈ R. (3.46)

Proof. We exploit corollary A.4.25 according to which any state in the folium of a faithful normal
state ω is a vector state of ω. The assertion is then established by a calculation identical with that
in the proof of theorem 3.5.7.

Note that the theorem itself does not make any reference to KMS states. One might ask why
a stationary state ω w.r.t. which the system is weakly asymptotically abelian is not sufficient to
characterise equilibrium situations. If one considers a perturbation P of the dynamics, τ  τP ,
it might happen that a state ω′, stationary w.r.t. the perturbed dynamics, is not contained in the
folium of ω (cf. [104]). Since the perturbation is bounded the states differ by a finite amount of
energy, which can be either transferred by a finite number of particles, then ω′ would generically
be normal to ω, or by an infinite number of particles with infinitesimally small energy, which is
when normality is expected to be destroyed. Taking ω as a KMS state this problem is avoided, for
kinematical stability is known to hold.

However, if the algebra admits a faithful KMS state, ω̂ say, it necessarily has to coincide with
ω. More general, let ω and ω̂ be two faithful normal states on a von Neumann algebra R, and let
(π,H,Ω) and (π̂, Ĥ, Ω̂) be the corresponding GNS representations. By the unitary representation
theorem A.4.18 there exists a unitary operator U : Ĥ → H such that π(A) = Uπ̂(A)U∗ for all
A ∈ R. That yields

ω̂(A) = 〈Ω̂, π̂(A)Ω̂〉 = 〈U Ω̂, Uπ̂(A)U∗U Ω̂〉 = 〈U Ω̂, π(A)U Ω̂〉 . (3.47)

Thus, ω̂ is a vector state of ω (and vice versa). If R is a factor and the system is asymptotically
abelian in the weak sense w.r.t. ω, theorem 3.5.9 applies. If there is apart from ω any other
stationary faithful normal state ω̂, such as a faithful KMS state, the theorem enforces ω = ω̂.

Taking into account that von Neumann algebras appearing in AQFT are supposed to be fac-
tors, the foregoing investigations show that weak asymptotic abelianness is a sufficient condition to
ensure the characteristic “return to equilibrium”-behaviour of a system in a faithful KMS state ω
under quite general circumstances, namely from all states in the folium of ω, that is from all states
obtained by local excitations of Ω. Thus, the stability behaviour stemming from the weak asymp-
totic abelianness criterion is very strong. Demanding this stronger version of dynamical stability,
which we simply want to call “return to equilibrium”-property,8 weak asymptotic abelianness is in
fact also a necessary condition. More specifically we have the following result:

8The “return to equilibrium”-property together with kinematical stability is a strengthened form of dynamical
stability.

42



3.5. STABILITY PROPERTIES AND THE KMS CONDITION

Theorem 3.5.10. Let (R, τ) be a W∗-dynamical system, R a factor, and ω a τ -invariant, faithful
normal state. Then, the following conditions are equivalent:

(i) (R, τ, ω) has the “return to equilibrium”-property;

(ii) limt→±∞ ω(A∗τt(B)A) = ω(A∗A)ω(B) for all A,B ∈ R;

(iii) (R, τ) is asymptotically abelian in the weak sense w.r.t. ω;

(iv) ω is strongly clustering, i.e. limt→±∞ (ω(Aτt(B))− ω(A)ω(B)) = 0 for all A,B ∈ R.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Denote by π the GNS representation of ω, and let H be the underlying Hilbert space
containing the representative vector Ω. Let ψ ∈ H, B ∈ R and ε > 0 be arbitrary. Due to the
cyclicity of Ω for π(R) there exists an A ∈ R such that ‖ψ − π(A)Ω‖ < ε/(4‖B‖). W.l.o.g. let us
assume that A is chosen such that ‖ψ‖ = ‖π(A)Ω‖. Using the Cauchy-Schwarz inequality yields

| 〈ψ, π(τt(B))ψ〉 − 〈ψ,ψ〉ω(B)| ≤ | 〈ψ − π(A)Ω, π(τt(B))ψ〉 |+ | 〈π(A)Ω, π(τt(B))(ψ − π(A))Ω)〉 |
+ | 〈π(A)Ω, π(τt(B))π(A)Ω〉 − 〈ψ,ψ〉ω(B)| (3.48)

≤ 2‖ψ − π(A)Ω‖‖B‖+ |ω(A∗τt(B)A)− ‖π(A)Ω‖2ω(B)| (3.49)

≤ ε/2 + |ω(A∗τt(B)A)− ω(A∗A)ω(B)|. (3.50)

Because of (ii) we can find a t0, such that |ω(A∗τt(B)A) − ω(A∗A)ω(B)| < ε/2 for all |t| > t0.
This justifies

lim
t→±∞

〈ψ, τt(B)ψ〉 = 〈ψ,ψ〉ω(B) for all B ∈ R and ψ ∈ H. (3.51)

The polarization identity implies that for all B ∈ R and for all φ, ψ ∈ H

lim
t→±∞

〈φ, π(τt(B))ψ〉 = 〈φ, ψ〉ω(B) ⇒ lim
t→±∞

〈φ, (π(τt(B))− ω(B)1l)ψ〉 = 0. (3.52)

From this expression we conclude

0 = lim
t→∞

〈π(A)∗φ, (π(τt(B))− ω(B)1l)ψ〉 − lim
t→∞

〈φ, (π(τt(B))− ω(B)1l) · π(A)ψ〉 (3.53)

= lim
t→∞

〈φ, π([A, τt(B)])ψ〉 . (3.54)

(iii) ⇒ (i) is the statement of theorem 3.5.9. (iii) ⇔ (iv) can be found in [23], p. 403.

Remark. If Ω is cyclic for a subset π(R1) of π(R), the elements A in condition (ii) may equally
well be taken only from R1.

Weak asymptotic abelianness is not only a sufficient condition to ensure that the system returns to
equilibrium, but characterises this behaviour. This suggests to impose weak asymptotic abelianness
as an additional condition to get a reasonable stability behaviour and to justify KMS states on
von Neumann factors to represent thermal equilibrium. However, it could also be meaningful to
demand the “return to equilibrium”-property only for excitations induced by some suitable chosen
subalgebra (such as all observables which are localised in a proper subregion of R’s localisation
region, to make sure that the horizon does not play any role), or merely for small or infinitesimal
perturbations. In these cases weaker notions of dispersion might be sufficient to cause all the
typical features of equilibrium situations.

Stability Conditions

There is an endeavour to gain a better understanding of the relation between the kinematical and
the dynamical approach. Thereto, we consider a physical system which is in a (τP , β)-KMS state
ωP = 〈ΩP , ·ΩP 〉 on a von Neumann factor R. Let ω = 〈Ω, ·Ω〉 be a β-KMS state w.r.t. the
unperturbed dynamics τ , Ω a cyclic and separating vector. We assume that ωP evolves under τ
into a state ω̃,

ω̃(A) = lim
t→±∞

ωP (τt(A)) for all A ∈ R. (3.55)
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If ωP is contained in a family of states ωλP , 0 < λ ≤ 1, we can do perturbation theory in λ. It is
possible to rewrite τ as a norm convergent series expansion of τλP , cf. [24]. This can be used to
expand ω̃,

ω̃(A) = ωλP (A)− λ · lim
T→±∞

i

∫ 0

−T
dt ωλP ([A, τλPt (P )]) +O(λ2). (3.56)

On the other hand, for sufficiently small perturbations λP it is possible to relate ω and ωλP by a
uniformly convergent series [24],

ω(A) = ωλP (A)− λ ·
∫ β

0

ds ωλPT (A, τλPis (P )) +O(λ2), (3.57)

where ωT is the truncated function

ωλPT (A, τλPis (P )) = ωλP (AτλPis (P ))− ωλP (A)ωλP (P ). (3.58)

To obtain dynamical stability, we have to demand the identity of these series, term by term. That
yields the so-called stability conditions. If one restricts oneself to marginal perturbations, it might
be satisfactory when the first-order stability condition holds,

lim
T→±∞

i

∫ 0

−T
dt ωλP ([A, τλPt (P )]) =

∫ β

0

ds ωλPT (A, τλPis (P )). (3.59)

In particular this implies

lim
T→∞

∫ T

−T
dt ωλP ([A, τλPt (P )]) = 0. (3.60)

As λ → 0, we have seen that ωλP → ω and τλP → τ in a suitable sense. This way one formally
finds an expression which was originally introduced by Haag, Kastler and Trych-Pohlmeyer
[59],

lim
T→∞

∫ T

−T
dt ω([A, τt(B)]) = 0 for all A,B ∈ R (3.61)

(or at least for a sufficiently large subset). The authors called it consistency condition. Physically
it results from the requirement that small local perturbations should produce only small local
changes in the stationary state. We want to regard it as a kind of minimal stability condition on
W∗-dynamical systems, a basic prerequisite which is necessary to expect (at least some weakened
form of) dynamical stability. If ω is a τ -KMS state and if the system is asymptotically abelian in
the weak sense, or equivalently if the strong clustering condition holds, the consistency condition
follows (as well as all the stability conditions), see theorem 5.4.12 and proposition 5.4.13 in [24].

There is a second way to motivate the consistency condition as a weak form of dynamical
stability [24]. Let us consider a state ω on a W∗-dynamical system (R, τ) which is dynamically
stable. Then for every perturbation P = P ∗ ∈ R and every sufficiently small λ, ωλP evolves back
into the state ω under the perturbed dynamics τ ,

ω(A) = lim
t→±∞

ωλP (τt(A)). (3.62)

Using the relation (cf. [60])

d

dt
τλP−t τt(A) = −iλτλP−t [P, τt(A)], (3.63)

we obtain

lim
T→∞

∫ T

−T
dt ωλP ([P, τt(A)]) =

i

λ
lim
T→∞

∫ T

−T
dt

d

dt
ωλP (τt(A)) (3.64)

=
i

λ

(
lim
T→∞

ωλP (τT (A))− lim
T→−∞

ωλP (τT (A))

)
(3.62)

= 0. (3.65)

Again, by taking the limit λ→ 0 formally the consistency condition falls out. This derivation one
more time underlines it as a necessary condition a kinematically stable state has to satisfy in order
to be dynamically stable under infinitesimal perturbations.
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3.6 Passivity

A natural approach to the KMS condition as a direct characterisation of thermal equilibrium
based on the second law of thermodynamics was given by Pusz and Woronowicz in 1978 [96],
see [24] for the treatment of W∗-dynamical systems. They showed that a KMS state is essentially
distinguished by the condition that the system is unable to perform mechanical work in cyclic
processes. We sum up their results.

A state ω on R is said to be passive if

−iω(U∗δ(U)) ≥ 0 (3.66)

for all U ∈ D(δ) which are contained in the connected identity component of the group of all
unitary elements of R. δ is supposed to be the infinitesimal generator of the ∗-automorphism
group. Passivity reflects another form of stability which is basically kinematical. It is related to
the maximum entropy principle satisfied by Gibbs equilibrium states and is in fact a consequence
of it in finite systems. iω(U∗δ(U)) can be interpreted as the energy difference between ω and the
perturbed state ωU (·) ≡ ω(U∗ · U), that is excitations by the unitaries U lead necessarily to states
with more energy.

To get a better intuition of what passivity means, a W∗-dynamical system is supposed to
undergo a series of external changes, modelled by a norm-continuous one-parameter family of
self-adjoint elements R 3 t 7→ Pt ∈ R which describes local changes in the external conditions.
Similarly to proposition 3.5.1 the family {Pt} defines a one-parameter family of ∗-automorphisms
τP of R, uniquely determined by the differential equation

dτPt
dt

(A) = τPt (δ(A) + i[Pt, A]) for all A ∈ D(δ). (3.67)

Furthermore, there exists a unique unitary element ΓPt such that

τPt (A) = ΓPt τt(A)ΓPt
∗
. (3.68)

Here we are interested in cyclic processes with a smooth and temporary alteration of the external
conditions, i.e. we assume Pt = 0 for t ≤ 0 and t ≥ T . This way we end up with a closed system at
t = T , whose external conditions coincide with the original ones at t = 0. Changing the external
conditions transmits energy to the system since mechanical work is performed by external forces.
The transmitted energy of the cyclic process is given as

EP (ω) =

∫ T

0

ω(τPt

(
dPt
dt

)
)dt. (3.69)

See [60] for the motivation why this is interpreted as an energy difference. If EP (ω) ≥ 0 for all
cyclic processes, one is unable to extract energy from the state by cyclic processes. This condition is
suggested by the second law of thermodynamics. The inability to perform work in cyclic processes
turns out to characterise the passivity property (for W∗-dynamical systems implicitly contained in
the proof of theorem 5.4.28 in [24]):

Theorem 3.6.1. Let (R, τ) be a W∗-dynamical system, δ the infinitesimal generator of the group
τ , and ω a state on R. Then, ω is passive iff EP (ω) ≥ 0 for all cyclic processes {Pt}.

The theorem explains the physical meaning of passivity. Indeed, the term “passive” originates
from this equivalence. We are completely content to give an indication of this equivalence. For all
those cyclic processes {Pt} which are contained in D(δ), it can be shown that

EP (ω) =

∫ T

0

ω(τPt

(
dPt
dt

)
)dt = −iω(ΓPt δ(Γ

P
t

∗
)), (3.70)

which fills the gap to the definition of passivity (3.66). Passivity is another important property
one would attribute to equilibrium states. In fact, it is coded in the KMS structure, and, even
more, characterises KMS states to a large extent:
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Theorem 3.6.2 (Pusz-Woronowicz [24, 96]). Let (R, τ) be a W∗-dynamical system, and ω a state
on R. The following statements are true:

(i) Let ω be a (τ, β)-KMS state for some β ∈ (0,∞). Then, ω is passive.

(ii) Let ω be weakly clustering9 and passive. Then, ω is a (τ, β)-KMS state for some β ∈ [0,∞].

3.7 Concluding Remarks

KMS states are introduced as formal generalisations of canonical Gibbs states. In this chapter
we have seen that general KMS states have a marvellous variety of properties one would assign
to equilibrium states, including stationarity, kinematical stability, and passivity. However, other
typical equilibrium features like dynamical stability and the characteristic “return to equilibrium”-
behaviour are not included in the KMS condition and have to be ensured by an additional require-
ment reflecting dispersion. We have found that dispersive properties are best modelled by weak
asymptotic abelianness or in a weaker form by the consistency condition. In chapter 7 we shall
come back to this lack of a sufficiently strong stability behaviour of general KMS states which is
to be expected from true thermal equilibrium states.

The last section showed that passivity together with a weak clustering assumption leads to
the KMS condition. In other words, the KMS condition is derivable from assumptions which may
be not exclusively reserved for equilibrium situations. We want to rate this, together with the lack
of a sufficiently strong dispersive behaviour, as an indication that the KMS condition is above all
a necessary condition which provides us with the most promising candidates for the description
of thermal equilibrium. Only if the relevant flow is a priori known to be a physical time flow, the
KMS condition might be sufficient, as well, to single out equilibrium states; we shall take up this
point in chapter 7.

A basic concept like that of an equilibrium state should ultimately be defined in simple physical
terms. The historically first derivation of the KMS condition from first principles was given in 1974
by Haag et al. [59], see also [24, 73]. According to these authors, the natural assumptions one
has to impose on a state to represent an equilibrium situation include stationarity and some form
of stability, which in its weakest form is the consistency condition motivated above. Additionally,
they assume a clustering as well as an ergodicity condition to ensure that correlations die out with
increasing temporal difference. There are a couple of results which strengthen either the asymptotic
abelianness assumption or the clustering condition in order to derive the KMS condition. The most
cogent result has been obtained for factor states on L1-asymptotically abelian systems,10 for which
the consistency condition is essentially equivalent to the KMS condition.

9Let η be an invariant mean on R. A state ω is weakly clustering if ηt(ω(Aτt(B))) = ω(A)ω(B) for all A,B ∈ R.
In particular strongly clustering states are weakly clustering.

10In that case t 7→ ‖[A, τt(B)]‖ is assumed to be an L1-function.
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Chapter 4
Tomita-Takesaki Modular Theory

“No human investigation can be called real science if it cannot be demonstrated mathematically.”
Leonardo da Vinci, Italian polymath (1452-1519)

The foundations of the Tomita-Takesaki modular theory were developed by Tomita in two un-
published papers between 1957 and 1967. Motivated by the harmonic analysis of non-unimodular
locally compact groups, he studied the algebraic relation between a von Neumann algebraR and its
commutant R′ in the case where both algebras have a common cyclic vector. His results were even-
tually published by Takesaki in a refined and extended form not until 1970 [124]. Subsequently,
the theory turned out to be an extremely fruitful, powerful and indispensable tool in the theory
of operator algebras and has found numerous applications in mathematical physics. Being the
most essential ingredient for the formulation of the thermal time hypothesis the Tomita-Takesaki
theory is going to play a key role in the sequel of this thesis. Therefore, this chapter is devoted to
a thorough introduction into modular theory. We present the theory, explore some of its striking
consequences and consider applications in physics.

4.1 Tomita-Takesaki Theorem

In this section we focus attention on the mathematical ingredients while we treat physical implica-
tions afterwards. The proofs are omitted, they can be consulted for instance in [23, 72, 124], which
besides have been served as main references. A few foundations concerning von Neumann algebras,
states, representations, and, even more fundamental, the functional analytical background as well
as the theory of conjugate linear operators can be found in appendix A.

We start off by considering a von Neumann algebra R acting on a Hilbert space H, which
admits a cyclic and separating vector Ω. By lemma A.4.12, Ω is cyclic and separating for R′, as
well. This implies both involutions S0 and F0, given by

S0 : H ⊃ D(S0) = RΩ −→ H, AΩ 7−→ S0AΩ := A∗Ω, (4.1)

F0 : H ⊃ D(F0) = RΩ −→ H, A′Ω 7−→ F0A
′Ω := A′∗Ω, (4.2)

to be well-defined and densely defined operators on H. Clearly, S0 and F0 are conjugate-linear
operators. The first step is achieved by the following stimulating observation:

Proposition 4.1.1 ([23]). The involutions S0 and F0 are closable as conjugate-linear operators
on the Hilbert space H, and the relations S0 = F ∗0 and F 0 = S∗0 hold.

From now on, let us denote the closure of S0 and F0 by S and F , respectively. S is usually called
Tomita operator. We exploit the fact that closed operators allow for a unique polar decomposition
(cf. theorem A.1.20 as well as the remark thereinafter).

Definition 4.1.2 ([23]). Let S = J∆1/2 be the polar decomposition of the Tomita operator S.
The positive, invertible, self-adjoint, and in general unbounded operator ∆ is called the modular
operator of the pair (R,Ω); the conjugate-linear partial isometry J is called modular conjugation
or modular involution of the pair (R,Ω). Since ran(S) = D(S) is dense in H and ker(S) = {0},
one concludes S = S−1, which implies that J is in fact an anti-unitary operator.
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Due to the self-adjointness of ∆ the Borel functional calculus may be applied, so that f(∆) :=∫∞
0
f(λ) dE(λ) is well-defined for all complex Borel functions f defined on (0,∞). The normal

operator ∆z is defined for all z = s + it ∈ C and satisfies essentially all the rules suggested by
this notation (see appendix A.1 for some more details). ∆s is a positive self-adjoint operator,
∆it is unitary. Since log is a real function, the self-adjointness of ∆ ensures that of log∆, and
t 7→ U(t) = ∆it = exp(it log∆) is a strongly continuous one-parameter unitary group.

Proposition 4.1.3 ([23, 124]). The following relations can be established:

∆ = FS, ∆−1 = SF, (4.3)

Jf(∆)J = f̄(∆−1), in particular J∆isJ = ∆is and J∆sJ = ∆−s ∀s ∈ R, (4.4)

S = J∆1/2 = ∆−1/2J, F = J∆−1/2 = ∆1/2J, (4.5)

J = J∗ = J−1, (4.6)

∆Ω = Ω, JΩ = Ω. (4.7)

Eventually, we are in a position to state the central theorem of this section which opens the door
towards modular theory:

Theorem 4.1.4 (Tomita-Takesaki Theorem [23]). Let R be a von Neumann algebra with a cyclic
and separating vector Ω. Furthermore, let ∆ be the associated modular operator and J the modular
conjugation. Then

(i) JRJ = R′, JR′J = R,

(ii) ∆−isR∆is = R for all s ∈ R,1

(iii) ∆−isR′∆is = R′ for all s ∈ R.

Since s 7→ ∆is is strongly continuous, the same must be true for the function s 7→ ∆−isA∆is for
each A ∈ R. For a given cyclic and separating vector, the Tomita-Takesaki theorem equips a von
Neumann algebra as well as its commutant with a strongly continuous one-parameter group of ∗-
automorphisms. The unitary group ∆is is called modular group. Moreover, the theorem establishes
the existence of a ∗-anti-isomorphism between R and its commutant R′, obtained by conjugating
R with J , which expresses an interplay between algebraic and analytic structures.

One would like to apply the theorem to states instead of vectors, because the former ones
are more natural in the algebraic formulation of QFT and a more general description is permitted
this way. To do so, one has to transfer the notions of cyclicity and separability to states. This
is provided by faithfulness and normality. The GNS construction induced by a faithful normal
state ω leads to a von Neumann algebra πω(R) over a Hilbert space Hω which contains the state
as a cyclic and separating vector Ωω, such that the Tomita-Takesaki theory is applicable (cf.
proposition A.4.23). Moreover, the GNS representation πω is faithful, in particular invertible, so
that the resulting ∗-automorphism group on πω(R) can be translated back to the original algebra
R. Conversely, a cyclic and separating vector Ω gives rise to a faithful normal state via ω = 〈Ω, ·Ω〉
(in fact only separability is required). Thus, faithful normal states are precisely those we have been
looking for.2 There remains the question under which conditions a von Neumann algebra admits
a faithful normal state. The answer turns out to be contained in the following definition.

Definition 4.1.5 ([23]). A von Neumann algebraR is said to be σ-finite if every family of non-zero
mutually orthogonal projections of R has at most a countable cardinality.

Lemma 4.1.6 ([23]). A von Neumann algebra R acting on a Hilbert space H is σ-finite iff there
exists a countable subset of H which is separating for R.

The subsequent theorem combines the notion of σ-finiteness with that of faithful normal states,
and cyclic and separating vectors, respectively. It shows that the property of σ-finiteness of von
Neumann algebras is the characteristic feature for the applicability of the Tomita-Takesaki theorem.

1Note that the usual definition prevalent in mathematics uses another sign convention.
2One may extend modular theory to normal non-faithful states by restricting the state to a suitable subalgebra.
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Theorem 4.1.7 ([23]). Let R be a von Neumann algebra on a Hilbert space H. Then, the following
three conditions are equivalent:

(i) R is σ-finite.

(ii) There exists a faithful normal state on R.

(iii) R is ∗-isomorphic to a von Neumann algebra which admits a cyclic and separating vector.

In particular, σ-finite von Neumann algebras are ∗-anti-isomorphic to their commutants. Von
Neumann algebras encountered in quantum field theory fulfil this property. Note for this that on
a separable Hilbert space every von Neumann algebra is σ-finite.

We have seen that any faithful normal state defines a one-parameter group of ∗-automorphisms
on the corresponding von Neumann algebra. This important result is summarised in the next

Definition 4.1.8 ([23]). Let R be a von Neumann algebra and ω a faithful normal state on R.
Besides, let (Hω, πω,Ωω) be the corresponding GNS representation with Ωω the representative
vector of ω, cyclic and separating for πω(R), and ∆ω the modular operator of (πω(R),Ωω). Then,
by the Tomita-Takesaki theorem there is a one-parameter group of ∗-automorphisms s 7→ σωs on
R,3

σωs (A) ≡ π−1
ω (∆−isω πω(A)∆is

ω ), A ∈ R. (4.8)

This group is called modular automorphism group of the pair (R, ω). One also uses the term
modular flow or Tomita flow. The parameter s is usually referred to as modular parameter.

The modular automorphism group shows the following continuity properties:

Proposition 4.1.9 ([23, 72]). Let σωs be the modular automorphism group of the pair (R, ω). Then,
for each A ∈ R, s 7→ σωs (A) is strongly continuous. Moreover, s 7→ σωs is a σ-weakly continuous
one-parameter group of ∗-automorphisms on R.

Remark. (R, σωs ) provides another example of a W ∗-dynamical system.

One can establish that the modular automorphism group is trivial (σωs (A) = A for all A ∈ R and
s ∈ R) iff ω is a tracial state. In particular, for an abelian algebra the modular group becomes
completely invisible.

By proposition 4.1.3, the modular automorphism group of the pair (R′, ω), which we denote
by σ̂ωs , reads

σ̂ωs (A) = σω−s(A), A ∈ R′. (4.9)

The ∗-anti-isomorphism which maps R onto its commutant is given by

jω(A) ≡ π−1
ω (Jωπω(A)Jω). (4.10)

It has to be stressed that the existence of the modular objects for von Neumann algebras is a
highly non-trivial result. The modular automorphism group contains information about both R
and ω. Later on we shall see to what extent it really depends on the state.

Writing K ≡ − log∆ the unitary operators implementing the modular automorphisms adopt
the form U(s) = ∆−is = eisK . This formally corresponds to unitary operators implementing a
time evolution on the von Neumann algebra R which is generated by a Hamiltonian. For this
reason the self-adjoint operator K is called modular Hamiltonian or Tomita Hamiltonian.

Ωω is an eigenvector of K to eigenvalue 0. The spectrum of K may extend from −∞ to
+∞ (this necessarily happens in the type III1 case, see appendix A.5). However, as the following
proposition shows, the negative part of the modular Hamiltonian is suppressed w.r.t. R, while the
positive part is suppressed w.r.t. R′:

3The Tomita-Takesaki theorem can be stated for generalised states, namely so-called weights, as well [23, 72, 125].
Also in that case, in order to apply the theorem, the weights have to show certain properties. More specifically,
they have to be faithful, normal and semi-finite. However, it can be shown that any von Neumann algebra admits
such a weight, such that modular theory becomes an even more powerful tool since it is applicable to every von
Neumann algebra. Nonetheless, for our purposes it suffices to restrict ourselves to states, which is the usual form
modular theory is presented in mathematical physics.

Another variant of the Tomita-Takesaki theorem concerns its extension to unbounded operators, which naturally
appear e.g. in the Wightman framework. This has been investigated by Inoue [68] in the framework of ∗-algebras
of closable operators, so-called O∗-algebras.
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Proposition 4.1.10 ([60]). Let E−κ be the spectral projection of K onto the interval [−∞,−κ],
and E+

κ the spectral projection onto [κ,∞], where κ ∈ R+. Then

‖E−κ AΩ‖ ≤ e−κ/2‖A‖ for all A ∈ R, (4.11)

‖E+
κ A
′Ω‖ ≤ e−κ/2‖A′‖ for all A′ ∈ R′. (4.12)

Note that the physical Hamiltonian implementing the time translations does not need to be positive
definite in the representation space, as well (cf. [58, 60]). Think e.g. of a representation induced
by a thermal state, where the spectrum coincides with the whole real axis.

4.2 Modular Theory by Example

In general, it is quite tricky and involved to determine the modular objects explicitly. To gain
some intuition what they actually do, we use this section to discuss some elementary, more or less
concrete examples where it can be done.

Quantum Mechanical Limit

We begin with the undoubtedly most vital example for our purposes. If the algebra is chosen to
be R = B(H), with a separable Hilbert space H, the action of the modular group can be derived
explicitly, which is what we intend to do next (cf. [42]). From the physical point of view such a
type I factor is used to describe quantum mechanical systems with a finite number of degrees of
freedom. Hence, we shall obtain the quantum mechanical limit of the modular flow. In that case
the underlying Hilbert space H is identified by the N -particle space.4

Let ω be an arbitrary normal state on B(H). According to theorem A.4.14, ω is described in
terms of a density matrix ρ ∈ B(H) which represents the mixed quantum state of the system.

Lemma 4.2.1 ([23]). A normal state ω on the algebra of all bounded operators on a separable
Hilbert space is faithful iff the corresponding density matrix ρ is invertible.

The separability is in fact necessary, since on a non-separable Hilbert space ρ cannot be invertible
due to the existence of at most countably many non-zero eigenvalues:

Lemma 4.2.2 ([23]). The von Neumann algebra B(H) on a Hilbert space H is σ-finite iff H is
separable.

We assume ω from now on to be faithful and normal, i.e. given by an invertible density matrix ρ.
To carry out the Tomita-Takesaki construction, one has to construct the GNS representation space,
in which ω is given by a cyclic and separating vector.5 An abbreviation for this was suggested
by Haag, Hugenholtz and Winnink [58], see also [60], which we shall recall in the following.
The set of all Hilbert-Schmidt operators on H, {κ ∈ B(H) : trκ∗κ < ∞} together with the inner
product 〈κ|κ′〉 ≡ trκ∗κ′ form a Hilbert space, which we denote by K. K is a two-sided ideal in
B(H),

κ ∈ K, A ∈ B(H) ⇒ Aκ ∈ K, κA ∈ K. (4.13)

We construct a (reducible) representation of B(H) by operators acting on K, in which ω is given
by a pure vector. Since ρ is positive, κ0 = ρ1/2 gives rise to a well-defined operator (cf. theorem
A.1.15 and A.1.16), which, owing to the finiteness of the trace of ρ, is of Hilbert-Schmidt class.
We exploit the fact that K is an ideal to define

πω(A) |κ〉 := |Aκ〉 ∈ K, κ ∈ K, A ∈ B(H). (4.14)

That yields

ω(A) = tr(ρA) = tr(κ0Aκ0) = 〈κ0|Aκ0〉 = 〈κ0|πω(A)|κ0〉 , (4.15)

i.e. κ0 is a state vector corresponding to ω. It is a cyclic and separating for the representation πω:

4Or, if one prefers the field algebra, by the Fock space.
5As we shall see soon, the easiest way to obtain the modular flow is to cleverly guess it and show that it satisfies

the KMS condition; at this point we prefer a more elementary way. Nevertheless, in the course of this thesis we
shall also take advantage of the easier variant.
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• Separability: Let πω(A) |κ0〉 = 0. Thence ω(A∗A) = 0 ⇒ A = 0 ⇒ πω(A) = 0.

• Cyclicity: Let κ ∈ K, such that 〈κ|πω(A)|κ0〉 = 0 for all A ∈ B(H). Then choose A = κκ0,

0 = 〈κ|πω(A)|κ0〉 = 〈κ|κρ〉 = tr(ρκ∗κ) = ω(κ∗κ) ⇒ κ = 0.

πω can be identified with the GNS representation of ω. Let J |κ〉 := |κ∗〉 and ∆ |κ〉 := |ρκρ−1〉 for
all κ ∈ K. Then one checks that S = J∆1/2 is the polar decomposition of the Tomita operator
S, defined by Sπω(A) |κ0〉 = πω(A∗) |κ0〉. From this we can immediately derive the action of the
modular flow induced by a faithful normal state corresponding to an invertible density matrix on
the algebra R = B(H):

πω(σωs A) |κ〉 = ∆−isπω(A)∆is |κ〉 = |ρ−isAρisκ〉 = πω(ρ−isAρis) |κ〉 for all κ ∈ K (4.16)

⇒ σωs (A) = ρ−isAρis = e−is log ρAeis log ρ. (4.17)

The modular flow is generated by the Hamiltonian K := − log ρ. Note that this is not the modular
Hamiltonian, which is defined on the GNS space and which maps κ0 to zero. Anyway, K generates
the modular evolution on B(H).

Classical Limit

We can also perform a classical limit of the modular action [42]. For this purpose let us start again
with a quantum mechanical system with finitely many degrees of freedom. We fall back upon the
result just obtained, a faithful normal state ω is described by an invertible density matrix, and its
modular flow reads

σωs (A) = e−is log ρAeis log ρ (4.18)

⇒ d

ds
σωs (A) = −i log ρ · σωs (A) + iσωs (A) · log ρ = −i[σωs (A),− log ρ]. (4.19)

The classical limit is obtained by the usual substitutions: observables A 7→ smooth real functions
A on phase space, density matrix ρ 7→ smooth positive normalized function ρ on phase space,
commutators −i[·, ·] 7→ Poisson brackets {·, ·},

d

ds
A(s) = {A(s),− log ρ} = {A(s),K}, K := − log ρ. (4.20)

Modular Flow Induced by Perturbed States

Let us assume that the modular operator as well as the modular conjugation are known for some
state ω. One may ask for the modular objects associated with the state ωP , induced by a pertur-
bation P = P ∗ ∈ R (cf. section 3.5). In fact, the modular operator of the perturbed state can be
related to the modular objects of the unperturbed state.

Proposition 4.2.3 ([24]). Let R be a von Neumann algebra and ω = 〈Ω, ·Ω〉 a state represented
by a cyclic and separating vector Ω. Furthermore, let ∆ = e−K be the modular operator, and J the
modular conjugation associated with the pair (R,Ω). For P = P ∗ ∈ R consider the state

ωP (·) = 〈ΩP , ·ΩP 〉 , ΩP =
e−(K+P )/2Ω

‖e−(K+P )/2Ω‖
. (4.21)

Then, ΩP is cyclic and separating, and

∆P = e−KP , KP = K + P − JPJ (4.22)

is the modular operator associated with (R, ωP ). The modular flow is given by

σω
P

s (A) = ∆−isP A∆is
P = eis(K+P−JPJ)Ae−is(K+P−JPJ), (4.23)

∆is
P ψ = lim

n→∞
(∆is/ne−isP/nJeisP/nJ)nψ. (4.24)

Remark. A similar statement holds via the GNS construction for arbitrary faithful normal states.
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Some Concrete Examples

There do exists a couple of concrete examples, where the modular objects are explicitly determined
for certain states on specific von Neumann algebras [10, 41, 56, 79]. Not all these examples are of
physical relevance. Let us just mention two important ones.

Example 1 Let G be a metrizable, separable, locally compact topological group. Then, there
exists a left invariant measure µ satisfying µ(gA) = µ(A) for each g ∈ G and every µ-measurable
set A ⊂ G, the so-called left Haar measure dµ. One may establish the existence of a continuous
group homomorphism

∆̃ : G → (0,∞), such that µ(Ag) = ∆̃(g)µ(A). (4.25)

∆̃(g) is called the modular function. It constitutes the difference between the left and the right
Haar measure, ρ, the latter one being analogously defined,

dρ(g) = ∆̃(g−1)dµ(g). (4.26)

Consider the left regular representation L(·) on the Hilbert space L2(G,dµ(g)), which is induced
by multiplication with the inverse on the left. The vector Ω, defined by Ω(g) ≡ 1, is cyclic and
separating for R := {L(g) : g ∈ G}′′ ⊂ B(L2(G,dµ(g))). The modular objects corresponding to
the pair (R,Ω) turn out to be given by [10, 79]

(Jϕ)(g) = ∆̃(g)−1/2ϕ(g−1), ϕ ∈ L2(G,dµ(g)), (4.27)

(∆ϕ)(g) = ∆̃(g)ϕ(g), ϕ ∈ L2(G,dµ(g)). (4.28)

The modular operator is just multiplication by the modular function of the group. This example
explains the origin of the name modular theory, the modular operator is a generalisation of the
modular function.

Example 2 Let H1 and H2 be finite-dimensional Hilbert spaces with dimH1 = dimH2 = n and
ONBs {ei} and {fi}, respectively. Consider the von Neumann algebra R = B(H1) ⊗ 1lH2

acting
on the Hilbert space H1 ⊗H2.

Ω :=
∑
i

eλi ei ⊗ fi ∈ H1 ⊗H2, with λi ∈ R and
∑
i

e2λi = 1, (4.29)

is a cyclic and separating normalized vector for R. The modular objects for (R,Ω) read [79]

J(ei ⊗ fj) = ej ⊗ fi, (4.30)

∆(ei ⊗ fj) = e2(λi−λj)(ei ⊗ fj), (4.31)

σs(A⊗ 1lH2
)(ei ⊗ fj) =

∑
k

Akie
2is(λi−λk)(ek ⊗ fj), where Aki := 〈ek, Aei〉 . (4.32)

Later on we shall extend this example to infinite-dimensional separable Hilbert spaces. An appli-
cation of the Tomita-Takesaki theorem shows

(B(H1)⊗ 1lH2
)
′

= J (B(H1)⊗ 1lH2
) J = 1lH1

⊗ B(H2) = B(H1)′ ⊗ (1lH2
)′. (4.33)

This relation in fact holds in the general case. For two arbitrary von Neumann algebras R1 and
R2 one has (R1 ⊗R2)′ = R′1 ⊗R′2, which is a highly non-trivial result, inferred with the decisive
help of modular theory (see e.g. [72]).

Further physical examples, where the modular objects are explicitly determined, concern the CAR
algebra [79] as well as the CCR algebra [56].
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4.3 Link between Modular Theory and KMS Condition

There is a completely unexpected and outermost remarkable relation between modular theory
and KMS theory, and with it between mathematics and physics, which in additional provides
the decisive input to formulate the time hypothesis. This relation was realised and worked out
independently by Takesaki and Winnink in 1970. To quote Haag ([60], p. 216), it is “a beau-
tiful example of “prestabilized harmony” between physics and mathematics”. Since the next two
theorems form the basis for the formulation of the time hypothesis we add the proofs.

Theorem 4.3.1 ([72, 124]). An arbitrary faithful normal state ω on a von Neumann algebra R
satisfies the KMS condition for β = 1 w.r.t. the modular flow σωs the state generates itself.

Proof. We sketch the proof. Considering the GNS representation of R induced by ω we may
assume that R acts on a Hilbert space H which contains a cyclic and separating vector Ωω. For
convenience we omit the πω’s. Using RΩω ⊂ D(∆1/2) one concludes [72] that each of the functions

g1(z) ≡ 〈A∗Ωω, ∆−izBΩω〉 , 0 ≤ Im z ≤ 1/2, (4.34)

g2(z) ≡ 〈B∗Ωω, ∆1+izAΩω〉 , 1/2 ≤ Im z ≤ 1, (4.35)

is defined, bounded and continuous on the respective strip, and analytic on the interior of that
strip. Falling back upon the relations from proposition 4.1.3 we deduce that for all s ∈ R

g1(s+ i/2) = 〈A∗Ωω, ∆−is∆1/2BΩω〉 = 〈SAΩω, ∆
−isJ · J∆1/2BΩω〉 (4.36)

= 〈J∆1/2AΩω, J∆
−is · SBΩω〉 = 〈∆−isB∗Ωω, ∆1/2AΩω〉 (4.37)

= 〈B∗Ωω, ∆is∆1/2AΩω〉 = g2(s+ i/2). (4.38)

Thus, g1 and g2 can be combined into one single function f , bounded and continuous on {0 ≤
Im z ≤ 1}. Exploiting that ∆Ωω = Ωω we obtain for all A,B ∈ R:

ω(Aσs(B)) = 〈Ωω, A∆−isB∆isΩω〉 = 〈A∗Ωω, ∆−isBΩω〉 = g1(s) = f(s), (4.39)

ω(σs(B)A) = 〈Ωω, ∆−isB∆isAΩω〉 = 〈B∗Ωω, ∆isAΩω〉 = g2(s+ i) = f(s+ i). (4.40)

In the final step one shows [72] that f is analytic on the interior of that strip. Then f satisfies all
the conditions demanded in theorem 3.3.5 which constitute the KMS condition.

This way modular theory enters naturally into equilibrium thermodynamics. The KMS condition
at value β = 1 is therefore often referred to as modular condition. The modular group is endowed
with the analyticity associated with the KMS condition. There is a certain converse to this theorem,
the modular group is uniquely determined by the KMS condition.

Theorem 4.3.2 (Takesaki [10, 124]). Let (R, τ) be a W∗-dynamical system. Moreover, let ω be a
faithful (τ, β)-KMS state on R. Then, τt = σωt/β, i.e. τt coincides up to rescaling with the modular
group of R associated with ω.

Proof. We outline the proof for β = 1. Again, we work in the GNS space and skip all the πω’s.
It has to be shown that each automorphism group τt which satisfies the KMS condition at β = 1
coincides with σωs . ω is τt-invariant, hence by corollary A.3.10 τt is implemented by a unitary
group U(t) with U(t)Ωω = Ωω. One can establish the existence of σ-weakly dense subalgebras
R1,R2 ⊂ R, such that R1Ωω and R2Ωω are analytic vectors for the generators of ∆is and U(t),
respectively (cf. section 2.5.1). We consider the analytic function

gAB(z) ≡ 〈∆−i(z̄+i)B∗Ωω, U(z)AΩω〉 = ω(σz−i(B)τz(A)) for A ∈ R1 and B ∈ R2 (4.41)

⇒ gAB(t+ i) = ω(σt(B)τt+i(A))
KMS cond. for τ

= ω(τt(A)σt(B)) (4.42)

⇒ gAB(t) = ω(σt−i(B)τt(A))
KMS cond. for σ

= ω(τt(A)σt(B)). (4.43)

It follows that gAB(z + i) = gAB(z) for all z ∈ R, and thereby also for all z ∈ C. By the same
argument used in proposition 3.4.2 one obtains gAB ≡ const. In particular, gAB(t) = gAB(0), i.e.

ω(τt(A)σt(B)) = ω(AB) (4.44)

⇒ 〈A∗Ωω, U(t)∗∆−itBΩω〉 = 〈A∗Ωω, BΩω〉 for A ∈ R1 and B ∈ R2. (4.45)

Sine R1 and R2 are dense in R and Ωω is cyclic for R, we conclude U(t) = ∆−it.
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This theorem is very useful to check if a given automorphism group coincides with the modular
flow. Summing up, the last two theorems can be combined into the crucial

Corollary 4.3.3. A faithful normal state ω on a von Neumann algebra R is a β-KMS state w.r.t.
the ∗-automorphism group τt iff the modular flow σωs relative to ω is related to this group via the
formula τt = σωt/β.

This results in the striking conclusion that a (faithful) KMS state at inverse temperature β may
be characterised as a faithful normal state over the observable algebra R whose modular group
σωs coincides with the time translation group τt up to rescaling and whose modular parameter s
is related to the time t by s = t/β. In particular, any faithful normal state ω on a von Neumann
algebra R is a KMS state for a unique automorphism group of R. Moreover, as theorem 3.3.8
shows, the modular flow for a given state can satisfy the KMS condition only in states differing
from the original one by the action of an element affiliated with the centre of R. Consequently,
two different faithful normal states cannot share the same modular automorphism group, granted
that R is a factor.

4.4 Cocycle Radon-Nikodým Theorem

Any faithful normal state ω acting on a von Neumann algebra R determines a σ-weakly continuous
one-parameter group of ∗-automorphisms σωs on R. In this section we investigate to what extent
the modular flow really depends on the reference state and, on the other hand, to what extent it
is fixed by the algebra. The results presented here motivated the formulation of the thermal time
hypothesis, and, in addition, permit an alternative formulation. The details concerning the proofs
may be found in the pertinent literature [40, 4, 60]. In particular the role of this topic in the setting
of Connes’ classification of factors is described therein, which is also touched in appendix A.5.

Definition 4.4.1 ([60]). An automorphism of an algebra A is called inner automorphism, τinner,
if there exists a unitary element U ∈ A, such that

τinnerA = U∗AU for all A ∈ A. (4.46)

Two automorphisms τ1 and τ2 of the algebra A are said to be inner equivalent, if there exists an
inner automorphism τinner, such that

τ2 = τinner ◦ τ1. (4.47)

Hereby an equivalence relation is defined on Aut(A). The group Out(A) = Aut(A)/ ∼ is called
the group of outer automorphisms of A .

Definition 4.4.2 ([10]). A unitary one-cocycle U of a W∗-dynamical system (R, τ) is a strongly
continuous map t 7→ Ut from R into the unitaries of R, such that

Ut1+t2 = Ut1τt1(Ut2) for all t1, t2 ∈ R. (4.48)

Therefore, a unitary one-cocycle U generates a new W∗-dynamical system (R, τU ), where

τUt (A) = Utτt(A)U∗t , t ∈ R, A ∈ R. (4.49)

Let ω and ω′ be two faithful normal states on a von Neumann algebra R, and let (π,H,Ω) and
(π̂, Ĥ, Ω̂) be the corresponding GNS representations. The same argument used on page 42 shows
that ω′ is represented by a state vector Ω′ ≡ U Ω̂ on H which is cyclic and separating for π(R).
One proceeds by defining a conjugate-linear operator SΩ′,Ω via

SΩ′,Ωπ(A) |Ω〉 := π(A)∗ |Ω′〉 for all A ∈ R. (4.50)

SΩ′,Ω turns out to be closable, its closure, denoted by the same symbol, has a polar decomposition

SΩ′,Ω = JΩ′,Ω(∆Ω′,Ω)1/2. (4.51)

The positive, invertible, self-adjoint operator ∆Ω′,Ω is called the relative modular operator of the
pair (Ω, Ω′). Let us consider a triple of such vectors Ω, Ω′ and Ω′′ and put

uΩ′,Ω(s) ≡ ∆−isΩ′,Ω′′∆
is
Ω,Ω′′ . (4.52)
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Lemma 4.4.3 ([60]). uΩ′,Ω(s) is a unitary one-cocycle of (π(R),Ad(∆−isΩ )) which does not depend
on Ω′′.

The unitary one-cocycle uΩ′,Ω(t) of (π(R),Ad(∆−isΩ )) gives rise to a unitary one-cocycle of (R, σωs ),
(Dω′ : Dω)s ≡ π−1(uΩ′,Ω)(s), which is called Radon-Nikodým cocycle of ω′ w.r.t. ω.

Theorem 4.4.4 ([60]). For two arbitrary faithful normal states ω1 and ω2 on a von Neumann
algebra R the Radon-Nikodým cocycle s 7→ (Dω2 : Dω1)s has the following properties:

(i) Cocycle identity: (Dω1 : Dω2)s1+s2 = (Dω1 : Dω2)s1σ
ω2
s1 ((Dω1 : Dω2)s2)

(ii) Intertwining property: (Dω1 : Dω2)s(σ
ω2
s A) = (σω1

s A)(Dω1 : Dω2)s

(iii) Chain rule: (Dω1 : Dω2)s(Dω2 : Dω3)s = (Dω1 : Dω3)s

(iv) (Dω2 : Dω1)∗s = (Dω1 : Dω2)s

Combining (ii) and (iv) one immediately gets the intriguing cocycle Radon-Nikodým theorem, which
was proven by Connes [40], and which answers the question about the state dependence of the
modular flow.

Theorem 4.4.5 (Cocycle Radon-Nikodým Theorem). Let ω1 and ω2 be two faithful normal states
on a von Neumann algebra R. Then,

σω2
s A = (Dω2 : Dω1)s(σ

ω1
s A)(Dω2 : Dω1)∗s, (4.53)

the modular flows defined by two faithful normal states on R are inner equivalent.6

The theorem originates from the Radon-Nikodým theorem, which is a well-known theorem in
measure theory. Since the theory of operator algebras replaces ordinary measure theory on non-
commutative spaces, e.g. the classical notion of probability measure is substituted by the notion
of a state, it is regarded as a non-commutative extension of this theorem. Eventually, by dividing
out the inner automorphisms, we end up with the crucial

Corollary 4.4.6. All faithful normal states ω on a von Neumann algebra R determine the same
one-parameter subgroup σ̃s in Out(R), that is every (σ-finite) von Neumann algebra is endowed
with a canonical one-parameter group of outer automorphisms.7

Up to now it is possible that the canonical flow σ̃s is altogether trivial. However, Takesaki [124]
has shown that this does not happen if the composition of the algebra contains a type III factor.

Theorem 4.4.7 ([72]). Let ω be a faithful normal state on a von Neumann algebra R. Then, R
is semi-finite iff there is a positive, invertible, self-adjoint operator T , affiliated with R, such that

σωs (A) = T isAT−is for all A ∈ R and s ∈ R. (4.54)

In particular, the modular automorphism group σωs is inner for all s. Supposed that, in addition,
R has a separable predual, R is semi-finite iff σωs is inner for all s.

Corollary 4.4.8 ([124]). Let R be a type III factor with separable predual. Then, one finds a
faithful normal state on R. Since R is not semi-finite, there is an s ∈ R, such that σωs is an outer
automorphism.

If R is not semi-finite, the modular automorphism group σωs is not contained in the group of
inner automorphisms. Its projection into the group of outer automorphisms, σ̃s, is a non-trivial
one-parameter subgroup. If R is semi-finite, the canonical flow is trivial. Studying the canonical
flow historically led to the subclassification of type III algebras, about which a survey is given in
appendix A.5.

By way of summary, the combination of the Tomita-Takesaki theorem and the cocycle Radon-
Nikodým theorem shows that the non-commutativity of a von Neumann algebra manifests itself
in a canonical, unique, intrinsic flow which converts the algebra into a “dynamical” object. Since
von Neumann algebras emerging in QFT are of type III1, this is undoubtedly a result of interest.

6As in the case of the Tomita-Takesaki theorem, the cocycle Radon-Nikodým theorem can be formulated in the
more general case of weights, see for instance [40, 41, 125]. Moreover, there exists a certain converse to it. To
any unitary one-cocycle Ut of (R, σω1 ) one finds a unique faithful semi-finite normal weight ω2 on R such that
Ut = (Dω1 : Dω2)t [41]. Once again, for our purposes the stated version is sufficient.

7Since each von Neumann algebra admits a faithful normal semi-finite weight, it can be shown in the more general
setting of weights that every von Neumann algebra possesses such a canonical (possibly trivial) flow [40, 41, 125].
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4.5 Geometrical Meaning of the Modular Flow and Bisognano-
Wichmann Theorem

Let us pass to physics and consider a local net of von Neumann algebras together with a faithful
normal (partial) state ω � R(O). Up to now, it is not known whether the modular flow generally

permits a physical interpretation.8 While the modular flow σ
ω�R(O)
s always maps R(O) onto itself,

it is a fruitful question if σ
ω�R(O)
s applied to a local subalgebra R(O1), O1 ⊂ O, leads to another

local subalgebra. In that case the modular flow would permit a simple interpretation in terms
of a geometrical transformation in the underlying space. Indeed, there do exist cases in which
the modular flow has a purely geometrical action, whereby it obtains a physical meaning. In the
current section we intend to present the most prominent examples of this kind. In this context we
refer to the comprehensive overviews by Borchers [22] and Guido [56].

Definition of Geometrical Action

For the time being we focus our attention on the vacuum sector of an AQFT in (3+1-dim.)
Minkowski space M . The vacuum representation is given by a local net of von Neumann algebras
O 7→ R(O) = π0(A(O))′′ and the total algebra R = π0(A)′′ on M . The vacuum state ω0 is
represented by the state vector Ω0 in the relevant Hilbert space, which is left invariant under the
action of the Poincaré group. At the end of this section we shall say a few words concerning
a geometrical action of the modular group on more general classes of spacetimes. The essential
features can be found in the examples we are going to discuss in Minkowski space, anyway.

We are interested in the modular flow induced by the restriction of the vacuum state to certain
subregions O of Minkowski space. The applicability of the Tomita-Takesaki theorem, and with it
the existence of the modular objects, is established by the Reeh-Schlieder property as soon as O
is non-empty and has non-empty causal complement.9 First of all we make the term “geometrical
action” precise. For this, we fall back upon the definition given by Trebels [129], the modular
flow acts geometrically if it acts geometrically on double-cones (also called diamonds):

Definition 4.5.1 ([129]). Let O be a causally complete, connected, open set in M . A modular

automorphism group σ
ω�R(O)
s induced on R(O) acts geometrically if there exists a one-parameter

group of automorphisms ΛOs acting on O such that

σω�R(O)
s (R(D)) = R(ΛOs (D)) for all double-cones D ∈ O. (4.55)

The modular conjugation acts geometrically if jω�R(O)(R(O)) = R(Ô) and if there exists an
isomorphism g : O → Ô, such that for every double-cone D ⊂ O one has

jω�R(O)(R(D)) = R(g(D)). (4.56)

Bisognano-Wichmann Theorem and Related Results

Virtually all known results where the modular group acts geometrically find there origin in the
pathbreaking work of Bisognano and Wichmann [13, 14] from 1975/76, where O corresponds
to the Rindler wedge W . Historically, the Bisognano-Wichmann theorem was the first explicit
determination of a modular group in physics.

Theorem 4.5.2 (Bisognano-Wichmann [13, 14, 60]). Let W = {x1 > |x0|} ⊂ M be the (right)
Rindler wedge. Moreover, consider the vacuum state ω0 restricted to the wedge algebra R(W ), and
assume that the net of observable algebras O 7→ R(O) is locally associated with a finite component
quantum field theory satisfying the Wightman axioms. Then, the modular conjugation is given by

Jω0�R(W ) = U(R1(π))Θ. (4.57)

8In fact, it is the topic of this thesis to take a look at that issue.
9Note that the vacuum state ω0 does not define a modular flow on the algebra R associated to the entire

Minkowski space, since Ω0 is not separating in that case.
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Θ is supposed to be the anti-unitary PCT-operator.10 U(R1(ϑ)) denotes the unitary operator im-
plementing the spatial rotation through an angle of ϑ around the x1-axis,

R1(π)(x0, x1, x2, x3) = (−x0,−x1, x2, x3). (4.58)

The modular operator satisfies the equation

∆ω0�R(W ) = e−2πL, (4.59)

where L is the generator of the Lorentz boosts in x1-direction,

Λ(λ) =


coshλ sinhλ 0 0
sinhλ coshλ 0 0

0 0 1 0
0 0 0 1

 , (4.60)

in the unitary representation of the Poincaré group P↑+, defined on the Hilbert space of the theory,
that is U(Λ(λ)) = eiλL, where λ is the boost parameter.

According to the Bisognano-Wichmann theorem the modular objects assigned to the Rindler wedge
possess a geometrical interpretation under the condition that the net is generated by a finite
component Wightman field theory. The geometrical meaning ΛWs of the modular flow corresponds
to the Lorentz boosts Λ(2πs) in the wedge region (see figure 6.1 on page 77), induced by the
modular Hamiltonian K = 2πL. For a scalar field this means

σω0�R(W )
s (ϕ[f ]) = ϕ[fs], fs(x) = f(Λ−1(2πs)(x)), (4.61)

for suitable test functions f supported in W , or expressed in a purely algebraic manner

σω0�R(W )
s (R(O)) = R(ΛWs O) = R(Λ(2πs)O) for all s ∈ R and O ⊂W. (4.62)

The modular conjugation implements a combination of charge conjugation, time and spatial re-
flection. It has a geometrical meaning which reads

jω0�R(W )(R(O)) = R(θRO) for O ⊂W, (4.63)

where θR ∈ P+ is the reflection through the edge {(0, 0, x2, x3) : x2, x3 ∈ R} of wedge:

θR(xµ) =

{
−xµ for µ = 0, 1

xµ for µ = 2, 3
(4.64)

In particular wedge duality holds, R(W )′ = jω0�R(W )(R(W )) = R(W ′). Similar results can be

verfied for a general wedge region gW , g ∈ P↑+. Since the vacuum is Poincaré invariant, the
Tomita operator S(gW ) for the pair (R(gW ),Ω0) coincides with U(g)S(W )U(g)∗, when S(W ) is
the Tomita operator associated with (R(W ),Ω0). Accordingly, the modular objects corresponding
to the wedge gW have a geometrical action obtained by adjoining that of the Rindler wedge W
with g. For the modular flow that means ΛgWs = gΛWs g

−1.

Definition 4.5.3. One says that modular covariance holds, whenever the modular operators in-
duced by the vacuum state on wedge algebras have the same action as in the Bisognano-Wichmann
case, i.e. if the modular group coincides with the unitary group representing the wedge-preserving
boosts. For e.g. the right Rindler wedge the relation ∆−isω0�R(W ) = U(Λ(2πs)) has to be satisfied.

10The PCT-operator is an anti-unitary involution which physically represents a composition of space reflection,
charge conjugation and time reversal. In the Wightman framework the existence of Θ was proven by Jost (“PCT-
theorem”, cf. [60, 120]). Θ is uniquely determined by the relations

Θϕ(x)Θ−1 = (−1)m(−i)Fϕ∗(−x) and Θ |Ω〉 = |Ω〉 ,

where m is the number of dotted spinor indices, and F is 0 or 1 if ϕ is a Bose or Fermi field, respectively. Θ satisfies

the relation ΘU(Λ, a) = U(Λ,−a)Θ, U being the representation of the Poincaré group and (Λ, a) ∈ P↑+ = L↑+ nR4.
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For the quite technical proof of the Bisognano-Wichmann theorem one particularly takes advantage
of the geometrical simplicity of the wedge regions. For that reason, these special regions seem to
be the only ones in Minkowski space permitting a geometrical interpretation under such general
conditions. On the other hand, putting additional assumptions on the theory, wider classes of
regions can be found for which the modular action is characterised by a simple geometrical meaning.

In a massless free theory every influence travels along the boundary of a lightcone. Thus,
besides spacelike commutativity, timelike commutativity holds, as well. This implies that the
vacuum vector Ω0 is cyclic and separating for the algebra R(V+) of the future-cone. Proceeding
similarly to the Bisognano-Wichmann case and taking account of the dilatation invariance of
massless free fields, the modular operators were determined by Buchholz [28].

Theorem 4.5.4 (Buchholz [28]). Consider the vacuum sector of a massless free scalar field theory.
Let R(V+) be the von Neumann algebra of the forward lightcone. Then, the pair (R(V+),Ω0)
induces on V+ the modular objects

Jω0�R(V+) = WΘ, (4.65)

∆−isω0�R(V+) = U(D(2πs)). (4.66)

Herein Θ is again the anti-unitary PCT-operator, W is supposed to be the unitary operator reducing
to +1 or −1 on subspaces with an even or odd number of particles, respectively, and U denotes the
unitary implementation of the global dilatation group D(λ) on the Hilbert space of the theory,

D(λ)ϕ(x)D(λ)−1 = eλϕ(eλx). (4.67)

We conclude that the geometrical action is given by the dilatations:

σω0�R(V+)
s R(O) = R(D(2πs)O) for all s ∈ R and O ⊂ V+, (4.68)

ΛV+
s xµ = D(2πs)xµ = e2πsxµ. (4.69)

The modular conjugation corresponds to the geometrical significance

jω0�R(V+)(R(O)) = R(−O) for O ⊂ V+. (4.70)

This proves timelike duality, R(V+)′ = jω0�R(V+)(R(V+)) = R(V−). Of course, analogous results
hold for the backward lightcone V− and Poincaré transformed future-cones.

As a result of Swieca and Völkel [123] massless free theories are conformally covariant.
In their paper the existence of a unitary representation of the conformal group, or rather of the
universal covering group of the conformal group, is proven. Starting from these investigations
Hislop and Longo [65] could deduce another example in which the modular group is explicitly
known by establishing conformal relations between double-cone, forward lightcone, and wedge.11

Theorem 4.5.5 (Hislop-Longo [65]). Consider again the vacuum sector of a massless free scalar
field theory. Let R(D1) be the von Neumann algebra associated with a double-cone of radius equal
to 1 centred around the origin, D1 = {x : |x0|+ ‖~x‖ < 1}. Future-cone V+ and double-cone D1 are
related by a conformal transformation,

V+ = ρ(D1 − e0)− 1

2
e0, D1 = ρ(V+ +

1

2
e0) + e0, (4.71)

where ρ is the relativistic ray inversion map

ρ(xµ) ≡ (xνxν)−1xµ. (4.72)

The unitary operator T (1)U(ρ)T ( 1
2 ) implements the equivalence of R(D1) and R(V+), and the

modular objects are given by

Jω0�R(D1) = T (1)U(ρ)T (
1

2
)Jω0�R(V+)T (−1

2
)U(ρ)T (−1) (4.73)

= T (1)U(ρ)T (
1

2
)WΘT (−1

2
)U(ρ)T (−1) = ItU(ρ), (4.74)

11The von Neumann algebras R(W ), R(V±) and R(D) of wedge, forward/backward lightcone, and double-cone
are spatially isomorphic. The unitary equivalences are realised by unitary representations of suitable conformal
transformations (see [65]).
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∆ω0�R(D1) = T (1)U(ρ)T (
1

2
)∆ω0�R(V+)T (−1

2
)U(ρ)T (−1), (4.75)

∆−isω0�R(D1) = T (1)U(ρ)T (
1

2
)U(D(2πs))T (−1

2
)U(ρ)T (−1). (4.76)

U denotes the unitary implementation of the respective transformation on the Hilbert space of the
theory. T (λ) is supposed to be the one-parameter unitary group representing the time-translations,
It is the time reversal operator, and, as usual, Θ is the anti-unitary PCT-operator.

After carrying out a few straightforward manipulations one eventually ends up with a geometrical
significance of the following manner:

ΛD1
s xµ =

2xµ + δµ0 (2x0 cosh(2πs) + (1− xµxµ) sinh(2πs)− 2x0)

2x0 sinh(2πs) + (1− xµxµ) cosh(2πs) + (1 + xµxµ)
(4.77)

for the modular group (see figure 6.2 on page 79), as well as

xµ 7→

{
−(xνxν)−1xµ for µ = 0,

(xνxν)−1xµ for µ = 1, 2, 3.
(4.78)

for the modular conjugation. By applying suitable Poincaré transformations, the Hislop-Longo
theorem is easily extended to arbitrary shaped double-cones. Moreover, the result of Hislop and
Longo implies spacelike duality for the local algebras associated to double-cones, R(D)′ = R(D′).

The Bisognano-Wichmann theorem, as well as its two offshoots, theorem 4.5.4 and 4.5.5,
have a natural formulation in the algebraic framework. The modular objects, at least for wedge
and double-cone, do exist because of the Reeh-Schlieder theorem. Paradoxically, these theorems
have been proven originally only in the Wightman setting. However, meantime there do exist
some results in the algebraic formalism, as well.12 The first of such was obtained by Brunetti,
Guido and Longo [27] for the conformally covariant case. To treat the presence of singularities
of the conformal transformations on certain submanifolds, it is necessary to extend the theory
to a universal covering of a suitable compactification of M . The work of these authors is based
on a result of Borchers [19], who could give conditions when modular objects satisfy those
commutation relation with the translation operators which are expected from modular covariance.

Theorem 4.5.6 (Borchers [19]). Let R be a von Neumann algebra with a cyclic and separating
vector Ω, and let U(t) be a strongly continuous unitary group which satisfies U(t)RU(t)∗ ⊂ R for
all t ≥ 0. Then any two of the following conditions imply the third:

(i) U(t) = eitH with H ≥ 0.

(ii) U(t)Ω = Ω for all t ∈ R.

(iii) ∆−isU(t)∆is = U(e2πst) and JU(t)J = U(−t) for all s, t ∈ R.

The theorem shows that in the vacuum sector of a theory, satisfying translation covariance and the
spectrum condition, the modular objects commute with the translation operators in the same way
as Lorentz boosts and the PCT operator would commute with. While in 1+1 dimensions this is
sufficient to conclude modular covariance, in higher dimensions additional assumptions are needed.

Theorem 4.5.7 (Brunetti-Guido-Longo [27]). Consider the vacuum sector of a conformally co-
variant theory, given by a local net of von Neumann algebras O 7→ R(O). Then, the modular
groups as well as the modular conjugations generated by the vacuum state Ω0 restricted to wedge,
future-cone and double-cone have a geometrical meaning which coincides with the corresponding
modular actions considered above.

Another case where the Bisognano-Wichmann theorem holds is due to Mund [89]. The author
establishes modular covariance for massive models. More precisely, the theory is supposed to
contain only massive particles, it has to be asymptotically complete, within each charge sector all
particle masses must be isolated eigenvalues of the mass operator, and for each mass, charge and

12We do not explain all the terms appearing in this paragraph, because our intention is above all to emphasize
the universality of the Bisognano-Wichmann theorem.
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spin there has to be one particle multiplet under the gauge group. We want to mention two other
cases. Kuckert [77] has shown that whenever the modular flow acts as a symmetry, which means
that it maps for all s double-cone algebras onto algebras associated with some open region, then
modular covariance necessarily holds. An analogous result is true for the modular conjugation. It
is due to Borchers (cf. [22]) that wedge duality together with a reality-condition, implies modular
covariance.

Although the Bisognano-Wichmann theorem does not follow from the most basic principles
of AQFT as the counter-example of Yngvason illustrates [136], all these results underline that
it remains valid under very general conditions. In fact, the Bisognano-Wichmann theorem is
regarded to be generic in the algebraic framework, and in the following we shall assume that
modular covariance holds.

Approximate Geometrical Meaning of the Modular Group

The geometrical meaning of the modular group for double-cone algebras holds merely for the con-
formally covariant case. The interacting or massive case is more involved (see below). Nevertheless,
it is possible to derive an approximate geometrical meaning in specific subregions. To this end,
let us consider again the von Neumann algebra R(W ) associated with the Rindler wedge. Let
R(D) ⊂ R(W ) be the algebra of a diamond D which contains the origin in its closure. Due to
the observation that in the massless free case the geometrical actions of wedge and double-cone
approximately coincide sufficiently close to the origin as well as the expectation that a general the-
ory exhibits conformal covariance in the short distance limit, the asymptotic coincidence should
persist in the general case. Even more, if one knows the action of the modular group of a certain
spacetime region, one can show that the modular group of a suitable subregion admits approxi-
mately the same action in a specific sufficiently small part of this subregion. This result is due to
Fredenhagen [50]. A similar result for the modular conjugation goes back to Wollenberg [10].

Theorem 4.5.8 (Fredenhagen-Wollenberg [50, 10]). Let O 7→ R(O) be a local net. Let O ⊂ U
be two open regions, and assume that the state ω corresponds to a vector Ω which is cyclic and
separating for both R(O) and R(U). Moreover, suppose that there exists a sequence of sets On ⊂ O
with On+1 ⊂ On, such that Ω is cyclic for all R(On), and a sequence of positive numbers τn with
τn →∞ for n→∞ such that the relation ∆−isω�R(U)R(On)∆is

ω�R(U) ⊂ R(O) holds for all |s| ≤ τn.

(i) For each f ∈ L1(R) and n ∈ N there exists a constant af (n) > 0 with limn→∞ af (n) = 0
such that

‖
∫

ds f(s)
(
∆−isω�R(O) −∆

−is
ω�R(U)

)
AΩω‖2 ≤ af (n)

(
‖AΩω‖2 + ‖A∗Ωω‖2

)
for all A ∈ R(On).

(ii) For each continuous function g on R+ vanishing at 0 and ∞, and for each n ∈ N, there exists
a constant bg(n) with limn→∞ bg(n) = 0 such that

‖
(
Jω�R(O) − Jω�R(U)

)
g(∆ω�R(U))AΩω‖2 ≤ bg(n)

(
‖AΩω‖2 + ‖A∗Ωω‖2

)
for all A ∈ R(On).

Note that af (n) and bg(n) neither depend on the details of the theory nor on the size of O. The
assumptions made in the theorem are satisfied if one chooses for U the Rindler wedge W , for O a
diamond D in the wedge whose closure contains the origin and ω = ω0; for On one may take the

diamonds 1
nD. Then, the theorem shows that the action of σ

ω0�R(D)
s on the elements of R( 1

nD)

becomes almost geometrical for large n and approaches the geometrical action of σ
ω0�R(W )
s .

Possible Geometrical Actions for a Given Spacetime Region

We consider the issue, which was studied by Trebels [129], to what extent the possible geometrical
actions induced by the vacuum state for various AQFTs are fixed. For this purpose a somewhat
more restrictive notion of geometrical action is useful, namely a causally geometrical action.

Definition 4.5.9 ([22, 129]). The causal group, causal(O), of a region O ⊂M is defined to be the
group of all automorphisms g of O satisfying the following condition:
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(i) For all spacelike separated points x, y ∈ O both g(x)−g(y) and g−1(x)−g−1(y) are spacelike;

(ii) x− y ∈ V+ implies g(x)− g(y) ∈ V+ and g−1(x)− g−1(y) ∈ V+.

An element g ∈ causal(O) maps double-cones onto double-cones with the same light orientation.
Since double-cones form a topological base of Minkowski space, g : O → O has to be continuous.

Theorem 4.5.10 ([129]). The causal group of Minkowski space M , is the group generated by the

proper orthochronous Lorentz group L↑+ together with the dilatations. The same is true for the
causal group of the forward lightcone V+.

Corollary 4.5.11 ([129]). Let O ⊂ M be a connected region which is related to the forward
lightcone by a conformal orthochronous transformation k, then

causal(O) = k ◦ causal(V+) ◦ k−1. (4.79)

Definition 4.5.12 ([129]). The modular automorphism group acts causally geometrically on a
causally complete, connected, open set O ⊂M if the automorphism in definition 4.5.1 is causal.

Theorem 4.5.13 ([129]). Let k be a conformal orthochronous transformation which maps V+ onto
a connected set O. Moreover, let ΛOs be a non-trivial one-parameter subgroup of causal(O). Suppose
that d

dxΛOs (x) ∈ V ±, for all x ∈ O. Then, there exists a λ > 0 such that ΛOs = k ◦ e±λs ◦ k−1.

Theorem 4.5.14 ([129]). Let O ⊂ M be a region on which the action of the modular group is
causally geometrical. Then, for all x ∈ O there exists an interval [0, s0), such that

ΛOs x ∈ x+ V + for all s ∈ [0, s0). (4.80)

ΛOs acts in the direction of the forward lightcone. As consequence of theorem 4.5.13 and 4.5.14
one obtains that there is essentially only one possible geometrical meaning for the modular group.

Corollary 4.5.15 ([129]). Let O be a connected set which is the image of the future-cone V+ under
a conformal orthochronous transformation k. Assume further that the modular group acts causally
geometrically on O. Then, there exists a λ > 0 such that ΛOs = k ◦ eλs ◦ k−1.

If the modular group has a causally geometrical meaning, the orbits of each point are fixed by
analyticity properties of the modular operators. Up to some positive rescaling of the parameter
s it has to be the one known from the conformally covariant theory. For wedge, future-cone, and
cuts of lightcones with wedge regions one can show [129] that the scaling parameter necessarily
has to coincide with the one in conformal theories. So there is precisely one possible geometrical
action. For other regions, like double-cones, no proof is available.

The Bisognano-Wichmann Theorem in Curved Spacetimes

At the end of this section we briefly want to mention some generalisations of the Bisognano-
Wichmann theorem to certain classes of curved spacetimes. Quantum field theories in curved
background spacetimes are usually formulated by adapting the Wightman axioms in a suitable
manner, where the main problem is to distinguish a vacuum state and to find a substitute for
the spectrum condition, which is not available in this general context. All generalisations of the
Bisognano-Wichmann theorem are based on the peculiarity that the underlying spacetimes admit
wedge-like regions which have similar properties to the related regions in flat spacetime. We
shall need these generalisations to discuss applications of the thermal time hypothesis in curved
spacetime.

Schwarzschild Space and Related Examples

The first generalisation was given in 1982 by Sewell [117]. The author proposed a framework
for a rigorous general theory of quantum fields on a class of manifolds with topology X = R2 × Y
(choose coordinates (t, w; y)), and with metric

ds2 = f(w2 − t2, y)(−dt2 + dw2) + g(w2 − t2, y)dσ2(y), (4.81)
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where f , g are positive, smooth functions on R × Y and dσ2(y) is a Riemannian metric on Y .
Note that this class of spacetimes includes Minkowski space as well as Kruskal space. Sewell
continues by defining wedge-like regions on X, namely X+ ≡ {w > |t|}. For this class of spacetimes
he formulates a system of axioms by adopting the Wightman axioms, supplemented by certain
regularity assumptions. All these spacetimes have a global time coordinate t, although the time-
translations are, in general, no isometries of the manifold. Let G be a Lie group of isometries of X.
It is assumed that there exists a strongly continuous unitary representation U of G in the Hilbert
space of the theory. But whenever G does not contain the time translations it is not possible to
define a Hamiltonian (the spectrum condition) in the usual way. To compensate for this deficiency,
the peculiar structure of these spacetimes is exploited, namely that the restriction of the time
translations on the surface {t + w = 0} are isometries. The quantum fields induce essentially a
Wightman theory on this surface, and a spectrum condition can be imposed. By adding some
dynamical postulates the QFT can be extended to X+ and X. One defines Lorentz-like boosts via

L(τ)(t, w; y) = (t cosh τ + w sinh τ, t sinh τ + w cosh τ ; y). (4.82)

The boosts turn out to be a one-parameter group of isometries of X. Instead of the ordinary time
translations in t the vacuum state is supposed to be invariant under the unitary representation
of the boosts. The restriction of L on X+, denoted by L+, gives the usual time translations in a
wedge.

In this framework Sewell derives an analogue of the Bisognano-Wichmann theorem for the
wedge-like regions. Let K+ be the generator of the unitary representation of the time translations
U(L+(τ)) in X+. Under the additional assumption that either the dynamics of the system de-
termines the quantum field in terms of that on {t + w = 0}, or the quantum field on X+ enjoys
certain stability properties, Sewell shows that the restriction of the vacuum state ω0 to the field
on X+ induces the modular operator

∆ω0�R(X+) = e−2πK+

. (4.83)

The proof is very close to the original one by Bisognano and Wichmann in Minkowski space.

De Sitter Space

De Sitter space [12, 63] is a geodesically complete spacetime of constant positive curvature R > 0
with topology R×S3 obeying the vacuum Einstein equations. It can be visualised as a hyperboloid,

−(z0)2 + (z1)2 + (z2)2 + (z3)2 + (z4)2 = α2, α2 = 3/Λ = 12/R (4.84)

in 4+1-dim. Minkowski space with metric

ds2 = −(dz0)2 + (dz1)2 + (dz2)2 + (dz3)2 + (dz4)2. (4.85)

Λ is the cosmological constant, which is assumed to be positive. Moreover, de Sitter space is the
unique maximally symmetric curved spacetime with the same degree of symmetry as Minkowski
space. Its symmetry group (in the embedding space R5) is the de Sitter group SO(1, 4) admitting
ten Killing fields. When we come to an application of the time hypothesis in de Sitter space, we
shall go a bit more into the physical relevance of this spacetime.

Bros and Moschella [25], and Bros, Epstein and Moschella [26] suggested an axiomatic
scheme for QFT in de Sitter space. Taking advantage of the global symmetry group of de Sit-
ter space, which is closely related to the Poincaré group of Minkowski space, they formulate an
approach towards a QFT closely related, one more time, to Wightman’s approach. The authors
replace the spectrum condition, by a so-called weak spectral condition requiring appropriate ana-
lytic continuation properties of the Wightman n-point functions. The distinguished vacuum state
ω0, the so-called Euclidean vacuum, is selected to be the one which is invariant under the full de
Sitter group and has best analyticity properties. Infinitesimally the state looks like the Minkowski
vacuum (see also [90]).

By identifying wedge-like regions, such as static de Sitter space Sstat, {z4 > |z0|}, the authors
derive the Bisognano-Wichmann theorem for the de Sitter case. The modular action induced by
ω0 � R(Sstat) corresponds to Lorentz boosts in z4-direction of the 5-dim. embedding space.
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4.6 Non-Geometrical and Non-Local Modular Flows

Some General Considerations

We have met several examples so far where the modular flow admits a purely geometrical interpre-
tation. Nevertheless, one does not expect this sort of examples to be of a generic nature, because
there are not enough spacetime symmetries that preserve O. To this purpose let us pick up an
argument put forward by Fredenhagen [50]. Since the modular group induces automorphisms
on the algebras of observables R(O) over the spacetime region O, and for this reason preserves
locality, the associated spacetime transformations should respect the causal structure of spacetime.
But then only conformal transformations should be admissible at all, which is quite restrictive.

Knowing the action of the modular group is of paramount interest and gives new insights into
physics. However, under general conditions, like in massive or interacting theories, the wedge is the
only region, for which the modular action is known. One particularly would like to determine the
modular flow induced by the vacuum state restricted to a double-cone algebra in the massive case,
since double-cones are the most important regions in Minkowski space besides the wedges. This way
one would gain a deeper understanding of the physical meaning of the modular structure, which
undoubtedly would also give new insights into the thermal time hypothesis (cf. the subsequent
chapters). Massive theories are not invariant under conformal transformations. Together with the
result of Trebels that the conformal transformation predicted by the Hislop-Longo theorem 4.5.5
is essentially the only possible geometrical action, this suggests that one presumably cannot assign
a geometrical meaning to the modular flow in that case.

It is also argued by Saffary that one has to suspect the modular flow to act non-geometrically
on the massive double-cone algebra [115]. In his PhD thesis the author investigates a conjecture,
put forward by Schroer and Wiesbrock, that the infinitesimal generator δm of the modular
group, generated by the vacuum state confined to a double-cone, is a pseudo-differential operator
in the case of massive Wightman fields.13 More precisely, it is expected that δm is a perturbation
of the massless infinitesimal generator by a pseudo-differential operator. This additional term is
supposed to lead to the breakdown of conformal invariance and to cause a non-geometrical action.
Saffary confirms the pseudo-differential character of the infinitesimal generator in the examples
proposed by Yngvason [136] and by Borchers and Yngvason [21] (cf. the next subsection),
where the modular flow is known to be non-geometrical. A strategy to compute δm on the massive
double-cone algebra is to determine in a first step the modular group generated by the massless
vacuum state and relate it to the modular group generated by the “correct” massive vacuum state
with the help of the cocycle Radon-Nikodým theorem. For this one makes use of the unitary
equivalence of local algebras Rm(O) for all masses m. The massive free scalar fields can be seen
as different fields acting on the same Fock space, and the massless vacuum state is also cyclic and
separating for the massive algebras. This result enables Saffary to determine the modular flow
up to a cocycle. Anyway, the considerations made in [115] underline again, that the modular group
associated with a double-cone cannot generally expected to show a geometrical meaning.

Modular Flow Induced by Thermal States

In all the examples considered so far the modular group acts locally in the sense that local algebras
are mapped onto local ones. A first example which establishes the existence of modular groups
with a non-local action (and non-geometrical action) was put forward by Yngvason [136]. Here
we want to focus on another one, given by Borchers and Yngvason in [21], where all the details
can be found. In their paper the authors study the modular flow induced by a KMS state in a
thermal sector of an AQFT. The main results read as follows.

Theorem 4.6.1 ([21]). Let (A, τt) be a C∗-dynamical system and B a subalgebra such that τtB ⊂ B
for t ≥ 0 and assume ∪tτtB to be norm dense in A. Let ω be a (τ, β)-KMS state on A, denote by
(Hω, πω,Ωω) the corresponding GNS representation of A, and put R := πω(A)′′ and R1 := πω(B)′′.
Ωω is cyclic and separating for R as well as for R1 (cf. theorem 3.3.9). Moreover, let U(t) be the

13A pseudo-differential operator is a generalisation of a differential operator, for the precise mathematical definition
we refer to [115]. In all the known cases in which a geometrical meaning exists the infinitesimal generator is an
ordinary differential operator of first order.
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unitary group implementing the time translations αt, and define R1(t) := U(t)R1U
∗(t) Then, the

modular flow induced by ω � R1 satisfies

σω�R1
s (R1(t)) ≡ ∆−isR1

R1(t)∆is
R1

= R1(ϕ+(s, t)), where (4.86)

ϕ+(s, t) =
β

2π
log
(

1 + e2πs(e2πt/β − 1)
)

for all s, t for which 1 + e2πs(e2πt/β − 1) > 0. (4.87)

In a next step Borchers and Yngvason investigate first 1-dim. models and then pass to 2-dim.
models that factorise in lightcone variables. Exploiting theorem 4.6.1 they show that the modular
flow induced by a thermal state restricted to the algebra of a forward cone V+, or a wedge region W ,
maps the algebras of translated forward cones or wedges, respectively, into another such algebra.

Theorem 4.6.2 ([21]). Let ϕ+ be as in theorem 4.6.1, and let ϕ−(s, t) ≡ −ϕ+(−s,−t), then

σω�R(V+)
s (R(V+ + xµ)) = R(V+ + ϕµV +(s, xµ)), ϕµV +(s, xµ) = (ϕ+(s, x0 − x1), ϕ+(s, x0 + x1)),

σω�R(W )
s (R(W + xµ)) = R(W + ϕµW (s, xµ)), ϕµW (s, xµ) = (ϕ−(s, x0 − x1), ϕ+(s, x0 + x1)).

Far away from the boundary of the respective domains the flow lines of ϕµV + and ϕµW essentially
coincide with the ordinary time translations. Conversely, close to the apex of the forward lightcone,
and near the edge of the wedge the modular flow approaches the vacuum modular flow.

For more concrete calculations concerning e.g. the behaviour of double-cone algebras under
the modular flow the authors focus on the Weyl algebra of a generalised free Bose field in two
dimensions. They determine explicitly the modular action induced by a quasi-free KMS state ω
restricted to the algebras R(V+) and R(W ), respectively. While it can be shown that for a field of
minimal scaling dimension the modular action is geometrical, it turns out that for fields of higher
scaling dimensions n > 0 the modular flow is a non-local transformation, in the sense that double-

cone algebras are no longer localised in double-cones after the transformation σ
ω�R(V+)
s or σ

ω�R(W )
s ,

respectively, is applied. The non-local modular flow causes a delocalisation of the observables.

Further Examples

Other concrete examples where the modular flow does not have a purely geometrical meaning were
found by Casini and Huerta [38], and by Longo, Martinetti and Rehren [81]. In [38] (cf.
also [81]), it is shown that the modular flow induced by the vacuum state of a free Fermi field in
two dimensions restricted to spacelike separated double-cones is composed of a geometrical part
and a non-local mixing term, although the mixing between the separated regions turns out to be
weak. The appearance of such a “fuzzy” geometrical action is also proven in [81] in the case of a
1+1-dim. conformal QFT with boundary when the vacuum is restricted to a double-cone.

4.7 Physical Applications of Modular Theory

There are many fields where modular theory has entered mathematics as well as physics and led to
great breakthroughs. From the mathematical point of view it particularly played an indispensable
role in Connes’ analysis and classification of von Neumann algebras. We close this chapter by
compiling the most prominent consequences of modular theory for AQFT, for more details and the
relevant literature we refer to [22, 60].

For our purposes the relation to equilibrium statistical mechanics is of utmost importance.
Furthermore, modular theory disclosed new insights into the type of local algebras and played a
significant role in the type specification of local algebras presented in section 2.7. Other applica-
tions concern algebraic proofs of the PCT theorem by Borchers and by Guido and Longo, and
of the spin-statistics theorem by Guido and Longo. Moreover, Brunetti, Guido and Longo
succeeded in showing that all spacetime symmetries are encoded intrinsically in the local net.
Modular covariance thus implies that the representation of the Poincaré group is intrinsically con-
tained in the net. The modular conjugations associated with the vacuum were used by Buchholz,
Summers et al. to derive the spacetime itself, in which the quantum system is viewed as evolving,
as well as its isometry group. In chapter 5 and 7 we shall discuss in detail a possible physical
meaning of the modular flow as a flow describing some sort of local dynamics.
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Chapter 5
Thermal Time Hypothesis

“Time is nature’s way to keep everything from happening at once.”
John A. Wheeler, American physicist (1911-2008)

5.1 The Starting Point

What we have seen so far is that for a formulation of a theory of quantum gravity (as well as of
a generally covariant statistical theory) one has to face conceptual problems concerning the true
origin of time, known as the issue of time in quantum gravity. We have further argued that it could
be reasonable to adopt the position that Nature is penetrated by a fundamental timelessness. This
corresponds to the assumption that in a hypothetical generally covariant quantistic or statistical
theory one does not have a notion of a (distinguished) physical time, which, however, is not needed
for the full formulation and interpretation of the theory. The dynamical laws are determined by
correlations which are sufficient to make predictions. Nevertheless, the universal timelessness of
such theories has to be related to the preferred physical time flow which apparently (or seemingly)
characterises our non-generally covariant world. A mechanism is needed which explains how the
familiar notion of time eventually emerges from the timeless structure to become such an important
ingredient of the macroscopic world we live in as well as of our conscious experience.

An entirely new solution to this issue of time within the framework of algebraic quantum field
theory was suggested in 1994 by Connes and Rovelli in form of the thermal time hypothesis
(TTH) [42], see also [83, 110]. A similar ansatz had already been put forward for classical systems
in 1993 by Rovelli [107], which also supplies some physical foundations for the formulation of
the TTH. In this chapter we review in detail motivation and implementation of the TTH, that is
to say in the spirit of Connes and Rovelli. It thus represents the core of this thesis. In the
subsequent chapter we shall discuss those cases on which the time hypothesis has been successfully
tested. Only in chapter 7 we will pass to a critical analysis of the thermal time concept and present
our own point of view.

5.2 Formulation of the Thermal Time Hypothesis

State-Dependent Notion of Time

We start with three assumptions creating the appropriate setting to postulate the TTH, which
partly reflect requirements already made before.

(i) The physical time flow is not an a priori given fundamental property of the theory. It has no
mechanical meaning, but is a macroscopic feature of thermodynamical origin.

(ii) The notion of time is state-dependent. A (statistical) state singles out a preferred time flow,
and it is this flow that we naturally associate to the system being in that state.

(iii) The time flow is realised as a σ-weakly continuous one-parameter group of ∗-automorphisms
on the observable algebra (associated to the spacetime region the observer is confined to).
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CHAPTER 5. THERMAL TIME HYPOTHESIS

Accepting these conditions, Connes and Rovelli proposed an extension of the notion of time to
generally covariant theories, and, thus, gave a new perspective of the origin of time in non-generally
covariant theories, as well. Before continuing let us add a few remarks.

• (i) can be motivated by considering mechanical systems (cf. [107, 110]): There exist ap-
proaches towards classical mechanics and also quantum mechanics without any reference to
a notion of time (these covariant formulations may be found in appendix B). However, this
is only possible unless thermodynamics comes into play, for e.g. the definition of a Gibbs
equilibrium state crucially relies on the notion of a preferred physical Hamiltonian which
generates the dynamics of the system. This indicates that in classical and quantum me-
chanical systems most properties of time become really necessary only for the formulation
of statistical mechanics, whereas one cannot single out a time variable by purely mechanical
measurements. On the mechanical level all variables are on the same footing. The notion of
a (preferred) physical time flow is only meaningful on ensembles or on single systems with
many degrees of freedom, that is, time emerges statistically.

• (i) realises the old idea that thermodynamics and the notion of time are deeply intertwined. A
statement of Eddington says e.g. that clocks are necessarily thermodynamical; a pendulum
is not a clock unless it is equipped with a device that registers the number of oscillations [107].
It also fits in the picture that many peculiarities characterising the special time flow of our
experience become visible particularly in a thermodynamical context (such as irreversibility,
arrow of time, return to equilibrium, memory). The physical time flow has a thermodynamical
origin and retains its validity even if a classical background metric is not available.

• To explain (ii), let us consider a concrete physical system with a large, possibly infinite,
number of degrees of freedom. Usually one does not have access to the full microscopic
state, but only to a limited number of macroscopic coarse-grained variables. As described in
section 3.1 what actually can be done is to make a small number of observations from which
one constructs a distribution, which represents the generically impure state, compatible with
all the experimental knowledge (in the algebraic setting the observations are carried out in
some finite spacetime region O and combined into a partial state over R(O)). Following
Connes and Rovelli it is the impurity of the state, representing the lack of knowledge of
the observer about the microscopic details of the system, which causes the emergence of a
preferred physical time flow; time is a quantity tied to our ignorance.

• As explicated in section 3.1, one cannot make infinitely many measurements with an infinitely
accurate precision, and hence does never have access to the full microscopic configuration.
The description of a state is intrinsically incomplete, and one is inevitably in a thermody-
namical setting, which assigns to the system a statistical distribution function and thereby
a preferred time flow.

• In a timeless world a priori all flows are potential candidates to represent a time flow, none
being preferred. Only a concrete physical configuration, determined by the coarse-grained
description of the physical fields, singles out a flow, which is physically most suitable.

• A state-dependent notion of time had already been studied by Rovelli in a preceding paper
[107] in the classical context, which we shall briefly discuss at the end of this chapter.

• One motivation for (ii) explicitly mentioned by Connes and Rovelli is the observation that
in classical generally covariant theories, such as general relativity, the notion of time tends
to be state-dependent, as well (like e.g. proper time).

• (iii) reflects our usual assumption about the mathematical representation of a time flow. It
has to be a ∗-automorphism group, i.e. a one-parameter group which preserves the structure
of the laws of Nature, because otherwise time cannot be what is measured by clocks [90].

To summarise, a solution to the issue of understanding the origin of the physical time flow is
proposed by the idea to ascribe the time flow (the selection of a preferred flow) to statistical
properties of the state. The relevant statistical distribution determines a flow which coincides with
what we perceive as the physical flow of time. We want to emphasize that Connes and Rovelli
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are concerned to assign a physical time to a system in the sense of the specification of a physical
time flow, not to define a direction of time. The crucial question to be answered next concerns
the mechanism by which the state singles out a time flow from the set of all σ-weakly continuous
one-parameter groups of ∗-automorphisms on the observable algebra. As hinted above, the solution
is of course thermodynamics.

To this end, let us pay attention for the time being to a finite classical non-generally covariant
statistical system, defined by the Hamiltonian H. Furthermore, let ρ be the (nowhere vanishing)
distribution function corresponding to an equilibrium state in the sense of Gibbs, i.e. ρ is a smooth
positive normalized function on phase space which satisfies ρ = Z−1e−βH , Z = tr e−βH . A decisive
observation is that ρ contains all the information about the time flow as the Hamiltonian does,
apart from an unimportant constant overall rescaling. The essential dynamical information is
completely coded in the state. Indeed, due to the symplectic structure of the phase space the
distribution ρ defines a flow generated by − log ρ which coincides up to a factor β with the physical
time flow. β just sets the unit in which time is measured. The Hamiltonian can be inferred from
experiment by repeated measurements on copies of the system, without any need of observing a
time evolution. Hence, there is an operational procedure for determining which one is the time
variable (in contrast to a purely mechanical context where such a procedure is not available).
Clearly the same holds for a quantum mechanical system.

In a non-generally covariant quantum field theory in the algebraic framework with time evo-
lution αt, a thermal equilibrium state is defined via the KMS condition.1 One more time, as the
results of section 4.3 establish, if one knows such a state (which is assumed to be faithful) in com-
bination with the full kinematics, it contains all relevant information concerning the dynamics of
the system, and one can forget about αt without loss of information. Since the dynamics pushes
the system into an equilibrium state (“return to equilibrium”), it is a preferred state of particular
interest. This importance is supported by the huge variety of stability properties being inherent to
an equilibrium state. Hence, given a physical system (e.g. in terms of a net of observable algebras)
with a physical time flow αt, one searches for states satisfying the KMS condition w.r.t. αt.

In a generally covariant quantum theory, one has a net of algebras containing the physical
observables and the set of states, together determining the kinematics, but there is no dynamical
information available whatsoever. The idea proposed by Connes and Rovelli is now to reverse
the proceeding just described: Instead of searching for an equilibrium state for a given physical time
flow, which is not available anymore, one gets a preferred flow for a given state ω by demanding
ω to become a thermal equilibrium state w.r.t. this flow. Furthermore, they postulate this flow to
be the physical time flow perceived by an observer. Of course, a priori it is not evident that such
a flow exists. However, at this point the powerful results of modular theory apply. By theorem
4.3.1 and 4.3.2 for a given faithful normal state ω this flow does exist uniquely, and is precisely
the modular flow σωs generated by ω – supposed that equilibrium states are identified with KMS
states. From now on, we call this flow thermal time flow, the modular parameter s is said to be
the thermal time, a Hamiltonian generating the thermal time evolution on the relevant algebra is
called thermal Hamiltonian (this does not necessarily need to be the modular Hamiltonian).

Thermal Time Hypothesis ([42]). The physical time flow governing the macroscopic behaviour
of a quantum system being in a faithful normal state ω is given by the thermal time flow σωs .

Let us emphasize the main input: According to Rovelli ([110], p. 143) the key observation is
that given a (faithful normal) state “there exists always a [flow] [. . . ], w.r.t. which the system is in
equilibrium and whose physics is the same as in the conventional [. . . ] statistical case”. The idea
is to select a preferred time flow in such a way that the resulting dynamical system is in thermal
equilibrium. In that case the time evolution (expressed by the thermal time correlation functions),
the equations of motion, etc. look the same as in well-known equilibrium situations described by
ordinary time flows in non-generally covariant quantum statistical mechanics. To put it differently,
such a distinguished thermal time flow simply represents equilibrium dynamics. Consequently, the
thermal time flow has all the properties that characterise an ordinary equilibrium time flow, it
describes the same physics, and should thus be regarded as a physical time flow. Even more,
because of its thermodynamical origin, thermal time is regarded as properly “flowing” [113], and,
thus, is supposed explain one of our most fundamental experiences with time (cf. section 1.2).

1In this chapter we disregard that additional restrictions are necessary in order to ensure a typically thermody-
namical, dispersive behaviour of the system.
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CHAPTER 5. THERMAL TIME HYPOTHESIS

The thermal time postulate proposes a unifying perspective between the timelessness of a
generally covariant quantum theory with the evidence of the flow of time. It acts on an intersection
point which addresses various areas of physics. With the help of modular theory it is possible
to define an intrinsic concept of time, which according to the cocycle Radon-Nikodým theorem is
unique up to inner automorphisms. The canonical evolution associated with the algebra is the root
of physical time. The deep mathematical results about the structure of von Neumann algebras
were actually one main motivation for Connes and Rovelli to postulate the TTH, apart from
the wish to develop a solution to the problem of time in quantum gravity.

A state gives rise to completely different time flows when restricted to different members of the
net of local algebras. The characteristics of the time evolution therefore may change substantially
when probing the hypothesis on different regimes (cf. the examples discussed in the next chapter).
Since the hidden symmetry exploited by the modular flow can generally be expected to open the
door for highly unconventional flows (in comparison with an ordinary Hamiltonian flow in AQFT
which is simply interpretable by its geometrical meaning), the thermal time gives rise to an entirely
new concept of time (see section 7.5). Nevertheless, one might hope, and this hope is nurtured
particularly by an application of the TTH to cosmological models we are going to discuss in the
next chapter, that it is at least a promising candidate to explain the true nature of our time, which
recovers familiar notions of time in important cases of physical interest.

The fact that the time flow is chosen such that the system is always in equilibrium does,
according to Connes and Rovelli, not imply that evolution is frozen and one cannot detect
any dynamical changes. What actually can be measured is the effect of fluctuations around the
thermal state. Wightman showed [120] that in conventional QFTs satisfying the Wightman
axioms one can extract all physical information in terms of vacuum expectation values of products
of field operators (n-point functions), i.e. by means of the single vacuum state Ω0. Returning to
a (possibly generally covariant) AQFT in a state ω on the relevant von Neumann algebra R a
non-trivial evolution in thermal time can be expressed in terms of correlation functions of the form

FA,B(s) = ω(σωs (B)A) for A,B ∈ R. (5.1)

Physically this is related to the amplitude of detecting σωs (B) |Ωω〉 if one prepares A |Ωω〉 (in the
GNS space). An admittedly speculative ansatz how a time asymmetry may be implemented in
spite of the equilibrium dynamics generated by the thermal time can be found in [107].

Relation to Conventional Notions of Time and the Emergence of Temperature

In a generally covariant quantum theory thermal time seems to be the only time available. However,
in a theory which admits, apart from the thermal time flow, another meaningful notion of time,
such as a geometrical time flow with geometrical realisation on the spacetime manifold (as it is e.g.
determined by a representation of a suitable subgroup of the Poincaré group), geometrical time
and thermal time have to be related. The issue of comparing these two different flows was already
addressed by Connes and Rovelli. We adopt here the proposal by Martinetti and Rovelli
[83] from 2003, who postulated an extension of their ansatz. When a physical time t is measured in
a non-generally covariant system being in an equilibrium state at inverse temperature β by a clock
which measures just a rescaled physical time t̃ ∝ t, the state formally looks like an equilibrium
state at the rescaled temperature. This observation was taken up by Martinetti and Rovelli
and supplemented in the sense that also time-dependent rescalings should be permissible.

Thermal Time Hypothesis – Addendum ([83]). Consider a system in a state ω which admits
a thermal time flow σωs as well as a geometrical time flow αt. If the modular flow has a geometrical
meaning and either flows are proportional to each other, where the proportionality constant may
vary along the flow, a local notion of temperature is interpreted to be the ratio of the two flows:

β(s) :=
dt(s)

ds
=
‖∂s‖
‖∂t‖

. (5.2)

∂s and ∂t are the corresponding tangent vector fields.

Provided that both times are just two different parametrisations of the same curve, when time
is measured in geometrical time, the temperature is linked to its deviation from thermal time.
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Temperature is the speed of thermal time w.r.t. geometrical time [112]. In accordance with this
hypothesis there is an intricate relation between the notions of time and thermodynamics. While in
conventional theories for a given time evolution αt and an inverse temperature β one is looking for
(αt, β)-KMS states, in generally covariant theories it is the state in collaboration with the thermal
time flow it generates itself, that determines the temperature by comparison with a geometrical time
flow. Later on we shall meet the example which originally motivated this hypothesis (section 6.5).
As discussed in section 4.5, the modular flow does generally not have a geometrical interpretation
whereby leading to the notion of temperature.

Albeit this thesis focuses on the physical interpretation of the thermal time, let us touch the
(open) issue of giving this local temperature a physical interpretation (cf. [84, 85] and the references
cited therein). For instance a geometrical thermal time flow identified as the proper time of a non-
eternal observer (which then has bounded range) necessarily leads to a non-trivial rescaling and
thus to the notion of a local temperature. In principle there is no obstacle not to talk of a local,
time-dependent temperature. Of course, one would require this sort of temperature to be somehow
measurable. Note, however, that one deals here with temperatures defined at a point which may
vary in a neighbourhood of this point, while any realistic measuring device (“thermometer”) has a
spatial extension. A consistent thermal interpretation may be a delicate point. On the other hand,
the notion of temperature should not rely on the presence of any detector. The KMS condition e.g.
asserts a temperature independently of the very concept of a detector. The problem in which way
detectors respond to thermal states, supplemented by the issue that the response may depend on
the specific details of the detector as well as the measuring process itself, and that a detector may
need an infinite amount of time to get in equilibrium, would go beyond the scope of this thesis.
We remark that the local notion of temperature defined here does not coincide with other such
notions [81]. In section 6.5 we shall briefly come back to the temperature aspect.

In addition to the proposed physical relation between time and temperature we mention their
etymological relation emphasized by Rovelli [107]. The word ‘temporal’ originates from the Latin
word ‘tempus’ whose meaning is ‘time’, but also ‘section’, ‘part of’, or ‘division of’. ‘Temperature’
is connected to the Latin verb ‘temperare’, which means ‘to mix in due proportions’. The relation
between ‘temperare’ and ‘tempus’ is then expressed in the idea of ‘partition in due proportion’.

Classical and Quantum Mechanical Limit

In section 4.2 we have explicitly calculated the action of the modular flow in the quantum mechan-
ical limit. The result can be used to set up the TTH for quantum mechanical systems. A faithful
normal state ω is described via an invertible density matrix ρ, and the thermal time flow, acting
on the observable algebra, is generated by the thermal Hamiltonian K = − log ρ,

A(s) = σωs (A) = e−is log ρAeis log ρ. (5.3)

The TTH changes ρ into a (β = 1)-Gibbs state w.r.t. the thermal time flow. As mentioned before,
in contrast to the usual viewpoint in non-generally covariant systems, the Hamiltonian does not
determine the thermal state, but it is the state which determines the Hamiltonian.

Next, we pass to the classical limit and derive the statement of the TTH in that case. The
state ω is represented as a smooth positive normalized function on phase space. We have seen
that the “modular flow” corresponds to a Hamiltonian flow, generated by the thermal Hamilton
function K = − log ρ. Accordingly, ρ induces the equations of motion

d

ds
A(s) = {A(s),− log ρ} = Xs(A), (5.4)

where A is any observable, which is an element taken from the abelian algebra of smooth real
functions on phase space, C∞(Γ), and Xs(·) ≡ { · ,− log ρ} is the flow vector field. To Xs one may
add a null vector field of the presymplectic form corresponding to the classical system. Again, ρ
resembles a Gibbs ensemble relative to the thermal Hamiltonian.

The TTH can be applied to the covariant formulation of classical and quantum mechanics
(appendix B and section 7.9). Solely the state singles out a time variable in a system fully char-
acterised by correlations between observables, and wherein a priori all variables are on an equal
footing. While the weakly vanishing covariant Hamiltonian reflects the absence of a preferred time,
the thermal Hamiltonian, which is (formally) a proper Hamiltonian, generates a time flow.
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5.3 Alternative Versions of the Thermal Time Hypothesis

Intrinsic Equilibrium States as the Source of Thermal Time

An interesting variant of the TTH for classical systems represented in the covariant formalism (cf.
appendix B.1) had already been developed by Rovelli [107] in 1993. It differs from the classical
limit obtained here in the sense that it presupposes the system to be in equilibrium in order to
distinguish a thermal time. Let us briefly recall the idea for completeness, but also because we
think that it much more emphasizes the main idea underlying the TTH. Suppose (Γex, σc, Hc) to
be a classical system represented in the covariant language. The Hamiltonian Hc ≈ 0, weakly
vanishing in the sense of Dirac [45], defines a constraint surface C in the extended phase space
Γex, on which the 2-form σc induces a presymplectic form ω. A state on this system is given as
a distribution function ρ on C satisfying {ρ,Hc} ≈ 0. This condition ensures the invariance along
the orbits generated by the Hamiltonian constraint, and thus the consistency with the equations
of motion. Again, the state selects a preferred time flow, generated by the vector field Xρ on C.
Xρ is fixed (up to a null vector field of ω) by the equation

ω(Xρ) = −d log ρ. (5.5)

However, this flow is only regarded as a physically meaningful time flow (or thermodynamical time
flow in the original terminology) if the state ρ is a priori an equilibrium state. For the definition
of an equilibrium state an intrinsic, covariant notion of equilibrium is needed, not depending on
the knowledge of a time flow. A first ansatz to implement such a characterisation is to require all
macroscopic subsystems ρ′ to be in equilibrium with the rest of the system ρ′′, in the sense that
the distribution function (approximately) factorises for these subsystems, ρ = ρ′ · ρ′′.2

Consequently, the crucial difference to the TTH of Connes and Rovelli is that not an
arbitrary (faithful normal) state but only an intrinsic equilibrium state generates a physical thermal
time flow. This sets much greater store by the observation that in the non-generally covariant case
precisely the equilibrium states contain the full information about the physical dynamics. We shall
pick up this point in our discussion.

State-Independent Notion of Time

Different states define different thermal time flows, but recall that taking the cocycle Radon-
Nikodým theorem into account, it is possible to define a canonical state-independent flow σ̃s as
soon as inner equivalent flows are identified. Thereby an alternative formulation of the TTH, also
suggested by Connes and Rovelli, becomes possible, which fully exploits the striking mathe-
matical results of the Tomita-Takesaki theorem and the cocycle Radon-Nikodým theorem, which
together ensure existence and uniqueness of the intrinsic flow.

Thermal Time Hypothesis – Alternative Version ([42]). The physical time flow of a quantum
system described by a von Neumann algebra R is given by the canonical flow σ̃s

This hypothesis changes a von Neumann algebra into a true intrinsically dynamical object. Von
Neumann algebras inherit a natural physical time evolution from their non-commutativity. To get
a non-trivial canonical flow it is necessary to deal with algebras of type III, as it happens to be the
case in AQFT. But it also means, in contrast to the original version, that the hypothesis has no
counterpart in classical or quantum mechanics (where all time flows are in the same equivalence
class as the identity transformation). Nevertheless, since the modular automorphisms are inner
equivalent, the alternative version may seem to be quite close to the original one, but note that there
is a decisive change in perspectives: It is not the state anymore which determines, in combination
with the algebra, the physical time, but it is exclusively the algebraic structure of the observables
contained in one single local algebra. In the remainder of this thesis we shall mainly deal with the
first version, and assume that the thermal time corresponds to the modular flow.

2Rovelli actually demanded the corresponding components of Xρ to have (weakly) vanishing Lie brackets, which
is a consequence of the factorisation property of the distribution function.
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Chapter 6
Tests of the Thermal Time Hypothesis

“We’ve learned from experience that the truth will come out.”
Richard P. Feynman, American physicist (1918-1988)

According to Connes and Rovelli the strongest support for the thermal time hypothesis stems
from its applications to concrete physical situations, which we are going to study next. We con-
sider systems which are already equipped with a physical time flow and analyse the nature of the
thermal time flow as predicted by the TTH. As we shall see it works perfectly well in a couple
of physically relevant examples, where it leads to the identification of thermal time with some
well-established physical time, and, moreover, provides a slightly new perspective on well-known
phenomena such as the Unruh effect or the Gibbons-Hawking effect. Thus, this section serves so
to speak as an exploration and affirmation of the TTH by example.

The presented examples on which the TTH is probed are taken from Rovelli and Smerlak
[112], Rovelli [108], Connes and Rovelli [42], Martinetti and Rovelli [83], Narnhofer,
Peter and Thirring [90] and Tian [126], and include all cases known so far to the best knowledge
of the author.

6.1 Equilibrium States and Tolman-Ehrenfest Effect

Systems being left to their own approach thermal equilibrium. That is the reason why in many
cases physics can be described perfectly well by small perturbations around such a thermal state
ω. Following Connes and Rovelli, in the non-generally covariant limit, where effects from the
gravitational field can be disregarded, the TTH consequently has to be applied to equilibrium
states w.r.t. the conventional Hamiltonian time evolution, that is to KMS states.

Clearly, in these cases the TTH works perfectly well by construction. Nonetheless, let us
exemplary take a short look on a faithful normal (αt, β0)-KMS state ω over a quantum field
theoretical system. ω is a (β = 1)-KMS state w.r.t. the thermal time flow and we have

σωs = αβ0s = αt(s) ⇒ t(s) = β0s. (6.1)

The TTH applied to a KMS state predicts a thermal time flow which coincides up to a constant
factor β0 with the Hamiltonian standard time, which clearly is a physical time flow. We pay
attention to the second part of the TTH: Thermal time and Hamiltonian time are proportional.
The constant of proportionality, β0, is precisely the inverse temperature of the KMS state. This is
in accord with the second prediction of the TTH.

A slightly more general result is obtained by passing to general static spacetimes. They were
studied by Rovelli and Smerlak [112] in the classical context, we focus on the quantum case.
Static spacetimes are characterised by the existence of a globally defined, timelike Killing field
ξµ,1 which additionaly satisfies the equation ξ[µ∇νξσ] = 0 expressing hypersurface orthogonality

1A Killing field ξµ is defined by Killing’s equation ∇µξν +∇νξµ = 0.
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(see [132] and section 7.2). This Killing field can be used to introduce a particularly convenient
coordinate system:

ds2 = −g00(~x)dt2 + gij(~x)dxidxj . (6.2)

We assume the existence of a QFT where the one-parameter group of isometries defined by the
Killing field ξµ is unitarily implemented on the observable algebra whereby defining the time
translations αt of the theory. 2 Let us further assume the system to be in a faithful (αt, β0)-
KMS equilibrium state ω. Then the modular flow is given by σωs = αβ0s, i.e. (∂s)

µ = β0ξ
µ.

Let us focus on the temperature prediction of the TTH. The geometrical time is the proper time
of observers moving on the flow lines of the Killing field. The corresponding tangent field reads
(∂τ )µ = (−g00)−1/2ξµ. Hence, we obtain for the inverse temperature measured by a static observer

β = β(~x) = ‖∂s‖/‖∂τ‖ =
√
−g00(~x)β0. (6.3)

Accordingly, the TTH predicts a temperature which depends on the gravitational potential at
that point where the measurement is made; in general the temperature is not constant in space.
The dependence on position at thermal equilibrium is such as to make the quantity T

√
−g00(~x)

a constant throughout the system. This effect was first discovered by Tolman and Ehrenfest
[127] in 1930 who used the pressure of electromagnetic radiation to construct a thermometer which
measures the local temperature via the Stefan-Boltzmann law. It is known as the Tolman-Ehrenfest
effect (see [112] for references to alternative derivations).

6.2 Special Relativistic System

Consider a single relativistic particle with rest mass m interacting with a heat reservoir of inverse
temperature β in the sense that it may exchange energy with the reservoir (cf. [108]). In the
presymplectic formalism the system is defined by the extended phase space Γex = 〈xµ, pµ〉 together
with the Hamiltonian constraint Hc = pµp

µ +m2 ≈ 0, and the presymplectic 2-form

ω = dpµ ∧ dxµ = dp0(~p) ∧ dx0 + dpi ∧ dxi =
pi√

~p2 +m2
dpi ∧ dx0 + dpi ∧ dxi. (6.4)

The mechanics of the particle is manifestly Lorentz invariant. Up to now all Lorentz frames are
on an equal footing; each of them defines a Hamiltonian time, none of which being preferred.

Let us assume the distribution ρ describing the state of the particle to be fixed as a Gibbs
distribution of inverse temperature β. The heat reservoir defines a preferred Lorentz frame O′, the
unique frame in which the average momentum of the gas vanishes (Lorentz invariance is broken
this way). In that Lorentz frame the distribution is given by

ρ(x′µ, p′µ) = exp
(
−β
√
~p′2 +m2

)
. (6.5)

First of all we observe that {ρ,Hc} ≈ 0, which is important for the consistency of the state. After
the distribution has been fixed, we apply the TTH. The state determines the thermal time flow
generated by the thermal Hamiltonian K = − log ρ = β

√
~p′2 +m2,

Xs = { · ,K}x′,p′ =
βp′i√
~p′2 +m2

∂

∂x′i
. (6.6)

We are allowed to add to this vector field a null vector field Y of ω, which has the general form

Y ∝ p′i√
~p′2 +m2

∂

∂x′i
− ∂

∂x′0
. (6.7)

This leads to a more convenient form of the flow vector field:

Xs = β
∂

∂x′0
= β

∂

∂t′
⇒ t′(s) = βs. (6.8)

2 See e.g. [133] for the construction of the QFT of a massive Klein-Gordon field in globally hyperbolic, stationary
spacetimes.
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Thus, in agreement with the TTH, thermal time s is a 1/β rescaling of the Hamiltonian time t′

corresponding to the Lorentz frame in which the particle is in equilibrium and in which the heat
reservoir is at rest. The ratio between the flows gives precisely the temperature of the heat reservoir.
While a priori all Lorentz times were on the same level, the state breaks Lorentz invariance and
distinguishes one special Lorentz time as the physically most reasonable one.

6.3 Robertson-Walker Space Filled with a Dynamical Max-
well Field

Next, let us apply the TTH to a Robertson-Walker space filled with an arbitrary non-homogeneous
electromagnetic radiation. Such a spacetime could be regarded as a phenomenological model of
our universe, where the Maxwell field models the cosmic microwave background. The description
is based on [108] with the difference that, like already in the previous example, we apply the TTH
in the form as it was suggested in [42] and as it is used throughout this thesis. Moreover, we add a
cosmological constant Λ. The relevant basics concerning general relativity and the ADM formalism
can be found in many textbooks [63, 132, 74], they are not repeated here. We use standard notation
of general relativity (see p. v and e.g. [74]). Let us start with the Robertson-Walker metric, which
has the form

ds2 = −dt2 +R2(t)[dχ2 + f2(χ)(dϑ2 + sin2 ϑdφ2)︸ ︷︷ ︸
=:g̃ij(~x)dxidxj

], where f(χ) =


sinχ for k = 1

χ for k = 0

sinhχ for k = −1

(6.9)

t ∈ R, ϑ ∈ [0, π], φ ∈ [0, 2π].

The coordinate χ runs from 0 to∞ if k = 0,−1, and from 0 to 2π if k = 1. The Robertson-Walker
metric comes out if one wishes to describe a spatially homogenous and isotropic spacetime.3 It
represents a class of spacetimes with constant curvature, and is in fact up to local isometry the most
general metric which does that. The constant k is the normalized spacetime curvature. Depending
on whether k = −1, 0, 1 the spatial section of the metric describes a geometry which is hyperbolic,
flat, or closed, respectively. For a given k, R(t) is the only remaining quantity which needs to be
specified via the Einstein equations. To obtain an exact solution, the energy-momentum tensor
must be required to be of the form of a perfect fluid whose density and pressure are functions of t
only, and whose flow lines are the curves (χ, ϑ, φ) = const. A Robertson-Walker space is expected
to be a good approximation to the large scale geometry of our universe, where the fluid is thought
of as a smoothed out approximation to the matter of the universe. R then corresponds to the
radius of the universe. In the standard gauge (6.9) the coordinate time t can be interpreted as the
proper time of an isotropic observer. Comparing the above expression with the ADM-metric

ds2 = −(N2 −NiN i)dt2 + 2Nidtdx
i + gijdx

idxj (6.10)

one reads off that the Robertson-Walker metric in standard form corresponds to a gauge with
vanishing shift vector N i = 0 and lapse function N = 1. The spacetime is supposed to contain an
arbitrary Maxwell field, which in particular does neither need to be homogeneous nor spherically
symmetric. Of course, such a system cannot be described by a solution of the Einstein equations,
where the metric satisfies the Robertson-Walker ansatz. Let us assume instead that the Maxwell
field interacts only with the R(t)-degree of freedom, while the interaction with the remaining
degrees of freedom is neglected. This is justified if the electromagnetic field influences the expansion
of the universe without really disturbing the symmetry of the Robertson-Walker space. Due to
the decrease of the number of variables the Robertson-Walker ansatz has to be plugged in directly

3Spatially homogeneity is characterised by the existence of a one-parameter family of spacelike hypersurfaces Σt
foliating the spacetime such that for all t and p, q ∈ Σt there is an isometry of the metric gµν mapping p on q,
i.e. any point on Σt looks the same. A spacetime is spatially isotropic if there is a congruence of timelike curves
(→“isotropic observers”) with tangent uµ, filling the spacetime and satisfying the property that given any point p
and unit tangent vectors sµ1 , sµ2 at p which are orthogonal to uµ, then there exists an isometry of gµν which leaves
p and uµ invariant and rotates sµ1 into sµ2 . This is the mathematical formalisation of the physical picture that it
is impossible to construct a geometrically preferred tangent vector orthogonal to uµ. There is an exact spherical
symmetry about every point. The surfaces Σt turn out to be orthogonal to uµ. See [63, 132] for more details.
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into the action rather than the equations of motion to get the right number of equations in the
end. In other words, the model is implemented as a coupled Einstein-Maxwell system by freezing
all the gravitational degrees of freedom except R.

The action of the system consists of the Einstein-Hilbert action of the gravitational field
supplemented by the action of the electromagnetic field, S = Sg + Sem. After plugging in the
Robertson-Walker ansatz, the system is described in the usual way by the full set of equations
obtained by varying the action w.r.t. R as well as the electromagnetic variables. We want to
determine the full Hamiltonian of the system. First, we extract the gravitational Hamiltonian
from the action. For this it is most convenient to use the ADM action of the gravitational field,

Sg =
1

16π

∫
d4xLg =

1

16π

∫
d4x
√
−g(R− 2Λ) =

1

16π

∫
dtd3xN

√
h(KijK

ij −K2 +(3)R− 2Λ).

Herein hµν denotes the Riemannian metric induced by g on the spacelike hypersurface Σt by
restricting the action of gµν at each p ∈ Σt to vectors tangent to Σt. One verifies hij = R2g̃ij .

(3)R
is the scalar curvature stemming from the Riemann tensor (3)Rµνσ

ρ constructed from hµν on Σt.
Furthermore, Kij is supposed to be the extrinsic curvature on Σt,

Kij =
1

2N
[ḣij −DiNj −DjNi] =

1

2
ḣij =

1

2
(R2g̃ij)

.
= RṘ g̃ij =

Ṙ

R
hij (6.11)

⇒ KijK
ij =

3Ṙ2

R2
, K = hijKij =

3Ṙ

R
. (6.12)

Di is the spatial covariant derivative on Σt associated with hµν . The dot denotes the Lie derivative

w.r.t. the coordinate time t. Exploiting (3)R = − 6k
R2 and

√
h = R3

√
g̃ the Einstein-Hilbert action

takes the form

Sg =
1

16π

∫
dtd3xR3

√
g̃

(
3Ṙ2

R2
− 9Ṙ2

R2
− 6k

R2
− 2Λ

)
= −

∫
dt

3RV

8π

(
Ṙ2 + k +

R2Λ

3

)
, (6.13)

where V :=
∫

d3x
√
g̃ describes the space volume for R = 1. From this we can read off the

Lagrangian of the gravitational field

Lg = −3RV

8π
(Ṙ2 + k +

R2Λ

3
). (6.14)

The conjugate momentum P of R is given as

P =
∂Lg

∂Ṙ
= −3RṘV

4π
⇒ Hg = ṘP − Lg = −2πP 2

3RV
+

3RV k

8π
+
R3V Λ

8π
(6.15)

for the Hamiltonian corresponding to the gravitational field. Next, we shall determine the Hamilto-
nian of the source-free electromagnetic field for the Robertson-Walker space. The Lagrange density
of the electromagnetic field reads

Lem = −1

4

√
−gFµνFµν = −

√
−g∇[µAν]∇[µAν] = −

√
−g ∂[µAν]∂

[µAν], (6.16)

where Fµν is the electromagnetic field tensor. Since the Maxwell field Aµ has a gauge arbitrariness,
only the Maxwell potential Ai forms the configuration field, while A0 has to be regarded as a non-
dynamical variable. The conjugate momenta Ei of Ai are given as

Ei =
∂Lem
∂(Ȧi)

.
=

∂Lem
∂(∂0Ai)

= −
√
−g (∂0Ai − ∂iA0). (6.17)

Again, the dot denotes the Lie derivative. Now we can construct the electromagnetic Hamiltonian,

Hem[R,A,E] =

∫
d3x(EiȦi − Lem) =

∫
d3x

(
1

2
√
−g

EiE
i +
√
−g ∂[iAj]∂

[iAj]
)

(6.18)

=

∫
d3x

(
1

R

g̃ij
2
√
g̃
EiEj +

1

R
g̃ij g̃

ikg̃jl∂[iAj]∂[kAl]

)
=:

V

R
H̃[A,E].
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It is supplemented by the Gauss constraint which is enforced by the non-dynamical scalar potential,

∇iEi ≈ 0. (6.19)

Altogether, the Hamiltonian constraint of the full system reads

Hc = Hg[R,P ] +Hem[R,A,E] = −2πP 2

3RV
+

3RV k

8π
+
R3V Λ

3
+
V

R
H̃[A,E] ≈ 0. (6.20)

From (6.20) we deduce the presymplectic 2-form on the constraint surface

ω =

∫
d3x dEi(x) ∧ dAi(x) + dP [R,A,E] ∧ dR (6.21)

=

∫
d3x dEi(x) ∧ dAi(x)− 3V 2

4πP
dH̃[A,E] ∧ dR. (6.22)

Γex = 〈R,P,Ai(x), Ei(x)〉 is the extended phase space of the system which contains all the dynami-
cal variables of the model. The definition of the dynamical system is completed by the Hamiltonian
constraint, the Gauss constraint and the presymplectic form ω. The average energy density e of
the electromagnetic field (i.e. of the cosmic background radiation) is given by

e(t) =
Hem(t)

volume
=
Hem(t)

R3(t)V
. (6.23)

Inserting (6.23) in the Hamiltonian constraint yields

3Ṙ2 − 3k −R2Λ− 8πeR2 ≈ 0. (6.24)

This is a generalisation of the Friedman equation to the average value of a spatially non-constant
energy density. Since H̃ neither depends on R nor on P , it commutes with the Hamiltonian
constraint, {Hc, H̃}R,P,A,E = 0, H̃ is a constant of motion. Plugging (6.18) into (6.23) gives

e =
H̃

R4
∝ R−4. (6.25)

Combining this expression with (6.24), we conclude

3Ṙ2 − 3k −R2Λ− 8π
H̃

R2
≈ 0, (6.26)

which is nothing else but the radiation-dominated Friedman universe. We emphasize that the
evolution of the radius R of the universe is independent of the dynamics of the electromagnetic
field and only affected by the constant H̃, just as a change of the radius has no influence on the
dynamics of the electromagnetic field.

Eventually the state of the Maxwell field has to be fixed. Its statistical distribution is intended
to describe the cosmic background radiation of the universe. For that one makes the realistic
assumption that the universe is filled with black body radiation. Then, the energy density is
spatially constant and equal to its average value e. From thermodynamics it is known that

e = 4σT 4, σ = const.
(6.25)⇒ T = T (R) =

1

R

(
H̃

4σ

)1/4

. (6.27)

The result is one more time a slight generalisation of the standard result in the Friedman-Robertson-
Walker model. The distribution that defines the state is supposed to be a Gibbs distribution at
temperature T . The Hamiltonian appearing in the Gibbs state has to be chosen in such a way that
it generates the time flow w.r.t. which the temperature of the background radiation is defined. Since
the temperature was introduced as a function of the energy density e of the electromagnetic field,
which in turn was defined in terms of the standard Robertson-Walker time t, the only Hamiltonian
coming into question is Hem, which generates the evolution of A and E in t:

ρ(R,A,E) = exp

(
− 1

T
Hem

)
= exp

(
−(4σ)1/4V H̃[A,E]3/4

)
= ρ(A,E). (6.28)
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We observe that the dependence of the Hamiltonian Hem on the intrinsic time R is cancelled by
that of the temperature, such that ρ is actually independent of R. Since H̃ is constant we obtain
the important intermediate result that ρ commutes with the constraint Hc, {ρ,Hc} = 0, such that
we have a well-defined state.

At this stage we apply the TTH. While a priori, at least locally, any functional of the form
f [R,P,A,E] is a suitable candidate as internal time, the TTH provides us with a preferred variable
on the phase space as internal time: The thermal Hamiltonian reads K = − log ρ = (4σ)1/4V H̃3/4

and generates the time flow

Xs = { · ,K} =
3

4
V

(
4σ

H̃

)1/4

{ · , H̃} =
3V

4TR

∫
d3x

(
∂H̃

∂Ei(x)

∂

∂Ai(x)
− ∂H̃

∂Ai(x)

∂

∂Ei(x)

)
. (6.29)

Again, we may add a null vector field Y of the presymplectic form ω

Y ∝ ∂

∂R
+

3V 2

4πP

∫
d3x

(
∂H̃

∂Ei(x)

∂

∂Ai(x)
− ∂H̃

∂Ai(x)

∂

∂Ei(x)

)
. (6.30)

An appropriately chosen Y yields

Xs = − πP

TV R

∂

∂R
=

3

4

Ṙ

T

∂

∂R
=̇

3

4

1

T

∂

∂t
(6.31)

⇒ t(s) =
3

4
T−1s. (6.32)

t is the standard Robertson-Walker time, the proper time of isotropic observers. According to
the TTH the standard Robertson-Walker time is the physical time. The constant of proportion-
ality between thermal time flow and Robertson-Walker time flow is (almost) the temperature as
measured by an isotropic observer.

The thermal time defined by the cosmic microwave background is precisely the conventional
Robertson-Walker time (up to an affine transformation). In accordance with the TTH the statis-
tical state of the universe we live in distinguishes a flow which corresponds to the physical time
flow of our perception. According to Connes and Rovelli this is the strongest physical evidence
for the TTH.

6.4 Rindler Wedge and Unruh Effect

In this subsection we return to AQFT. We consider the vacuum sector of an AQFT defined by a
net of von Neumann algebras O 7→ R(O) in Minkowski space. The total algebra R associated with
the full Minkowski space is assumed to be in the vacuum state ω0 = 〈Ω0, ·Ω0〉. We apply the TTH
to the vacuum state restricted to the von Neumann algebra R(W ) corresponding to the Rindler
wedge W [42].

Let O be a rectilinear, uniformly accelerated observer in Minkowski space with acceleration
a ∈ R>0. W.l.o.g. we assume the worldline of this observer to be given as

x0(τ) = a−1 sinh(aτ), x1(τ) = a−1 cosh(aτ), x2 = x3 = 0. (6.33)

In this parametrisation τ is O’s proper time. The trajectory of O is an orbit of the group of all
Lorentz boosts Λ in x1-direction, the boost-parameter is aτ . We have

Λ(aτ)xµ(τ0) = xµ(τ + τ0). (6.34)

O has no access to the whole Minkowski space, but causally interacts only with events inside the
Rindler wedge W ≡ {x1 > |x0|}, while the edge of W acts as a causal horizon. That means O can
exchange information precisely with the events in W in the sense that he sends a signal to this
event and an immediate reply can still reach him. For this reason he will describe the system only
in terms of the subalgebra R(W ) ⊂ R consisting of those observables which are localised in W .
The state he will ascribe to the system, which for him is a net ending with R(W ), is the partial
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state ωo � R(W ), obtained from the restriction of ω0 to the wedge algebra. The wedge has to be
regarded as a spacetime in its own right.

We determine the thermal time flow associated to this state. Recall that by the Reeh-Schlieder

theorem ωo � R(W ) generates a modular flow σ
ωo�R(W )
s in R(W ). The Bisognano-Wichmann

theorem assures that the modular operator is given by

∆ = e−2πL, (6.35)

when L denotes the generator of the Lorentz boosts in x1-direction in the representation of the
Poincaré group. Consequently, the thermal time flow satisfies

σωo�R(W )
s (A) = e2πsiLAe−2πsiL. (6.36)

Figure 6.1: Flow lines of the modular flow induced by the vacuum state in the Rindler wedge. In
addition, the evolution of the localisation region of a double-cone subalgebra under the modular
flow is illustrated.

Now, let us think about the physical time flow perceived by O. We have seen that the Lorentz
transformation Λ(aτ) carries O along his trajectory, it describes the proper time evolution of our
observer. Since we are in the vacuum sector, there exists a strongly continuous one-parameter
unitary representation U(Λ(aτ)) which implements this evolution on the algebra. The generator
of the unitary group is precisely aL. This suggests to interpret aL as the relevant Hamiltonian for
O, which generates the evolution in physical (geometrical) time perceived by O.

ατ (A) = eiτaLAe−iτaL. (6.37)

We compare the two flows obtained so far,

σωo�R(W )
s (A) = e2πsiLAe−2πsiL = α2πa−1s(A), which implies σωo�R(W )

s = α2πa−1s. (6.38)

Thermal time coincides up to an irrelevant rescaling with the geometrical time, which is used by
the rectilinear, uniformly accelerated observer to describe the evolution of the system,

τ(s) = 2πa−1s. (6.39)

The thermal Hamiltonian K = 2πL is proportional to the physical Hamiltonian H = aL generating
the physical time of that observer. This result can be rated as another successful test of the TTH.
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Let us pass to the addendum of the TTH. Since thermal time and geometrical time are proportional,
their ratio, which is β−1 = a

2π , should be interpretable as the temperature the observer would assign
to the system. But this is exactly the Unruh temperature predicted by the Unruh effect [130]: A
uniformly accelerated observer in the Minkowski vacuum feels himself immersed in a thermal bath
of quanta at temperature β−1 = a

2π .
The original derivation proposed by Unruh [130] in 1976 in the scheme of conventional free

QFT is based on a comparison of two different, unitarily non-equivalent quantisation schemes in
Minkowski space and in the Rindler wedge, see also [133]. For this one exploits the fact that
apart from the globally timelike Killing vector fields generating the ordinary time translation
isometries in the whole Minkowski space, there are additionally boost Killing fields, which are
timelike in certain portions of spacetime, such as a globally hyperbolic wedge region, in which the
orbits correspond to the trajectories of Lorentz boost isometries. This provides the basis for the
uniformly accelerated observer to construct in the usual fashion a QFT living merely in the wedge
region accessible to him. Tracing out over the degrees of freedom outside the wedge, one finds that
the Minkowski vacuum formally becomes a thermal density matrix over the wedge Fock space. The
thermalisation is due to vacuum correlations across the edge of the wedge. The two subsystems
are highly entangled. For the accelerated observer ω0 is not the pure vacuum state anymore, but
corresponds to an (accelerated) thermal distribution of Rindler particles.

In an alternative approach (cf. [130, 135]) one integrates the interaction term of a simple
discrete-level model detector coupled to the quantum field along the observer’s world line. It turns
out that the detector gets excited as if it was at rest in a thermal bath of Rindler particles at
temperature β = 2π

a . The remarkable relation between the Bisognano-Wichmann theorem and the
Unruh effect, crucial for the derivation presented here, was firstly pointed out in 1980 by Sewell
[116], and permits a much more general and rigorous foundation of the vacuum thermalisation: The
vacuum state restricted to the wedge algebra satisfies the KMS condition at the Unruh temperature
w.r.t. the boost time translations.

Summing up, from the theoretical point of view there is much evidence that the Unruh effect
is in fact “real”, such that we can regard the second part of the TTH as confirmed, too. In
addition, the TTH sheds some new light on the nature of the Unruh effect. The amplitude of the
temperature is due to a dissenting parametrisation induced by proper time and thermal time, i.e.
to the speed of thermal time measured w.r.t. proper time.

Let us dwell on for a few more lines on the Unruh effect. First of all note that the Unruh
temperature depends on the acceleration, i.e. two uniformly but differently accelerated observers
in a given wedge region will ascribe different temperatures to the thermal bath. Furthermore, as
indicated above, the Unruh effect has its origin in the fact that a uniformly accelerated observer
does not have access to the full algebra but solely to those degrees of freedom which are inside
the Rindler wedge W . A careful analysis (see e.g. [133]) reveals that the key geometrical structure
in Minkowski space which causes the vacuum thermalisation is the Killing horizon generated by
the Lorentz boost isometries.4 That is the reason why the Unruh effect is generalisable to curved
spacetimes possessing a one-parameter group of isometries which have an associated Killing horizon.
In fact, we shall meet examples of those generalisations such as the Gibbons-Hawking effect.

6.5 Minkowski Diamond

Application of the Thermal Time Hypothesis

Another successful application of the TTH was studied by Martinetti and Rovelli [83]. Similar
to the preceding subsection, it is to be probed on the vacuum state ω0, restricted to the von
Neumann algebra R(D) associated with a double-cone D. Beside the wedge, double-cones are of
particular physical interest as very natural objects appearing in AQFT. Since the action of the
modular flow is only known for conformally covariant theories we have to restrict ourselves to just
those theories such as the massless free case.

Consider an observer O with finite lifetime. Let xi be the event of his birth, and xf ∈ I+(xi)
the event of his death.5 The maximal region the observer can exchange signals with during his

4A Killing horizon is a null surface to which the Killing field generating the isometries is normal.
5I+ denotes the chronological future – so this is a wise assumption.
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lifetime is the diamond D := V+(xi) ∩ V−(xf ). Thus, he has access to the local algebra R(D).
According to the TTH, the physical time flow is singled out by the state ω0 � R(D). By application
of an appropriate Poincaré transformation we may assume w.l.o.g.

xµi = (−L, 0, 0, 0), xµf = (L, 0, 0, 0). (6.40)

The observer is supposed to be rectilinear, uniformly accelerated with acceleration a ∈ R>0.
For convenience let us assume that the motion of the observer takes place completely in the
{x2 = x3 = 0}-plane. The worldline can be parametrised by O’s proper time τ ,

x0(τ) = a−1 sinh(aτ), x1(τ) = a−1
(

cosh(aτ)−
√

1 + a2L2
)
, x2(τ) = x3(τ) = 0. (6.41)

O’s trajectory is an orbit of the group of Lorentz boosts Λ in x1-direction with boost-parameter
aτ . In this case, τ is merely running from −τ0 to τ0, where

τ0 =
Arsinh(aL)

a
. (6.42)

The geometrical modular flow is obtained from the Hislop-Longo theorem 4.5.5. Let LL be the
dilatation by the factor L, then the geometrical action of the modular group for a diamond DL

with radius L centred around the origin is given by

xµ(s) = ΛDLs xµ = LLΛD1
s L−1

L xµ

= L
2Lxµ + δµ0 (2Lx0 cosh(2πs) + (L2 − xµxµ) sinh(2πs)− 2Lx0)

2Lx0 sinh(2πs) + (L2 − xµxµ) cosh(2πs) + (L2 + xµxµ)
. (6.43)

Figure 6.2: Flow lines of the modular flow induced by the vacuum state in a double-cone in the
conformally covariant case. Moreover, the evolution of the localisation region of a double-cone
subalgebra is illustrated.
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For a given observer we choose xµ ≡ xµ(s = 0) such that

xµ(s = 0) = xµ(τ = 0)
(6.41)

= (0, a−1(1−
√

1 + a2L2), 0, 0) (6.44)

⇒ x0(s) =
L sinh(2πs)

cosh(2πs) +
√

1 + a2L2
, x1(s) = − aL2

cosh(2πs) +
√

1 + a2L2
, (6.45)

x2 = x3 = 0.

It can be shown that the curves (6.45), parametrised by thermal time, and the trajectories (6.41)
of the uniformly accelerated observers, parametrised by proper time, coincide. Each orbit induced
by thermal time is identical with the worldline of such an observer. Clearly, the parametrisations
are different. However, we diagnose that thermal time corresponds up to rescaling to the unitary
implementation of the proper time of these observes and this way gets a meaning as physical time.
By equating (6.41) and (6.45) we obtain a relation between thermal time s and proper time τ :

τ(s) =
1

a
Arsinh

(
aL sinh(2πs)

cosh(2πs) +
√

1 + a2L2

)
(6.46)

⇒ dτ(s)

ds
=

2πL

cosh(2πs) +
√

1 + a2L2
. (6.47)

According to the second part of the TTH the vacuum looks for O like a thermal state, dτ(s)/ds
has to be interpreted as the inverse temperature β of the thermal bath as observed by O.6 It is
useful to rewrite β as a function of O’s proper time,

β(τ) =
2πL

cosh(2πs(τ)) +
√

1 + a2L2

(6.45)
= − 2π

aL
x1(s(τ))

(6.41)
=

2π

a2L

(√
1 + a2L2 − cosh(aτ)

)
.

(6.48)

Note that (6.42) makes sure that the inverse temperature is always positive and vanishes precisely
at −τ0 and τ0. Instead of the parameter L, it is sensible to express β as a function of the lifetime
T = 2τ0 = 2

aArsinh(aL) of the observer:

β(τ) =
2π

a sinh
(
aT
2

) [cosh

(
aT
2

)
− cosh(aτ)

]
. (6.49)

Local Temperature and Causality

Eventually we have come upon an example where a local notion of temperature appears (actually
this example motivated the formulation of the addendum to the TTH in the way presented here).
However, it is not clear to what extent the local ratio between both time flows can be understood as
a physical local temperature, which besides is related to the response of a model thermometer. The
observer does not really see a true equilibrium state but rather a kind of local equilibrium, though
a closer look on (6.49) shows that the temperature is to a large extent approximately constant and
undergoes significant changes only near the events xi and xf of birth and death [83].

The dependence of the temperature on the lifetime of the observer seems to cause a second
problem. An intelligent observer should be able to predict his own lifetime by measuring the
temperature and using formula (6.49), which would be a clear violation of causality.7 Similarly,
two observers at the same position with the same velocity and constant acceleration but different
lifetime may come to different conclusions about the local temperature at this position. The reason
for all these problems lies in the assumption, that the observer has access to the full diamond
during the whole of his life (which in turn is associated with the block-spacetime picture). In fact,
this happens only at the end of his life. Anyway, falling back upon the energy-time uncertainty
relation Martinetti could show [84] that there is actually no violation of causality, the non-eternal
observer does not live long enough to realise that he is non-eternal. As consequence the deviations
from the inverse Unruh temperature 2π/a calculated in this subsection would be not measurable.

6Another mathematically more elegant way of justifying this local ratio to be a temperature was suggested by
Martinetti [85]. Starting from the conformal transformation relating wedge and double-cone it is shown there,
that the diamond’s temperature can simply be interpreted in terms of the Unruh temperature of the wedge rescaled
by the conformal factor of this map.

7Even if one prefers to interpret xi and xf more humane as beginning and end of certain measuring processes,
the problem would remain.
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Unruh Effect for an Observer with Finite Lifetime

As for the Rindler wedge, there exists a kind of Unruh effect for the diamond, too. But note that
the boundary of the double-cone is just a conformal Killing horizon,8 whereas for the ordinary
Unruh effect it is a Killing horizon. Moreover, in this case there are no alternative derivations
known (using e.g. an inequivalent quantisation scheme for fields confined to D), which could be
interpreted as a foundation of this result, so that the thermalisation of the double-cone is a new
prediction made by the TTH.9 Let us briefly mention some limiting cases of the Unruh effect for
observers with finite lifetime.

• If the observer is sufficiently close to the edge (τ = 0, a� 0), the temperature β−1 ≈ a/(2π)
corresponds to the Unruh temperature. Taking theorem 4.5.8 of Fredenhagen into account
this limit case does actually not require the conformal covariance of the theory.

• Consider an observer for which L � 0 is satisfied (e.g. by a very large lifetime). Then the
inverse temperature can be well-approximated by the Unruh temperature and a first-order
correction term,

β(τ) ≈ 2π

a
− 2π cosh(aτ)

a2L
, (6.50)

which disappears for L→∞.

• Finally let us consider the case in which the acceleration is small, or rather the limit of
vanishing acceleration:

β(τ)
a→0−→ π

L
(L2 − τ2), τ ∈ [−L,L]. (6.51)

The TTH predicts a non-vanishing temperature even for an inertial observer, provided that
his lifetime T = 2L is finite. It stands to reason to lead this back to the fact that the
observer, again, does not have access to all degrees of freedom of the quantum field, which
underlines that it is the presence of a causal horizon (the edge of the diamond), rather than
the acceleration, which causes the thermalisation of the vacuum.

6.6 Minkowski Forward-Lightcone

Proceeding in the same way as for the double-cone, we apply the TTH to the vacuum state
ω0 restricted to the von Neumann algebra R(V+) of the forward lightcone V+ in the case of a
conformally covariant theory, where we know the geometrical meaning of the modular group [83].

Consider an inertial observer which is born in xi and lives forever. Suppose he performs a
rectilinear, uniform motion with constant 4-velocity uµ. The region he causally interacts with is
then given by the future lightcone V+(xi). The observer has access to the subalgebra R(V+(xi)).
We put w.l.o.g. xi = 0, V+(0) := V+. The worldline of the observer reads

xµ(τ) = τγ(~v)uµ, (uµ) = (1, ~v), γ(~v) = (1− ~v2)−1/2, τ ∈ [0,∞). (6.52)

The action of the modular flow is known from theorem 4.5.4 of Buchholz:

xµ(s) = e2πsxµ, xµ ∈ V+, s ∈ (−∞,∞). (6.53)

Each orbit of the thermal time flow coincides with a wordline of one of the observers described
above, so that one more time we assign a physical meaning to the thermal time s as a rescaling of

8A conformal Killing horizon stems from a conformal Killing field which is defined by the conformal Killing
equation ∇µζν +∇νζµ = 1

2
gµν∇κζκ [132].

9 There are several adaptions of the Unruh effect for observers with finite lifetime (see [84] for the relevant
literature). Therein one mostly considers a detector, like e.g. a two-level system, coupled to the vacuum for a finite
period of time. The result depends on the coupling as well as the switching on/off process. These investigations
seem to indicate that the vacuum thermalises but the detector has not enough time to reach equilibrium with it.
For that we remark that in the ordinary Unruh effect the detector needs an infinite amount of time to thermalise.
One has to distinguish carefully between what the detector is displaying and the peculiarities of the state itself.
Altogether, the thermalisation of the vacuum in the diamond region is at least a plausible result.
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the proper time of an inertial observer in V+. To see this and to determine the relation between
thermal time and proper time, select any curve generated by the thermal time flow, i.e. fix an xµ.
Then choose ~v such that xµ = cγ(~v)uµ for some constant c. The corresponding curves coincide,
but have different parametrisations,

τ(s)γ(~v)uµ = e2πsxµ ⇒ τ(s) = c e2πs (6.54)

⇒ β(s) =
dτ

ds
= 2πc e2πs (6.55)

⇒ β(τ) = 2πτ, T (τ) =
1

2πτ
. (6.56)

The temperature diverges at the birth of the observer and decreases to zero during his life, so that
this case becomes coherent with the eternal one.

6.7 Static De Sitter Space and Gibbons-Hawking Effect

We have discussed some generalisations of the Bisognano-Wichmann theorem to certain classes
of curved spacetimes in section 4.5. In all these cases the TTH singles out a thermal time which
corresponds up to a rescaling with the proper times of an appropriately chosen class of observers
and thereby gets a physical meaning. Since these considerations are very close to the examples
just discussed, they do not lead to new insights and we omit a thorough discussion. An exception
in this respect are the de Sitter space as well as the extended Schwarzschild space having in store
the Gibbons-Hawking effect and the Hawking effect, respectively, which we are going to pick up
next.

Let us start with the former one. The highly symmetric de Sitter space was introduced in
section 4.5 as a hyperboloid in 4+1-dim. Minkowski space

−(z0)2 + (z1)2 + (z2)2 + (z3)2 + (z4)2 = α2, α2 = 3/Λ = 12/R, (6.57)

with metric

ds2 = −(dz0)2 + (dz1)2 + (dz2)2 + (dz3)2 + (dz4)2. (6.58)

Physically it is considered to play a central role during the early inflationary expansion of our
universe. Introducing suitable coordinates (η, χ, ϑ, φ) the metric can be cast into the form [12]

ds2 = α2 sin−2 η
(
−dη2 + dχ2 + sin2 χ(dϑ2 + sin2 ϑdφ2)

)
, (6.59)

η ∈ (0, π), χ ∈ [0, π], ϑ ∈ [0, π], φ ∈ [0, 2π].

One can choose another coordinate system on de Sitter space, the static coordinates, with metric

ds2 = −
(

1− r2

α2

)
dt2 +

(
1− r2

α2

)−1

dr2 + r2(dϑ2 + sin2 ϑdφ2), (6.60)

t ∈ R, r ∈ [0,∞), ϑ ∈ [0, π], φ ∈ [0, 2π].

These coordinates do not cover the whole space but only a proper subspace Sstat ⊂ S, the so-called
static de Sitter space. The coordinate transformation

z0 =
√
α2 − r2 sinh(t/α), z1 = r cosϑ, z2 = r sinϑ sinφ, (6.61)

z3 = r sinϑ cosφ, z4 =
√
α2 − r2 cosh(t/α)

imbeds static de Sitter space in the above hyperboloid of 4+1-dim. Minkowski space, where it
corresponds to the z4 > |z0|-part of that hyperboloid.

According to the Bisognano-Wichmann theorem for de Sitter space (section 4.5), the geomet-

rical action ΛSstats of the modular group σ
ω0�R(Sstat)
s associated with the Euclidean vacuum state
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ω0 of de Sitter space restricted to the algebra R(Sstat) of static de Sitter space corresponds to
Lorentz boosts in z4-direction, and thus satisfies in the embedding coordinates zA, A = 1, . . . , 4:

ΛSstats =


cosh(2πs) 0 0 0 sinh(2πs)

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

sinh(2πs) 0 0 0 cosh(2πs)

 . (6.62)

Using the transformations (6.61) we can immediately express the geometrical action w.r.t. the
static coordinates

(t(s), r(s), ϑ(s), φ(s)) = ΛSstats (t, r, ϑ, φ)

= (α ·Arsinh

(
z0 cosh(2πs) + z4 sinh(2πs)√

α2 − r2

)
, r, ϑ, φ). (6.63)

Because of the spherical symmetry we assume w.l.o.g. ϑ = 0. This includes z2 = z3 = 0 as well as
z1 = r. All Lorentz-boosted curves in the wedge z4 > |z0| of 4+1-dim. Minkowski space intersect
{z0 = 0}, thus we still capture all curves by putting z0 = 0. Exploiting (6.57) and z4 > 0 gives
z4 =

√
α2 − r2. Hence, it remains to consider

ΛSstats (t, r, ϑ, φ) = (2παs, r, 0, φ). (6.64)

The thermal time s is related to the proper time of observers moving along these timelike curves.
Next, we have to understand the physical meaning of these curves. Let us start to calculate the
proper time τ . Fixing the origin of proper time such that it vanishes when thermal time vanishes
we get

τ(s) =

√
1− r2

α2
t(s) = 2πs

√
α2 − r2. (6.65)

From this we determine the absolute value a =
√
aµaµ of the 4-acceleration aµ = uν∇νuµ, uµ =

dxµ(τ)
dτ . After a straightforward calculation we find

a =
r

α
√
α2 − r2

. (6.66)

Thus, the observers at rest w.r.t. the static coordinates, who are geodesic observers, are in fact
uniformly accelerated. This is linked to the expansion of de Sitter space. Thermal time and proper
time are proportional and coincide up to a constant factor. According to the TTH the observer
should be immersed in a thermal bath of temperature

β =
dτ

ds
= 2π

√
α2 − r2

(6.66)
=

2π√
α−2 + a2

=
2π√

Λ/3 + a2
. (6.67)

This temperature was first computed by Narnhofer, Peter and Thirring [90] who studied
thermal properties of the Euclidean vacuum state in de Sitter space. Since the de Sitter universe
is homogeneous and isotropic the temperature depends only on the acceleration of the observer,
but not on his position or velocity. In particular, the result shows that, in contrast to Minkowski
space, a freely moving eternal observer in de Sitter space will see thermal radiation of temperature√

Λ/12/π. This result has already been found by Gibbons and Hawking [53] (“Gibbons-Hawking
effect”) who exploited the path-integral method developed by Hartle and Hawking. It is due to
a peculiarity of de Sitter space, namely its exponential expansion, which implies that there exist no
observer having access to the whole spacetime. The existence of causal horizons is a fundamental
feature in de Sitter space. In analogy with the Unruh effect, the horizons prevent the observer
from measuring the complete state and it is this loss of information which in the end is responsible
for the thermalisation. Altogether, the predictions of the TTH seem to be realised in de Sitter
space, too.
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6.8 De Sitter Diamond

A related application of the TTH was given by Tian [126]. We remain in de Sitter space, and we
restrict ourselves to conformally covariant quantum theories. In contrast to Tian we shall trans-
form everything back to de Sitter space before applying the TTH, because it makes calculations a
bit easier. Utilising the conformal covariance, a local net on Minkowski space gives rise to a local
net on de Sitter space (and vice versa) [55], and it enables one to transform the notion of vacuum
from Minkowski space to de Sitter space.

To explain the second point, we start with a general idea [12, 36]. Consider an arbitrary
globally hyperbolic spacetime M and a globally hyperbolic flat spacetime M ′. Suppose there
exist subspaces V ⊂ M and V ′ ⊂ M ′ containing Cauchy surfaces Σ and Σ′ of M and M ′,
respectively. Assume further that there exists a conformal transformation α : V → V ′ such
that α is a diffeomorphism and α(Σ) = Σ′. Then one can establish that for every globally timelike
Killing field ξµ in M ′ there is a globally timelike conformal Killing field ζµ in M . A vacuum state
in M ′ defined w.r.t. ξµ defines a conformal vacuum state in M via the conformal transformation
w.r.t. ζµ. Thus, in conformally covariant theories defined over suitable conformally flat spacetimes
one has a natural notion of vacuum. If M ′ is the Minkowski space its unique globally timelike
Killing field ∂t gives rise to a unique conformal vacuum in M .

We have seen that the de Sitter metric can be put into the form

ds2 = α2 sin−2 η
(
−dη2 + dχ2 + sin2 χ(dϑ2 + sin2 ϑdφ2)

)
, (6.68)

η ∈ (0, π), χ ∈ [0, π], ϑ ∈ [0, π], φ ∈ [0, 2π].

Comparison with the Einstein static universe E with metric

ds2 = −dη2 + dχ2 + sin2 χ(dϑ2 + sin2 ϑdφ2), (6.69)

η ∈ (−∞,∞), χ ∈ [0, π], ϑ ∈ [0, π], φ ∈ [0, 2π]

shows that de Sitter space can be conformally embedded into this spacetime. Minkowski space is
conformal to a region of the Einstein universe, as well. This region is given by {(t, χ, ϑ, φ) : −π <
t + χ < π,−π < t − χ < π} ⊂ E . The Einstein static universe may be imbedded in a cylinder in
4+1-dim. Minkowski space. The conformal images of Minkowski space and de Sitter space on the
unwrapped cylinder shell constitute the Penrose diagrams of these spacetimes which represent the
respective spacetime on a compact manifold [63].

The two conformal images have the common Cauchy surface {t = 0} ⊂ E . Falling back on the
considerations above there exists a unique conformal vacuum state ωc on de Sitter space defined
by the unique vacuum state ω0 on Minkowski space.10 Static de Sitter space,

ds2 = −
(

1− r2

α2

)
dt2 +

(
1− r2

α2

)−1

dr2 + r2(dϑ2 + sin2 ϑdφ2), (6.70)

turns out to be conformal to a Minkowski diamondD2α. Denote by xµ the coordinates of Minkowski
space. The conformal transformation is realised by the pseudo-stereographic projection P ,

xµ = P (zµ) =
2α

α+ z4
zµ, µ = 0, . . . , 3. (6.71)

The inverse P−1 of the projection reads

zµ = P−1(xµ) = Ω(x)xµ, µ = 0, . . . , 3, (6.72)

where Ω(x) =
(

1 +
xµxµ
4α2

)−1

is the conformal factor of the transformation. By the Hislop-Longo

theorem 4.5.5 the geometrical action of the modular flow σ
ω0�R(D2α)
s associated with the vacuum

state ω0 confined to the local algebra R(D2α) of the diamond is known. From that one derives the

geometrical action ΛSstats of the modular flow σ
ωc�R(Sstat)
s associated with the conformal vacuum ωc

of de Sitter space restricted to the algebra R(Sstat) of static de Sitter space, ΛSstats = P−1ΛD2α
s P .

10Note that a globally timelike Killing field does not exist in de Sitter space.
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This action coincides with the one calculated above, equation (6.62), so that the rest of the analysis
is in exact agreement with the more general and fundamental justification obtained before.

However, the result generalises in a manner similar to the diamond case in Minkowski space
to non-eternal observers. For this purpose let us consider a uniformly accelerated observer moving
on a part of the worldline (6.63) in static de Sitter space Sstat. Again, let us assume w.l.o.g.
z0 = z2 = z3 = 0, z1 = r, and z4 =

√
α2 − r2. The proper time τ of the observer runs only over

a finite interval, [−τ0,+τ0] say. One has to determine the diamond region SD in static de Sitter
space which represents the causal completion of the non-eternal observer’s wordline. His worldline
can be identified with an orbit of the modular flow associated with the partial conformal vacuum
state ωc � R(SD), and the ratio between thermal time and proper time gives the temperature
measurable by the observer.

One can transform the problem to Minkowski space. The conformal image of the uniformly
accelerated eternal observer’s wordline in Minkowski space is that of a uniformly accelerated non-
eternal observer. The region he causally interacts with is D2α, the conformal image of Sstat. This
suggests that SD corresponds to a reduced diamond D2M , M < α, which is shifted in x1-direction
in such a way that the modular action of the vacuum state restricted to R(D2M + c ê1) describes
a part of the wordline in D2α, i.e. the wordline has to pass the edges of D2M + c ê1. For a given
acceleration a, the shift c has to take on the value

Figure 6.3: Motion of a non-eternal de Sitter observer, which perceives thermal time, represented
in a Minkowski diamond.

c =
2

a
(
√

1 + a2α2 −
√

1 + a2M2). (6.73)

The conformal preimage of D2M + c ê1 is SD ⊂ Sstat. The values of zA under the projection P are

x0 = 0, x1 =
2αr

α+
√
α2 − r2

, x2 = x3 = 0. (6.74)

Let Tc be the translation by c in x1-direction, then the modular action of the Minkowski vacuum
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state confined to R(D2M + c) according to the Hislop-Longo theorem 4.5.5 is

ΛD2M+c(s) = TcΛD2M (s)T−c (6.75)

⇒ ΛD2M+c(s)x0 =
2M sinh(2πs)

cosh(2πs) +
√

1 + a2M2
, (6.76)

ΛD2M+c(s)x1 =
2

a

(
√

1 + a2α2 −
√

1 + a2M2) cosh(2πs) +
√

1 + a2M2
√

1 + a2α2 − 1

cosh(2πs) +
√

1 + a2M2
.

The modular action transformed to de Sitter space reads in the coordinates zA:

ΛSD (s) = P−1ΛD2M+c(s)P, (6.77)

ΛSD (s)z0 = z4 a2αM sinh(2πs)

(
√

1 + a2α2 −
√

1 + a2M2) cosh(2πs) +
√

1 + a2M2
√

1 + a2α2 − 1
, (6.78)

ΛSD (s)z1 = z1 = r, ΛSD (s)z2 = ΛSD (s)z3 = 0,

ΛSD (s)z4 = z4

√
1 +

a4α2M2 sinh2(2πs)

(
√

1 + a2α2 −
√

1 + a2M2) cosh(2πs) +
√

1 + a2M2
√

1 + a2α2 − 1
.

Transforming back to the static coordinates yields

(t(s), r(s), ϑ(s), φ(s)) = ΛSstat(s)(t, r, 0, φ) (6.79)

= (αArsinh

(
a2αM sinh(2πs)

(
√

1 + a2α2 −
√

1 + a2M2) cosh(2πs) +
√

1 + a2M2
√

1 + a2α2 − 1

)
, r, 0, φ).

Indeed, the trajectory corresponds to an observer with finite lifetime 2τ0 at rest w.r.t. the static
coordinates. From (6.65) and (6.66) we conclude

t(s) =
√

1 + a2α2 τ(s), t0 ≡ lim
s→∞

t(s) = lim
s→∞

√
1 + a2α2 τ(s) ≡

√
1 + a2α2 τ0 (6.80)

Using formula (6.79) we derive a relation between τ0 and M from this expression,

M =
α sinh(τ0

√
α−2 + a2)

cosh(τ0
√
α−2 + a2) +

√
1 + a2α2

. (6.81)

Plugging this into (6.79) simplifies the expression significantly to

t(s) = αArsinh

(
sinh(2πs) sinh(t0/α)

cosh(2πs) + cosh(t0/α)

)
. (6.82)

An application of the TTH gives the temperature of the thermal bath perceived by the non-eternal
observer with lifetime T = 2τ0:

β =
dτ

ds
=

1√
1 + a2α2

dt

ds
=

2πα√
1 + a2α2

sinh(τ0
√
α−2 + a2)

cosh(2πs) + cosh(τ0
√
α−2 + a2)

(6.83)

=
2π√

Λ/3 + a2

cosh(T2
√

Λ/3 + a2)− cosh(τ
√

Λ/3 + a2)

sinh(T2
√

Λ/3 + a2)
. (6.84)

We observe that substituting a  
√

Λ/3 + a2 this is the same formula as the corresponding one
for the Minkwoski diamond (6.49). The interpretation may be carried out in the same way as it
was done there.

6.9 Schwarzschild Space and Hawking Effect

For the last application of the TTH we study Schwarzschild space. The Kruskal extension of the
Schwarzschild metric is usually written in the form [132]

ds2 =
32M3e−

r
2M

r
(−du2 + dw2) + r2(dϑ2 + sin2 ϑ dφ2), (6.85)

u,w ∈ R, ϑ ∈ [0, π], φ ∈ [0, 2π],

86



6.9. SCHWARZSCHILD SPACE AND HAWKING EFFECT

where the positive function r = r(w2 − u2) is implicitly given by the expression( r

2M
− 1
)
e
r

2M = w2 − u2. (6.86)

It is an exact solution of the vacuum Einstein equations. A deeper analysis (see e.g. [63, 132]) shows
that it describes an empty spacetime containing a stationary, non-rotating, spherically symmetric,
uncharged, eternal black hole of mass M with event horizon at r = 2M , which hides a physical
singularity at r = 0. The Kruskal metric is manifestly of type (4.81), such that the Bisognano-
Wichmann theorem is available. As a matter of course we assume a QFT satisfying all the axioms
needed for this. The wedge X+ = {w > |u|} is simply the exterior Schwarzschild solution,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dϑ2 + sin2 ϑ dφ2), (6.87)

t ∈ R, r > 2M, ϑ ∈ [0, π], φ ∈ [0, 2π].

Physically it is interpreted as representing the exterior gravitational field of the black hole. The
Schwarzschild metric is transformed into the Kruskal metric by the coordinate transformation
(6.86) together with

t

2M
= 2Artanh

u

w
. (6.88)

The geometrical action ΛX
+

s of the modular flow induced by the vacuum state ω0 on the extended
Schwarzschild space restricted to the exterior Schwarzschild solution X+ corresponds to the orbits
in X+ generated by the boosts L+(2πs),

ΛX
+

s (u,w, ϑ, φ) = L+(2πs)(u,w, ϑ, φ)

= (u cosh 2πs+ w sinh 2πs, u sinh 2πs+ w cosh 2πs, ϑ, φ). (6.89)

To understand which class of observers is captured by these curves, it is more convenient to express
them in terms of the Schwarzschild coordinates (t, r, ϑ, φ). For this note that w(s)2 − u(s)2 =
w2 − u2 = const., and hence r(s) = r = const. by equation (6.86).

ΛX
+

s (t, r, ϑ, φ) = L+(2πs)(t, r, ϑ, φ)

= (4MArtanh

(
u cosh(2πs) + w sinh(2πs)

u sinh(2πs) + w cosh(2πs)

)
, r, ϑ, φ). (6.90)

As for de Sitter space all Lorentz-boosted curves in X+ intersect {u = 0} which is why we are
allowed to assume w.l.o.g. u = 0,

ΛX
+

s (t, r, ϑ, φ) = (8πMs, r, ϑ, φ). (6.91)

These curves are the worldlines of stationary observers in Schwarzschild coordinates (t, r, ϑ, φ).
They perceive (rescaled) thermal time. The proper time of these observers is easily determined:

τ(s) =

√
1− 2M

r
t(s) = 8πMs

√
1− 2M

r
. (6.92)

We proceed by calculating the absolute value of the 4-acceleration which turns out to be

a =
√
aµaµ =

M

r2

(
1− 2M

r

)−1/2

. (6.93)

Now, we can specify the motion of the observers under consideration. They are at rest w.r.t. the
gravitational centre of the spacetime which is hidden in the Schwarzschild black hole. Because of
the gravitational field the observers must accelerate uniformly in order to remain stationary. The
acceleration vanishes at r = ∞ when Schwarzschild space goes over into Minkowski space. This
is due to the decrease of the gravitational field. At the event horizon r = 2M of the black hole it
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becomes impossible to remain stationary, or rather it would require an infinite acceleration (that
is an infinite amount of energy).

Eventually, we apply the TTH to determine the local temperature which is related to the
thermal bath as perceived by the observer:

β =
dτ

ds
= 8πM

√
1− 2M

r
. (6.94)

This temperature is in coincidence with the one predicted by the generalised Unruh effect for
extended Schwarzschild spacetime [133]. It was further calculated by Unruh [130] that a detector
stationed near the event horizon r = 2M of a Schwarzschild black hole has a transition rate which
corresponds to an accelerated detector immersed in Minkowski vacuum, a limiting case which can
be recovered from (6.94),

a ≈ 1

4M

(
1− 2M

r

)−1/2

⇒ β ≈ 2π

a
. (6.95)

From the general relativistic point of view the Schwarzschild Unruh effect and the (Minkowski)
Unruh effect together are a manifestation of Einstein’s principle of equivalence. For an accelerated
observer the vacuum thermalises in exactly the same way as for an observer at rest in a gravitational
field. (6.94) also implies that a stationary observer at infinity will see thermal radiation of inverse
temperature

β∞ = lim
r→∞

8πM

√
1− 2M

r
= 8πM, (6.96)

which is precisely the Hawking temperature of a Schwarzschild black hole as predicted by the
Hawking effect, derived by Hawking [64] in 1975. The approach to the Hawking effect presented
here is most originally due to Sewell [116].

Because all these results are theoretically (quite) well-founded, the thermalisation of Schwarz-
schild spacetime for static observers can be rated as another confirmation of the TTH.11 Indeed,
the Unruh effect was discovered in an attempt to gain more insights into the nature of the Hawking
effect by replacing the difficulties associated with a collapsing star by natural boundary conditions
on the past horizon of full empty Kruskal space. The close mathematical relationship between
Unruh effect and (this special case of the) Hawking effect stems from the fact that the event
horizon of a stationary black hole is a Killing horizon.

But note that the analogy between Unruh effect and Hawking effect, the latter one making a
statement about the particle creation by a black hole at asymptotically late times, is limited (cf.
[133] for more details). This is in essence due to the different notions of vacuum underlying both
effects (“Hartle-Hawking vacuum” and “Unruh vacuum”). Considering a “realistic” spacetime
which describes a gravitational collapse, or paying attention to a general Kerr-Newman black
hole,12 there is no analogue of the Unruh effect available, the Hawking effect on the other hand
can be derived for the general case in which a gravitational collapse settles down to a Kerr-
Newman black hole. Similarly, a sensible generalisation of the Bisognano-Wichmann theorem is
not known for these class of spacetimes (disregarding the grievance that one first of all has to
define a meaningful QFT with a distinguished vacuum state). Altogether, we conclude that the
TTH may be suitable to provide an explanation for the (geneneralised) Unruh effect, while for the
generic Hawking effect this is out of sight.

11In principle, it is also possible to apply the TTH to a “Schwarzschild diamond”, conformal covariance assumed.
Since it cannot be expected to give new insights concerning an understanding of the thermal time, we renounce it.

12The Kerr-Newman metric is known to be the most general solution of Einstein’s field equations describing a
stationary black hole in the electrovacuum. It is fully characterised by the parameters mass, charge, and angular
momentum. Invoking Penrose’s cosmic censor conjecture, the end-product of any gravitational collaps has to be a
Kerr-Newman black hole (“No-Hair-Theorem”).
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Chapter 7
Discussion of the Thermal Time
Hypothesis

“An analysis of the concept of time was my solution.”
Albert Einstein, German physicist (1879-1955)

7.1 Introduction

In chapter 5 we presented the thermal time hypothesis as it was postulated by Connes and
Rovelli [42]. We explicated their idea to relate the physical time flow of a given system in a
certain state to the equilibrium dynamics of that state. The TTH is supposed to explain why a
particular flow on the algebra of observables is distinguished and causes our perception of time
in a fundamentally timeless world. As the authors write themselves, the formulation of the TTH
remains vague, since there is no rigorous definition of the term physical time available; the problem
is precisely to understand the notion of time in generally covariant quantistic or statistical theories.
From their viewpoint thermal time is the appropriate generalisation of non-generally covariant
notions of time for a hypothetical generally covariant theory of quantum gravity.

The TTH is realised by attaching a physical and this way some sort of real meaning to the
modular flow. In fact, the physical meaning of the modular objects appearing in physics is still
a mystery. Although the behaviour of a state ω as a KMS equilibrium state under the action

of the modular flow σ
ω�R(O)
s seems to suggest that it is some kind of (perturbed or distorted)

local dynamics of an observer confined to the spacetime region O, all attempts to justify such
an interpretation in general have failed so far. The TTH postulates a physical meaning and
thereby essentially shifts the problem to an understanding of the physical meaning of the thermal
time concept. The core of the issue remains the same, one would like to gain more insights into
the nature of the modular structure and the hidden symmetry coming along with the modular
flow. A better, comprehensive knowledge about modular theory is a prerequisite towards a full
understanding of the thermal time concept, necessary to decide about its validity. Unfortunately,
there is still a long way to go to achieve this aim. What actually can be done is to analyse the
TTH from a general qualitative perspective, to investigate its compatibility with certain natural
expectations on a physical time flow, and to study its meaning in the sparse number of examples,
which unfortunately turn out to be of a very special nature.

This is the point where we want to start our discussion. It is our intention to explore the TTH
from various viewpoints. Our goal is to give an objective analysis of the thermal time concept,
which, in addition, brings together all the previous chapters of this thesis. We continue to pay
attention mainly to non-generally covariant systems. Moreover, it will be useful to distinguish
in the following between a physical time (cf. chapter 1), which we think of as a time which in
some sense is measurable or perceivable by an observer, and a time with physical properties, which
behaves very similar to a physical time and may provide a useful tool to formally evolve the
system and extract certain pieces of information; but which by itself does not need to be directly
or indirectly related to the experience of time of an observer in the relevant spacetime region and
to represent the local dynamics for him.
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CHAPTER 7. DISCUSSION OF THE THERMAL TIME HYPOTHESIS

First of all we want to discuss the examples of the preceding chapter w.r.t. their significance in
supporting the validity of the TTH. Furthermore, we investigate in which situations thermal time
can be expected to reduce to non-generally covariant notions of time or to explain the emergence
of (certain aspects of) common sense time. We also want to look into the quantum and classical
mechanical limit, where the TTH originally comes from. In this limit its formulation is somewhat
more natural, since one deals with true density matrices, and, in addition, the action of the
modular flow is well-understood. In particular we would like to understand the mechanism which
distinguishes the symmetry disclosed by thermal time in this limit.

We will further discuss the physical input which enters the TTH, and if it really defines a
complete and consistent time concept which reflects our temporal experience of the world. As we
shall see there are a couple of problems impeding the acceptance of thermal time as the origin of
time, and we will think about possible restrictions e.g. on the state, guaranteeing that a physical
thermal time does emerge.

In the second part starting with section 7.11, we shall take a look at what properties are
actually desirable in order to obtain a flow which can be justified at least as a flow with manifestly
physical and thermal properties, and discuss to what extent these properties are already incorpo-
rated in the thermal time concept, or, on the other hand, if they might be in conflict with it. Above
all this concerns the issues if the KMS condition is per se sufficient to ensure the typical dispersive
behaviour of a true equilibrium flow, and if thermal time is consistent as a state-dependent flow.
We shall do it first on type I factors and add some mainly heuristic considerations on local algebras.

In the classification scheme of chapter 1 thermal time clearly is an internal time. Once the
restriction on a specific local algebra took place (on a certain class of observers which interact with
the same spacetime region), such that one can forget about the exterior structure of the theory,
the thermal time flow is global and unique (disregarding for the time being possibly necessary
inequivalent metrizations for the various observers, see below).

7.2 Compatibility between Thermal Time and Relativity

We start our analysis by considering again those cases in which the thermal time flow acts geo-
metrically. Then, thermal time gains a physical meaning be reducing locally to the proper time of
observers moving along the modular flow lines. In this section we investigate a bit more detailed in
which way thermal time can be regarded as a globally meaningful time, i.e. gives rise to a sensitive
evolution on the whole local algebra from an observer’s point of view.

Wedge Region

In section 6.4 it was argued that the Hamiltonian H of a uniformly accelerated observer O with
acceleration a generating his physical time flow has to be aL, L the generator of the implementation
of the Lorentz boosts, because it locally reduces to O’s proper time. One can even go a step further
to justify this identification. To do so, we describe the wedge region via Rindler coordinates [132],

ds2 = −x2
Rdt2R + dx2

R + dy2
R + dz2

R, tR, yR, zR ∈ R, xR ∈ R>0. (7.1)

In terms of the ordinary Minkowski coordinates (t, x, y, z) the Rindler coordinates, which cover
solely the wedge region, read

tR = Artanh(t/x), xR =
√
x2 − t2, yR = y, zR = z. (7.2)

(7.1) clearly is a static coordinate system. Thus, in the rest frame of Rindler observers satisfying
(xR, yR, zR) = const., which are precisely the uniformly accelerated ones, an unambiguous con-
sistent synchronisation of all static clocks via light signals in the sense of Einstein is possible
(which requires rate-synchronisation as well as synchronising their zero-settings). tR is a preferred,
globally defined world time in the Rindler wedge (cf. [78, 103]). Considering again the uniformly
accelerated observer O, his proper time can be extended to a global time on the whole wedge when

replacing tR by t
(a)
R := tR/a. Along any other orbit, characterised by the acceleration a′ say, the

relation between proper time τ (a′) and t
(a)
R is

t
(a)
R =

a′

a
τ (a′). (7.3)
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Exactly the same relation to proper time holds for the geometrical time generated by the boost

Hamiltonian H = aL along the boost orbits, which therefore coincides with the world time t
(a)
R . On

a geometrical level the (rescaled) thermal time induced by the vacuum state on the wedge algebra
obtains a physical meaning not just locally along the modular flow lines, but globally on the whole
wedge. It corresponds to the global world time a uniformly accelerated observer would use from
the relativistic point of view according to Einstein synchronisation. This strongly suggests that on
the quantum level the thermal Hamiltonian is in fact the most appropriate physical Hamiltonian
of a uniformly accelerated observer to describe globally the dynamical evolution of all the wedge
localised observables.

Another support comes from an alternative quantisation scheme on the wedge. The construc-
tion of a free QFT confined to the Rindler wedge is based on the boost Killing field ∂tR . tR thus
gives rise to a natural time evolution of the quantum fields for uniformly accelerated observers.

Conformal Diamond

Next we investigate if the thermal time flow on the double-cone algebra (in the conformal case)
is also globally interpretable from an observer’s point of view. In particular this concerns the
question why the non-eternal inertial observer should use the (rescaled) thermal Hamiltonian K
instead of the the ordinary Hamiltonian H. Of course, the ordinary time translations do not
define an automorphism group on the double-cone algebra. However, given an observable localised
in a sub-double-cone it can be evolved by H for a certain amount of Newtonian time until the
localisation region of the observable is about to leave the double-cone. For the non-eternal inertial
observer the (geometrical) evolution then looks a bit like what a static observer in Schwarzschild
space would see when an object passes the event horizon and falls into the black hole: The light
signals which reach him until the end of his life come from a localisation region which approaches
the horizon, while in fact (w.r.t. Newtonian time) the localisation region of the observable has
already left the double-cone. Clearly for the eternal inertial observer nothing particular happens
in the diamond region, the horizon does not exist for him. He continues his motion beyond the
top of the diamond.

Let us do analogous considerations for the diamond we did for the wedge before. For conve-
nience we restrict ourselves to one spatial dimension and a diamond of radius 1 centred around
the origin. The metric has the form1

ds̃2 = −dt2 + dx2, |t|+ |x| < 1. (7.4)

We introduce coordinates (s, r) such that observers and objects moving on the trajectories of the
modular flow become stationary (cf. equation (4.77)),

t =
(1− r2)sinh(2πs)

(1− r2)cosh(2πs) + 1 + r2
, x =

2r

(1− r2)cosh(2πs) + 1 + r2
, s ∈ R, |r| < 1 (7.5)

⇒ ds̃2 =
1(

cosh2(πs)− r2sinh2(πs)
)2 [−π2(1− r2)2ds2 + dr2

]
(7.6)

By construction s is precisely the thermal time. Although these coordinate system is not static (it
is merely conformal to a static metric), the components g0i vanish and hence coordinate time again
gives rise to a global time on the diamond in accordance with Einstein synchronisation (cf. [78]);
in this reference frame events are happening simultaneously if they happen at the same coordinate
time, that is thermal time s. Rescaling s such that it reduces on one specific flow line to the proper
time of the corresponding observer, on a geometrical level the rescaled thermal time is a natural
extension of proper time to a physical, global time in the whole double-cone. This indicates again
that on a quantum level the thermal time flow defines globally relevant dynamics for an observer
moving along the modular flow lines. For the vacuum state restricted to the double-cone one can
find a reference frame w.r.t. which thermal time can be interpreted. The crucial point is that the
relevant coordinate system is not given by the ordinary Minkowski coordinates (t, x) but by the
“diamond coordinates” (s, r). In this reference frame the state looks like an equilibrium state, and
all observers at rest feel to be immersed in thermal equilibrium at temperature (6.49).

1For reasons of clarity we prefer here the symbol ds̃ rather than ds.
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CHAPTER 7. DISCUSSION OF THE THERMAL TIME HYPOTHESIS

If we reconsider the non-eternal inertial observer it becomes clearer what is really going on.
The different possible time evolutions of an observable localised in a sub-double-cone (generated
by H or K) are due to different choices of the coordinate system, i.e. to different foliations of
spacetime into space and time. The one-parameter group of isometries generated by the globally
timelike Killing field (∂t)

µ on the whole Minkowski space does not reduce to an isometry group
on the double-cone, in particular (∂t)

µ is neither a Killing field nor a conformal Killing field on
the double-cone. Since (∂s)

µ is a conformal Killing field, the coordinate system (s, r) is somehow
preferred and one might even say that it is best suitable to describe the time evolution – especially
when taking into account that we are in the conformal case, where it provides a natural basis to
do QFT. It is guaranteed that the evolution in s is unitarily implemented. This explains why for
the non-eternal inertial observers (as well as for all the non-eternal uniformly accelerated ones)
the thermal time evolution is the most natural one on the double-cone; it is not the ordinary one
generated by H which we are used to from eternal inertial observers.

Other Cases

Similar arguments can be put forward for future-cones, static de Sitter space, de Sitter diamonds
or Schwarzschild space. We will not elaborate on that. From a geometrical viewpoint thermal time
does not merely reduce spatially locally to proper time, it gives rise to a global time evolution,
which is interpretable in a sensible manner by observers in appropriate reference frames. The reason
why this interpretation works is related to the fact that in all these examples the geometrical
realisation of the modular flow corresponds to a one-parameter group of (conformal) isometries
of the underlying spacetime, whose associated timelike (conformal) Killing field is hypersurface
orthogonal.2 That means that there exists a spacelike hypersurface Σ which is orthogonal to the
orbits of the (conformal) isometry, and which preserves this orthogonality property when evolved
in thermal time. A coordinate system which uses thermal time (the Killing parameter) as time
coordinate as well as spatial coordinates on Σ is (conformal to) a static frame and necessarily has
vanishing g0i-terms, crucial for the above global interpretation.

In the general case of an arbitrary (timelike) geometrical action in the sense of definition 4.5.1
thermal time does not need to define a global geometrical time on the whole spacetime region under
consideration. The coordinate system constructed from the modular flow lines does not need to
permit a consistent synchronisation of all clocks. Then, from the relativistic point of view thermal
time is just a spatially local physical time along the flow lines.

Conclusion In the known cases in which the thermal time flow acts geometrically, its geometrical
realisation coincides with the global time in the relevant spacetime region suitable observers will
use in appropriately chosen coordinate systems according to Einstein’s synchronisation of clocks.

7.3 Significance of the Examples of Chapter 6

In the previous chapter we discussed several examples on which the TTH was probed. Let us
come back once again to these examples. We want to discuss their relevance for really representing
cogent and convincing confirmations of the TTH.

The first example concerned an application to KMS equilibrium states, where the TTH works
just by definition; equilibrium states contain the full information about the dynamics. A similar
conclusion can be drawn from the example where the Tolman-Ehrenfest effect came out. The
system is assumed to be in equilibrium w.r.t. the flow corresponding to the globally timelike
Killing field. The proper time of observers moving along the Killing flow lines is necessarily just
a rescaling of thermal time both parametrising the isometry group defined by the Killing field.
Let us underline the main insight: An application to ordinary equilibrium states can by no means
be rated as an indication for the TTH to be true, because it might be possible just as much that
thermal time and Hamiltonian time coincide accidentally because of the artificiality of the example.
We shall argue that the problem with all the other examples presented in chapter 6 concerning
their significance lies in the peculiarity that they are either of this type as well, namely that they
are constructed in such a way that it is known from the beginning that the system appears to be

2A vector field ξµ is called hypersurface orthogonal if it satisfies the equation ξ[µ∇νξσ] = 0 [132].
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in equilibrium for a class of observers, or that the thermal time flow has a geometrical realisation
in spacetime which actually can be interpreted just the same. Either way, a physical interpretation
of thermal time becomes easily possible, it is the physical time of this class of observers.

For an arbitrary non-equilibrium state (w.r.t. ordinary time on the total von Neumann alge-
bra) one cannot expect that there exists a local observer for whom the system appears to be in
equilibrium (see below). Above all these states should be investigated to decide whether thermal
time has a physical meaning. For that reason none of the examples is a genuine confirmation, or
just indication, of the correctness of the TTH (we focus on the time part, not on the temperature
prediction). One has to be careful to avoid jumping to conclusions. To quote Requardt [102],
“physical intuition as to what one has to expect in the general situation is mostly drawn from this
meager sample of models, which might be dangerous as one might easily regard a feature as being
truely fundamental which turns out [. . . ] to be only an ‘epiphenomenon’ ”.

Robertson-Walker Space

Let us consider the Robertson-Walker space filled with a Maxwell field. One starts with a generally
covariant system, but eventually all gauge degrees of freedom are fixed. The coordinate time gets a
physical meaning as the proper time of the isotropic observers. The statistical state of the cosmic
background radiation is fixed as a Gibbs state at a temperature which is defined in the standard
Robertson-Walker time, and thereby constructed in such a way that it appears as an equilibrium
state for isotropic observers. Thus, there is no surprise that the TTH directly applied to this state
singles out a time variable which is proportional to the Robertson-Walker time.

In [108] it is argued that the distinction of the Robertson-Walker time as the correct physical
time is trivial only because of the specification of the state. Before this is done all variables should
be equally well suitable candidates as (local) internal times. Our argument is that the whole
example becomes somewhat trivial due to the fact that we, as isotropic observers, perceive a time
flow w.r.t. which the background radiation is in equilibrium. But what is cause and what is effect?
The crucial question which cannot be answered is if the cosmic background radiation is in a Gibbs
state because the TTH works and hence determines the time flow we perceive, or, conversely, if
the TTH works because the background radiation is “accidentally” in such a state. The fact that
thermal time supplies a physical time is again independent of its validity. For the special relativistic
system one can bring forward the same argument.

Let us say a few more words concerning the statistical state of the universe which, according
to the TTH and following the respective paper by Rovelli [108], determines our perception of
time, and is besides regarded as the most important application of the TTH. The cosmic microwave
background (CMB) is just a remnant of a very early period of our universe, namely the period
when matter and radiation decoupled at ∼ 4 × 105 years (“time of last scattering”); matter re-
combined and radiation began a free expansion [132]. It would be astonishing if the state of this
background radiation determines a time flow which dominates the tiny world of our everyday-life.
Our experience of time would sensitively depend on the presence of the thermalised CMB.3 If e.g.
matter was not so remarkably homogenously distributed when the decoupling took place, we might
have a fundamentally different perception of time just because of resulting inhomogeneities in the
CMB. And what happens if the CMB disappears from one moment to another? Does it mean that
our perception of time stops? Undoubtedly a very radical viewpoint.

In principle the TTH should be applied to the whole universe, including gravity. W.r.t. thermal
time it would appear to be in equilibrium. But this is not the case, in particular life cannot exist
in equilibrium. Regions with entropy gradient are needed. Only from a very gross, averaged point
of view the universe may appear to be in equilibrium. To explain the fact that our universe is
not in equilibrium, it is suggested by Rovelli [107] to separate certain degrees of freedom from
the system and apply the TTH only to the remaining system, such that the CMB could explain
our time, though the entropy could still grow. However, such a separation would be unnatural
and veil the mathematical elegance on which the TTH is based. Moreover, it would lead to the
conceptual issue how to decide for an arbitrary system which degrees of freedom are relevant for
the emergence of thermal time.

3 Note that the CMB shows certain anisotropies and is in fact not perfectly thermalised.

93



CHAPTER 7. DISCUSSION OF THE THERMAL TIME HYPOTHESIS

Unruh Effect

The next example was about the Unruh effect. The TTH is applied to the vacuum state of
Minkowski space restricted to the algebra associated to the Rindler wedge. In that case one does
not immediately start with an equilibrium state. However, by the Unruh effect it is well-known,
that this state is perceived by a certain class of observers, namely the uniformly accelerated ones, as
a thermal equilibrium state. It is least of all clear in this example that the TTH predicts precisely
the time flow of these observers. On the contrary, this relation is only established by the highly
non-trivial Bisognano-Wichmann theorem. A priori it would have been possible as well that the
associated modular flow had a non-geometrical action where it might have been much harder to
find a physical interpretation. But the fact that the modular flow admits a simple geometrical
interpretation (which besides corresponds to a hypersurface orthogonal Killing field) makes the
example trivial in view of a test of the TTH. It defines a meaningful evolution on the wedge in the
rest frame of uniformly accelerated observers.

A similar argument works in all other cases in which the modular group has a geometrical
meaning realised by timelike orbits in the underlying space (cf. section 4.5 and chapter 6), ther-
mal time can be interpreted as (a rescaling of) the unitary implementation of the proper time of
observers whose worldlines coincide with the modular flow lines, and may even represent a natural
global time evolution for them. If there is an approximate geometrical meaning in certain subre-
gions (see section 4.5), an identification with proper time is partly possible. In all these cases the
TTH works perfectly well,4 though essentially independently of its correctness.

It would be of paramount interest to study the thermal time flow on states generating a
modular flow with no geometrical meaning, and to understand its physical meaning or rather if
there is any. In such a case thermal time cannot be a Hamiltonian time which implements time
translations in the underlying spacetime, and thus one would have a challenging test of the TTH.

Conclusion The examples do not really help to gain insights into the TTH, in particular they
cannot be rated as confirmations of its validity.

7.4 Thermal Time as the Origin of Time

Using the example of the wedge let us point out an issue which arises even if the modular group
has a geometrical meaning when taking the idea of the TTH seriously. The thermal time induced
by the vacuum state on a wedge region reduces to geometrical Lorentz boosts. As elucidated in
detail, one obtains a physically meaningful interpretation of thermal time, which will be used by
all uniformly accelerated observers to describe the evolution of the wedge-localised observables.
This was rated by Connes and Rovelli as a confirmation of the TTH. We think that it is the
wrong approach, at least in view of its main goal which is to provide an explanation for the origin
of time penetrating our world. Let us explicate this point.

The TTH says that for an observer confined to a spacetime region O, the partial state on the
local algebraR(O), supposed to be faithful and normal, generates a time flow which is best suitable
to describe the evolution of the system. The TTH does not make any restrictions concerning the
class of observers which perceives thermal time. In fact, the TTH is claimed to explain the origin
of time, and, thus, should be applicable to all observers in the corresponding spacetime region;
each observer should perceive a flow of time and not just a special class. The issue is that there
are not only uniformly accelerated observers which are confined to the wedge, also for the other
observers thermal time should be the relevant time.5

However, there is no reason why the thermal time flow, i.e. the unitary implementation of the
Lorentz boosts, should give the relevant dynamics for them. The geometrical meaning of thermal
time has nothing to do with their proper times and their separation of spacetime into space and
time. Of course, thermal time is in a sense still distinguished for these observers, because one can
generally not expect an automorphism group on the algebra whose geometrical meaning contains

4 Note that even if thermal time and proper time can be identified with each other in certain situations, both
time concepts have a totally different origin. Proper time is a classical, geometrical time concept, while thermal
time arises in a thermodynamical context and is of a statistical origin.

5Of course the same issue arises on the conformal diamond, where in fact each observer moving from its bottom
to its top has a world line whose causal completion is the diamond.
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the worldline of the respective observer. So thermal time might be the most promising candidate
available. Nonetheless, we do not see any physical reason why also a non-uniformly accelerated
observer causally interacting with the wedge should describe the system in terms of thermal time,
i.e. via the Lorentz boosts.6

The presumably disturbing appearance of two different times, the wedge-globally defined ther-
mal time flow which is used to describe the evolution of the observables and the spatially local,
geometrical proper time, are resolved by Rovelli [113]. He distinguishes between a purely me-
chanical time and the more complex thermal time concept: Mechanical time, like e.g. proper time,
which is determined by the spacetime metric, is not suitable as a “flowing time”; while mechanical
time governs the behaviour of mechanical clocks, it is thermal time which we perceive.

We shall construct an example where that issue becomes even more severe, and which shows
that dismissing proper time as a mechanical non-flowing time might be a bit too simple. For
this purpose we consider a vector state Ψ 6= Ω0 with finite energy content and differing from the
Minkowski vacuum state Ω0. The Reeh-Schlieder theorem applies and makes sure that Ψ is cyclic
and separating for the wedge algebra. On factors the modular flows induced by different states
cannot coincide but differ by a non-trivial inner automorphism (cf. p. 54), i.e.

σΨ 6= σΩ. (7.7)

Consequently, the modular flow induced by Ψ cannot have a geometrical meaning corresponding to
the orbits of uniformly accelerated observers. Nevertheless, the proper time translations induced
by the Killing field are unitarily implemented (we are still in the vacuum sector). For a uniformly
accelerated observer with acceleration a they read

ατ (A) = eiτaLAe−iτaL. (7.8)

Proper time gives rise to a corresponding quantum evolution on the observable algebra just the same
as thermal time, and, hence, should be “flowing” just as much as thermal time. We have to deal
with two “competing” time flows. There is no reason why the statement of Connes and Rovelli
that ατ can be interpreted as the physical time characteristic of the [uniformly accelerated] observer
O should fail to be true just because the state has changed. Besides, ατ remains a preferred flow
from the geometrical point of view, a uniformly accelerated observer will still base the construction
of a (free) QFT in the wedge on the presence of the globally timelike Killing field.

An argument is needed which explains why O should use σΨ
s , which is not just some rescaling

of ατ , to describe the evolution of the observables, although his “standard” notion of time, ατ , is
available. Basically, one should expect the Lorentz boost time to be still his relevant physical time,
though it does not represent KMS equilibrium dynamics anymore. While starting with the vacuum
state Ω0 one has according to Connes and Rovelli “two independent and compatible definitions
of time flow”, the thermal time flow and the proper time flow, this compatibility is violated if the
system is in the state Ψ (note that the same argument applies to a dense subset of states in the
relevant Hilbert space).7

For the construction of this example the state-dependence of thermal time was exploited
together with the fact that the notion of time in conventional QFT is not state-dependent.8 Under
the plausible assumption that quantum gravity effects can be neglected, one would expect the
Lorentz boosts to approximate in some sense the “true” time for O in the state Ψ. One should still
ascribe a “reality” to the unitary implementation of the Lorentz boosts as the most reasonably
time flow for uniformly accelerated observers. It can certainly not be expected that thermal time
approximates the Lorentz boost time for all the states for which the Reeh-Schlieder property holds
(though possibly for sufficiently small energies, cf. also section 7.17). Thermal time does not seem
to be the most natural physical time for uniformly accelerated observers immersed in an excited
vacuum state of finite energy content.

6A similar objection also holds for the Robertson-Walker example. The TTH singles out a flow which is very
natural for the given state to describe the time evolution for isotropic observers, while the perception of time of
non-isotropic observers remains an unsolved issue.

7 One might speculate that thermal time can be understood if O uses another coordinate system in which the
thermal time flow (though possibly acting non-geometrically) gives rise to the most natural time evolution. Since
the modular flow originates from one single algebra and is not related to the net structure, i.e. to the underlying
spacetime, we do not see any reason that this can indeed be expected (we take up this point later again).

8It thus might be more reasonable to use the canonical flow, such that the troublesome inner automorphism
connecting both flows becomes irrelevant, though this flow causes other problems as we shall see later.
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Altogether, we have to conclude that either merely a restricted class of local observers perceives
thermal time (which depends on the state), or that there are observers for whom thermal time is
a rather “exotic” concept, which for some unknown reasons drives out conventional time flows.9

Preferring the first alternative, at most for a proper subclass of observers the thermal time flow
may define physical dynamics (much more work is left to justify just such a restricted version). In
the known examples this class most reasonably seems to consist of those observers following the
geometrical flow lines of the modular flow. An arbitrary observer will generally not use the thermal
Hamiltonian to describe the evolution of the system. If not all observers perceive thermal time,
one is tempted to speculate that there exist cases, most likely those where the modular group has
no geometrical meaning, where this class is empty. In fact, the time concept provided by the TTH
depends on the state of motion of an observer only as far as it affects the spacetime region he is
confined to, i.e. on his asymptotic state of motion.10 With regard to relativity it is questionable if
a time concept, which is to a large extent observer independent, makes sense.

Anyway, the perception of time should not be confined to special observers, since otherwise,
making the assumption that the perception of a flow of time is not linked to observers in specific
states of motion, the TTH would not be suitable to explain the origin of time. The example of
the wedge tells us, that if one wants thermal time to explain the origin of time, a geometrical
interpretation is per se not a sufficient confirmation and one has to investigate those examples
more carefully. If though one is mainly interested in a physical understanding of thermal time, a
geometrical interpretation (via timelike orbits) is fully satisfactory.

Conclusion The thermal time flow does not seem to be an appropriate and natural physical flow
for each observer (though it might admit a physically meaningful interpretation). If this is true,
the TTH would not explain the perception of time for arbitrary observers.

7.5 Thermal Time as an Entirely New Concept of Time

According to Connes and Rovelli “the thermal time hypothesis is [. . . ] the suggestion of taking
the modular flow as the relevant generalisation of the non-relativistic time”. Thus, thermal time
must permit a meaningful physical interpretation in the non-generally covariant limit as prereq-
uisite to be acceptable as sensible generalisation of the notion of time in the generally covariant
case. In the best case thermal time reduces to one of the standard notions of time existing in this
limit, the latter ones being well-established in the sense that they can be measured by suitable
observers and are known to give rise to a reasonable evolution of the system. As we shall see this
generally cannot be expected, thermal time cannot be regarded as a generalisation of non-generally
covariant times and one has to justify an entirely new time concept.

Thermal Time Induced by Non-Equilibrium States

Connes and Rovelli argue that equilibrium states are preferred states and that physics is well-
described by small excitations around those states, which is why they probe the TTH in the
non-generally covariant limit on KMS equilibrium states. It is certainly true that equilibrium
states are distinguished, but it does not entitle to consider exclusively such states. The problem
simply is that we know that there are systems in Nature which are not in equilibrium. For instance
the whole universe itself is far away from being in thermal equilibrium. There are macroscopic
observables whose expectation values do evolve in time. We do not see any reason why the TTH
should not be applied in those cases, as well. As mentioned before it is desirable to recover an
ordinary notion of time. However, w.r.t. thermal time a non-equilibrium state becomes a KMS
equilibrium state. So what happens if the TTH is applied to arbitrary non-equilibrium states w.r.t.
the conventional Hamiltonian time? This issue was first pointed out by Requardt [102], even
before the formulation of the TTH. Let us recall the argument.

9 The TTH assigns a kind of universal, global time to each local algebra and thereby to observers living in the
underlying spacetime region (possibly up to some rescaling). One may ask if such a global time is really necessary
(note that the interpretation of quantum theory is assumed to work without any notion of time), particularly as the
theory of relativity says that each observer has his own (locally) meaningful time. There is no reason why the time
flow we perceive should have a global, to a certain extent observer independent character.

10albeit possibly differing by inequivalent metrizations, see below
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For this purpose we consider a non-generally covariant quantum statistical system (R, H, ω)
with an observable algebra R and a Hamiltonian H, which is supposed to be in a faithful normal
state ω. But now we choose ω as an arbitrary non-equilibrium state, i.e. a state which does not
satisfy the KMS condition w.r.t. the time flow αt generated by H.11 Even more, we assume ω to
be not stationary. The TTH should give rise to a physical time flow. By definition the state ω
satisfies the KMS condition w.r.t. the thermal time flow σωs induced by the modular Hamiltonian
K = − log ∆ and thus is in KMS equilibrium. As a consequence, the measurable expectation
values of the observables are stationary when evolved in thermal time

ω(σωs A) = ω(A) for all s ∈ R, (7.9)

while they evolve non-trivially in ordinary Hamiltonian time,

ω(αtA) 6= ω(A) in general. (7.10)

Even if the modular structure could have a deeper meaning as a hidden symmetry in the context
of non-equilibrium statistical mechanics, Requardt concludes from this result, that the thermal
Hamiltonian K cannot be regarded as some sort of perturbed or distorted original dynamics, the
thermal time has nothing to do with the real Hamiltonian time.

Possible Notions of Physical Times

Let us get an idea about what the term “physical time” could mean. One main feature of an AQFT
is that a class of Hamiltonians is defined via a representation of the Poincaré group generating time
flows. These can be measured by suitable observers. A Hamiltonian time of this kind is a physical
time. However, such a time flow is defined on the algebra associated with the whole Minkowski
space (or the wedge algebra), while the thermal time flow acts typically as an automorphism group
on a local algebra associated with a finite, connected spacetime region. Since ordinary time flows
do not simply reduce to automorphisms on a local subalgebra, they cannot reduce to the thermal
time flow. Even more, if one assumes the time flow to be an automorphism group on the relevant
local observable algebra, ordinary time flows are no suitable candidates anymore.

Changing the reference frame, i.e. the foliation of spacetime, may substantially change the
time evolution. In another reference frame thermal time might be interpretable e.g. by relating it
to coordinate time translations as in the case of the conformal double-cone. Standard QFT as a
special relativistic theory does not capture the dynamics in arbitrary reference frames, which, in
principle, leaves the opportunity to justify thermal time as a natural evolution in the respective
frame in some sense. Altogether, there remains the possibility to relate thermal time to a physical
time without identifying it with the ordinary time flow.12

Eventually, it is possible that thermal time has to be understood in an entirely new manner.
In chapter 1 we have seen that the notion of time does not need to show all the specific properties
of common sense time in order to be regarded as a physical time. It is sufficient to show certain
physical objective properties. Maybe different physical times emphasize different aspects of com-
mon sense time (e.g. we have mentioned that, according to Rovelli, thermal time as a “flowing
time” and ordinary time as a rather mechanical time are on differing footings).

Anyway, the above example is undoubtedly an indication that the TTH has to be handled
with care, but by no means it can be rated as a counter-example, unless the term “physical time”
is specified. The non-coincidence of thermal time and ordinary time does not exclude the former
one as a physical time. In the remainder of this section we want to devote ourselves further to

11To make sure that both flows act on the same algebra we particularly think of the quantum mechanical limit.
12 In addition, an internal clock time is physically meaningful and could provide an interpretation of thermal

time. It suffices to focus on the classical case. It is measured via a partial observable on the configuration space
(appendix B). But there are many problems with it. While thermal time is a Hamiltonian time, one cannot expect
the same from a clock time. In general it will be defined only locally. A description in terms of a clock time does
not influence the presymplectic structure. The parametrisation is changed, while the physical motions remain the
same. In contrast to that, the thermal Hamiltonian will generate completely different physical motions. Lastly,
by definition of Newtonian time t, an internal time is expressible as a function of it. The fact that all expectation
values are constant in thermal time s but in the non-stationary case non-constant in t underlines that such a relation
cannot exist. Internal clock times are generally out of question to emulate thermal time and we shall not consider
them any further.
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the relation between thermal time and non-generally covariant notions of time. In the quantum
mechanical limit both the thermal time flow and the ordinary Hamiltonian time flow act on the
same algebra so that these flows can be directly compared with each other. In the algebraic setting
one can compare at least general properties of these flows.

Relation to Ordinary Hamiltonian Times in the Quantum Mechanical
Limit

Let us consider an ordinary quantum mechanical system consisting of N particles contained in a
box. It is defined in terms of the algebra B(H) of all bounded operators acting on a separable
Hilbert space, supplemented by the giving of a Hamiltonian, H, which generates the physical time
flow. If the system is in a faithful normal state ω, which then corresponds to an invertible density
matrix ρ, thermal time is defined, too. Since ρ is of trace-class, it is a compact self-adjoint operator.
Its spectrum σ(ρ)\{0} therefore is a purely point spectrum with precisely one limit point 0 ∈ σ(ρ),
which is not an eigenvalue (cf. appendix A.1). ρ admits an ONB consisting of eigenvectors {ei}
with corresponding eigenvalues λ1 ≥ · · · ≥ λi ≥ . . . converging to 0. The thermal Hamiltonian
reads K = − log ρ and is a positive, self-adjoint operator with discrete spectrum as it is prevalent
in closed quantum mechanical systems. From this viewpoint K is a reasonable Hamiltonian.

The thermal Hamiltonian K depends exclusively on the density matrix ρ, i.e. the statistical
state of the system, while the ordinary Hamiltonian H is deduced from the particle content, the
interactions between the particles, external fields, suitable chosen boundary conditions, etc. Under
the premise that a state can be prepared in quite an arbitrary way, independently of the interac-
tions, K cannot contain any information concerning the ordinary Hamiltonian flow. Conversely,
starting from a non-equilibrium state the memory about the initial state is lost in microscopic
correlations during the course of its evolution (cf. [139]), and with it every piece of information
about K.13 Hence, we have to infer that K and H, will be independent and uncorrelated to a
considerable degree in the general case, they are constructed in a totally different manner. This
eventually explains what we already observed before, it is unfeasible to interpret thermal time in
terms of usual Hamiltonian times. If one wants to confirm the TTH in the non-generally covariant
limit, a new understanding of time is necessary.

We want to illustrate the independence of H and K more concretely. Envisage a system
consisting of N particles whose interaction with each other is described by a potential term∑
i 6=j V (xi−xj) in the Hamiltonian H. In principle it is possible to prepare a state ρ = e−K , where

K resembles H up to the interaction term which we assume to be replaced by
∑
i 6=j Ṽ (xi − xj).

In that case the thermal Hamiltonian would look like an ordinary physical Hamiltonian. But since
the chosen particle content shows a completely different interaction as it is coded in the thermal
Hamiltonian, the evolution cannot be related to the “true” one. The evolution is not unphysical
in the sense that it has physical properties and one might replace the particles by those which
have the “correct” interaction and are otherwise identical. So there is the possibility to “realise”
the thermal time flow. Of course, this is not what one would understand under a physical time
flow. One can construct many examples of this kind, in which the interaction term is artificially
produced via the initial state of the system. A state distinguishes an interaction term which, apart
from special cases, has nothing to do with the real dynamics.

In a next step one may think of a thermal Hamiltonian which does not even look like a physical
one. We continue considering the finite system consisting of N particles. Preparing an arbitrary
state represented by an invertible density matrix, K will usually not take the form of a standard
Hamiltonian generating the dynamics of a physical system, which is typically something like

H =

n∑
i=1

p2
i

2mi
+ V (x1, . . . , xn). (7.11)

For instance K does not need to have the kinematical terms p2
i /(2mi). In such a case the system

evolved in thermal time behaves in a completely different manner, and one cannot expect that the
dynamical system describes an ordinary particle theory from an observer’s point of view.

13 Think for instance of a cup of coffee. If the coffee is hot one knows that it will become cold, if however the
coffee is cold, one cannot say if it was hot before, or if it has always been cold.
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Albeit the thermal time flow in finite systems is generated by a positive self-adjoint operator,
it does not have the form of an ordinary Hamiltonian. There is no reason why an observer who
is aware of the particle content should construct a Hamiltonian like K rather than one of the
above form, and why he should describe the evolution in terms of the thermal Hamiltonian. Any
standard clock will measure the Newtonian time generated by H. So one is tempted to interpret
such a situation in the sense that there simply is no observer which accesses thermal time.

Relation to Ordinary Hamiltonian Times in AQFT

Likewise to the quantum mechanical limit, one can argue in the AQFT case. The thermal Hamil-
tonian K = − log∆ induced by a faithful normal state in the GNS representation of a local
algebra, which is a type III1 factor, is a self-adjoint operator whose spectrum is the whole real
line (though its negative part is suppressed by proposition 4.1.10), as it naturally happens to be
the case e.g. in the thermal sector of AQFTs. Again, up to this point K resembles an ordinary
Hamiltonian. To construct the Hamiltonian implementing the ordinary time translations (which
form a one-parameter subgroup of the representation of the Poincaré group), one has to know
the physical content of the theory, namely the net structure. In special relativity the time evolu-
tion of an observer corresponds to a particular separation of spacetime into space and time. The
unitary operators implementing the time evolution respect this separation, which is expressed by
a geometrical meaning in the underlying spacetime region; evolved observables remain localised.
For inertial observers the localisation region is just shifted upwards without any deformation (for
uniformly accelerated observers the localisation region is distorted, cf. figure 6.1 on page 77).

In section 4.6 we have seen that such a simple and in the Heisenberg picture typical behaviour
can generally not be expected from the thermal time flow. On the contrary, the thermal time
flow does neither need to act geometrically nor does it need to respect causality. We have met an
example where the modular flow blows up the localisation region of suitable chosen observables
arbitrarily in small thermal time intervals, or induces a transformation with a mixing term between
spacelike separated double-cones. Although these examples may not provide the typical applica-
tion domain of the TTH, which generically will be a finite, connected spacetime region in four
dimensions, one more time a somewhat atypical behaviour of the thermal time flow is indicated.
A geometrical thermal time flow (with timelike orbits) can be associated to the measurable proper
times of a suitable class of observers. In general, the proper time translations of observers moving
in a Lorentzian spacetime manifold will have nothing to do with the thermal time flow, even if
they are related to a Killing field or unitarily implemented on the algebra. The thermal time flow
does not need to respect the net structure.

It was mentioned before that thermal time might be interpretable by choosing another coor-
dinate system. Thermal time could give rise to a sensible time flow w.r.t. this frame, particularly
as one cannot expect a unitary implementation of the coordinate time translations. It is conceiv-
able that if e.g. the choice of the coordinate system is not based on a timelike (conformal) Killing
field, the most natural time evolution is a non-geometrical flow. One might hope to find at least
in cases of physical interest a suitable reference frame in which thermal time can be interpreted
in such a way. While the dynamics induced by thermal time are simply equilibrium dynamics,
the non-trivial part of understanding thermal time would be shifted to its identification with the
physical time of suitable chosen reference frames. Anyway, the presence of a spacetime manifold
plays no role in modular theory where the thermal time flow comes from. In turn, there is no
reason why an understanding of thermal time based on geometrical aspects should generically be
possible. Indeed, the interpretation of thermal time should not rely on an underlying Lorentzian
manifold and a particular coordinate system. This is integral to the generality of the TTH, which
is supposed to be applicable above all in the generally covariant context.

Similarly, a thermal time flow which does not respect causality causes difficulties if one wants
to identify it with the time flow perceived by an observer. There is actually no reason why it should
respect causality, because the net structure, i.e. the localisation region of the observables, does not
enter the TTH. For example it could happen that the thermal time flow acts geometrically in form
of spacelike orbits.14 It seems to be impossible to give a meaningful physical interpretation of a
time flow from an observer’s point of view which violates causality in such a drastic way.

14Note for this that the predictions made by Trebels concerning possible geometrical flow lines refer to the
vacuum state, and, moreover, need as prerequisite that the modular flow acts causally geometrically, such that it is
essentially assumed from the beginning that causality is respected.
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An Example: The Spin-1/2-System

As a specific example we apply the TTH to a simple model, namely to a spin-1/2-system (one
may think of silver atoms in their ground state [39]). The relevant Hilbert space is Hs = C2.

The observables of physical interest, Su ≡ ~S~u, measure the spin-component in ~u-direction. The
standard basis ofHs is {|↑〉 , |↓〉}, where |↑〉 is the eigenstate corresponding to spin up in z-direction,
while |↓〉 is related to spin down. W.r.t. this basis one establishes

Sθ,ϕ ≡ Su ≡ ~S~u =
1

2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. (7.12)

Let us assume the system to be initially prepared in such a way that the probability to measure
spin up in z-direction is p, and that the probability to measure spin down is 1− p (this can always
be achieved if the coordinate system is appropriately chosen). The relevant density matrix is then

ρ =

(
p 0
0 1− p

)
, (7.13)

and we can determine the thermal time evolution of the observables (supposed that 0 < p < 1):

σs(Sθ,ϕ) = ρ−isSθ,ϕρ
is =

1

2

(
cos θ e−is log( p

1−p )e−iϕ sin θ

eis log( p
1−p )eiϕ sin θ − cos θ

)
(7.14)

= Sθ,ϕ+s log( p
1−p ). (7.15)

We find that the spin observables which measure the spin in ~u-direction are rotated around the z-
axis. What is the intuition behind this observation? If an observer measures the spin in z-direction
and finds the probability to measure spin up to be p, he would construct the density matrix (7.13).
The observer has a detailed knowledge about the distribution of the spins in z-direction, while
the orthogonal directions are on an equal footing for him. That is precisely what the thermal
time exploits, which underlines its significance as a preferred symmetry transformation (we shall
take up this point in section 7.10). Since the observer cannot distinguish between the directions
orthogonal to the z-axis, there is a kind of rotation invariance, and the “geometrical significance”
of the thermal time flow is nothing else but a rotation around the z-axis.

While the mixed state causes the emergence of thermal time, a physical time cannot be
specified unless the external fields are known. Let us for instance assume that the silver atoms are
in a homogeneous magnetic field ~B0 in ~v-direction. Only then the physical Hamiltonian describing
the observable time evolution of the system can be constructed, it is

H = −γB0Sv, (7.16)

where γ is the gyromagnetic ratio. This emphasizes again, that the thermal time flow describes
something very different from ordinary physical time evolutions; it reveals a symmetry of the initial
state, and in general there seems to be no chance to relate it to a physically meaningful time flow.

Summary

The considerations of this section underline that in the non-generally covariant limit thermal time
does not simply recover one of the common notions of time such as an ordinary Hamiltonian time or
proper time (apart from some rather artificial situations), and it seems to be impossible to draw a
connection to one of these times. Thermal time and ordinary notions of time are on totally different
footing and have in general nothing to do with each other. The spacetime structure on which the
latter ones are based is not available, or rather must not be exploited to obtain a time concept
which is general enough. Thermal time defines an entirely new time concept, it is state-dependent
and has a thermodynamical origin. On the other hand, thermal time is intended to explain our
very special perception of time, which is related to the non-generally covariant times appearing
in physics (even if not all aspects of common sense time are captured).15 One might draw two

15One could claim that the TTH has to work above all when applied to cosmological models, namely to (a
subsystem of) our universe, to explain the origin of the flow of time we perceive.
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conclusions from this: Either one regards the deviation from ordinary times as disturbing and
demands a time concept which in the non-generally covariant limit does reduce to such a time (or
is at least related to it in cases of physical interest) and which may be achieved by imposing certain
conditions on the state, or one investigates this new notion of time for physical properties and tries
to assign a more “abstract” meaning to thermal time. We will follow essentially the second route
and look for physical properties of thermal time, although it turns out that additional requirements
have to be fulfilled in order to get a meaningful time concept with physical properties.

Even if thermal time is not related to the physical time of an observer, it still can define
reasonable local dynamics in a sense to be clarified; e.g. thermal time may be “perceived” by some
kind of process rather than by an observer [86]. The KMS equilibrium flow would be deeply hidden
in the structure of the system, not accessible for an observer, though it might open the opportunity
to formally treat non-equilibrium phenomena by equilibrium flows. The thermal time flow might
be a useful tool for studying physical systems and to extract certain pieces of information.

Conclusion Thermal time can generally not be identified with an ordinary Hamiltonian time
in the non-generally covariant limit. It is a completely diverse flow of different origin and with
an unfamiliar behaviour. There seems to be no reason why it should be related to the dynamical
evolution seen by an observer. In the terminology of the introduction thermal time then is not
a physical time in the proper sense. Nonetheless, there remains the opportunity that it can be
identified with some yet unknown, reasonable physical time concept.

7.6 Intrinsic Equilibrium

Whenever the thermal time flow has an (approximate) geometrical meaning corresponding to time-
like curves, this is interpreted in the sense that for certain observers, namely those moving along the
modular flow lines, the state looks like a equilibrium state whose temperature is the ratio between
thermal time and geometrical time. It was explained in section 4.6 that there are strong hints
that the modular flow acts non-geometrically in cases of physical interest. The hidden symmetry
structure revealed by modular theory has in general nothing to do with a geometrical realisation
in spacetime. Invoking the uniqueness of the KMS flow, one may be tempted to speculate that a
similar statement also holds for the reversed direction, namely that the absence of a geometrical
meaning expresses the impossibility for any observer (in the respective spacetime region) to see
the system in equilibrium. This fits into the picture that there is no temperature defined, which
is a typical quantity assigned to true thermal equilibrium. The interplay of modular theory and
KMS theory just shows that there formally exists a flow which lets the system appear to be in
equilibrium (disregarding dispersion for the moment), but as discussed before, there is no reason
why it should be accessible for an observer, why it should be a “real” flow.

To obtain a thermal time flow for a physical system in a given state, which as an equilibrium
flow has not just a couple of physical properties but which can be expected to be measurable in
some sense by an observer whose time is related to thermal time, the system should not be in
a completely arbitrary state. To make sure that the treatment of the system as an equilibrium
system is physically reasonable, it might be useful to fall back upon the original version of the
TTH proposed by Rovelli (see section 5.3) and require the state to be in some kind of intrinsic
equilibrium in order for the TTH to be applicable. The state then can be expected to code
dynamical information. Accordingly, one has to look for an intrinsic characterisation of the notion
of equilibrium in the context of AQFT which does not rely on the notion of time. As a primitive
ansatz, this could be the requirement for a geometrical meaning of the modular flow corresponding
to timelike curves (this could at least be regarded as a sufficient condition). Anyway, an intrinsic
characterisation of equilibrium could be transferred to the generally covariant case in order to get
a thermal time concept of restricted validity. It would make the description of the system in terms
of equilibrium dynamics physically plausible, and it could also guarantee that in the non-generally
covariant limit thermal time does reduce to an ordinary physical time, such as Newtonian time
or proper time. Anyway, a suitable characterisation of an intrinsic equilibrium state might be as
difficult as the distinction of a physical time flow, whereby the issue is essentially shifted.

Conclusion Restrictions on the state might ensure a physical thermal time concept.
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7.7 Relation between Thermal Time and Physics

Mathematical Representation of Thermal Time

While the TTH provides an entirely new access to the notion of time, one may question if its
assumption about the mathematical representation of a time flow is general enough to cover all
cases of physical interest. At first glance it seems to be a very natural assumption to identify
the physical time evolution with a σ-weakly continuous group of ∗-automorphisms on the relevant
algebra. Nevertheless, a dynamical law which is homogeneous in time, as well as a continuous
evolution of every state of the system, are not necessarily expectable for general systems in which
complicated phenomena occur. Thus, one may also take weaker forms of time-evolution into
account (see [24] p. 4 and [60] p. 237). We will assume here the system as well as the state to be
sufficiently nice, albeit these considerations indicate that the assumption of the TTH concerning
the mathematical representation of the time flow might by too simplifying and does not capture
the peculiarities of all physical systems.

Physical Content of the Thermal Time Concept

We have seen that the thermal Hamiltonian will in general not recover ordinary physical notions
of time. A very fundamental question is to what extent the thermal time flow can be expected at
all to incorporate a physical input which is sufficient to justify an interpretation of thermal time
as a physical time whatsoever. For this, recall that the thermal time flow is generated from just
one single local algebra as soon as the faithful normal partial state on this algebra is known. In
section 2.7, however, we have learnt that one single algebra R(O) does not contain any physical
information, it is just a mathematical object, ∗-isomorphic to the unique hyperfinite type III1

factor. It is solely the net structure, the way the various local algebras are embedded into each
other, which brings in the physics. But the net structure, or rather the subnet with R(O) as its
largest element which is the only relevant part for an observer in O, does not need to be known in
order to determine the modular operators, and thereby the thermal time flow.

The TTH claims that an arbitrary faithful normal state distinguishes a physical time flow
on the observable algebra at a stage, where the net structure, and hence the physical meaning of
the observables, has not entered yet. It is not plausible that one can determine a physical time
evolution of an observable whose meaning one does not know (e.g. one does not know whether it is
localised in a proper subregion and thereby the exact placement as well as the spacetime extension
of the measuring apparatus, which has to be used to carry out the corresponding local operation),
in a system whose physical content (interactions, correlations) is not known. Of course, the subnet
structure becomes relevant if one tries to interpret the modular flow in physical or geometrical
terms. However, from this gross viewpoint it would be very remarkable if the modular flow admits
a physical interpretation in any case, i.e. for each physically admissible net.

The second important object which enters the TTH is the state. Also a state as an arbitrary
linear functional on the algebra does not contain any physics (the only restrictions are normality
and faithfulness), and becomes interpretable only through the net structure. It is known that
an abstract local net admits unphysical states with an infinite amount of energy concentrated
in finite spacetime regions. However, once an appropriate representation is chosen in form of a
net of von Neumann algebras, all (normal) states belong to the same folium and should therefore
be of physical relevance. The TTH should be applicable to any faithful normal mathematical
state. Certainly there are states which bring in some physics. The vacuum state with a couple of
very specific properties is a primary example for that (see below), and indeed the thermal time
flow corresponding to the restricted vacuum state seems to contain enough physics to generate a
physical time flow, at least this is what the known examples say. Nonetheless, one may doubt if
the same holds for an arbitrary chosen state, which does not code a comparable amount of physics.

At this point we want to take a look at the canonical flow, which was alternatively proposed
by Connes and Rovelli to represent a physical flow. In that case the (minimal) physical input
stemming from the state is cancelled and one has to deal with a purely mathematical flow. The
inner automorphisms by which the various modular flows differ and which may contain some
physics become irrelevant. Apart from the odd fact that in the quantum mechanical limit all
possible thermal time flows are identified with the trivial flow, we do not see any reason why this
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flow should do something physical. If we think e.g. of a hypothetical generally covariant theory
where the state influences a macroscopic metric field of the underlying manifold, the canonical flow
would have to be intepretable for essentially arbitrary metric fields.

The same argument applies in the case of a quantum mechanical system. The thermal time
flow emerges from an arbitrary state given by an invertible density matrix on the algebra B(H).
Again, no physics is contained in these objects. Let us think of a system in a box consisting of
a finite number of particles. As mentioned before the physics is determined by the interparticle
forces, the boundary conditions, and the presence of external fields. But none of these physical
aspects is taken into account by the TTH. Again, there is no reason to suspect that thermal time
does something physical, something which is related to the “real” dynamical system.

In summary, there is essentially no physical input contained in the thermal time postulate.
The thermal time flow does not seem to be more than the mathematical canonical flow of the
algebra which is supplemented by a state-dependent inner automorphism which exploits certain
peculiarities of the specific state. Additional selection criterions are needed in order to obtain
a physical thermal time. Of course, one may reply that the thermal time flow gains thermal
properties via the KMS condition, but let us stress afresh that one carefully has to distinguish
between a physical time flow and a flow with physical properties. The KMS condition is a purely
mathematical condition which obtains its physical relevance for the distinction of equilibrium states
only if the automorphism group is identified with time translations which are a priori known to
be physical. As long as the modular parameter does not represent a physical time, the modular
flow has nothing to do with equilibrium statistical mechanics.

Physical Relevance of the Distinguished KMS Flow

To explain that a bit more, let us fall back upon the initial motivation of the TTH. In a non-
generally covariant physical system a given time flow selects a preferred class of states, namely the
equilibrium states. This was reversed to postulate that a statistical state distinguishes a flow, the
thermal time flow. Undoubtedly the thermal time flow is a preferred flow, just the same as an
equilibrium state is a preferred state with regard to the conventional viewpoint. But as this does
not imply that every non-generally covariant system automatically has to be in (or at least close
to) an equilibrium state, there is no reason why the thermal time flow should be (approximately)
realised in the system in the sense that it is perceived by certain observers. The relation between
KMS theory and modular theory just shows that it is always possible to choose the dynamics, i.e.
interparticle forces, external forces, etc., in such a way, that with these forces the system is in KMS
equilibrium. If the forces happen to be different, there is a priori no reason why the modular flow
should be related to physics. By no means one can conclude without further ado or restrictions
that it represents physical time translations. As discussed above, K has some properties which
are ascribed to a physical Hamiltonian and it may happen by choosing a suitable particle or field
content with appropriate interactions etc. that K can indeed be realised, but in general there is
no reason to expect that the evolution of the system is governed by the thermal time flow.

The Thermal Time Flow Induced by the Vacuum State

Most of the examples where the modular group is known stem from the vacuum state restricted
to certain spacetime regions. In those cases a physically meaningful interpretation is possible,
which may be ascribed to the peculiarities of the vacuum state. One must not forget that it is an
extremely distinguished state with very special properties. The vacuum representation is assumed
to admit a unitary implementation of the Poincaré group and the vacuum state is invariant under
the action of that group, whereby it codes information about the representation of the Poincaré
group and a physical time evolution.

That the modular operators induced by the vacuum state and the physical Hamiltonian are
not independent is shown off by an intimate relation between their spectral properties, pointed out
by Buchholz, D’Antoni and Longo [32]. The modular operators carry information about the
energy of the system. There is further the possibility to express the energy nuclearity condition in
terms of the modular operators associated with bounded regions in Minkowski space (cf. section
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2.6). This modular nuclearity condition makes a statement about the order of the mappings

ΞO1,O2
: R(O1)→ H, A 7→ ∆

1/4
ω0�R(O2)AΩ0, (7.17)

where O1 ⊂ O2 are two bounded regions whose inner distance is sufficiently large (see [32, 60] for
the details). Since the energy nuclearity condition is expected to hold in the theories of physical
interest, (7.17) shows that the modular operators induced by the vacuum state contain pieces of
information about the net structure, i.e. about the physics, expressed via the appearance of the
subalgebra R(O1). Of course, this does by no means imply that the modular group associated
with the vacuum has to generate a physical time evolution,16 but at least it underlines its physical
significance, the modular objects do code physics. In fact, the two equivalent formulations of the
nuclearity condition were motivated by the idea that the modular flow describes some form of
perturbed dynamics. The authors expected that an observer in a region O whose time evolution
is given by the modular flow comes to a similar conclusion concerning the size of the set of well-
localised states as an observer whose time evolution is generated by the ordinary Hamiltonian.

Conclusion The portion of physics which enters the thermal time concept is too low to justify
its physicality without further ado. Only in particular states the thermal time flow might contain
enough physical input to generate a physical thermal time flow.

7.8 Conceptual Issues

While we focused up to now on the physicality of the thermal time concept and possible physical
interpretations of thermal time by means of drawing a connection to conventional notions of time,
it is our goal in this section to discuss conceptual issues coming along with the TTH and making
it (so far) incomplete as a physical time concept.

The Principle of Simplicity and the Metrization of Thermal Time

Following the reasoning of Connes and Rovelli the physical time of a system is chosen in such
a way that the system appears to be in thermal equilibrium. Therefore, one just has to deal with
equilibrium dynamics. From this point of view one may interpret the thermal time concept as a
realisation of Poincaré’s principle of simplicity (cf. section 1.4). The physical time of a system is
selected in such a way that the dynamics become as simple as possible. Evidently, this does not
imply that the physical meaning of the thermal time flow (if it exists at all) is easily obtained.
A description how the precise action looks like, e.g. on local subalgebras, is far away from being
simple. However, there is an even more fundamental issue.

How does one has to choose a suitable metrization of thermal time, i.e. how does one find the
rescaling which relates thermal time and physical time? We do not just perceive a topological time.
It was emphasized by Mach (cf. [88]), that there is a feeling of duration which should be reflected
in a preferred metric of physical time. If thermal time does indeed correspond to our experience
of time, the metrization should be fixed (up to some affine transformation) in order to obtain a
well-defined quantity. In Newtonian mechanics and general relativity the metrization is selected
by the principle of simplicity. The first idea might be to fall back again upon this principle, that
is to identify the modular parameter itself as a physical time. This does not work here: As an
application of the TTH to double-cones in the conformal case reveals, one has to expect a highly
non-trivial rescaling of thermal time in order to relate it to physical proper time.17 In general, the
modular parameter is not a physical time. This fits with our experience, the time of our perception
is finite rather than corresponding to the whole real line as the modular parameter does.

In the non-generally covariant case there is a way to obtain the rescaling, f , whenever the
modular group has a geometrical meaning, at least for observers moving on the modular flow lines:
It has to be chosen in such a way that ‖∂f(s)‖ = 1. Note that e.g. for the conformal diamond

16In the case of a double-cone in a massive or interacting theory this is far away from being clear.
17One might claim the modular parameter to define a physical time flow of its own right and to assume that

proper time as a mechanical “non-flowing”-time is not really what the observer perceives [113], but as explicated
before we think that due to the unitary implementation of the proper time translations it should be on the same
footing as thermal time, and to avoid dealing with two time flows, it seems to be reasonable to identify them.
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the metrization is observer-dependent, or rather acceleration-dependent. Differently accelerated
observers might fall back upon non-equivalent metrizations, which are not related by affine trans-
formations and which are used by them to describe the evolution in their specific relativistic time.
For other observers in that spacetime region, or in the non-geometrical case, there seems to be no
natural instruction.

If a local algebra R(O) admits a state ω which generates a modular group with a geometrical
realisation (corresponding to timelike orbits), one might consult this state to fix the rescaling and
use it for the thermal time flows generated by all the other states [86]. This proceeding might be
justified by the cocycle Radon-Nikodým theorem which underlines that there is a strong relation
between the various modular flows on a local algebra. Anyway, if R(O) does not admit a state
whose modular flow has a geometrical meaning, or in the generally covariant case the issue remains.

Since the knowledge of a metrization is necessary in order to get a full physical thermal time
concept, we have to conclude that the TTH can provide us at most with an incomplete picture of
the true physical notion of time

Measurability of Thermal Time

Assuming the TTH to be true in the sense that it indeed defines a physical time, it might be dis-
turbing to ascribe the origin of time to equilibrium dynamics (though this has been the motivation
to justify thermal time as a physical thermal time concept), not just because of the existence of irre-
versible phenomena in our world (see section 7.11), but also because a state-dependent equilibrium
flow might impose restrictions on its measurability.

Let us address the issue concerning the measurability of the thermal time flow as a dynamical
evolution of the system. One cannot directly measure the time evolution of the observables itself,
what experimentally can be verified is the evolution of their expectations values, which are constant
w.r.t. thermal time. There remain thermal time correlation functions and fluctuations around the
state leading to measurable, non-trivial temporal reactions of the system. However, one has to be
a bit careful because of the state-dependence of thermal time.

For instance if the system is prepared in a non-equilibrium state, one cannot observe any
“return to equilibrium”-behaviour, because by definition the thermal Hamiltonian is deeply in-
tertwined with the state. A change of the state is necessarily accompanied by a change of the
dynamics, such that the system is in equilibrium w.r.t. the new state and an approach to the origi-
nal state will not be detected (cf. the example in section 7.11). One objection to the measurability
of the thermal time correlation functions, which do evolve non-trivially in time, could be as follows.
Let us envisage a physical system described by means of an algebra R and a state ω corresponding
to a cyclic and separating vector Ω. A correlation function in thermal time reads

FAB(s) = 〈Ω, σωs (B)AΩ〉 . (7.18)

As indicated in section 5.2, this function is physically related to the amplitude of detecting
σωs (B)Ω = ∆−isBΩ ≡ (BΩ)(s) if one prepares AΩ (which we assume to be cyclic and sepa-
rating), i.e. to the transition amplitude from AΩ at thermal time 0 to BΩ at thermal time s.
Accordingly, the starting point is the prepared state AΩ rather than Ω and one might ask if the
system evolves w.r.t. the thermal time induced by AΩ instead of Ω, so that one actually does not
measure the correlation function FAB(s).

We conclude that the state-dependence of the thermal time flow together with the stationarity
of the state seems to restrict the possibilities to observe thermal time – supposed that it is something
observable at all. And that is precisely the second problem: To measure e.g. FAB(s) one first of
all must be able to measure thermal time itself, which is the parameter s. To do that a suitable
thermal clock is needed which emulates thermal time. This is delicate, since thermal clocks do not
exist in thermal equilibrium.18 Even more, the parameter s is a remnant of the classical structure,
it formally corresponds to the classical Newtonian time used in ordinary quantum mechanics,
where one knows that no good quantum clocks exist (cf. section 1.4). Consequently, we do not see
any reason why thermal time itself, and with it the evolution induced by thermal time, should be
measurable. The observability of the thermal time flow, prerequisite of its physicality, is a problem.
If the TTH is correct, methods will have to be clarified how to measure it.

18If thermal time has a geometrical meaning it could be measured via mechanical clocks measuring proper time.
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To take up section 7.7, it is not clear whether the thermal time concept can be seen as
something physical, for, according to Mach, only observable quantities should be regarded as
physical (see section 1.4). It is very questionable if a (non-geometrical) thermal time flow is
measurable. Even if it has all the properties required from thermal equilibrium states and therefore
describes true equilibrium dynamics (see section 7.11), this special flow might be so deeply hidden
in the system that there is no chance to perceive it or derive benefit from it. A flow with physical
properties does not need to be physical.

Conclusion An instruction how to choose the physical metrization of thermal time is not pro-
vided by the TTH. Moreover, the fact that thermal time represents state-dependent KMS equilib-
rium dynamics, which can be a deeply hidden symmetry flow, seems to impose restrictions on the
observability of the thermal time flow.

7.9 Thermal Time Hypothesis in the Covariant Formalism

The thermal time flow generates an evolution which acts on the algebra of observables. In the non-
generally covariant case (at least in the classical and quantum mechanical limit) there is also the
ordinary Hamiltonian time flow acting on the same algebra. We have already risen up the question
how to treat these somehow competing and in general different flows, which are both candidates
to describe a sensible evolution for an observer. To get a better understanding of the role of both
flows, we go over to the covariant formalism (appendix B). The TTH was formulated above all as
a proposal for a physical time concept in generally covariant theories. For that reason it appears
to be natural to apply the TTH in the covariant formalism, which represents the non-generally
covariant system as a constrained system which is much closer to generally covariant theories.

Coming from an ordinary Hamiltonian system, in the covariant approach one forgets about
the time variable which is hidden in the presymplectic structure of the system (we restrict ourselves
to the more transparent classical case). The solutions of the equations of motion are represented
via unparametrised curves defined by the presymplectic structure on the constraint surface C
of the extended phase space Γex and form the covariant phase space Γc. C is defined by the
covariant Hamiltonian Hc (we neglect other gauge constraints). A state can be defined as a
density matrix ρ on C. ρ has to depend on the Hamiltonian time t. To be gauge invariant ρ
has to commute with Hc = pt + H, the dependence of ρ on t therefore has to be the standard
time evolution. ρ generates a time flow on the constraint surface via the thermal Hamiltonian
K = − log ρ. Thereby the covariant constrained system is supplemented by a time flow. Moreover,
ρ respects the presymplectic structure and gives rise to a well-defined density ρc on the covariant
phase space Γc, which defines the corresponding thermal time flow on Γc.

Of course, applying the TTH in the covariant formalism instead of the conventional one does
not change much, but it opens a slight change in perspective which better shows what is going
on. One does not have two competing time flows anymore, but rather a thermal time flow which
superposes the ordinary Hamiltonian evolution hidden in the presymplectic structure. The thermal
Hamiltonian generates a flow which is on an entirely different footing and acts on a different space.
K = − log ρ evolves observables acting on C. Conventional observables, say A(t), are those which
measure a partial observable A under the condition that a measurement of a clock T , which we think
of as a partial observable emulating Newtonian time, has given the value t. Such an observable is
evolved in thermal time s as

d

ds
A(t)(s) = {A(t)(s),K}. (7.19)

That gives a non-trivial evolution, but clearly we have

〈A(t)(s)〉ρ = 〈A(t)(0)〉ρ and also 〈B(s)A(t)(s)〉ρ = 〈B(0)A(t)(0)〉ρ , (7.20)

because ρ is a Gibbs state w.r.t. thermal time. We see that thermal time is compatible with
conventional Hamiltonian time not in the sense that it reconstructs the Hamiltonian time, but in
the sense that it respects the structure induced by it on the set of observables. This is necessary,
because if one had 〈A(t)(s1)〉ρ 6= 〈A(t)(s2)〉ρ, one might be in trouble to interpret such an expression
with a directly visible and measurable thermal time. In the Schrödinger picture trajectories are
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mapped on other trajectories on the constraint surface, this happens not arbitrarily but the flow
is chosen in such a way that all expectation functionals remain the same (and even more, that the
state becomes a Gibbs state w.r.t. thermal time).

In the special case in which ρ is also a Gibbs state w.r.t. H the flow on the covariant phase
space can be interpreted in the following way: A trajectory (qi(t), pi(t), t) at thermal time s = 0 is
mapped on the trajectory (qi(t)(t0), pi(t)(t0), t) = (qi(t+ t0), pi(t+ t0), t) at thermal time s = t0.
The physical motions described by both trajectories are the same, with the only difference that the
initial values are shifted by t0. Hence, one can identify the action of thermal time as time evolution
in conventional Hamiltonian time. This can also be seen by using the bijection between Γc and
the ordinary phase space Γ, which arises simply by evaluating the curves at t = 0. The ordinary
Hamiltonian time can be recovered if the flow preserves the presymplectic structure in the sense
that the motion of the curves can be interpreted as a shift of the initial conditions. Since arbitrary
states define quite arbitrary flows, this cannot be expected from the thermal time flow. In general
it is a flow, which is not related to the “old” dynamics hidden in the phase space structure.

The covariant formalism provides a framework where thermal time and ordinary time are
not on an equal footing anymore. This could be a starting point to explain why thermal time
is supposed to be the time of our perception – assuming the TTH to be true. But even more,
the meaning of the thermal time flow as a symmetry group rather than a physical time flow is
underlined.

Thermal Time as a Symmetry

Thermal time defines a foliation on the set of observables. It equips the observables with a “time
structure” which superposes the ordinary Hamiltonian time structure. One characteristic feature of
those observables which are connected by thermal time is that they have the same expectation value.
Even more, thermal time defines classes of observables which are physically indistinguishable. Let
us focus on the quantum case now and consider two observables A and B, which are related by
thermal time, in particular unitarily equivalent. For simplicity they are supposed to have a discrete
spectrum. There exists an s such that

ρ−isAρis = B, (7.21)

Let B |n, j〉 = bn |n, j〉, {|n, j〉} being an ONB consisting of eigenvectors. Then

ρ−isAρis |n, j〉 = bn |n, j〉 ⇒ Aρis |n, j〉 = bnρ
is |n, j〉 . (7.22)

That means ρis |n, j〉 is an eigenvector of A with eigenvalue bn, A and B have the same spectrum.
The probability PB to measure bn when measuring B is given by

PB(bn) = tr(ρPn), (7.23)

when Pn is the projector on the eigenspace corresponding to bn. On the other hand we have

PA(bn) = tr(ρ ρisPnρ
−is) = tr(ρPn). (7.24)

For a given state ρ and a fixed thermal time s, it does not matter if one uses the natural foliation
A(t) given by the standard Hamiltonian time, or if one falls back upon the foliation A(t)(s) =: As(t)
instead. The physics remains the same. A fixed thermal time translation s can be used to define
a new time structure on the set of observables. Accordingly, there is a “flow” acting on the set
of observables and superposing the ordinary Hamiltonian time structure. It generates equivalence
classes of observables. However, in this situation one would speak of a one-parameter group of
symmetry transformations rather than a time flow.

For these considerations one only needs that the thermal Hamiltonian commutes with the
density matrix ρ, whence they hold for any symmetry flow generated by a Hamiltonian commuting
with ρ. What is so special about the symmetry flow distinguished by the TTH? Of course, it is a
KMS flow, and we shall try next to exploit peculiarities coming along with this symmetry.

Conclusion Albeit the covariant formalism treats thermal time and ordinary time on differing
footings, it does not seem to permit a physically sensitive interpretation of the thermal time flow,
as well, apart from the fact that it distinguishes a group of symmetries.
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7.10 Symmetry Properties Related to Thermal Time

Thermal Time as a Preferred Symmetry

The thermal time flow is constructed from the statistical state. All information coded in the thermal
Hamiltonian must exclusively come from the state. As we have seen in the case of equilibrium
states it may happen that the state contains further pieces of information like the full dynamical
information of the ordinary dynamics, but that is an exception. The modular flow in the first
reflects certain peculiarities of the state. It reveals a hidden symmetry of the state in general not
visualisable by some transformation in spacetime. Certainly this is a more natural and conservative
view than postulating that it distinguishes some meaningful concept of physical time whatsoever.
In the quantum mechanical limit this symmetry reduces to an obvious and pretty trivial symmetry
group. Besides, one can find much more symmetries, so what is so special about the symmetry
transformation singled out by the thermal Hamiltonian in comparison with other symmetry flows
which leave the expectations values of all observables invariant? To understand that we consider a
type I factor B(H) which for simplicity we assume to be defined over a finite dimensional Hilbert
space H. Let ω be a faithful normal state on B(H) represented by an invertible density matrix ρ,

ρ =
∑
n

∑
j

ρn |n, j〉 〈n, j| , ρn ∈ R≥0, (7.25)

where the index j describes degenerations of the respective eigenvalues. Accordingly, the thermal
Hamiltonian reads

K = − log ρ = −
∑
n

∑
j

log ρn |n, j〉 〈n, j| . (7.26)

Any other symmetry transformation is generated by a hermitean matrix L which commutes with
ρ, i.e. we may assume w.l.o.g. that the ONB {|n, j〉}n,j diagonalises L as well,

L =
∑
n

∑
j

L(j)
n |n, j〉 〈n, j| , L(j)

n ∈ R. (7.27)

What distinguishes K from a general L? To see that let us assume the state ρ to be perturbed,
instead of ρ we consider

ρµ = e−(K+µK̃), µ ∈ R, (7.28)

with some hermitean matrix K̃. Clearly, the new state possesses new symmetries, in particular it
defines a new thermal Hamiltonian Kµ = − log ρµ = K + µK̃. On the other hand, for sufficiently
small µ the old symmetry transformations (such as K and L) are approximate symmetries of the

new state, for ‖ρµ − ρ‖
µ→0−→ 0 implies

‖[S, ρµ]‖ ≤ ‖S(ρµ − ρ)‖+ ‖[S, ρ]‖+ ‖(ρµ − ρ)S‖ ≤ 2‖S‖‖ρµ − ρ‖, S ∈ {K,L}. (7.29)

We want to investigate, to what extent the old symmetries, additionally, approximate one of the
new, exact symmetry transformations. This is clearly the case for K, which approximates Kµ,

‖Kµ −K‖ = |µ|‖K̃‖ µ→0−→ 0. (7.30)

For sufficiently small perturbations of the state ρ, 0 < |µ| � 1, the flow generated by K approx-
imates the symmetry flow generated by Kµ up to any given accuracy on compact intervals (cf.
theorem 7.14.4). We will come back to this in a more general context and on the basis of a different
motivation in section 7.17. Here, let us investigate if we can do the same for L, namely can we
find any exact symmetry transformation Lµ which is approximated by L? In that case there would

exist an L̃(µ), such that Lµ = L + L̃(µ) and limµ→0 L̃(µ) = 0. Let us pay attention to those
transformations which are generated by an operator L which is not a function of ρ (and hence of
K), i.e. there does not exist an f such that

L =
∑
n

∑
j

f(ρn) |n, j〉 〈n, j| . (7.31)
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This can only happen if ρ has a degenerated spectrum (otherwise any operator compatible with ρ
would be a function of ρ), and if at least one of the degenerated eigenspaces is not an eigenspace

of L. Suppose w.l.o.g. that ρ1 is degenerated and that L
(1)
1 6= L

(2)
1 are two eigenvalues of L

corresponding to |1, 1〉 and |1, 2〉, respectively. It is sufficient to focus on the projections of the
relevant operators onto the 2-dim. subspace, H2, generated by |1, 1〉 and |1, 2〉. Denote by P the
projection operator onto this space,

PρP =

(
ρ1 0
0 ρ1

)
, PLP =

(
L

(1)
1 0

0 L
(2)
1

)
. (7.32)

Consider a perturbation K̃ of the state which only acts on the previously mentioned subspace,

K̃
.
=

(
1 1
1 1

)
. (7.33)

We determine the state ρµ resulting from this perturbation on H2:

PρµP = Pe−Ke−µK̃P = P ρ

∞∑
n=0

(−µ)n

n!
K̃nP =

ρ1

2

(
e−2µ + 1 e−2µ − 1
e−2µ − 1 e−2µ + 1

)
(7.34)

Let Lµ = L + L̃µ be a hermitean matrix generating an exact symmetry transformation of the
perturbed state ρµ,

PL̃µP =

(
λ1 λ2 + iλ3

λ2 − iλ3 λ4

)
, λi = λi(µ) ∈ R. (7.35)

By definition we have [Lµ, ρµ] = 0. Since PρµP = Pρµ = ρµP , this implies

P [Lµ, ρµ]P = [PLµP, PρµP ] =
ρ1

2

(
2iλ3(e−2µ + 1) −c.c.

(L
(2)
1 − L

(1)
1 + λ4 − λ1)(e−2µ − 1) −2iλ3(e−2µ + 1)

)
!
= 0

Clearly this enforces λ3 = 0, which leaves the condition

λ1(µ)− λ4(µ)
!
= L

(2)
1 − L

(1)
1 6= 0. (7.36)

That means that at least one of λ1 and λ4 cannot vanish when µ goes to zero, hence limµ→∞ Lµ 6=
0. For a symmetry transformation which is not a function of the original state one can find a
perturbation of the state such that it does not approximate a symmetry of the perturbed state.
From this point of view those symmetry transformations which are functions of the state represent
stronger symmetries which are more stable. The thermal time flow belongs to them.

The reason for the unstable symmetry groups stands to reason. If the density matrix has a
degenerated spectrum the observer is blind for correlations between the pure microstates of the
degenerated eigenspaces. In such an eigenspace the correlations can be mixed up arbitrarily. If a
(small) perturbation of the state cancels this blindness the symmetry vanishes. That is the reason
why only symmetry flows which do not exploit the degeneration of eigenvalues will approximate a
symmetry of the perturbed state.

Emergence of Thermal Time in the Quantum Mechanical Limit

It is stressed by Rovelli [110] that it is the ignorance about the microscopic details of the state
which generates the thermal time flow. But, let us assume the state ρ for the time being again to
be a finite-dimensional hermitean matrix, and consider the limit in which all microstates show the
same probability, which means by the postulate of equal a priori probabilities (cf. section 3.1) that
the ignorance about the state is maximal. Then ρ is just a multiple of the identity and the thermal
time flow becomes completely trivial and invisible on all observables, i.e. there is no (observable)
thermal time flow. This suggests that it is not purely the ignorance, but rather the weighting of
the pure states constituting the mixed state which singles out a non-trivial thermal time flow.
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To get a better idea of that, let us compute the symmetry flow generated by a Hamiltonian
L, which then commutes with the density matrix ρ. Moreover, we assume that L has a discrete
spectrum. Let {|n〉} be an ONB of the relevant (possibly infinite-dimensional) Hilbert space
consisting of eigenvectors of the invertible density matrix ρ, i.e.

ρ =
∑
n

ρn |n〉 〈n| , ρn ∈ R≥0,
∑
n

ρn = 1. (7.37)

The diagonalised density matrix ρ assigns to the system a class of pure microstates {|n〉} in
which the system is supposed to be with corresponding probabilities ρn. Since it is assumed that
[ρ, L] = 0, we choose the above ONB w.l.o.g. such that

L =
∑
n

Ln |n〉 〈n| , Ln ∈ R. (7.38)

Let A be an observable, then we compute the symmetry flow induced by L:

〈n|A(s)|m〉 = 〈n|eisLAe−isL|m〉 = eis(Ln−Lm) 〈n|A|m〉 . (7.39)

W.r.t. this basis the diagonal elements are left invariant, while the off-diagonal entries rotate in
the complex plane. Note that direction and angular velocity of this rotations depend exclusively
on the n-th and m-th diagonal entry of L. What is the origin of these “microflows”?

Let us consider a measurement of an observable A in the state ρ. As we have seen, for a
given state there exist other observables which are physically equivalent in the sense that the same
values can be measured with the same probabilities. A symmetry of the state enables one to
replace A by A(s). The existence of physically equivalent observables is due to the fact that only
parts of the observable A are relevant when it is just probed on ρ. What for a given density ρ is
in fact relevant, are the expectation values in all the microstates |n〉 in which the system could
be, i.e. the diagonal elements of A w.r.t. {|n〉}. The off-diagonal elements code information which
would only become relevant if one is interested in measuring A in a (normalized) superposition
of these microstates, like e.g. (eiθn |n〉+ eiθm |m〉)/

√
2. Then correlations and relative phases play

an important role. Anyway, these microstates do not appear in the density matrix, so it does
not matter how the corresponding values in the observable are chosen. For any choice of the
off-diagonal phase factors, i.e. however correlations between different microstates |n〉 and |m〉 are
treated, one does not produce observable effects when measuring A only in the state ρ. One can
use this observation to generate rotating phases in the complex plane, and induce microscopic flows
which join together to a symmetry flow. A symmetry transformation can be regarded as a flow
on the set of observables which consists of several microflows rotating the off-diagonal elements
in quite an arbitrary way, supposed that the basis is chosen such that it diagonalises the state
together with the generator of the transformation.

Now we come back to the thermal Hamiltonian K. In this special case we have

〈n|A(s)|m〉 = e−is(log(ρn/ρm)) 〈n|A|m〉 , ρn ∈ R>0. (7.40)

The rotations are not arbitrary any more, but fixed by the state. More concretely, the thermal time
flow is generated in the following way: The ratio of the weights with which two microstates |n〉
and |m〉 appear in the density matrix determines a flow on the two matrix elements 〈n|A|m〉 and
〈m|A|n〉 of any observable A by evolving these correlation terms via the aforementioned rotation.
The absolute value of log(ρn/ρm) fixes the angular velocity, while its sign, which expresses which
of the state prevails, gives a preferred direction of this flow. It is a gradient in the concentration
difference between the microstates constituting the density matrix which generates a microscopic
flow. All these microflows join together to the thermal time flow.

Falling back upon the finite-dimensional case with equally probable microstates, we see why
there is no thermal time flow. On the microscopic level no direction can be preferred because
everything looks the same, a macroscopic flow cannot emerge. This also happens partly if the
eigenvalues of ρ are degenerated. Many microflows vanish, but there are still non-trivial ones
which form a macroscopic flow. Note that the degeneracy of eigenvalues increases the number of
symmetry transformations, though “weakening” the thermal time flow; there are less microflows.
The opposite case occurs if the density matrix approaches a pure state. There is one diagonal
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element, say ρ1, which converges to 1, while the remaining ones go to zero. In this situation the
angular velocity of the microflow induced by ρ1 together with any other element ρn, n 6= 1, goes
to infinity, while there remains a preferred direction.

Conclusion Thermal time reveals a strong symmetry which has its origin in inhomogeneities in
the ratio of the various microstates constituting the density matrix.

7.11 Thermal Time and Irreversibility

Although it is doubtful if the thermal time flow represents a physical time flow as the considerations
we did so far underline, it is still possible that it defines in some yet unknown way reasonable local
dynamics whatsoever. Anyway, from now on we shall join the issue concerning the physicality
of thermal time the end of the queue and explore physical properties of the thermal time flow.
Thermal time has a statistical basis, which is why one should expect particularly thermodynamical
properties. First of all we wish to devote ourselves to the issue if the thermal time flow is suitable
to describe irreversible phenomena. After that we shall investigate its true equilibrium character
and its dependence on changes of the state.

The notion of (common sense) time is deeply associated with change, non-equilibrium situa-
tions and irreversibility. Dissipative processes are expected to cause our perception of a flowing
time. The basis for such a time is given e.g. by the second law of thermodynamics. It is a quantity
w.r.t. which the entropy increases. Such a quantity cannot be the purely mechanical time appearing
in the reversible mechanical laws and measured by mechanical clocks. One cannot make sense of a
distinguished time variable in mechanics which is perceived as “flowing” (cf. section 7.4), though a
mechanical time may still be defined in addition to thermal time [113]. There is no irreversibility
on a mechanical level. The physical time of our perception which incorporates such a feature has
to be an enriched time concept. The idea of a “flowing time” is ascribed to thermodynamics.

The TTH says that the appropriate candidate for the flowing time of our perception is thermal
time. Following [112] thermal time is the quantity “characterizing the unfolding of irreversible
phenomena”. However, by definition the thermal time flow is first of all a KMS equilibrium flow.
Let us think about if equilibrium dynamics are able to capture all the non-equilibrium phenomena
we observe in our world and which play such a dominant role in the universe.19 Of course, one
can study the evolution of fluctuations around a thermal time equilibrium state. But first of all
it is not clear that the system reacts in a way one would expect of a true equilibrium flow in the
sense that fluctuations decrease in thermal time, an issue which we take up in the next section, and
secondly one may doubt if such a time concept is suitable to treat true irreversible, non-equilibrium
processes rather than fluctuations around a thermal state.

According to Rovelli,20 there are non-thermodynamical quantities in the description of a
system, which make sure that the thermal time flow gives rise to a non-trivial evolution of expec-
tation values. Consider a thermal equilibrium state at some finite temperature. In this regime
QFT allows for the computation of scattering amplitudes, etc., just the same as in the vacuum.
The TTH is intended to make sense for the description of dynamical phenomena when there is
an overall thermal bath. One measures dynamical phenomena such as correlations between ob-
servable quantities in a thermal background (like the CMB background), which can be explicitly
time dependent. We think that the existence of non-trivial time phenomena such as e.g. particle
scattering in a thermal background is not sufficient to explain the existence of irreversibility.

Let us come back to the mechanical non-flowing time. It might be reasonable that on a purely
mechanical level where reversibility prevails, mechanical time, like a suitably emulated Newtonian
time, is not “flowing”. Anyway, in order to apply the TTH we are inevitable in a thermodynamical
context, where Newtonian time becomes thermodynamical (cf. section 1.6). Moreover, (in quantum
mechanics) it is implemented as an automorphism group on the observable algebra, where it defines
a time flow which is mathematically on exactly the same footing as thermal time. It thus should be

19We have seen that e.g. for the diamond regions in Minkowski space one does not really have equilibrium, because
the temperature is not constant along the respective orbits which in turn is due to the non-trivial rescaling of thermal
time. Nevertheless, it may still be regarded as a kind of local equilibrium, and as indicated in section 6.5 taking the
energy-time uncertainty relation into account the state cannot be distinguished from a true equilibrium state.

20www.fqxi.org/community/forum/topic/237

111



CHAPTER 7. DISCUSSION OF THE THERMAL TIME HYPOTHESIS

equally “flowing”. Starting with a non-equilibrium state one really has to deal with irreversibility,
so that Newtonian time should be even more “flowing” than thermal time. This brings us back
to the issue how to deal with the appearance of two flows. If one ascribes the origin of time to
irreversibility, it is absolutely not clear why thermal time should be the preferred, perceived flow.
Newtonian time is better suitable to capture irreversibility and is actually known to be a good
time in this setting. Although in the algebraic framework proper time as a geometrical time of
spacetime is in general not on the same footing as thermal time, we have met an example where
it does extend to a global time flow on the algebra (section 7.4). Since an excited vacuum state
restricted to the wedge cannot be a KMS state w.r.t. the implementation of the Lorentz boosts,
this flow should again be the favoured one to describe non-trivial time phenomena.

An Example: A Gas in a Box

Let us think of an ideal gas consisting of a finite number of particles contained in a box which is
in a Gibbs equilibrium state ω1 w.r.t. the ordinary Hamiltonian time. Then, ordinary time and
thermal time coincide. The entropy of the system will not remain constant, but might decrease
a bit to return to its maximum value again afterwards. The state will fluctuate around the most
probable configuration representing thermal equilibrium. This way non-trivial time evolutions in
both ordinary and (possibly) thermal time are observable. Nevertheless, small fluctuations around
ω1 have nothing to do with fully irreversible processes, and large fluctuations are very unlikely.
Most of the time the system will be in equilibrium, anyway.

Next, let us assume that the system is brought into another state ω2. This state is supposed
to be prepared in such a way that most particles are close to one corner of the box. How does the
time evolution of ω2 look like? W.r.t. thermal time ω2 is a Gibbs equilibrium state and nothing
happens macroscopically, apart from small fluctuations around ω2. Conversely, w.r.t. ordinary
time ω2 is a non-equilibrium state and one expects an irreversible process during which the system
approaches ω1 – and this is certainly the alternative one will observe. Although the thermal time
flow might show all the physical properties of a true equilibrium flow, it is not suitable to describe
fully irreversible processes. The irreversibility argument suggests to prefer the ordinary time as
the relevant time.

Furthermore, this example brings to light one more time the problems arising when the TTH
is applied to non-equilibrium states. It illustrates what we found in the first sections, namely why
thermal time cannot be expected to be observable. The thermal Hamiltonian assumes interactions,
external conditions, etc. in such a way that in equilibrium most particles are close to one corner
of the box. The real dynamics are different, which is why the particles will disperse as predicted
by the ordinary time evolution.

Conclusion It is very questionable if a time concept emerging from thermal equilibrium is ap-
propriate to reflect the irreversible processes determining our world.

7.12 Dispersive Properties of the Thermal Time Flow

Being a KMS flow the thermal time flow is intrinsically equipped with a couple of nice properties
such as stationarity, passivity and kinematical stability. However, in chapter 3 we have found
that the KMS condition alone is not sufficient to distinguish a flow which represents a thermal
equilibrium situation, especially when the physicality of the flow is not a priori known. The
stability properties ensured by the KMS condition are not intimately related to a sufficiently strong
dispersive behaviour of the dynamical system, which is so characteristic for a thermodynamical
system. We have seen that weak asymptotic abelianness controls the dispersive behaviour of the
system, and is the appropriate additional criterion to establish the full “return to equilibrium”-
property from arbitrary perturbations of the state. It reflects dispersion of local disturbances
with time; observations performed at far distances in time do not influence each other mutually.
Moreover, we have argued that the consistency condition of Haag et al. gives a kind of minimal
requirement to obtain a dispersive behaviour.

If thermal time describes equilibrium dynamics with all its dynamical stability properties, it
would represent a time flow with a multitude of physical and thermal properties. Only in that
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case the idea of Connes and Rovelli to identify the physical time flow by an equilibrium flow
in order to establish a thermodynamical concept of time would be fully realised. Time would be
statistically interpretable. One might speak of a “return to equilibrium”-time concept as in the
surroundings of thermalised systems.21 It is further stressed by Rovelli [113] that a “return to
equilibrium”-behaviour underwrites the second law whereby it turns thermal time into a physical
time. Thermal time is intended to describe how a state out of equilibrium disperses down towards
equilibrium. Consequently, the question has to be addressed if the modular flow supplies additional
stability properties beyond those related to the KMS condition, and even more fundamental, if it
is compatible at all with dispersion.

We investigate in the following properties of the thermal time flow on type I factors and on
local algebras, focusing on the dispersive behaviour which is to be modelled by weak asymptotic
abelianness or alternatively by the consistency condition. It is a prerequisite to get a time flow of
physical significance which can be postulated to represent a thermodynamical time concept.

7.13 Thermal Time Flow on Type I Factors

Since the modular flow can be computed explicitly on them, type I factors provide the best starting
point to study properties of the thermal time flow. This is of immediate interest for finite quan-
tum systems, but we shall see later that certain aspects which are not related to the asymptotic
behaviour carry over to local algebras, supposed that certain natural conditions hold. To study
the thermal time evolution on arbitrary type I factors let us fall back upon the

Proposition 7.13.1 ([70]). Let M be a type I factor on some Hilbert space H, then there are
Hilbert spaces K and L and a unitary operator U : H → K⊗L such that

UMU∗ = B(K)⊗ 1lL and UM′U∗ = 1lK ⊗ B(L). (7.41)

Lemma 7.13.2. Consider the type I factor B(K)⊗ 1lL and assume that Ω ∈ K⊗L is a separating
vector. Then, ρ := trLPΩ ∈ B(K) is invertible.

Proof. We fall back upon the Schmidt representation of Ω (appendix A.1). Let {|ei〉 ⊗ |fj〉}ij be
an ONB for K ⊗ L for which, omitting the tensor product signs,

|Ω〉 =
∑
i

φi |eµi〉 |fνi〉 , φi > 0. (7.42)

In this form we can simply exploit the separability of Ω; it enforces µi = i (possibly one has to
relabel the indices). That yields

ρ = trLPΩ =
∑
i

φ2
i |ei〉 〈ei| . (7.43)

Since all φi 6= 0, the invertibility of ρ is ensured.

Theorem 7.13.3. Let M be a type I factor on a Hilbert space H, and let U : H → K ⊗ L be a
unitary such that UMU∗ = B(K)⊗ 1lL. Moreover, suppose that ω is a faithful normal state which
is represented by a vector Ω ∈ H which is separating for M. Denote by ρ := trLPUΩ ∈ B(K) the
density matrix induced by UΩ on K. Then, the modular flow associated with ω on M is given as

σωs (A) = U∗(ρ−is ⊗ 1lL)UAU∗(ρis ⊗ 1lL)U for all A ∈M. (7.44)

Proof. We merely have to check that the modular flow satisfies the KMS condition. To do that
we consult definition 3.3.4. Note that since Ω is separating, the same holds for UΩ, such that ρ is
invertible by lemma 7.13.2 and gives rise to a faithful normal state over B(K),

ρ = trLPΩ =
∑
i

eλi |ei〉 〈ei| , λi ∈ R, tr ρ = 1. (7.45)

21Though, as discussed before, this does not imply that it is a physical time. Imagine a modular flow which
acts spacelike geometrically. Then it might happen very well because of spacelike commutativity that the flow is
asymptotically abelian and dispersive, albeit will certainly not be consulted by an observer to describe the evolution.
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We define a ∗-subalgebra of B(K) with unity, consisting of all operators whose off-diagonal elements
w.r.t. the basis {ei} are contained in a finite-dimensional submatrix:

Ñ := {Ã ⊂ B(K) : ∃N such that 〈ei|Ã|ej〉 = 0 whenever i 6= j and (i > N ∨ j > N)}. (7.46)

Clearly, Ñ ′ = C1l and Ñ ′′ = B(K). By the von Neumann density theorem A.4.7 Ñ is σ-weakly
dense in B(K), and thus N := U∗(Ñ ⊗ 1lL)U is σ-weakly dense in M. Since ρ−isÑρis = Ñ , N is
also σω-invariant. For an arbitrary z ∈ C and Ã ∈ Ñ we compute

ρ−izÃρiz =
∑
j,k

ei(λk−λj)zajk |ej〉 〈ek| , ajk := 〈ej |Ã|ek〉 . (7.47)

This can be identified with a bounded operator, in particular

z 7→ η(σωiz(A)) = η(U∗(ρ−izÃρiz ⊗ 1lL)U), A ≡ U∗(Ã⊗ 1lL)U, (7.48)

is a well-defined analytic function for each η ∈M∗ . Altogether this implies that N is a σ-weakly
dense σω-invariant ∗-subalgebra ofMσω . Since ρÃρ−1 represents a bounded operator, the following
calculation can be carried out without any difficulties for all A,B ∈ N :

ω(Bσωi (A)) = trK⊗L (PΩ ·B · U∗(ρ⊗ 1lL)UAU∗(ρ−1 ⊗ 1lL)U) (7.49)

= trK⊗L (PUΩ · (B̃ ⊗ 1lL) · (ρ⊗ 1lL)(Ã⊗ 1lL)(ρ−1 ⊗ 1lL)) (7.50)

= trK⊗L (PUΩ · (B̃ρÃρ−1 ⊗ 1lL)) (7.51)

= trK (ρB̃ρÃρ−1) = trK (ρÃB̃) (7.52)

= trK⊗L (PUΩ · UABU∗) (7.53)

= ω(AB).

Remark. If Ω is a separating vector for B(K) ⊗ 1lL, K = − log ρ ⊗ 1lL, ρ := trLPΩ ∈ B(K), is a
thermal Hamiltonian for B(K). However, it is not the modular Hamiltonian, because one e.g. has
K |Ω〉 6= 0. If Ω is cyclic and separating ρ̃ := trKPΩ ∈ B(L) is an invertible density matrix, as well,
and one can show that ∆ = ρ ⊗ ρ̃−1 is the modular operator. Thus, K = − log(ρ ⊗ ρ̃−1) is the
modular Hamiltonian corresponding to Ω, and with it another thermal Hamiltonian for B(K)⊗1lL.

Next let us look for properties of the thermal time flow on type I factors. First of all we observe
as an immediate consequence of theorem 7.13.3 that σs has non-trivial fixed points,22 choose e.g.

A0 = U∗(ρ⊗ 1lL)U ∈M, then (7.54)

σωs (A0) = U∗(ρ−is ⊗ 1lL)(ρ⊗ 1lL)(ρis ⊗ 1lL)U = U∗(ρ⊗ 1lL)U = A0 for all s ∈ R. (7.55)

Since M is a factor, one finds a B ∈ M such that 〈φ, [B,A0]ψ〉 6= 0 for some φ, ψ ∈ H, i.e.
the system cannot be asymptotically abelian. With regard to the consistency condition let us
investigate the function

fAB(s) ≡ ω([B, σωs (A)]) = 〈Ω, [B, σωs (A)]Ω〉 . (7.56)

As in (7.45), by using the Schmidt representation of UΩ, ρ can be cast into the form

ρ =
∑
i

eλi |ei〉 〈ei| , λi ∈ R, tr ρ = 1, (7.57)

where {ei} is a suitable chosen ONB of K. There exist Ã, B̃ ∈ B(K) such that

UAU∗ = Ã⊗ 1lL, Ã =
∑
i,j

aij |ei〉 〈ej | , (7.58)

UBU∗ = B̃ ⊗ 1lL, B̃ =
∑
i,j

bij |ei〉 〈ej | . (7.59)

22 Theorem 4.4.7 shows that modular flows on semi-finite algebras necessarily have fixed points (such as T i). In
fact, any modular flow which does not act on type III1 factors has fixed points, see theorem 7.15.1.
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We present some intermediate results of the straightforward computation of fAB :

ρ−isÃρis =
∑
n,k

e−isλnanke
isλk |en〉 〈ek| , (7.60)

[B̃, ρ−isÃρis] =
∑
m,n,k

(bmnanke
−isλneisλk − amnbnke−isλmeisλn) |em〉 〈ek| . (7.61)

Lastly we end up with

fAB(s) = 〈Ω, [B, σωs (A)]Ω〉 = 〈UΩ, ([B̃, ρ−isÃρis]⊗ 1l)UΩ〉 (7.62)

= trK⊗L(PUΩ[B̃, ρ−isÃρis]⊗ 1l) = trK(ρ[B̃, ρ−isÃρis]) (7.63)

=
∑
m,n

eλm [anmbmne
is(λm−λn) − amnbnme−is(λm−λn)]. (7.64)

The sum appearing in 7.64 is absolute convergent, since ρ [B̃, ρ−isÃρis] is a trace-class operator.23

Thus, fAB(s) is an almost periodic function (cf. appendix A.2). This is a typical situation in closed
systems, where the Hamiltonian is an operator with a discrete spectrum. In classical mechanics it
is related to the Poincaré recurrence. To proceed we need another theorem.

Theorem 7.13.4. Let R be a von Neumann algebra and let ω be a faithful normal state. Let Cω
be the centralizer of ω,

Cω ≡ {A ∈ R : ω(AB) = ω(BA) for all B ∈ R}. (7.65)

Then, Cω coincides with the fixed point algebra of σω, Cω = Rσω .

Proof. The proof can be found in [11] for cyclic and separating vector states and extends immedi-
ately to faithful normal states via the GNS construction.

The theorem shows that fAB(s) vanishes whenever A or B is a fixed point of σωs . On the other
hand, if A is not a fixed point, we can find a B with fAB(0) 6= 0 and vice versa. One can thus
expect fAB to be non-vanishing for many pairs A,B ∈ M. By corollary A.2.4 a non-vanishing
almost periodic function cannot be an L1-function, such that we have to conclude that also the
consistency condition,

∫∞
−∞ dt ω([B, σωs (A)]) = 0, is violated on type I factors. Along the way we

see that asymptotic abelianness is violated for a large number of pairs of elements and not just for
fixed points.

To sum up, on type I factors the thermal time flow fails to show any additional stability
properties beyond those already ensured by the KMS condition. In conventional closed systems
the lack of asymptotic abelianness is already a problem. It is usually resolved by the expectation
that the system will approach the equilibrium state and only after huge time intervals (the Poincaré
recurrence time as the length of time elapsed until recurrence), not accessible for any observation,
the system will significantly leave this state. However, due to the unsolved metrization problem
one does not know what huge thermal time intervals actually are,24 one cannot simply justify the
absence of asymptotic abelianness. The incompatibility of the thermal time flow with asymptotic
abelianness on type I factors might be a serious problem.

Conclusion The thermal time flow on type I factor violates weak asymptotic abelianness as well
as the consistency conditions.

23 To see this explicitly from the formula, note that the bounded operators Ã, B̃ have to satisfy∑
i

|aij |2 ≤ ‖A‖2,
∑
j

|aij |2 ≤ ‖A‖2,
∑
i

|bij |2 ≤ ‖B‖2,
∑
j

|bij |2 ≤ ‖B‖2.

⇒
∑
m,n

|eλm [anmbmne
is(λm−λn) − amnbnme−is(λm−λn)]| ≤

∑
m

eλm
∑
n

(|anmbmn|+ |amnbnm|)

≤ 2‖A‖‖B‖
∑
m

eλm = 2‖A‖‖B‖ <∞.

24Note that we have already met examples, such as the conformal diamond, where even infinite thermal time
intervals are physically short.
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7.14 Thermal Time Flow on Local Algebras

Equilibrium states appearing in AQFT which are expected to exhibit additional dynamical stability
properties are living on the quasi-local C∗-algebra. In an unbounded medium the effect of a local
operation will spread and dissipate so that it is not felt in a finite region after a sufficiently long
time interval. We have to deal with flows acting on local von Neumann algebras, which, due to
the finiteness of any realistic observation, generically correspond to finite spacetime regions. There
may be less room for excitations to dissipate. Hence, we study the compatibility of the thermal
time flow associated to such open systems with dispersion, or if this requirement might be in
conflict with other natural physical assumptions.

Asymptotic Abelianness and Statistical Independence

Let us begin with some heuristic considerations. If the theory is statistically independent (see sec-
tion 2.6), correlations can act only in a limited number of directions. This might be too restrictive
for excitations of a state to disperse, and, thus, for a local time flow to define a dynamical system
which shows a “return to equilibrium”-behaviour. To make things a bit more concrete, we envisage
a local von Neumann factor R(O1) acting on a Hilbert space H, O1 a bounded spacetime region,
and a vector state ω = 〈Ω, ·Ω〉 with Ω cyclic and separating for R(O1). Given an observable
A ∈ R(O1) we determine the set of all bounded operators being statistically independent of A,

Mω
A ≡ {C ∈ B(H) : 〈Ω, ACΩ〉 = 〈Ω, AΩ〉 〈Ω, CΩ〉}. (7.66)

Now, we consider a flow τt, modelled by some one-parameter ∗-automorphism group on R(O1).
For ω to be strongly clustering w.r.t. τt (which is equivalent to weak asymptotic abelianness,
cf. theorem 3.5.10), the statistical dependence of A on any element B ∈ R(O1) has to vanish
asymptotically when A is evolved with τt. Roughly speaking, the size of Mω

A ∩ R(O1) in R(O1)
for each A gives a kind of measure for the difficulty to define a clustering flow on R(O1) for ω.

Now we take a look at the net of von Neumann factors O 7→ R(O) where R(O1) is part of. Let
O2 ⊃⊃ O1 be a bounded spacetime region which is slightly larger than O1. Demanding statistical
independence for the theory there exists a total set of vectors for which

〈ψ,AB′ψ〉 = 〈ψ,Aψ〉 〈ψ,B′ψ〉 for all A ∈ R(O1) and B′ ∈ R(O′2). (7.67)

Let us assume that Ω is contained in this set, then automatically R(O′2) ⊂ Mω
A holds. Since

R(O1) ∩ R(O′2) = C1l, the set Mω
A ∩ R(O1) should be “smaller” in comparison with those cases

in which statistical independence is violated, so that only a flow (such as σωs ) carefully adjusted
to the peculiarities of the given structure can be clustering and asymptotically abelian. For the
thermal time flow σωs , which does not know and hence cannot exploit the specific structure of the
theory (cf. section 7.7), this could be too restrictive. Statistical independence might impede the
emergence of a dispersive thermal time flow.

Thermal Time Flow on Local Algebras Satisfying the Split Property

To do a bit more rigorous considerations we attack the issue from another side: We take a look on
local nets satisfying the split property, which is essentially equivalent to statistical independence
(see section 2.6). The split property says that local algebras can be approximated by type I factors.
Our aim is to understand what kind of properties of the well-known thermal time flow on type I
factors can be expected to carry over to type III1 factors. To do so, we start with some functional
analytical considerations.

Definition 7.14.1 ([97]). Let {An}n∈N and A be self-adjoint operators. Then, An is said to
converge to A in the strong resolvent sense if Rλ(An) → Rλ(A) strongly for all λ ∈ C with
Imλ 6= 0.

The convergence in the strong resolvent sense is the natural generalisation of strong convergence to
unbounded operators whose domains do not need to have a common vector. We prove a modified
version of theorem VIII.20 in [97], cf. appendix A.1 for the functional analytical background.
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Theorem 7.14.2. Let {An}n∈N and A be positive, invertible, self-adjoint operators on the Hilbert
space H, and assume that An → A in the strong resolvent sense. If g : R>0 → C is a bounded
continuous function, then g(An)→ g(A) in the strong sense.

Proof. Let us first proof the statement for functions f : R>0 → C which are continuous, contin-
uously continuable at 0, and vanishing at ∞. By the Stone-Weierstrass theorem, polynomials in
(x+ i)−1 and (x− i)−1 approximate the elements in the set C0

∞(R>0) of all continuous functions
which are continuously continuable at 0 and vanishing at ∞. Thus, for each ε > 0 there is a
polynomial P (s, t) such that

‖f(x)− P ((x+ i)−1, (x− i)−1)‖∞ ≤ ε/(3 ‖ψ‖). (7.68)

That yields

‖f(An)− P ((An + i)−1, (An − i)−1)‖ ≤ ε/3, (7.69)

‖f(A)− P ((A+ i)−1, (A− i)−1)‖ ≤ ε/3. (7.70)

Since An → A in the strong resolvent sense, for sufficiently large n the relation

‖P ((An + i)−1, (An − i)−1)ψ − P ((A+ i)−1, (A− i)−1)ψ‖ ≤ ε/3, ψ ∈ H, (7.71)

holds. It implies

‖f(An)ψ − f(A)ψ‖ ≤ ‖f(An)ψ − P ((An + i)−1, (An − i)−1)ψ‖ (7.72)

+ ‖P ((An + i)−1, (An − i)−1)ψ − P ((A+ i)−1, (A− i)−1)ψ‖ (7.73)

+ ‖f(A)ψ − P ((A+ i)−1, (A− i)−1)ψ‖ ≤ ε, (7.74)

i.e. f(An)→ f(A) strongly. Let us now pass to the general case. For this let ψ ∈ H and ε > 0 be
arbitrary. We define fm(x) := exp(− 1

m ( 1
x + x)) on R>0. Since limm→∞ fm(x) = 1 pointwise and

‖fm‖∞ is bounded, by use of the spectral theorem we conclude that fm(A)→ 1l strongly. Hence,

‖fm(A)ψ − ψ‖ ≤ ε/(6‖g‖∞) (7.75)

for a suitable chosen m. Moreover, fm ∈ C0
∞(R>0) implies by the above considerations that

fm(An)ψ → fm(A)ψ strongly, i.e. there is an n0 ∈ N such that ‖fm(An)ψ−fm(A)ψ‖ ≤ ε/(6‖g‖∞)
for each n > n0. That gives

‖fm(An)ψ − ψ‖ ≤ ε/(3‖g‖∞). (7.76)

g · fm ∈ C0
∞(R>0) ensures the existence of an n1 ∈ N such that

‖g(An)fm(An)ψ − g(A)fm(A)ψ‖ = ‖(g · fm)(An)ψ − (g · fm)(A)ψ‖ ≤ ε/3 ∀n > n1. (7.77)

Altogether, we have for all n > max(n0, n1)

‖g(An)ψ − g(A)ψ‖ ≤ ‖g(An)‖‖ψ − fm(An)ψ‖+ ‖g(An)fm(An)ψ − g(A)fm(A)ψ‖ (7.78)

+ ‖g(A)‖‖fm(A)ψ − ψ‖ ≤ ε, (7.79)

and we are done.

To continue we need a couple of other theorems.

Theorem 7.14.3 (Trotter [97]). Let {An} and A be self-adjoint operators. Then An → A in the
strong resolvent sense iff exp(itAn)→ exp(itA) in the strong sense for each t.

Theorem 7.14.4 (Trotter-Kato Approximation Theorem, cf. [49]). Let {Un(t)} and U(t) be
strongly continuous one-parameter unitary groups with generators An and A, respectively. Then,
An → A in the strong resolvent sense iff Un(t)→ U(t) uniformly for t in compact intervals in the
strong sense.
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Theorem 7.14.5 (D’Antoni-Doplicher-Fredenhagen-Longo [43]). Let {Mj} be an increasing fam-
ily of von Neumann algebras, and letM≡ ∨jMj. Assume that Ω is a cyclic and separating vector
for each Mj and for M. Let ∆j, Jj and ∆, J be the modular operators and modular conjugations
of Mj and M, respectively. Then, ∆j → ∆ in the strong resolvent sense, and Jj → J strongly.

By theorem 7.14.2 the strong resolvent convergence of modular operators ∆j implies the strong
convergence of ∆is

j , which according to theorem 7.14.3 guarantees in turn the strong resolvent
convergence of the modular Hamiltonians Kj = − log∆j to K = − log∆. An application of
theorem 7.14.4 then establishes the uniform convergence of ∆is

j on compact intervals. Altogether,
as a joint consequence of all these theorems we obtain:

Corollary 7.14.6. Let {Mj} be an increasing family of von Neumann algebras and let M ≡
∨jMj . Assume that Ω is a cyclic and separating vector for each Mj as well as for M. Denote by
∆j and ∆ the modular operators of Mj and M, respectively. Then, ∆is

j → ∆is strongly for each
s ∈ R, and the convergence is uniform on compact intervals.

Theorem 7.14.7. Let M be a von Neumann algebra on a Hilbert space H and Ω ∈ H a cyclic
and separating vector. Moreover, let {Mj} be an increasing family of von Neumann algebras such
that M = ∨jMj and such that Ω is cyclic and separating also for all Mj (that is cyclic for M1).
Then, for every ε > 0, for any compact interval S ⊂ R, and for all normalized vectors φ, ψ ∈ H
there exists an j0 such that

| 〈φ, (σMs (A)− σMj
s (A))ψ〉 | < ε (7.80)

for all j > j0, A ∈M with ‖A‖ ≤ 1, and s ∈ S. Since all normal states are vector states, such an
approximation is in particular possible for each normal state η ∈M∗,

|η(σMs (A)− σMj
s (A))| < ε (7.81)

for all j > j0, A ∈M with ‖A‖ ≤ 1, and s ∈ S.

Proof. With the help of the Cauchy-Schwarz inequality we compute

| 〈φ, (σMs (A)− σMj
s (A))ψ〉 | = | 〈φ,∆−isM A∆is

M −∆−isMj
A∆is
Mj

)ψ〉 | (7.82)

≤| 〈φ, (∆−isM −∆−isMj
)A∆is

Mψ〉 |+ | 〈φ,∆−isMj
A(∆is

M −∆is
Mj

)ψ〉 | (7.83)

≤‖A∆is
Mψ‖‖(∆is

M −∆is
Mj

)φ‖+ ‖A∗∆is
Mj

φ‖‖(∆is
M −∆is

Mj
)ψ‖ (7.84)

≤‖(∆is
M −∆is

Mj
)φ‖+ ‖(∆is

M −∆is
Mj

)ψ‖. (7.85)

Because of corollary 7.14.6 both terms on the r.h.s. become arbitrarily small as j → ∞ for all s
taken from the compact interval S, hence we just have to choose a j0 such that the r.h.s. becomes
smaller than ε.

Let us now come back to physics and consider a local net of von Neumann algebras O 7→ R(O)
acting on a Hilbert spaceH and representing some sector of an abstract net. We would like to apply
the previous proposition to local algebras R(O). One question therefore concerns the existence
of an increasing family {Mj} of von Neumann algebras with the property that R(O) = ∨jMj .
Let us assume that the net satisfies the split property, i.e. that for every pair of bounded regions
Ô ⊂⊂ O one can find an intermediate type I factor M such that

R(Ô) ⊂M ⊂ R(O). (7.86)

Taking an increasing family of bounded spacetime regions {Oj} such that Oj ⊂⊂ Oj+1 and
R(O) = ∨jR(Oj), which is guaranteed e.g. if an additivity property holds as it happens to be the
case in free theories [121]), the split property can be used to construct an increasing family of type
I factors Mj satisfying ∨

j

Mj = R(O). (7.87)
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To this end one simply selects Mj in such a way that

R(O1) ⊂M1 ⊂ R(O2) ⊂M2 ⊂ · · · ⊂ R(O). (7.88)

Note that O does not necessarily need to be bounded for this construction.
Let us take a deeper look at the inclusions in (7.88). The split property gives some hints how

the local algebras are contained in each other, because the way a type I factor can be contained in
another type I factor is very restricted:

Lemma 7.14.8. Let N ⊂M be two type I factors on the Hilbert space H. Then, there are Hilbert
spaces K1, K2 and K3, and a unitary operator U : H → K1 ⊗ K2 ⊗ K3, such that UNU∗ =
B(K1)⊗ 1lK2

⊗ 1lK3
and UMU∗ = B(K1 ⊗K2)⊗ 1lK3

.

Proof. We just have to apply proposition 7.13.1 several times. There exist Hilbert spaces L and K3,
and a unitary operator V : H → L⊗K3 such that VMV ∗ = B(L)⊗1lK3

. Then VNV ∗ = Ñ ⊗1lK3
.

Clearly, Ñ is ∗-isomorphic to N , so it is a type I factor, too. Again, we find for Ñ a unitary
W : L → K1⊗K2, such that W ÑW ∗ = B(K1)⊗1lK2

. Putting U := (W⊗1lK3
)V : H → K1⊗K2⊗K3

gives a unitary transformation with the desired properties.

If one starts off with a vector state ω = 〈Ω, ·Ω〉 over R which corresponds to a vector Ω which
is separating for R(O) and cyclic for R(O1) then Ω is cyclic and separating for the whole family
{Mj}. This happens for example by the Reeh-Schlieder theorem if we are in the vacuum sector,
ω is the vacuum state, or any other state analytic for the energy, and O1, O′ are non-void open
regions. Under these conditions theorem 7.14.7 is applicable.

If the split property is fulfilled, any local algebra can be approximated by type I factors.
For the latter ones the modular flow is known explicitly, and theorem 7.14.7 shows that if the
Reeh-Schlieder property holds and the net satisfies an additivity property, on compact thermal
time intervals it approximates the thermal time flow on the local algebra arbitrarily well. The
automorphisms describing the thermal time evolution on local algebras can be approximated by
inner automorphisms in the weak sense of theorem 7.14.7, which are induced by the reduced density
matrices appearing in theorem 7.13.3 on type I factors.

Since each Mj admits a fixed point under the modular flow, one finds for each arbitrarily
large thermal time interval an observable inM which remains constant up to any accuracy in the
weak sense in this interval. The thermal time flow is to a certain extent determined by that of type
I factors, but this does not concern the asymptotic behaviour, which may drastically differ and
which is actually crucial to decide about its physical interpretation as representing true equilibrium
dynamics. The asymptotic behaviour is not governed by type I factors, and it remains an open
issue if the modular flow on local algebras shows a sufficiently strong dispersive behaviour. While
on type I factors any additional stability criterion beyond those ensured by the KMS condition
is violated, one cannot simply infer the same for local algebras which are type III1 factors. This
underlines their significance to describe physically realistic systems. Open systems of an infinitely
extended medium (with local dynamics) behave completely different than closed systems described
by type I factors. Nevertheless, although there is no proof available, it seems to be that asymptotic
abelianness cannot be generally expected to hold on local algebras. Let us give another heuristic
argument to underline that. For this purpose we consider again the function

fAB(s) ≡ ω([B, σω�R(O)
s (A)]), A,B ∈ R(O), (7.89)

where ω is supposed to be a cyclic and separating vector state on a local von Neumann algebra
R(O). Assuming that all the prerequisites of theorem 7.14.7 are fulfilled, we conclude that

f
(j)
AB(s)→ fAB(s) as j →∞, (7.90)

and the convergence is uniform on compact intervals, when

f
(j)
AB(s) ≡ ω([B, σω�Mj

s (A)]) (7.91)

denotes the corresponding function on the approximating type I factor Mj . We know from the

previous section that all the functions f
(j)
AB are almost periodic for A,B ∈ Mj , but the almost
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periodicity necessarily carries over to the limit function fAB only when the convergence is uniform
on the whole real line (proposition A.2.5). Howsoever, it cannot be excluded as well, and it
would undoubtedly be an utmost remarkable fact if for all A,B ∈ M1 ⊂ R(O), for all suitable
spacetime regions O, and for all physically realisable faithful normal states the limit function is
nice, in the sense that it tends asymptotically to zero, is an L1-function, and even more has a
vanishing integral.25 Only if all these properties are fulfilled, the modular flow would satisfy the
consistency condition, and a necessary criterion for weak asymptotic abelianness would hold. There
is no recognisable mechanism why this should be the case. So one is entitled to conjecture that
dynamical stability is violated in cases of physical interest, although a formal proof seems to be
out of sight.

To conclude, dynamical stability does not seem to be in conflict with the modular flow on
type III1 factors, albeit at the same time it does not seem to be enforced by the modular flow, and
there is no reason why it should generally hold. Demanding asymptotic abelianness in order to
obtain a true “return to equilibrium”-time concept presumably imposes restrictions on the class
of states from which thermal time emerges.

Note for this that even if (R, τ) is an asymptotically abelian system, the perturbed system
(R, τP ) does not need to be asymptotically abelian [104], i.e. the thermal time flow may represent
true equilibrium dynamics only for particular states. This asymmetry has a physical origin, it
arises whenever the perturbation isolates a finite subsystem. The isolation by perturbation of
finite subsystems is reflected by the lack of asymptotic abelianness of the perturbed system and
this is related to the formation of bound states in scattering theory.

This reveals an issue when working with the canonical flow. All the modular flows induced
by the various states are inner equivalent. They are identified with each other to give an outer
automorphism, the canonical flow. For this to make sense, all modular flows have to be regarded
as physically equivalent. However, if some of these flows show dispersive properties and others do
not, physical properties are not respected by the equivalence relation; inner equivalent flows are
not physically equivalent if priority is given to a thermodynamical, dispersive behaviour.

Conclusion Dynamical stability properties of the thermal time flow on local algebras cannot be
excluded, though there are indications which suggest that they do not hold in any case of interest.

7.15 Fixed Points and the Thermal Time Flow

Implications on the Dynamical Stability Behaviour

Let R be a von Neumann algebra which is not a factor. Then, there is a non-trivial element
A 6∈ C1l in R which commutes with all elements in R; in particular it is in the centralizer of any
state ω and hence by theorem 7.13.4 it is necessarily a fixed point of the modular flow induced by
any faithful normal state on R. According to theorem 4.4.7 the modular flows on semi-finite von
Neumann algebras have fixed points, too. Thus, only type III factors do not need to have fixed
points under the modular flow. This result can be strengthened:

Theorem 7.15.1. Let R be a von Neumann algebra and let ω be a faithful normal state. Assume
that σωs does not have any fixed points. Then, R is a type III1 factor.

Proof. The proof can be found in [11] for cyclic and separating vector states, and extends to faithful
normal states via the GNS construction.

The local algebras appearing in AQFT are type III1 factors, and the aforementioned theorem
shows that they are actually the only ones which are compatible with the non-existence of fixed
points. The existence of fixed points under the thermal time flow would destroy weak asymptotic
abelianness and thereby the “return to equilibrium”-property. But even if their existence is not
an intrinsic feature on local algebras, they do not seem to be excludable, as well. Nevertheless,
according to theorem 7.13.4 the existence of fixed points does not violate the consistency condition

25 Note that if one indeed finds A and B such that the consistency condition is violated, they are localised in a
proper subregion of O, so one cannot simply argue for omitting them by saying that the theory is not to be tested
at the horizon, as in the quasi-local case where one sometimes disregards quasi-local observables.
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of Haag et al. Taking into account that the consistency condition is intended to indicate dynamical
stability w.r.t. infinitesimal perturbations this observation is plausible. There is no approach to
equilibrium if one studies the evolution of the expectation value of a fixed point in a perturbed
state, which is constant, but at the same it remains forever close to the equilibrium expectation
value if the perturbation is small. In spite of the existence of fixed points a minimal dynamical
stability behaviour is in principle possible. We will show that the existence of two non-commuting
modular fixed points, one of which with a countable spectrum, does have consequences also for the
validity of the consistency condition w.r.t. the thermal time flow: By passing to the thermal time
flow induced by a suitable perturbed state, it is violated.

Theorem 7.15.2. Let R be a von Neumann algebra and ω = 〈Ω, ·Ω〉 a state which corresponds
to a cyclic and separating vector Ω. Moreover, let A,B ∈ R be two non-commuting self-adjoint
fixed points of σωs , such that A has a countable spectrum. Then, there exists a C ∈ R, which can

be chosen as self-adjoint, such that f(s) ≡ ωA([σω
A

s (B), C]) is a non-vanishing almost periodic
function, defined by an absolute convergent sum, i.e.

f(s) =
∑
n

ane
isλn , λn ∈ R, an ∈ C,

∑
n

|an| <∞. (7.92)

Proof. Recall (p. 51), that the perturbed state ωA = 〈ΩA, ·ΩA〉 was defined via

ΩA ≡ e−(K+A)/2Ω/‖e−(K+A)/2Ω‖, (7.93)

where K ≡ − log∆ is the modular Hamiltonian of the unperturbed state. The modular operator
∆A of the perturbed state satisfies (cf. proposition 4.2.3)

∆is
Aψ = lim

n→∞

(
∆is/ne−isA/nJeisA/nJ

)n
ψ. (7.94)

A is a modular fixed point, hence

[∆is, A] = 0 ⇒ [∆is/n, e−isA/n] = 0. (7.95)

Since we always have [∆is, J ] = 0, this gives

[∆is/n, JeisA/nJ ] = 0. (7.96)

A ∈ R implies e±isA/n ∈ R, which yields

[e−isA/n, JeisA/nJ ] = 0. (7.97)

Altogether, we end up with the following expression for the perturbed modular operator:

∆is
A = ∆ise−isAJeisAJ. (7.98)

From this we can determine the modular flow of the perturbed state acting on some D ∈ R,

σω
A

s (D) = ∆−isA D∆is
A = Je−isAJeisA∆−isD∆ise−isAJeisAJ (7.99)

= eisAJe−isAJσωs (D)JeisAJe−isA = eisAσωs (D)e−isA (7.100)

⇒ σω
A

s (B) = eisABe−isA. (7.101)

By assumption [A,B] 6= 0, thus B cannot be a fixed point of σω
A

s . Since the centralizer of ωA

coincides with the fixed point algebra of (R, σωAs ), there exists a C ∈ R such that ωA([B,C]) 6= 0.
Exploiting that A has a countable spectrum and thus admits an ONB consisting of eigenvectors
(cf. theorem A.1.11), we conclude similar to p. 115, cf. in particular equation (7.61), that

fC(s) ≡ ωA([σω
A

s (B), C]) = 〈ΩA, [eisABe−isA, C]ΩA〉 (7.102)

is a non-vanishing almost periodic function with f(0) 6= 0 and defined by an absolute convergent
sum. To obtain a self-adjoint C̃ (supposed that C itself is not self-adjoint) one proceeds as follows:
First we observe that fC∗ = −fC , which implies

fC+C∗ = 2i Im(fC), fi(C−C∗) = 2iRe(fC). (7.103)

Since fC(0) 6= 0, at least one of the expressions fC+C∗(0) and fi(C−C∗)(0) is non-vanishing, so that
one simply has to replace C by the self-adjoint element C + C∗ or i(C − C∗), respectively.
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The dynamical system (R, σωAs ) violates the consistency condition, in particular there are pairs
(such as B and C) which violate weak asymptotic abelianness w.r.t. ωA.

Remark. As mentioned above, it is by no means clear if there are cases at all in which the modular
flow induced on a local algebra admits non-commuting fixed points. If they do exist it might be pos-
sible to obtain a countable spectrum by suitable spectral projections (of course non-commutativity
has to be preserved) in order to fulfil all the prerequisites of theorem 7.15.2. In the type I case
when the system is described by an invertible density matrix on B(H), two non-commuting fixed
points exist whenever the density matrix has a degenerated spectrum.

Consequences for the Spectrum of the Modular Hamiltonian

A vector Ω which is cyclic and separating for a von Neumann algebra R is an eigenvector of
its modular group ∆is

Ω with eigenvalue 1, and of the modular Hamiltonian KΩ = − log∆Ω with
eigenvalue 0. Let A ∈ R be a (non-trivial) fixed point of the modular flow σΩ

s . Then A |Ω〉 is an
eigenvector of ∆is

Ω ,

∆is
ΩA |Ω〉 = A |Ω〉 . (7.104)

Since Ω is separating, it cannot be an eigenvector of A, i.e. A |Ω〉 6= λ |Ω〉 for λ ∈ C (otherwise A =
λ1l). Consequently, fixed points imply the existence of additional, linearly independent eigenvectors
with eigenvalue 1 (or with eigenvalue 0 for the modular Hamiltonian K). Next, we study what one
can say about the eigenvalues of the modular Hamiltonian under the conditions of theorem 7.15.2.
To do so we first need the

Proposition 7.15.3. Let R be a von Neumann algebra and ω = 〈Ω, ·Ω〉 a state which corresponds
to a cyclic and separating vector Ω. Moreover, let A,B ∈ R be two non-commuting self-adjoint
fixed points of σωs , such that A has a countable spectrum. Then, there exist φ, ψ ∈ H such that
f(s) = 〈φ,∆is

Aψ〉 is a non-vanishing almost periodic function, defined by an absolute convergent
sum. If, in addition, [[A,B], A] 6= 0, f(s) can be chosen as non-constant.

Proof. Put φ := BΩA and define ψ := CΩA for some C ∈ R to be specified below. Similar to the
cases before one shows that

f(s) = ωA(B∆is
AC) = 〈ΩA, σω

A

s (B)CΩA〉 = 〈ΩA, eisABe−isACΩA〉 (7.105)

is an almost periodic function defined via an absolute convergent sum. The choice of C does of
course not affect the almost periodicity of f . By theorem 7.15.2 there exists a self-adjoint C ∈ R,
such that ωA([B,C]) 6= 0, which implies 〈φ, ψ〉 = ωA(BC) 6= 0 and hence the non-vanishing of f .

For the second statement it might be necessary to choose another C. For the time being let
C again be arbitrary. We determine the derivative of f evaluated at 0,

f(s) = ωA(B∆is
AC) = ωA(eisABe−isAC), (7.106)

f ′(s) = iωA([A, eisABe−isA]C) ⇒ f ′(0) = iωA([A,B]C). (7.107)

The modular flow σω
A

s of [A,B], which is a fixed point under σωs reads

σω
A

s ([A,B]) = eisAσωs ([A,B])e−isA = eisA[A,B]e−isA. (7.108)

From the assumption [[A,B], A] 6= 0 we conclude that [A,B] is not in the fixed point algebra Rσω
A

,
and hence not in the centralizer CωA . As in the previous proof we can find a C ∈ R with f ′(0) 6= 0,
such that the assertion comes out.

Proposition 7.15.4 ([1]). Let µ1(λ) and µ2(λ) be two complex-valued functions of bounded vari-
ation, normalized in the sense that

lim
λ→−∞

µi(λ) = 0, lim
λ→∞

µi(λ) = 1, lim
λ↗λ0

µi(λ) = µi(λ0). (7.109)

Assume that for all s ∈ R ∫ ∞
−∞

e−isλ dµ1(λ) =

∫ ∞
−∞

e−isλ dµ2(λ), (7.110)

then µ1 = µ2.
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Theorem 7.15.5. Let R be a von Neumann algebra and ω = 〈Ω, ·Ω〉 a state which corresponds to
a cyclic and separating vector Ω. Moreover, let φ, ψ ∈ H be such that such that f(s) ≡ 〈ψ,∆isφ〉 is
a non-constant almost periodic function, defined by an absolute convergent sum. Then, the modular
Hamiltonian K = − log∆ has additional eigenvalues (in addition to 0).

Proof. f(s) =
∑
n ane

isλn with λn ∈ R, an ∈ C and
∑
n |an| <∞; w.l.o.g. let an 6= 0 for all n and

λn 6= λm whenever n 6= m. We can write

f(s) =

∫
e−isλ dµ(λ), µ(λ) =

∑
n :λn<λ

an. (7.111)

Since f is non-constant, we assume w.l.o.g. f(0) = 1. This can always be achieved by taking

f̃(s) := f(s−s0)
f(s0) instead of f(s), where s0 is chosen such that f(s0) 6= 0. Then µ fulfils the

above normalization conditions. Using the spectral decomposition of the modular Hamiltonian
K ≡ − log∆ we have

f(s) =

∫ ∞
−∞

e−isλ d 〈ψ,E(λ)φ〉 . (7.112)

By theorem 7.15.4 26

〈ψ,E(λ)φ〉 = µ(λ). (7.113)

Clearly, µ(λ) has all λn as points of discontinuity, and thus the same must be true for E(λ). Since
f is not constant, at least one of these points, λn0 say, is non-vanishing,

E(λn0
+ 0)− E(λn0

) 6= 0 in the strong sense, (7.114)

which precisely means that λn0
6= 0 is an eigenvalue of K (see appendix A.1).

Combining these results we conclude this section by the

Corollary 7.15.6. Let R be a von Neumann algebra and ω = 〈Ω, ·Ω〉 a state corresponding to a
cyclic and separating vector Ω. Moreover, let A,B ∈ R be two self-adjoint fixed points of σωs , such
that A has a countable spectrum and [[B,A], A] 6= 0. Then, the modular Hamiltonian corresponding
to ωA has eigenvalues λ 6= 0, which are embedded eigenvalues when R is a type III1 factor.

Remark. In the case of a type I factor the modular Hamiltonian, which is constructed from reduced
density matrices (cf. the remark after theorem 7.13.3), will have many eigenvalues, so that this
result does not give something new.

A closer look at the almost periodic function

f(s) = 〈φ,∆is
Aψ〉 = 〈ΩA, eisABe−isACΩA〉 (7.115)

reveals, that the eigenvalues of the modular Hamiltonian are differences of eigenvalues of A.
Furthermore, the corollary implies that under the stated conditions there exists, apart from

ΩA, an eigenvector ψ, such that s 7→ 〈ψ, σωs (D)ψ〉 is constant for all D. This underlines that the
system does not have the “return to equilibrium”-property; even more ψ is an additional stationary

state of the flow σω
A

s . Taking the initial assumption of the existence of two fixed points of the
unperturbed flow into account, this is of course not a surprising result.

Conclusion The existence of fixed points under the modular flow on type III1 factors can neither
be excluded nor confirmed. However, the existence of non-commuting fixed points (one of which
with a countable spectrum) is not compatible with the consistency condition as the weakest form of
dynamical stability.

26The spectral decomposition is always of bounded variation, (7.111) is also of bounded variation since there is
evidently a decomposition into non-decreasing functions.
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7.16 Relevance of the Asymptotic Behaviour and the Role
of Type I Factors

On the one hand the asymptotic behaviour of the thermal time flow is important to decide whether
the evolution shows a sufficient strong form of dispersion such that the flow represents a sensible
equilibrium flow, on the other hand one may ask if the asymptotic behaviour of the thermal time
flow is experimentally accessible, and therefore of physical significance.

As an example let us consider the diamond in the conformal case. The action is geometrically
and the algebras associated with subdiamonds are shifted under the thermal time evolution towards
the top of the diamond (figure 6.2 on page 79), whereby they become smaller and smaller shrinking
to a point which represents the top of the diamond in the limit s → ∞. The boundary of the
diamond is regarded as horizon, playing the same role as infinity for an inertial observer. In a
realistic scenario an observer will study the behaviour of a finite number of observables, A1, . . . , An
say. To make sure that the theory is tested only locally, not at the horizon, we assume that they
are localised in a subdiamond D1 ⊂⊂ D (see [32] for an analogous assumption). Moreover, we
take into account that only spacetime regions with a minimum extension are accessible by realistic
measurement devices with finite resolution in space and time.27 Let us assume that a spacetime
region is not accessible if it is contained in the tiny diamond Dε. One can find a finite thermal
time s0 after which the observables A1, . . . , An are localised in diamonds close to the top of D
which are all contained in Dε. Accordingly, the asymptotic behaviour cannot be measured. We
do not know whether a similar conclusion, which in this specific situation originates from the
conformal transformation relating wedge and double-cone, can be expected in more general cases;
nevertheless the example shows that it is a priori not clear if the asymptotic behaviour is relevant.
For local dynamics dispersion may not be of primary significance.

An issue which is closely related to this point concerns the metrization of thermal time (cf.
section 7.8). We have seen that a non-trivial rescaling of the modular parameter might be necessary
in order to relate it to a physically reasonable time. In particular, it does happen that an infinite
thermal time interval is identified with a finite physical time interval. In that situation an infinite
tail end of thermal time corresponds to an arbitrarily small interval of physical time, and, one more
time, the asymptotic behaviour of thermal time would not be accessible for an observer, for any
realistic measurement has a finite resolution in physical time. An infinite thermal time interval
would be perceived as an infinitesimal physical time interval. Since one should naturally expect the
physical time perceived by an observer living in a finite spacetime region to be finite, a non-trivial
rescaling could be generic in all the cases in which thermal time corresponds to a physical time.
This emphasizes that the problem of the metrization of thermal time is of great physical relevance.

Another question is whether dispersion expressed in terms of asymptotic abelianness is really
desirable. If the thermal time flow associated with a finite spacetime region admits a geometrical
meaning corresponding to timelike orbits (or respects the causal structure in the sense that the
localisation region of an observable is shifted upwards in a timelike direction), asymptotic abelian-
ness in thermal time essentially expresses abelianness in proper time or coordinate time after finite
intervals which might be an unwanted feature.28 If the thermal time has a non-geometrical mean-
ing which is completely mixing the localisation regions of the various observables things might
be different, but in that case it is questionable if thermal time can be regarded as an observable,
physical flow.

Consider a local algebra R(O), and assume that all the prerequisites of theorem 7.14.7 hold.
By the restriction on finite thermal time intervals, i.e. disregarding the asymptotic behaviour, and
on observables which are contained in some subalgebra R(O1), O1 ⊂⊂ O, the approximation of
the system via a type I factor, including an approximation of the thermal time flow, becomes
possible. For this one chooses a slightly smaller intermediate type I factor R(O1) ⊂ M ⊂ R(O)
which approximates R(O) sufficiently well. Applying an appropriate unitary transformation U it

27 An observable, or rather an operation procedure, specifies the intrinsic construction of the measuring apparatus
as well as its placement in spacetime. The time of the measurement completes this definition. A dynamical law,
that is a time flow, defines an equivalence between procedures at different times [60]. In our case that means
that the measuring apparatus corresponding to an observable does not shrink in thermal time, instead each of
the observables related by thermal time defines its own apparatus, whose construction eventually requires a non-
realisable employment of hardware.

28 In the case of a conformal Minkowski diamond one has timelike comutativity anyway, so this is not a problem.
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is possible to study B(K)⊗1lL in order to make all physical predictions. In that case a vector state
Ω, which we assume to be cyclic and separating for both R(O) and M, can be replaced by an
invertible density matrix ρ = trL(PUΩ) on B(K) and everything is the same as for closed systems.
The expectation values of the observables remain the same,

ω(A) = 〈Ω, AΩ〉 = tr(ρÃ), A ∈M, Ã ∈ B(K), A = U∗(Ã⊗ 1lL)U. (7.116)

Theorem 7.14.7 says that knowing the thermal time flow induced by Ω on the approximating type I
factor is physically sufficient. It is generated by the reduced density matrix, which, as an invertible
operator, represents a properly statistical mixture of states. Local algebras are “practically” of
type I.

This is related to a paper by Requardt [102] who ascribes the true origin of the modular
structure to the quantum decoherence of the vacuum. There are stochastic quantum fluctuations
passing through the region O. On the full scale these fluctuation patterns would display a certain
coherence which can be seen by taking all local observations in Minkowski space into account.
An observer confined to a spacetime region O is forced to make observations only within O. He
can acquire only restricted, less coherent and fragmented pieces of information about the vacuum
state and its excitations. The full quantum coherence of the vacuum is lost for him and cannot be
reconstructed locally. The vacuum appears as a mixed state, which is conjectured by Requardt
to consist of a statistical mixture of a complete sample of pure states, so called pieces of the vacuum
and thereby to be a kind of “trace state”.

If one regards M rather than R(O) as the relevant algebra, this “trace state” is precisely
induced by the density matrix ρ, which, as we have seen, is indeed related to the modular flow on
the local algebra. Requardt concludes from this that the modular structure is a consequence of
the destruction of quantum coherence of the full Lorentz invariant vacuum state when observations
are bound to restricted spacetime domains, and that the mixed state formed by the “pieces of the
vacuum” has generally nothing to do with a thermodynamical behaviour, a point of view we have
also argued for in the course of this chapter. Only if the coherence across the boundary is sufficiently
weak, a true equilibrium behaviour might prevail (such as in the example of the Rindler wedge).

Conclusion There are reasons to suspect that the asymptotic behaviour of the thermal time flow
is physically irrelevant. Practically then it might be satisfactory to deal with type I factors.

7.17 State-Dependence of Thermal Time

Requirements on State-Dependent Notions of Time

The notion of a state-dependent time flow may give rise to another conceptual issue. As de-
scribed in section 3.1 given a physical system an observer makes a couple of measurements of
some macroscopic observables from which he constructs a state which is best suitable to reflect his
measurement results. We have also mentioned that only a weak∗-neighbourhood in the set of all
states is experimentally accessible. In other words there is a whole neighbourhood of states which
is physically equivalent for the observer.

As a natural requirement to obtain a consistent state-dependent notion of time, which has
some predictive power, the time flow should not depend too sensitively on the state. Choosing a
(faithful normal) state in a neighbourhood of a given state, one should get an evolution which in
some sense (to be specified below) is close to the original one. In fact, we have seen in section
4.3 that on von Neumann factors two states never share the same modular automorphism group.
The thermal time flow does necessarily change non-trivially with the state, so that in principle the
state-dependence of the thermal time flow could cause problems. In the following we first explore
the state-dependence of the thermal time flow on type I factors, while we take a look at local
algebras afterwards.

State-Dependence of the Thermal Time Flow on Type I Factors

We focus on type I factors which admit a separating vector. Then, every faithful normal state is
represented by a separating vector. In the following we study the behaviour of the thermal time
flow if a sequence of separating vectors approximates a given separating vector in norm.
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Lemma 7.17.1. Let Ω be a normalized vector on the type I factor B(K) ⊗ 1lL. Moreover, let
{Ωi} be a sequence of normalized vectors converging to Ω in norm. Denote by ρ := trLPΩ and
ρi := trLPΩi the density matrices induced by Ω and Ωi, respectively. Then, ρi ⊗ 1lL → ρ ⊗ 1lL in
the norm sense.

Proof. Let Ω̃i := Ωi − Ω, then ‖Ω̃i‖ → 0, and let {ek ⊗ fl} be an ONB of K ⊗ L w.r.t. which Ω is
represented in the Schmidt representation (cf. appendix A.1),

Ω =
∑
j

aj eµj ⊗ fνj ,
∑
j

|aj |2 = 1, (7.117)

Ω̃i =
∑
k,l

b
(i)
kl ek ⊗ fl,

∑
k,l

|b(i)kl |
2 i→∞−→ 0. (7.118)

Furthermore let

ψ =
∑
m,n

cmn em ⊗ fn,
∑
m,n

|cmn|2 ≡ ‖ψ‖2 (7.119)

be an arbitrary vector in K ⊗ L.

ρi = trLPΩi = ρ+ trL(|Ω̃i〉 〈Ω|+ |Ω〉 〈Ω̃i|+ |Ω̃i〉 〈Ω̃i|), (7.120)

and we show that the second summand (tensored by 1lL) converges to zero in norm. For convenience
we elaborate on that only for one of the terms appearing in the trace:

(
(trL(|Ω̃i〉 〈Ω|)⊗ 1lL

)
|ψ〉 =

∑
m,n

cmn

trL

∑
j,k,l

a∗j b
(i)
kl |ek〉 |fl〉 〈eµj | 〈fνj |

⊗ 1lL

 |em〉 |fn〉 (7.121)

=
∑
m,n

cmn

∑
j,k

a∗j b
(i)
kνj
|ek〉 〈eµj | ⊗ 1lL

 |em〉 |fn〉 =
∑
j,k,n

cµjna
∗
j b

(i)
kνj
|ek〉 |fn〉 .

(7.122)

That yields with the help of the Cauchy-Schwarz inequality

‖
(

(trL(|Ω̃i〉 〈Ω|)⊗ 1lL

)
|ψ〉 ‖2 = |

∑
k,l,m,n

cµmna
∗
mb

(i)
kνm

c∗µlnalb
(i)∗
kνl
| (7.123)

≤
∑
l,m

|(
∑
n

cµmnc
∗
µln

)a∗mal(
∑
k

b
(i)
kνm

b
(i)∗
kνl

)| (7.124)

≤
∑
l,m

|a∗mal|
√∑

n

|cµmn|2
√∑

n

|cµln|2
√∑

k

|b(i)kνm |
2

√∑
k

|b(i)kνl |
2 (7.125)

≤ ‖ψ‖2
∑

m

|am|
√∑

k

|b(i)kνm |
2

∑
l

|al|
√∑

k

|b(i)∗kνl
|2

 (7.126)

≤ ‖ψ‖2
(∑

m

|am|2
)∑

k,m

|b(i)kνm |
2

 = ‖ψ‖2
∑
k,m

|b(i)kνm |
2

 ≤ ‖ψ‖2‖Ω̃i‖2 → 0. (7.127)

A similar calculation reveals

‖
(

(trL(|Ω〉 〈Ω̃i|)⊗ 1lL

)
|ψ〉 ‖2 ≤ ‖ψ‖2‖Ω̃i‖2, (7.128)

‖
(

(trL(|Ω̃i〉 〈Ω̃i|)⊗ 1lL

)
|ψ〉 ‖2 ≤ ‖ψ‖2‖Ω̃i‖4. (7.129)

Altogether we have

‖ρi ⊗ 1lL − ρ⊗ 1lL‖ ≤ 2‖Ωi − Ω‖2 + ‖Ωi − Ω‖4, (7.130)

which ensures the norm convergence.
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Next, we fall back upon the

Proposition 7.17.2 ([97]). Let {An} and A be uniformly bounded self-adjoint operators, then
An → A in the strong resolvent sense iff An → A strongly.

Corollary 7.17.3. Let Ω be a normalized separating vector on the type I factor B(K)⊗1lL. More-
over, let {Ωi} be a sequence of normalized separating vectors converging to Ω in norm. Denote by
ρ := trLPΩ and ρi := trLPΩi the reduced density matrices induced by Ω and Ωi, respectively. Then
ρisi ⊗ 1lL → ρis ⊗ 1lL in the strong sense, and the convergence is uniformly on compact intervals.

Proof. By lemma 7.13.2 ρj⊗1lL and ρ⊗1lL are positive, invertible, self-adjoint operators, which are
altogether bounded by 1. As a joint consequence of lemma 7.17.1, proposition 7.17.2 and theorem
7.14.2 ρisj ⊗1lL → ρis⊗1lL in the strong sense. Proceeding in exactly the same way as in the remark
before corollary 7.14.6, the assertion comes out.

Theorem 7.17.4. LetM be a type I factor on the Hilbert space H. Let ω be a faithful normal state
which corresponds to a separating vector Ω. Moreover, let ωj = 〈Ωj , ·Ωj〉 be an arbitrary sequence
of faithful normal states, such that the associated sequence of separating vectors Ωj converges to Ω
in norm. Then, for each ε > 0, any compact interval S ⊂ R, and any pair of state vectors φ, ψ ∈ H
there exists an j0 such that

| 〈φ, (σωs (A)− σωjs (A))ψ〉 | < ε (7.131)

for all j > j0, s ∈ S, and A ∈ R with ‖A‖ ≤ 1. Since all normal states are vector states, such an
approximation is in particular possible for all normal states (cf. theorem 7.14.7).

Proof. Denote by U : H → K⊗L the unitary transformation for which UMU∗ = B(K)⊗ 1lL, and
consider any pair of normalized vectors φ, ψ ∈ H.

| 〈φ, (σωs (A)− σωjs (A))ψ〉 | = | 〈Uφ,
[
(ρ−is ⊗ 1lL)UAU∗(ρis ⊗ 1lL)− (ρ−isj ⊗ 1lL)UAU∗(ρisj ⊗ 1lL)

]
Uψ〉 |

≤ | 〈Uφ,
[
(ρ−is ⊗ 1lL − ρ−isj ⊗ 1lL)UAU∗(ρis ⊗ 1lL)

]
Uψ〉 | (7.132)

+ | 〈Uφ,
[
(ρ−isj ⊗ 1lL)UAU∗(ρis ⊗ 1lL − ρisj ⊗ 1lL)

]
Uψ〉 | (7.133)

≤ ‖A‖
(
‖(ρis ⊗ 1lL − ρisj ⊗ 1lL)Uφ‖+ ‖(ρis ⊗ 1lL − ρisj ⊗ 1lL)Uψ‖

)
(7.134)

The assertion follows as a direct consequence of corollary 7.17.3.

State-Dependence of the Thermal Time Flow on Local Algebras

Now, let us pass to local algebras where things are much more involved. Again, we consider a
converging sequence of separating vectors. It would be nice to have a similar result also in this
context. The problem is that the modular operators are defined in quite an abstract way via the
polar decomposition of the Tomita operator, which makes it difficult to predict in which way a
change in the state influences the modular flow without the exact knowledge of the flow. One
exception is when the separating vectors are of the form

ΩAj = e(log∆Ω−Aj)/2Ω/‖e(log∆Ω−Aj)/2Ω‖, Aj = A∗j ∈ R with ‖Aj‖ → 0, (7.135)

such that proposition 3.5.1 and 4.2.3 apply.
Since the convergence derived for type I factors holds on compact intervals, one might hope

that this kind of consistency of the thermal time flow is a property which carries over from the
approximating type I factors, supposed that the split property holds. From section 2.5 we know
that the Reeh-Schlieder theorem holds for a dense set of vectors in the vacuum sector. It therefore
is possible to construct a converging sequence of cyclic and separating vectors which preserve these
properties also w.r.t. the approximating type I factors, such that theorem 7.14.7 is applicable.

Unfortunately, to gain insights into the state-dependence of the thermal time flow on local
algebras by exploiting this method, the thermal time flows induced by Ω and Ωj , respectively
must be close to each other in the sense of (7.131) for all j larger than some j0, and this j0 must
be selectable independently of the type I factor. While the convergence of the reduced density
matrices ρj is indeed completely independent of the type I factor (cf. the proof of proposition
7.17.1, equation (7.130)), a similar result for ρisj or the modular group is not available.
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Conclusion One should require the thermal time flow to be consistent with its state-dependence
in the sense that it does not react too sensitive on changes of the state. At least for type I factors
this can be shown to be the case.

7.18 Concluding Remarks

We postpone the conclusions of this analysis to the final chapter. Let us add a remark concerning
the mathematical accessibility of the thermal time flow on local algebras, instead. We have seen
that on compact intervals the modular flow on local algebras can be approximated by the modular
flow induced on suitable type I factors, supposed that the split property and some other mild
conditions hold. Although we have used this fact to speculate about asymptotic properties, it is
merely the finite behaviour which one can make rigorous statements about. To decide about the
existence of fixed points under the modular flow and to study its sensitiveness on changes of the
state, it is precisely the behaviour on finite intervals which is relevant, though the presence of fixed
points would allow to make statements about the asymptotic behaviour. Anyway, the validity of
these two important, potential properties could not have been clarified by using the split property.
The source of the difficulty to do that can be named as follows: For a given separating vector
state one can immediately write down the modular flow induced by this state on a type I factor.
Because of lemma 7.14.8 it is also possible to compare the modular flows induced by a given state
on a finite increasing sequence of type I factors. Unfortunately, performing the partial trace when
passing from one factor to another, smaller one, changes the reduced density matrix and even
more the modular flow in an uncontrollable way and thereby prevents predictions concerning these
properties on local algebras.
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Chapter 8
Conclusions and Outlook

“Being is real. Becoming is an illusion”
Plato, Greek philosopher (427 - 347 B.C.)

Due to an incompatible treatment of the notion of time in quantum theory and general rela-
tivity it is a reasonable idea to assume a fundamental timelessness of Nature, which means that
the notion of time is meaningless, or at least completely irrelevant on a fundamental level. To
explain why, nevertheless, our macroscopic world is apparently penetrated by a distinguished flow
of time, Connes and Rovelli developed the thermal time hypothesis according to which it is
the thermodynamical context where this flow emerges from. The distinguished physical time flow
of our perception is postulated to coincide with the equilibrium dynamics of the statistical state
in which the system is found to be. Mathematically the TTH is implemented in an elegant way
by exploiting the Tomita-Takesaki theory and its relation to the KMS theory. The expectation of
Connes and Rovelli is that thereby the thermal time flow automatically gains thermal and with
it physical properties. Indeed, we have seen that the TTH works well in a couple of important
examples. It leads to natural evolutions, though all the examples are of a rather artificial nature,
which is why they cannot be rated as convincing hints that the TTH is true.

Apart from that, there are well-founded doubts to accept thermal time as a physical time
concept representing some sort of real dynamics. In the course of the previous chapter we have
met various open questions and unsolved problems which are accompanied by the TTH and come
to the fore particularly in the non-generally covariant limit. First of all, thermal time is an entirely
new notion of time. It has a statistical origin, while ordinary notions of time are related to geometry.
Thermal time shows an unfamiliar behaviour (e.g. it can act non-geometrically) and, disregarding
specially constructed cases, will be completely unrelated to the well-established ordinary times.
Since we found examples where the TTH does not single out a natural evolution for an observer,
one may call into question if he really perceives thermal time, or if there are observers at all using
thermal time to describe the dynamical evolution.

A potential way out is to give a more abstract meaning to thermal time, still to be clarified,
or to restrict the application domain of the TTH, which then is presumably not suitable to fully
explain the origin of time. Unfortunately, there are more problems coming along with a physical
thermal time concept. The amount of physics entering the TTH seems to be too small to justify
thermal time as a physical time whatsoever, and it is not clear if and how thermal time can be
measured at all – prerequisite to be a physical quantity. A procedure, or first off all a clock is
needed, by which (effects of) thermal time can be measured, concerning especially the modular
parameter s itself. One has to be careful when assigning a physical reality to the modular flow.
In order to make sure that the thermal time flow is not just a mathematical flow with a couple of
nice properties, but something which can be expected to be perceivable by certain observers, one
could require the system to be in an intrinsically characterised equilibrium state (whatever it looks
like) before the TTH is applicable. Another problem is that the known examples suggest that a
non-trivial rescaling of thermal time is necessary to obtain a suitable metrization (which e.g. leads
to finite physical time intervals in finite spacetime regions). In general there is no guidance how
to choose this metrization, such that the TTH is incomplete so far.
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Even if thermal time cannot be identified with a physical, observable notion of time, it is
a preferred flow which reveals a hidden, particularly stable symmetry structure. In addition, it
could be a useful tool to study the physical system, and to extract certain properties from it. With
regard to a more abstract interpretation of thermal time, it is also important to look for physical
properties of the thermal time flow. This concerns above all its true equilibrium character on which
the motivations of Connes and Rovelli to formulate the TTH crucially rely.

The KMS condition is first of all a mathematical condition about certain analyticity prop-
erties which becomes a physical criterion for the distinction of equilibrium states only when the
automorphism group is known to be a physical time flow. Moreover, we have seen that the stability
properties coded in the KMS condition are not sufficient to ensure a dispersive equilibrium flow.
Suitable conditions which do that turn out to be weak asymptotic abelianness or the consistency
condition. Both are violated on type I factors and there is no mechanism recognisable due to
which one of these conditions should be expectable to be generically satisfied on local algebras.
The true thermal character of the thermal time KMS flow was therefore conjectured to be violated
in situations of physical interest, though a formal proof is out of sight. It seems to be necessary to
impose additional conditions on the state to give reasons for a dispersive behaviour. In that case
it would be interesting to know whether it is possible to formulate a condition (at least a sufficient
one), which implies asymptotic abelianness or the consistency condition, directly in terms of the
state, not relying on the explicit knowledge of the modular objects. Conversely, the asymptotic
behaviour, which decides about dispersive properties of the flow, may not be relevant practically.
For instance, it will be not measurable if an infinite tail end of thermal time is, due to rescaling,
identified with an infinitesimal physical time interval.

Thermal time is intended to be a properly “flowing” time, a property which is usually ascribed
to irreversibility and the second law. Since the thermal time flow is mathematically identical with
ordinary notions of times (supposed they are implemented on the algebra), and since in addition
irreversible processes are better captured by the latter ones, it is not clear what the origin of this
“flowing” should be. Even more, on the basis of irreversibility other time flows are much more
natural to explain our perception of a flowing time. Eventually the thermal time flow should
not depend too sensitively on the state, which would reduce the predictability of its evolution
(practically a state can be determined only up to a weak∗-neighbourhood). While this can be
verified on type I factors, it is again the algebraic setting where a proof is lacking.

All these issues, which were explained in chapter 7, suggest that the TTH (or at least the
TTH alone) is not appropriate to determine a physical time flow, or just a time flow with physical
or thermal properties. Nonetheless, we emphasize that the possibility is not excluded that thermal
time is related to some still unknown “real” physical time whatsoever. However, postulating
thermal time as a physical time requires a deeper analysis and cannot be justified without much
further ado; all the above mentioned problems have to be resolved. A really striking test of the
TTH would be to investigate how it works when applied to a state far away from equilibrium, or
when no geometrical interpretation is possible. For example, it would be extremely fruitful to know
the thermal time flow on the Minkowski double-cone algebra in the massive or interacting case.
This way one would come closer to an answer of many questions around the modular structure
and the thermal time concept. One can neither expect the modular action to be geometrical nor
that there is an observer for whom the state appears to be thermalised. It would be interesting if
and to what extent one can attach a physical interpretation to the thermal time flow.

Albeit the thermal time flow might be a flow with a couple of physical properties (possibly
supplied by restrictions on the state), whereby it gains some abstract meaning, the main goal has
to be an explanation of the origin of at least certain features of common sense time. Otherwise,
since the basic assumption we started with was a fundamental timeless world in which all physical
interpretations can be done without falling back upon a notion of time, thermal time would not be
needed. Of course, one may reply that in the end the TTH has to work merely when applied to (a
subsystem of) our universe in order to explain our specific origin of time. Anyway, all these issues
do not change the fact that the thermal time hypothesis is undoubtedly an outermost interesting
and fascinating statement, that it is highly desirable to understand what this special flow does, and
it does not lessen the importance to gain a better understanding of the still mysterious modular
objects. In particular the last point leaves much space for future investigations.
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Appendix A
Mathematical Preliminaries

“Mathematics is the queen of sciences [. . . ]. She often condescends to render service to astronomy
and other natural sciences [. . . ].”

Carl Friedrich Gauss, German mathematician (1777-1855)

A.1 Functional Analysis

In the following we present some striking results from functional analysis. The stated definitions
and theorems are taken from [47, 97, 114]. Proofs are omitted altogether, they can be found in
the cited references. Throughout appendix A.1 (if not stated otherwise) by an operator, say A, we
mean a linear map acting on a dense subspace D(A) of some complex Hilbert space H, the domain
of A, whose range lies in H. The inner product of the Hilbert space H is denoted by 〈·, ·〉.

Closedness and Self-Adjointness

Definition A.1.1 ([97]). An operator A is called closed if its graph Γ(A) = {(ξ, Aξ) : ξ ∈ D(A)}
is a closed subset of H×H. A is said to be closable if it has a closed extension, i.e. ∃A′ such that
Γ(A′) ⊃ Γ(A). Every closable operator A has a smallest closed extension Ā, called its closure.

Definition A.1.2 ([97]). Let A be an operator on H and define D(A∗) to be the set of all ξ ∈ H
for which there is an η ∈ H with

〈ξ, Aζ〉 = 〈η, ζ〉 for all ζ ∈ D(A). (A.1)

For each such ξ ∈ D(A∗) define A∗ξ := η. A∗ is called the adjoint of A.

Definition A.1.3 ([114]). An operator A is called self-adjoint if A = A∗.

Theorem A.1.4 ([97]). Let A be an operator on H.

(i) The adjoint, A∗, is closed. In particular, self-adjoint operators are closed.

(ii) A is closable iff D(A∗) is dense. In that case Ā = A∗∗.

(iii) If A is closable, then (Ā)∗ = A∗.

Bounded Operators

We define the operator norm of an operator A acting on a Hilbert space H to be

‖A‖ := sup
ξ∈D(A), ‖ξ‖≤1

‖Aξ‖ (A.2)

An operator is bounded if its operator norm is finite.

Theorem A.1.5 ([114]). An operator A is bounded iff D(A) = H and A is closed.
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Spectral Theory of Self-Adjoint Operators

It is possible to develop the spectral theory for normal operators. However, with regard to physical
applications we prefer to focus our considerations from the beginning on self-adjoint operators.

Definition A.1.6 ([97]). Let A be a closed operator on H. A complex number λ is in the resolvent
set, ρ(A), if λ − A is a bijection of D(A) onto H. For λ ∈ ρ(A), Rλ(A) ≡ (λ − A)−1, which is
bounded, is called the resolvent of A at λ. If λ 6∈ ρ(A), λ is said to be in the spectrum σ(A) of A.

Theorem A.1.7 ([47]). The spectrum of a self-adjoint operator A is real.

Theorem A.1.8 (Spectral Theorem [114]). To every self-adjoint operator A on H corresponds
a unique resolution E of the identity (see e.g. [1, 114] for the definition), the so-called spectral
decomposition of A, defined on the Borel subsets of the real line, which satisfies

〈ξ, Aη〉 =

∫ ∞
−∞

λ d 〈ξ, E(λ)η〉 , η ∈ D(A), ξ ∈ H. (A.3)

The integral is a Lebesgue-Stieltjes integral. Moreover, E is concentrated on σ(A) ⊂ R in the sense
that E(σ(A)) = 1l. The above expression is usually written in the form A =

∫∞
−∞ λ dE(λ), when

equality is thought in the sense of bilinear forms.
Let E be a resolution of the identity. By definition E is left-continuous in the sense of strong

convergence. A point λ is said to be a point of constancy if there is an ε > 0 such that

E(λ+ ε)− E(λ− ε) = 0, (A.4)

otherwise it is a point of growth. A point λ is called a point of discontinuity if

E(λ+ 0)− E(λ) 6= 0, (A.5)

and a point of continuity if

E(λ+ 0)− E(λ) = 0. (A.6)

Definition A.1.9 ([97]). Let A be a closed operator on H. A vector ψ ∈ D(A) which satisfies
Aψ = λψ for some λ ∈ C is called an eigenvector of A, λ is called the corresponding eigenvalue. If
λ is an eigenvalue, then λ−A is not injective so λ is in the spectrum of A. The set of all eigenvalues
is called the point spectrum of A. If λ is not an eigenvalue and if ran(λ− A) is not dense, then λ
is said to be in the residual spectrum.

Proposition A.1.10 ([1]). Let E be the spectral decomposition of a self-adjoint operator A and
let λ be a real number. Then,

(i) λ ∈ ρ(A) iff λ is a point of constancy of E;

(ii) λ is an eigenvalue of the operator A iff λ is a point of discontinuity of E.

If λ is an eigenvalue of the operator A acting on a Hilbert space H, then (E(λ + 0) − E(λ))H is
the corresponding eigenspace.

Orthonormal Bases Consisting of Eigenvectors

Theorem A.1.11 ([114]). Let A ∈ B(H), H as separable Hilbert space, and assume the spectrum
of A to be countable. Then, there exists an ONB consisting of eigenvectors.

Definition A.1.12 ([97]). An operator A ∈ B(H) is called compact if A takes bounded sets in H
into precompact sets in H. Equivalently, A is compact iff for every bounded sequence {ψn} ⊂ H,
{Aψn} has a convergent subsequence in H.

In particular trace-class operators and Hilbert-Schmidt operators are compact.

Theorem A.1.13 (Hilbert-Schmidt Theorem [97]). Let A be a self-adjoint compact operator on
a separable Hilbert space H. Then, there is an ONB {en} consisting of eigenvectors, Aen = λnen,
and λn → 0 as n→∞.
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Polar Decomposition for Closed Operators

Definition A.1.14 ([97]). An operator A is called positive, written A ≥ 0, if 〈ξ, Aξ〉 ≥ 0 for all
ξ ∈ D(A).

Theorem A.1.15 (Square Root Lemma [114]). Let A be a self-adjoint operator. Then, the fol-
lowing statements are satisfied:

(i) A is positive iff the spectrum of A is non-negative, i.e. σ(A) ⊂ [0,∞).

(ii) If, in addition, A is positive, then there exists a unique positive, self-adjoint operator B,
written as

√
A, such that B2 = A.

Proposition A.1.16 ([97]). Every bounded, positive operator on a complex Hilbert space H is
self-adjoint.

Theorem A.1.17 ([97]). Let A be an arbitrary closed operator. Then, A∗A is a densely defined
positive, self-adjoint operator.

Definition A.1.18 ([97]). Let A be a closed operator. Guided by the previous theorems, we
introduce the notation |A| ≡

√
A∗A. Note that |A| is a positive, self-adjoint operator.

Definition A.1.19 ([97]). An operator U fromH1 intoH2 withD(U) = H1 is called an isometry, if
U∗U = 1lH1 , or, equivalently, if ‖Uξ‖ = ‖ξ‖ for all ξ ∈ H (which then implies 〈Uξ, Uη〉H2

= 〈ξ, η〉H1

for all ξ, η ∈ H1 by the polarization identity). If, in addition, U is onto, or, equivalently, if
UU∗ = 1lH2

, U is said to be a unitary operator. Two Hilbert spaces H1 and H2 are said to be
isomorphic if such an unitary operator exists. An operator U is called a partial isometry if U is
an isometry when restricted to the closed subspace (kerU)⊥.

Theorem A.1.20 (Polar Decomposition Theorem [97]). Let A be a closed operator. Then, there
exists a partial isometry U : (kerA)⊥ → ranA such that A = U |A|. U is uniquely determined by
these properties and the additional condition that ker |A| = kerA.

Stone’s Theorem

Definition A.1.21 ([97]). An operator-valued function U : R→ B(H) is called a strongly contin-
uous one-parameter unitary group if:

(i) U(t) is unitary for all t ∈ R;

(ii) U(t+ s) = U(t)U(s) for all s, t ∈ R;

(iii) lim
t→t0

U(t)ξ = U(t0)ξ for all t0 ∈ R and ξ ∈ H.

Theorem A.1.22 (Stone’s Theorem [97]). U(t) is a strongly continuous one-parameter unitary
group on a Hilbert space H iff there exists a self-adjoint operator H such that U(t) = eitH .
H is called the infinitesimal generator of U(t).

Schmidt Representation

Consider a vector Ω ∈ H1⊗H2, where H1 and H2 are two separable Hilbert spaces. Taking ONBs
{ei} of H1 and {fj} of H2, Ω can be expanded in the following way:

Ω =
∑
i,j

aijei ⊗ fj , aij ∈ C,
∑
i,j

|aij |2 = ‖Ω‖2. (A.7)

In fact, one can always find ONBs {ẽi} of H1 and {f̃j} of H2, such that

Ω =
∑
i

φiẽµi ⊗ f̃νi , φi > 0,
∑
i

φ2
i = ‖Ω‖2, (A.8)

where {µi} as well as {νi} are pairwise disjoint (see e.g. [91]). This representation of Ω is called
Schmidt representation. From the physical point of view this is interesting, because it establishes
the existence of operators A ⊗ 1l and 1l ⊗ B such that a measurement of one of them in the state
Ω uniquely determines the value of the other one.
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Borel-Functional Calculus for Self-Adjoint Operators

The spectral theorem can be used to define functions of self-adjoint operators (see [47] for the de-
tails). To this end, let A be some self-adjoint operator, and denote by E its spectral decomposition.
If f is a complex Borel function defined E-almost everywhere on R,1 then

f(A) ≡
∫
σ(A)

f(λ) dE(λ), (A.9)

is a well-defined, closed operator on the dense domain

D(f(A)) = {η ∈ D(A) :

∫ ∞
−∞
|f(λ)|2 d 〈η,E(λ)η〉 <∞}. (A.10)

f(A) has the following properties:

(i) ‖f(A)η‖2 =
∫
|f(λ)|2 d 〈η,E(λ)η〉 for all η ∈ D(f(A));

(ii) f(A)∗ = f(A), in particular f(A) is self-adjoint whenever f is real-valued;

(iii) Rµ(A) =
∫

1
µ−λ dE(λ) for all µ ∈ ρ(A).

The next two propositions show that, supposed one takes care of domains, functions of operators
satisfy the relations one is used to from ordinary functions.

Proposition A.1.23 ([47]). Let A be a self-adjoint operator, and let f and g be two Borel functions
defined E-almost everywhere on R. Then, the following relations hold for f(A) and g(A):

(i) (αf)(A) = αf(A) for all α ∈ C;

(ii) f(A) + g(A) ⊂ (f + g)(A);

(iii) f(A)g(A) ⊂ (f · g)(A),2 in particular for bounded functions f, g one has (f · g)(A) =
f(A)g(A) = g(A)f(A).

Proposition A.1.24 ([71]). If A is a self-adjoint operator and f and g are Borel functions on R,
then (f ◦ g)(A) = f(g(A)).

We focus our considerations now on a positive, invertible, self-adjoint operator A [72].3 We have
σ(A) ⊂ R≥0. Clearly, the functional calculus applies. We are interested in Borel functions of A
defined on R>0. In fact, the coincidence of two Borel functions f , g on σ(A) \ {0} already implies
f(A) = g(A), such that we do not have to care about 0. We consider the special case in which
the Borel function is given as fz(x) = eiz log x = xiz, z ∈ C, where log is the complex logarithm
on C, defined in the usual fashion. This function is of paramount interest in modular theory. As

is a positive self-adjoint operator, while Ait is unitary, s, t ∈ R. As a consequence of proposition
A.1.24

Az ≡ (exp ◦ z log)(A) = exp(z logA). (A.11)

Since log is real-valued function on R>0, logA is self-adjoint. Hence, by Stone’s theorem A.1.22,
t 7→ Ait = eit logA is a strongly continuous one-parameter unitary group. Moreover, it can be
shown that the inverse of A agrees with A−1 ≡ f−1(A), where f−1(x) = x−1, and that

(A−1)z = A−z ∀ z ∈ C and (A−1)t = A−t = (At)−1 ∀ t ∈ R. (A.12)

It is established e.g. in [72] that

AzAit = AitAz = Az+it for all t ∈ R and z ∈ C. (A.13)

To sum up, one can verify essentially all the rules one would expect from the symbolic expression
Az. This is crucial for calculations with the modular operator.

1A real function f is said to be a Borel function if for each α ∈ R the set {t : f(t) > α} is a Borel set. A complex
function is a Borel function if its real and imaginary part are Borel functions.

2(f · g)(x) ≡ f(x)g(x).
3An operator is called invertible if it is one-to-one and has dense range.
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Conjugate-Linear Operators

Since the Tomita-Takesaki theory deals with the possibly rather unfamiliar concept of conjugate-
linear operators we give a brief overview of the main features of this type of operator. For more
details we refer to [72]. An operator A acting on a Hilbert space H with inner product 〈·, ·〉 is
called conjugate-linear or anti-linear if its domain D(A) is a dense subspace of H and

A(aξ + bη) = āAξ + b̄Aη for all ξ, η ∈ D(A) and a, b ∈ C. (A.14)

We denote by H the conjugate Hilbert space of H. H and H are equal in the category of sets,
however, H has a different Hilbert space structure which is derived from that of H. The scalar
multiplication is defined by

λ ◦ ξ := λ̄ · ξ for each ξ ∈ H and for all λ ∈ C, (A.15)

where “ · ” is the usual scalar multiplication in H. Moreover, the inner product on H is given by

〈ξ, η〉H := 〈ξ, η〉H = 〈η, ξ〉H . (A.16)

Norm and weak topology on H and H coincide. The key observation is the following: Any
conjugate-linear operator A on D(A) ⊂ H can be identified as a linear operator between D(A)
and H. Clearly, an analogous result holds for the reverse direction. That is the reason why
much of the theory of linear operators can be adapted so as to apply also in the conjugate-linear
case. For instance, notions like “closedness”, “preclosedness”, or “self-adjointness” turn out to be
independent of the interpretation of the map.4

Let A be a conjugate-linear operator. We define D(A∗) as the set of all ξ ∈ H for which there
is an η ∈ H such that

〈ξ, Aζ〉 = 〈η, ζ〉 = 〈ζ, η〉 for all ζ ∈ D(A). (A.17)

For each such ξ ∈ D(A∗) we set A∗ξ := η. As in the case of linear operators, A∗ is called the adjoint
of A. The appearance of the complex conjugation in this formula is due to the above identification
of linear and conjugate-linear maps.

A conjugate-linear operator A is called an anti-isometry, if D(A) = H and ‖Aξ‖ = ‖ξ‖ for all
ξ ∈ H. Note, however, that for an anti-isometry the relation

〈Aη,Aξ〉 = 〈ξ, η〉 (A.18)

holds, as can be checked by using the polarization identity.
Finally, let us consider a closed conjugate-linear operator A : H ⊃ D(A) → H. When

viewed as linear operator from D(A) to H, A admits a polar decomposition A = U |A|, where
U : H → H is a partial isometry, and |A| a positive, self-adjoint operator acting on H.5 Thus, a
polar decomposition theorem also holds for an anti-linear operator A = U |A|. U : H → H is now
a conjugate-linear partial isometry, while |A| : H → H remains linear.

A.2 Almost Periodic Functions

The theory of almost periodic function was developed to a large extent by H. Bohr [16] in close
analogy to the theory of periodic functions. We state here the central definitions and results. For
this purpose let us consider an arbitrary function f : R → C. The real number τ(ε) is called
translation number of f corresponding to ε > 0, whenever

|f(x+ τ)− f(x)| ≤ ε for all x ∈ R. (A.19)

The sum or difference of translation numbers corresponding to ε1 and ε2 is a translations number
corresponding to ε1 + ε2. A set E ⊂ R is said to be relatively dense if there exists an L > 0 such
that every interval [a, a+ L] contains at least one element of E.

4One has to be careful when applying the functional calculus, cf. [72].
5In the linear case (as well as in the anti-linear case) the polar decomposition theorem is extendable to operators

linking two distinct Hilbert spaces.
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Definition A.2.1 ([16]). A continuous function f : R→ C is called almost periodic when for each
ε > 0 there exists a relatively dense set of translation numbers of f corresponding to ε.

The next theorem summarises some basic properties of almost periodic functions.

Theorem A.2.2 ([16]). If f and g are almost periodic functions, the following assertions are true:

(i) f is bounded;

(ii) f is uniformly continuous;

(iii) f ± g are almost periodic functions;

(iv) f · g is an almost periodic function.

Proposition A.2.3 ([16]). Let f be an almost periodic function. Then, for each ε > 0 there exist
L and δ, such that each interval [a, a + L], a ∈ R, contains an entire interval of length δ whose
points are translation numbers τ(ε).

From this we immediately obtain the next

Corollary A.2.4. Let f 6≡ 0 be an almost periodic function. Then, f cannot be an L1-function.

Proof. With regard to the definition of Lebesgue integrals, we assume w.l.o.g. that f is a positive
function with a := f(0) > 0. Choose ε = a/2. By proposition A.2.3 there exists a δ such
that f(x) ≥ a/2 for infinitely many disjoint intervals of length δ, which immediately implies the
assertion.

It can be shown that every sum of a finite number of continuous periodic functions is almost
periodic. In particular, every trigonometric polynomial

s(x) =

N∑
n=1

ane
iλnx, an ∈ C, λn ∈ R, (A.20)

is an almost periodic function. Consider now the set {s(x)} of all these trigonometric polynomials.
Denote by H{s(x)} the set of functions which can be approximated uniformly on the whole of R
by {s(x)}.

Proposition A.2.5 ([16]). Let {fn} be a sequence of almost periodic functions which converges
uniformly on R to a function f . Then, f is also almost periodic.

The proposition immediately implies that all functions in H{s(x)} are almost periodic, in particular
each function of the form

f(x) =

∞∑
n=1

ane
iλnx, λn ∈ R, an ∈ C,

∑
n

|an| <∞, (A.21)

is almost periodic. One of the most important results in the theory of almost periodic functions is
that H{s(x)} already contains all almost periodic functions:

Theorem A.2.6 (Fundamental Theorem [16]). The set H{s(x)} is identical with the class of al-
most periodic functions, in particular every almost periodic function can be approximated uniformly
by trigonometric polynomials of the form (A.20).

A.3 Algebras, Representations and States

In this part we throw a glance at C∗-algebras being central objects in AQFT. We go into the
most important definitions leading to the notion of abstract C∗-algebras, consider some fruitful
properties of states over C∗-algebras, and introduce the GNS construction which gives rise to a
preferred representation of a C∗-algebra for a given state. For the details we refer the reader to
[23, 71].
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Abstract C∗-Algebras

A vector space A over the field of complex numbers C is called an algebra if A is equipped with a
product which is assumed to be associative and distributive. If there exists an identity element 1l
in the algebra A for which A = A · 1l = 1l · A for all A ∈ A, then A is called an algebra with unit,
or a unital algebra. The unit element is unique whenever it exists.

A mapping A 3 A 7→ A∗ ∈ A is called an involution of the algebra A if for all A,B ∈ A the
following conditions hold:

(i) A∗∗ = A;

(ii) (AB)∗ = B∗A∗;

(iii) (αA+ βB)∗ = ᾱA∗ + β̄B∗ for α, β ∈ C.

An algebra A with an involution is said to be a ∗-algebra. A subset B of a ∗-algebra A is called
self-adjoint if A ∈ B implies A∗ ∈ B. In particular, note that with this definition an element A ∈ A
is self-adjoint iff A = A∗. An element A of a ∗-algebra is said to be normal if AA∗ = A∗A.

Let A be an algebra with identity. The resolvent set ρ(A) of an element A ∈ A is the set of
all λ ∈ C for which λ− A is invertible. The spectrum σ(A) of A is the complement of ρ(A) in C.
An element A of a ∗-algebra A is defined to be positive, if it is self-adjoint and its spectrum σ(A)
is contained in R≥0. The set of all positive elements of A is denoted by A+.

If an algebra A is equipped with a norm ‖ · ‖ : A → R≥0, satisfying the assumptions

(i) ‖A‖ = 0 iff A = 0,

(ii) ‖αA‖ = |α|‖A‖, α ∈ C,

(iii) triangle inequality : ‖A+B‖ ≤ ‖A‖+ ‖B‖,

(iv) product inequality : ‖AB‖ ≤ ‖A‖‖B‖,
then, A is called a normed algebra. A normed algebra which is complete w.r.t. the topology
induced by the norm is a Banach algebra. Moreover, a Banach algebra with an involution for
which ‖A‖ = ‖A∗‖ is said to be a Banach ∗-algebra.

Definition A.3.1 ([23]). An (abstract) C∗-algebra is a Banach ∗-algebra A with the property

‖A∗A‖ = ‖A‖2 for all A ∈ A. (A.22)

A C∗-algebra does not necessarily need to contain an identity; nevertheless it may be embedded
into a larger C∗-algebra which contains an identity. For this reason one may assume for convenience
that a C∗-algebra does contain an identity element.6

An element A of a unital C∗-algebra A is called isometry if A∗A = 1l, it is said to be unitary
if A∗A = 1l = AA∗.

Theorem A.3.2 ([60]). Let A be a C∗-algebra. Then A+ is a convex cone, i.e. αA + βB ∈ A+

for all A,B ∈ A+ and α, β ∈ R+.

The following results are the abstract pendants to the square root lemma, the polar decomposition
theorem, etc.

Theorem A.3.3 ([71]). If A is a C∗-algebra and A ∈ A, then the following conditions are equiv-
alent:

(i) A ∈ A+;

(ii) A = H2 for some H ∈ A+;

(iii) A = B∗B for some B ∈ A.

When these conditions are satisfied, H is unique.

Hence, for positive elements A of a C∗-algebra A one can define the square root,
√
A := H. For

any element A its modulus is defined as |A| =
√
A∗A. Let A be a unital C∗-algebra, and let A ∈ A

be an invertible element, then A can be decomposed as A = U |A|, where U = A|A|−1 is a unitary
element of A.

6Note that states, which will also be introduced in this section, on C∗-algebras without identity have a canonical
extension to the enlarged algebra with unit.
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∗-Homomorphisms and ∗-Isomorphisms

A ∗-homomorphism between two ∗-algebras A1 and A2 is a homomorphism τ : A1 → A2 between
A1 and A2 in the category of algebras respecting the ∗-structure, i.e. τ(A∗) = τ(A)∗ for all A ∈ A1.
A ∗-homomorphism is called a ∗-isomorphism if it is one-to-one and onto.

Theorem A.3.4 ([71]). Let A1 and A2 be two C∗-algebras, and let τ : A1 → A2 be a ∗-
homomorphism. Then, the following conditions hold:

(i) τ is positive, i.e. preserves positivity;

(ii) ‖τ(A)‖ ≤ ‖A‖ for all A ∈ A1, in particular τ is continuous;

(iii) τ(A1) is a C∗-algebra.

Proposition A.3.5 ([71]). Each ∗-isomorphism τ between two C∗-algebras A1 and A2 is norm-
preserving, i.e. ‖τ(A)‖ = ‖A‖ for all A ∈ A1.

Representations

A representation of a C∗-algebra A is defined to be a pair (H, π), where H is a complex Hilbert
space an π a ∗-homomorphism of A into B(H). The representation (H, π) is said to be faithful if
π is a ∗-isomorphism between A and π(A). Faithful representations are characterised by norm-
preserving representations. Naturally, these are the most important ones. One can show that each
C∗-algebra admits a faithful representation [71].

A representation (H, π) of a C∗-algebra A is called irreducible if {0} and H are the only closed
subspaces which are invariant under the action of π(A).7

Proposition A.3.6 ([23]). Let (H, π) be a representation of the C∗-algebra A. Then, the following
conditions are equivalent:

(i) (H, π) is irreducible;

(ii) Multiples of the identity are the only bounded operators commuting with π(A);

(iii) For every 0 6= ψ ∈ H the set π(A)ψ is dense in H, or π(A) = 0 and H = C.

A C∗-algebra A must be expected to admit a huge variety of representations. The distinction
between certain types of representations is not advantageous. Two representations (H1, π1) and
(H2, π2) are said to be (unitarily) equivalent, whenever there exists a unitary operator U : H1 → H2

such that π1(A) = Uπ2(A)U∗ for all A ∈ A. A weaker form of equivalence is introduced below.
A ∗-automorphism τ of the C∗-algebra A is called implementable in the representation π if

there exists a unitary operator Uτ acting in the representation space such that

π(τ(A)) = Uτπ(A)U∗τ . (A.23)

An important class of representations is the class of cyclic representations. A cyclic representation
of a C∗-algebra A is defined to be a triple (H, π,Ω), where (H, π) is a representation of A and Ω
is a vector in H which is cyclic for π(A) in H, which means that π(A)Ω is dense in H.

States

We introduce two important topologies on the dual space A∗ of a C∗-algebra A.

• The uniform topology is the metric topology induced by the norm,

‖ω‖ = sup
A∈A, ‖A‖=1

|ω(A)|. (A.24)

• For A ∈ A, ω 7→ |ω(A)| is a semi-norm on A∗. The weak∗ topology is the topology induced
by these semi-norms. It is of great physical relevance (see chapter 2).

7In that case {0} and H are the only invariant subspaces.
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States on C∗-algebras are of fundamental importance for the construction of representations. We
precede by giving the mathematical definition of a state.

Definition A.3.7 ([23]). A linear form ω over a C∗-algebra A is called a state if

(i) ω is positive, i.e. ω(A∗A) ≥ 0 for all A ∈ A, and if

(ii) ω is normalized, i.e. ‖ω‖ = 1.

The collection of all positive linear functionals over A is the positive cone of the dual space A∗,
denoted by A∗+. A state is a normalized element of A∗+. In the next proposition we have collected
the most important properties of states.

Proposition A.3.8 ([23, 60]). Let ω be a state on a C∗-algebra A (or, more general, a positive
linear functional). Then, the following conditions hold for all A,B ∈ A:

(i) ω is continuous and bounded;

(ii) ω(A∗B) = ω(B∗A), and ω(A∗) = ω(A) (i.e. ω is real);

(iii) Cauchy-Schwarz inequality: |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B);

(iv) |ω(A∗BA)| ≤ ω(A∗A)‖B‖;

(v) |ω(A)|2 ≤ ω(A∗A)‖ω‖;
The set of all states, EA, on a unital C∗-algebra A forms a convex, weakly∗ compact subset of its
dual space A∗. Hence, convex combinations of states are again states. This mathematical operation
corresponds to the physical procedure of mixing (mixed states). Conversely, EA contains extremal
points, the extremal states, and the whole set of states is generated from the extremal states by
convex combination and weak∗ closure. Moreover, the property of positivity enables one to order
positive linear functionals in a natural manner. This can be used to introduce the notion of pure
states. A state ω is called pure, if ω − ω̃, ω̃ ∈ A∗+, can only be positive for ω̃ = λω, 0 ≤ λ ≤ 1.

All these peculiarities of the set of states turn out to be very fruitful from the physical point
of view when studying e.g. thermodynamical mixed and pure phases. In fact, the set of pure states
coincides with the set of extremal states. Since we are essentially dealing with von Neumann factors
(see below), which are less suitable to study such phenomena, we do not pursue this direction any
further, which is why we refer to the literature for more details [23, 24, 60]. Some additional
properties of states are discussed in the next section in the context of von Neumann algebras. A
bit more about the physical meaning of states is included in the main text, chapter 2.

Gelfand-Naimark-Segal Construction

Let (H, π) be a representation of a C∗-algebra A and Ω ∈ H an arbitrary vector satisfying ‖Ω‖ = 1,
a state vector. Every state ω on a C∗-algebra determines a representation πω over some Hilbert
space Hω where it is represented as a cyclic state vector Ωω ∈ Hω, in the sense that ω(A) =
〈Ωω, π(A)Ωω〉. The construction of this canonical representation associated with a given state
goes back to Gelfand and Naimark (1943), and to Segal (1947). In their honours it is called
Gelfand-Naimark-Segal construction or simply GNS construction. The GNS representation is of
fundamental importance in physics.

Theorem A.3.9 (GNS Construction [23]). Let ω be a state over the C∗-algebra A. Then, there
exists a cyclic representation (Hω, πω,Ωω) of A, the GNS representation, such that

ω(A) = 〈Ωω, πω(A)Ωω〉 for all A ∈ A. (A.25)

Moreover, the representation (Hω, πω) is unique up to unitary equivalence.

Corollary A.3.10 ([23]). Let ω be a state over a C∗-algebra A and τ a ∗-automorphism of A
which leaves ω invariant. Then, there exists a uniquely determined unitary operator Uω acting on
Hω, which leaves Ωω invariant, UωΩω = Ωω, and which implements τ ,

πω(τ(A)) = Uωπω(A)U∗ω for all A ∈ A. (A.26)

Theorem A.3.11 ([23]). Let ω be a state over a C∗-algebra A and (Hω, πω,Ωω) the associated
GNS representation. Then, (Hω, πω) is irreducible iff ω is pure, or equivalently, iff ω is extremal.
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A.4 Von Neumann Algebras

Besides C∗-algebras, von Neumann algebras are central objects in the algebraic setting of quantum
field theory. Furthermore, they are crucial ingredients of modular theory. In this section we
intend to present some basic definitions together with a rough survey of important properties and
characteristics of von Neumann algebras. Detailed supplements can be found e.g. in [23, 70, 72].

Topologies

The starting point for the study of von Neumann algebras is given by the set of all bounded linear
operators acting on a complex Hilbert space H, which we denote by B(H). First of all one has to
fix a topology. For this purpose we introduce five important operator topologies on B(H). All these
topologies are locally convex.8 They are introduced in terms of families of (semi-)norms. More
generally, one can show [71] that each family of semi-norms on a vector space which separates points
defines a locally convex topology w.r.t. which all these semi-norms become continuous functions.
Conversely, every locally convex topology arises from a suitable family of semi-norms.

• The uniform topology is the metric topology induced by the operator norm,

‖A‖ = sup
ξ∈H, ‖ξ‖=1

‖Aξ‖. (A.27)

• For ξ ∈ H, A 7→ ‖Aξ‖ is a semi-norm on B(H). The strong topology is the topology on B(H)
defined by these semi-norms.

• Consider all sequences {ξn} in H such that
∑
n ‖ξn‖2 <∞. Then A 7→

(∑
n ‖Aξn‖2

)1/2
<∞

is a semi-norm on B(H). The set of these semi-norms defines the σ-strong topology.

• For ξ, η ∈ H, A 7→ |〈ξ, Aη〉| is a semi-norm on B(H). The weak topology is the topology on
B(H) defined by all these semi-norms. Indeed, due to the polarization identity, it suffices to
restrict oneself to semi-norms with ξ = η.

• Let {ξn}, {ηn} be two sequences in H such that
∑
n ‖ξn‖2 < ∞ and

∑
n ‖ηn‖2 < ∞. Then

A 7→
∑
n |〈ξn, Aηn〉| <∞ is a semi-norm on B(H). The topology on B(H) induced by these

semi-norms is called σ-weak topology.

If “<” means “finer than”, the relations between the various topologies on B(H) can be summarised
as follows:

uniform < σ-strong < σ-weak
∧ ∧

strong < weak

Concrete C∗-Algebras

Definition A.4.1 ([60]). A concrete C∗-algebra is a ∗-subalgebra of B(H) which is closed in the
uniform topology.

Every concrete C∗-algebra is an abstract C∗-algebra. Conversely, as a consequence of theorem
A.3.9 every abstract C∗-algebra can be represented by a concrete C∗-algebra.

For concrete C∗-algebras we have two definitions of positivity. However, as a joint consequence
of theorem A.1.15 and proposition A.1.16 we have the result that an element A of a concrete C∗-
algebra is positive in the sense of definition A.1.14 iff it is positive according to the definition for
abstract C∗-algebras, namely that it is self-adjoint and has a non-negative spectrum.

Theorem A.4.2 (Kadison Transitivity Theorem [23, 71]). Let A be an irreducible concrete C∗-
algebra over the Hilbert space H, and denote by {ψ1, . . . , ψn} and {ϕ1, . . . , ϕn} two families of
vectors in H. If there exists a T ∈ B(H) such that Tϕi = ψi for i = 1, . . . , n, then it follows that
there exists an A ∈ A with the same property and with ‖A‖ = ‖T‖. If T is self-adjoint, A may be
chosen self-adjoint, and if T is unitary, A may be chosen unitary.

8A locally convex space is a topological vector space in which the topology has a base consisting of convex sets.
A locally convex topology on a vector space V is a topology w.r.t. which V becomes a locally convex space.
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Definition of von Neumann Algebras

Definition A.4.3 ([60]). A unital ∗-subalgebra of B(H) which is closed in the weak topology is
said to be a von Neumann algebra.

Since the weak topology is coarser than the uniform topology, every von Neumann algebra is a
C∗-algebra, whence all the result about C∗-algebras also hold for von Neumann algebras. Let S
be an arbitrary subset of B(H). The commutant of S, denoted by S′, is defined to be

S′ ≡ {A ∈ B(H) : [A,S] = 0}. (A.28)

Theorem A.4.4 ([60]). Let S ⊂ B(H) be a self-adjoint set. Then

(i) S′ is a von Neumann algebra;

(ii) S′′ is the smallest von Neumann algebra containing S;

(iii) S′′′ = S′.

Statement (ii) immediately leads to an alternative characterisation of von Neumann algebras:

Corollary A.4.5 (Von Neumann Double Commutant Theorem [23]). Instead of the topological
definition A.4.3, a von Neumann algebra may be equally well defined as a self-adjoint subset R of
B(H) with unit, satisfying R′′ = R.

Theorem A.4.6 ([23]). Let A ⊂ B(H) be a ∗-subalgebra of operators on a Hilbert space H con-
taining the identity. Then, A′′ = A iff A is weakly / strongly / σ-weakly / σ-strongly closed.

Corollary A.4.7 (Von Neumann Density Theorem [23]). Let A ⊂ B(H) be a ∗-subalgebra of
operators on a Hilbert space H containing the identity. It follows that A is dense in A′′ in the
weak, strong, σ-weak, and σ-strong topology.

Studying the representations of abstract C∗-algebras, it is fruitful to complete the operator algebra
in some topology which is weaker than the uniform topology, but which, nonetheless, has some
form of uniformity on the finite-dimensional subspaces. Von Neumann’s density theorem, which
also holds for some other topologies we did not mention here, shows that the closure is independent
of the particular choice of the topology. This leads to the conclusion that there are only two kinds
of topological ∗-subalgebras of B(H), concrete C∗-algebras and von Neumann algebras. We shall
focus on the latter ones (of course the former belong to them).

Proposition A.4.8 ([10]). Let R be a von Neumann algebra. Then, the weak∗-topology (stemming
from the dual of the predual of R) and the σ-weak topology coincide on R.

Operators Affiliated with a von Neumann Algebra

Definition A.4.9 ([71]). A closed operator A is affiliated with a von Neumann algebra R, written
AηR, whenever U∗AU = A for each unitary operator U commuting with R.

Assume that A is a self-adjoint operator with spectral decomposition E, and S a Borel subset of
C. Denote by χS the characteristic function of S. The projection operator E(S) = χS(A) is called
the spectral projection for A corresponding to S.

Proposition A.4.10 ([23]). Let A be a closed operator affiliated with a von Neumann algebra R.
If A = U |A| is the polar decomposition of A, then U and the spectral projections of |A| lie in R.

Cyclic and Separating Subsets

Let us introduce two properties which can be assigned to a subset S of a Hilbert space H on which
a von Neumann algebra R acts, and which can be met quite often in the course of this thesis.

Definition A.4.11 ([23]). Let R be a von Neumann algebra on H and let S ⊂ H be a subset.
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(i) S is cyclic for R if RK = H.9

(ii) S is separating for R if, for any A ∈ R, Aψ = 0 for all ψ ∈ K implies A = 0.

We fall back upon this definition mainly in cases in which S consists of just one single vector, or
rather a state vector. Note that if two operators A,B ∈ R have the same action on a separating
vector, they must necessarily coincide.

Lemma A.4.12 ([23]). Let R be a von Neumann algebra on a Hilbert space H. Then, a subset
S ⊂ H is separating for R iff S is cyclic for R′ and vice versa.

Normal States and Unitary Implementation Theorem

Let us now study to what extent the action of a von Neumann algebra on a Hilbert space is
governed by its algebraic structure. The main tool to do that is the theory of normal states on
von Neumann algebras.

Definition A.4.13 ([72]). A state ω on a von Neumann algebra R is said to be normal if for each
monotone increasing net Aα in R+ with an upper bound

ω(l.u.b.αAα) = l.u.b.α ω(Aα). (A.29)

It turns out that this sort of continuity condition is equivalent to σ-weak continuity. Actually this
may be regarded as a motivation to introduce the σ-weak topology. It implies that normal states
are preserved by ∗-isomorphisms. Fortunately, there exists a more accessible description of normal
states via density matrices,10 which already indicates their physical importance. They provide a
generalisation of classical probability theory to non-commutative probability theory. The various
characterisations of normal states are collected in the next theorem.

Theorem A.4.14 ([72]). Let ω be a state over a von Neumann algebra R acting on a Hilbert
space H. Then, the following conditions are equivalent:

(i) ω is normal.

(ii) There exists a density matrix ρ, such that ω(A) = tr(ρA).

(iii) ω is σ-weakly continuous.

(iv) ω is weakly continuous on the unit ball of R.

(v) ω is strongly continuous on the unit ball of R.

(vi) ω(
∑
αEα) =

∑
α ω(Eα) for each family {Eα} of orthogonal projections in R.

(vii) ω =
∑
n 〈φn, ·φn〉 and

∑
n ‖φn‖2 = 1.

(viii) ω =
∑
n 〈φn, ·φn〉 and

∑
n ‖φn‖2 = 1, where {φn} is an orthogonal family of vectors in H.

Corollary A.4.15 ([72]). The set of normal states of a von Neumann algebra is norm closed.

Theorem A.4.14 implies that the σ-weak topology does only depend on the order structure of a
von Neumann algebras and not on the particular Hilbert space representation. This observation
leads to the next theorem.

Theorem A.4.16 ([23]). Let R1 and R2 be two von Neumann algebras and τ a ∗-homomorphism
from R1 onto R2. Then, beside the predictions of theorem A.3.4, τ is σ-weakly and σ-strongly
continuous. Thus, τ also preserves the topological structure.

Definition A.4.17 ([60]). Two von Neumann algebras R1 and R2 acting on the Hilbert spaces
H1 and H2, respectively, are called spatially isomorphic, or unitarily equivalent, if there exists a
unitary map U : H1 → H2 such that

R2 = UR1U
∗. (A.30)

9The bar denotes the closed linear span.
10A density matrix ρ is a positive trace-class operator on H with tr ρ = 1.
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Combining the assertion of the preceding theorem with the fact that ∗-isomorphisms preserve
normal states, one ends up with the following key result.

Theorem A.4.18 (Unitary Implementation Theorem [72, 124]). Let R1 and R2 be two von Neu-
mann algebras acting on the Hilbert spaces H1 and H2, respectively. Moreover, R1 and R2 are
supposed to admit a cyclic and separating vector. Then, every ∗-isomorphism π of R1 onto R2 is
spatial, i.e. π is implemented by a unitary transformation U : H1 → H2,

π(A) = UAU∗ for all A ∈ R1. (A.31)

The theorem is very powerful to understand how the action of a von Neumann algebra on a Hilbert
space is governed by its algebraic structure. From this point of view the theorem states that for von
Neumann algebras with cyclic and separating vector the spatial action is completely determined
by its algebraic structure.

Folium of a Representation

In a typical situation in AQFT one deals with the (weak closure) of the GNS representation πω
induced by a state ω on an (abstract) C∗-algebra A (or, alternatively, on a von Neumann algebra).
In the representation space, ω corresponds to a cyclic vector Ωω, ω(A) = 〈Ωω, πω(A)Ωω〉. It can
easily be checked that ωψ(A) := 〈ψ, πω(A)ψ〉 defines a state for each ψ ∈ Hω, i.e. states over
C∗-algebras (von Neumann algebras) come in families. States of this type are usually referred to
as vector states of the representation (Hω, πω) or vector states of the state ω. Even more generally,
one may consider states of the form

ωρ(A) = tr ρπω(A), (A.32)

where ρ is a density matrix on B(Hω). ωρ is said to be a normal state of ω. The set of all these
states is called the folium of the state ω or folium of the representation πω. It coincides with the set
of normal states of the von Neumann algebra πω(A)′′. The states which belong to the same folium
are pictured physically as states which differ from each other only by quasi-local excitations.

We already introduced the unitary equivalence of two representations. A slightly weaker but
more natural notion of equivalence, closer related to physics, is given by the concept of quasi-
equivalence.

Definition A.4.19 ([72]). Two representations (H1, π1) and (H2, π2) of a C∗-algebra A are said
to be quasi-equivalent if there is a ∗-isomorphism τ from π1(A)′′ onto π2(A)′′, such that

τ(π1(A)) = π2(A) for all A ∈ A. (A.33)

The quasi-equivalence of two representations is equivalent to the coincidence of their folia [23].
The folium of a representation uniquely determines its quasi-equivalence class.

Proposition A.4.20 ([60]). The folium of a representation and the set of vector states of a repre-
sentation are norm closed subsets in the positive cone of the dual space, A∗+, of the corresponding
C∗-algebra A.

GNS Representation

Let us explore now the GNS representation induced by normal states on von Neumann algebras.

Proposition A.4.21 ([23]). Let ω be a normal state on a von Neumann algebra R, and let
(Hω, πω,Ωω) be the associated GNS representation. Then, πω(R) is a von Neumann algebra and
πω is normal in the sense that πω(l.u.b.αAα) = l.u.b.απω(Aα) for any bounded, increasing net
{Aα} in R+.

We continue by introducing another useful property that can be assigned to a state.

Definition A.4.22 ([23]). A state ω on a von Neumann algebra R is called faithful if ω(A) > 0
for all non-zero A ∈ R+.
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Proposition A.4.23 ([72]). Let R be a von Neumann algebra, and ω a faithful normal state on
R. Then, the associated GNS construction (Hω, πω,Ωω) yields a faithful representation πω of R,
and πω(R) ⊂ B(Hω) is a von Neumann algebra with a cyclic and separating vector Ωω

By the unitary implementation theorem A.4.18 this means that the representations πωi , i = 1, 2,
induced by two faithful normal states ω1 and ω2 are unitary equivalent. Thus, a representation
of a faithful normal state is uniquely determined up to unitary equivalence, and is, in that sense,
independent of the choice of the state.

Theorem A.4.24 ([72]). Let ω be a normal state on a von Neumann algebra R acting on the
Hilbert space H, which admits a separating vector for R. Then, there exists a ψ ∈ H such that
ω = 〈ψ, ·ψ〉, i.e. each normal state is a vector state. If R admits a cyclic and separating vector
and ω is a faithful normal state, ψ ∈ H can be chosen as cyclic and separating.

As a joint consequence of proposition A.4.23 and theorem A.4.24 we have the

Corollary A.4.25. The folium of a faithful normal state is completely specified by its vector states.

A.5 Classification Theory of von Neumann Algebras

The last section of appendix A is devoted to the classification theory of von Neumann algebras.
The study of this subject was initiated by Murray and von Neumann in a couple of papers
between 1936 and 1943. Apart from mathematical questions their work was motivated by physical
reasons, namely by the question of possible decompositions of quantum systems into independent
subsystems. A subclassification of type III factors, based on modular theory, was pioneered by
Connes in 1973. Much more detailed accounts on this subject are contained e.g. in [40, 10, 23, 72].

Projection Operators

An element P of a Banach ∗-algebra is called projection whenever P 2 = P = P ∗. Two projections
P and Q on a von Neumann algebra R are said to be equivalent, written P ∼ Q, if there exists a
V ∈ R, such that P = V ∗V and Q = V V ∗. A central projection Z is a projection from R ∩ R′.
The orthogonal complement of the union of all central projections in R which are orthogonal to P
is called central carrier of P (cf. [10, 71, 72] for the details).

Now, let P be a projection of an arbitrary von Neumann algebra R.

• P is called finite if Q ≤ P and Q ∼ P imply Q = P for all Q ∈ R, otherwise it is called
infinite.

• If P is infinite and ZP is either 0 or infinite for each central projection Z ∈ R∩R′, P is said
to be properly infinite.

• If there does not exist a non-zero projection Q ∈ R such that Q ≤ P , then P is called purely
infinite.

• P is said to be abelian, if PRP is a commutative subalgebra of R.

The distinction between all these types of projections suggests an algebraical description of von
Neumann algebras. For this purpose let R denote again a von Neumann algebra.

• R is finite / properly infinite if 1l is finite / properly infinite.

• R is called semi-finite, if 1l is not purely infinite.

• R is of type I, if there is a non-zero abelian projection with central carrier 1l.

• R is of type In, n ∈ N ∪ {∞}, if 1l is the sum of n equivalent abelian projections.

• R is of type II, if it has a finite projection with central carrier 1l, but there are no non-zero
abelian projections.
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• R is of type II1, if it is of type II and finite.

• R is of type II∞, if it is of type II and properly infinite.

• R is of type III, if 1l is purely infinite.

Theorem A.5.1 (Type Decomposition Theorem [72]). Every von Neumann algebra R is uniquely
decomposable into a direct sum of von Neumann algebras of the various types,

R = RI ⊕RII1 ⊕RII∞ ⊕RIII . (A.34)

The type In/I∞/IIn/II∞/III property of a von Neumann algebra is invariant under ∗-isomorphisms.
The classification of von Neumann algebras can thus be done up to ∗-isomorphisms.

Definition A.5.2 ([71]). A von Neumann algebra R whose centre R ∩ R′ is trivial is called a
factor.

A von Neumann algebra R is a factor iff

R∨R′ ≡ (R∪R′)′′ = B(H). (A.35)

A (σ-finite) von Neumann algebra splits in a generalised direct sum, or direct integral, of factors.
Hence the question of classifying von Neumann algebras reduces to the classification of factors [23].

Tracial Weights

An alternative approach to the classification of von Neumann algebras is obtained by considering
tracial weights, mappings from R+ to [0,+∞] with otherwise analogous properties as traces, which
generalise the concept of tracial states. Tracial weights contain information about the type of a
von Neumann algebra: An algebra of type III is characterised by the non-existence of a non-zero
tracial weight which shows certain properties, namely normality and semi-finiteness.11 Assuming
that such a tracial weight does exist, one obtains a finer type distinction from its range. To this
end, take a factor (with a separable predual) which is not of type III. In that case there exists
an essentially unique non-zero normal semi-finite weight. The restriction of this weight on the set
of projections gives the Murray and von Neumann dimension function. The type of the factor is
deducible from the range of this mapping. For further details we refer to the literature [41, 72]

Finer Classification of Type III Factors

From the physical point of view factors of type I and III are of particular importance (cf. section
2.7). Factors of type In are ∗-isomorphic to B(H), where H has dimension n, n ∈ N ∪ {∞}, which
completes their classification. We exploit this crucial property of type I factors in section 7.13,
where also a stronger statement may be found. For a finer classification of type III factors one has
to look for suitable invariants. This was achieved by Connes [40, 41] with the help of modular
theory. He defined the spectral invariant of a von Neumann algebra R (with a separable predual)12

S(R) ≡
⋂
ω∈S0

spec∆ω, S0 ≡ {ω : ω a faithful normal state on R}. (A.36)

It is established by the cocycle Radon-Nikodým theorem 4.4.5 that the set

T (R) ≡ {s : σωs is an inner automorphism} ⊂ R (A.37)

is independent of the choice of the faithful normal state ω, it is a property of R. Next, let us define
the Arveson spectrum, which turns out to be a closed subset of the real line [10, 11, 73]:

11A tracial weight τ is semi-finite if every non-zero A ∈ R+ majorizes some non-zero B ≥ 0 with τ(B) <∞, and
normal if τ(supAi) = sup τ(Ai) for every bounded increasing net {Ai} in R+.

12To capture the general case states has to be replaced by weights in the following. Some care is needed in the
non-semi-finite case where both spectral invariants do not need to coincide [73].
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Definition A.5.3 ([73]). Let (R, τ) be a W∗-dynamical system, then the Arveson spectrum of

τ , denoted by spec τ ,13 is defined to be the set of all λ ∈ R, such that f̂(λ) = 0 (f̂ the Fourier
transform) for all L1-functions f for which

τf (A) :=

∫
f(t)τt(A) dt = 0 for all A ∈ R. (A.38)

The integral is understood in the weak sense.

Proposition A.5.4 ([10]). Assume that τ is implemented by a strongly continuous unitary group
U(t) on H with generator H, and assume there exists a cyclic and separating vector Ω in R such
that U(t)Ω = Ω for all t ∈ R, then spec τ = specH.

In particular, if a state ω corresponds to a cyclic and separating vector, specσω = spec (− log∆ω).
Eventually we can define the Connes spectrum,

Γ(R) ≡
⋂

P∈PR
σω

specσω
∣∣
PRP , PRσω ≡ {P : P a non-zero projection in Rσ

ω

}, (A.39)

where Rσω ≡ {A ∈ R : σωs (A) = A for all s ∈ R} is the fixed point algebra of σω. Again, it is the
cocycle Radon-Nikodým theorem which makes sure that the Connes spectrum is independent of
ω. The following theorem, which is due to Connes, discloses the relations between the various
invariants.

Theorem A.5.5 (Connes [23]). Let R be a factor.

(i) S(R) is a closed subset of R≥0.

(ii) S(R) \ {0} is a subgroup of (R>0, · ).

(iii) Γ(R) = log(S(R) \ {0}).

(iv) If S(R) 6= {0, 1}, then T (R) = {t ∈ R : eitλ = 1 for all λ ∈ Γ(R)}.

Since S(R) \ {0} is a closed subgroup of the multiplicative group of positive reals, there remain
only few possibilities for S(R) which are used for a subclassification of type III factors [73].

• S(R) = {1} ⇒ R is finite.14

• S(R) = {0, 1} ⇒ R is semi-finite or of type III0.15

• If S(R) = {0} ∪ λZ, λ ∈ (0, 1), R is of type IIIλ.

• If S(R) = R≥0, R is of type III1.

There is a continuum of non-equivalent types. The special feature of III1 factors is that the
spectrum of each ∆ω is maximal, the whole of R≥0, the spectrum of the modular Hamiltonian
Kω ≡ − log∆ω is the whole real line. Type III1 factors are of great interest in AQFT. We close
this section by throwing a glance at so-called hyperfinite factors.

Definition A.5.6 ([23]). A factor, which is the weak closure of the union of an ascending sequence
of finite-dimensional von Neumann algebras, is called hyperfinite.

For hyperfinite factors a complete classification is known. It was shown by Connes [41] that up to
∗-isomorphisms there exist only one hyperfinite factor of type II1, one of type II∞, and one of type
IIIλ for each 0 < λ < 1. He also classified the hyperfinite factors of type III0. The investigations
could eventually be completed by Haagerup [61] who proved that in the type III1 case there
exists up to ∗-isomorphisms a unique hyperfinite type III1 factor, a result which is of paramount
physical importance (cf. section 2.7).

13For reasons of clarity the spectrum is denoted in this section by spec (instead of σ) in order to distinguish it
from the modular group.

14If S(R) is defined via weigths, S(R) = {1} implies that R is semi-finite.
15If S(R) is defined via weigths, the semi-finite case can be excluded.
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Appendix B
Covariant Formalism in Classical and
Quantum Mechanics

“Tempus item per se non est.”
Titus Lucretius Caro, Roman philosopher (99 - 55 B.C.)

The conventional formulations of classical mechanics and quantum mechanics are deeply inter-
twined with the notion of an a priori given external time. The time evolution is generated by a
Hamiltonian, which, in the case of a special relativistic theory, is included in the representation of
the Poincaré group. Time is a primary concept. In contrast to that, the viewpoint we have adopted
throughout this thesis assumes a fundamental timelessness of Nature. To continue regarding both
theories, classical and quantum mechanics, not just a pure epiphenomena, an external Newtonian
time cannot be justified (apart from a phenomenological approximate time), and one has to make
sense of the basic features of these theories without the need to make a specific identification of
time at any stage (such a formulation is also desirable for the description of a truly closed sys-
tem like the universe itself). The purpose of this appendix is to present covariant approaches to
classical and quantum mechanics which satisfy this task and which, in addition, may be regarded
as generalisations of the conventional approaches. One way to realise the covariant formalism is
obtained by describing the systems as constrained systems.

While the core of the conventional approaches is to capture the evolution of states or observ-
ables in time, the covariant formulations deal with correlations between (partial) observables. Our
intention is above all to underline that as a matter of principle there is the possibility of such time-
less formulations, which is why we focus on the basic ideas and refer to the literature cited below
for further discussions and detailed examples. We want to outline that the notion of time might
be not as crucial for these theories as it is suggested by their standard presentations. Moreover,
the covariant formalism is relevant for an alternative formulation of the time hypothesis (section
5.2), and is taken up in our discussion in chapter 7.

B.1 Covariant Formulation of Classical Mechanics

A covariant formulation of classical mechanics was pursued among others by Rovelli [105, 110],
based on related accesses which were studied for instance by Arnold [6] or Souriau [119], and
builds on the idea to construct the phase space from entire histories without any reference to an
instant of time, which most originally goes back to Lagrange. There are other approaches like
the Hamilton-Jacobi approach or the path-integral formalism, for a brief overview see [110].

From Symplectic to Presymplectic Mechanics

Standard Hamiltonian mechanics is usually described in the symplectic formalism [6]. The system
is defined by a triple (Γ, σ,H). Herein Γ denotes the phase space of the system, i.e. the cotangent
bundle T ∗V of the configuration space V . It is assumed to be a 2N -dimensional manifold given
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by the canonical coordinates qi (which span V ) and their conjugate momenta pi, i = 1, . . . , N .
σ = dpi ∧ dqi is the standard symplectic form, i.e. a closed non-degenerate differential 2-form,1

equipping the cotangent bundle Γ with a natural symplectic structure. The definition of the system
is completed by the Hamiltonian H = H(pi, q

i) : Γ→ R, which is assumed to be a smooth function
on phase space. The time evolution is realised as a flow t 7→ (qi(t), pi(t)) on Γ. The Hamiltonian
vector field XH , defined by the equation σ(XH) = −dH, specifies this time evolution,2 it is the
tangent field to the time flow. This equation is simply the geometrical form of the Hamilton
equations of motion, in coordinates XH reads

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
. (B.1)

The conventional form of the Hamilton equations can be restored via

ẋ = XH(x), x ≡ (qi, pi). (B.2)

Now, we go over to the presymplectic formulation of mechanics [6, 105, 110], which turns out to
be applicable to a larger class of mechanical systems. For reasons of motivation we start off by
the above system (Γ, σ,H) and consider the symplectic manifold (Γex, σc), where Γex = Γ× R2 is
the extended phase space with coordinates qi, pi, t, pt(≡ −E). σc = σ + dpt ∧ dt is the natural
symplectic 2-form on the cotangent bundle Γex = T ∗(Vc) = T ∗(V )× R2, where Vc = Γ× R is the
covariant configuration space. Moreover, we introduce the Hamiltonian constraint

Hc(pi, q
i, pt, t) ≡ pt +H(pi, q

i) ≈ 0, (B.3)

weakly vanishing in the sense of Dirac [45]. Hc denotes the covariant Hamiltonian. The constraint
defines a (2N + 1)-dimensional constraint surface C in Γex. The closed degenerate 2-form induced
on C by σc is the presymplectic form

ω = dpi ∧ dqi − dH(pi, q
i) ∧ dt. (B.4)

A presymplectic form is non-singular, which means that it admits an up to rescaling uniquely
defined vector field Y such that ω(Y ) = Y iωij = 0, the null vector field of ω. The solutions of
the equations of motion are the integral lines, or orbits, of Y . Since Y is merely determined up to
rescaling, the integral lines are defined only up to reparametrisation. In coordinates we have

Y ∝ ∂

∂t
+X =

∂

∂t
+
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
. (B.5)

The equations of motion take on the form

dqi

dτ
= N(τ)

∂H

∂pi
,

dpi
dτ

= −N(τ)
∂H

∂qi
, (B.6)

and are invariant under reparametrisation of τ . The parameter τ is artificial and has no physical
meaning. The function N(τ) is called lapse function. Different choices of the lapse function deter-
mine different parameters τ . The motion is not described by a flow t 7→ (qi(t), pi(t)) anymore, but
by a graph (t, qi(t), pi(t)), which describes correlations between the variables of the system. There-
fore, the presymplectic system (C, ω), and also the constrained system (Γex, σc, Hc), incorporate
all the physical information contained in the original system (Γ, σ,H), except for the specification
which one is the time variable.3 While the covariant Hamiltonian Hc describes correlations, the
ordinary Hamiltonian H generates the evolution w.r.t. a distinguished time variable.

The space Γc of all orbits of ω in the presymplectic space C inherits naturally a symplectic
structure of C, whereby it becomes a symplectic manifold (such a system is e.g. studied in [119]).
Γc is said to be the covariant phase space, the elements of Γc are called (covariant) states. A
covariant state is defined in the sense of Heisenberg as an orbit, it does not evolve. The phase

1Closed means dσ = 0, non-degenerate means that σ(X) = 0 implies X = 0.
2A symplectic space (Γ, σ) has the property that any smooth real function f on Γ determines a vector field Xf

by the relation σ(Xf ) = −df .
3Though it is somehow still coded in Hc which depends linearly on pt and quadratically on the momenta pi.
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space of the symplectic system, Γ, and Γc are related by a (highly non-unique) bijection from the
state of the symplectic system at some time t0 to the solution it generates uniquely.

The covariant formalism provides an observer-independent description, expressed by the dis-
appearance of a preferred time variable. Conversely, the very definition of e.g. the conventional
phase space assumes that a choice of a reference frame has been made (a distinction of a class
of observers). Special relativistic systems are typical examples of systems where the covariant
formalism is much more natural, because it provides a manifestly Lorentz invariant approach.

Covariant Formalism

It is possible to describe a system in the covariant language initially given by a constrained system,
not necessarily emerging from a symplectic one. To do so, we start from the triple (Γex, σc, Hc),
from which we deduce the presymplectic tuple (C, ω). Note that there is no necessity anymore for
Γex to be of the form Γ×R2. That is the reason why the covariant approach is more general than
the usual one.

One does not have any preferred time variable. Nevertheless, one can pick a variable qt of the
configuration space (a partial observable as we shall see soon) and deparametrise the system, at
least locally, by using qt, i.e. the other variables are evolved w.r.t. qt. In that case qt represents
an internal clock time. However, an internal time will in general not have the properties that
characterise a Hamiltonian time. The solutions of the equations of motion are still given by the
integral lines of the null vector field Y of the presymplectic form. The dynamics may be expressed
via the correlation of the variables w.r.t. such an internal time qt.

Observables

According to Rovelli [109], for the consistency of the covariant approach, changes in the definition
of observables are necessary. One has to distinguish carefully between two types of observables.

Definition B.1.1 ([109]). A partial observable is a physical quantity to which one can associate
a measuring procedure leading to a number.
A (complete) observable is a quantity whose value can be predicted by the theory if the state is
known, or whose probability distribution can be computed (to anticipate the quantum case).

In classical mechanics partial observables are smooth real functions on the configuration space Vc,
in particular qi is a partial observable. They are candidates which may be used as internal time.
A complete observable on the other hand is a smooth real function on the space of solutions of the
equations of motion, i.e. on the covariant phase space Γc. Equivalently, it can be expressed as a
function A on the presymplectic space C which is constant along the orbits, Y (A) ≡ Y i∂iA = 0,
and also as a function A on the extended phase space Γex which has vanishing Poisson brackets
with the covariant Hamiltonian Hc, {Hc, A} = 0. Complete observables are composed of partial
observables. Since they commute with the covariant Hamiltonian, they are constants of motion.
We shall come back to this point in the context of quantum mechanics.

Correlations between Partial Observables

The covariant approach captures dynamics by correlations between partial observables, or relative
evolution of partial observables w.r.t. each other. A complete observation yields a point q = (qi, t)
in Vc.

4 Performing a sequence of measurements of q gives a curve γ in Vc, the physical motion of
the system. γ describes a correlation between the partial observables expressed in the equation

f̃ : Vc → R, f̃(qi, t) = 0. (B.7)

Repeating the experiment results in different curves γ and, thus, different correlations. However,
the experimental experience says that every curve can be uniquely labelled by a covariant state

4Assuming that the system admits an external time. But since we shall not fall upon the special role of the
external time t, that does not influence these considerations and generalises in the obvious way to the case in which
no time is preferred. Our goal is simply to establish the relation to the conventional notions.
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in Γc. Each such state determines a correlation between the partial observables in Vc. All the
correlations are contained in the evolution equation defined by the vanishing of a suitable function

f : Γc × Vc → R. (B.8)

If the state is known, the evolution equation predicts all possible observations. Each covariant
state ϕ determines via f(ϕ, ·) = f̃ϕ(·) = 0 a physical motion of the system. Conversely, for each
point in Vc the surface f = 0 determines the set of all states compatible with these values of the
partial observables. How does f look like? A given point in Γc selects via the presymplectic form
ω an orbit in C which projects down to a curve in Vc where it is precisely a physical motion and
defines the correlations in question.

Gauge Symmetries

Let us say a few words concerning gauge symmetries. One can easily incorporate systems with
gauge degrees of freedom into this formalism. In that case the Hamiltonian constraint is supple-
mented by gauge constraints, combined in the function C : Γex →W . W is a k-dimensional vector
space, k the number of constraints.5 The system in view is (Vc, σc, C). There is no necessity of
drawing a distinction between the constraints generated by gauge symmetries and the Hamiltonian
constraint. The presymplectic space C is specified by C ≈ 0, and the proceeding is the same as
above: The symplectic structure on Γex = T ∗Vc defines a presymplectic form ω on the constraint
surface C. C has dimension 2N − k. The kernel of ω is k-dimensional and the physical motions are
k-dimensional surfaces in Vc. Y is still the k-dimensional multi-tangent to the motion and satisfies
ω(Y ) = 0. The equations of motion, parametrised with τj , j = 1, . . . , k, read

dqi(~τ)

dτj
= Nj(~τ)

∂C(qk, pk)j

∂pi
,

dpi(~τ)

dτj
= −Nj(~τ)

∂C(qk, pk)j

∂qi
. (B.9)

Choosing any curve ~τ(τ) on the surface of motion, τ an arbitrary parameter, the motion may be
represented by the one-dimensional curve qi(τ) = qi(~τ(τ)) in Vc. Different choices of the functions
Nj describe different, but gauge equivalent curves on the surface of motion.

A covariant state is a gauge equivalence class of solutions of the equations of motion. Because
a choice of initial data determines uniquely a gauge equivalence class of solutions the one-to-one
correspondence between Γc and Γ persists. Complete observables remain arbitrary functions on Γc.
Defining them on Γex, one has to demand not only the commutation with Hc but also vanishing
Poisson brackets with all gauge constraints. Observables are gauge invariant quantities, they can
be predicted uniquely up to all gauges once the solutions of the equations of motion are known.

Classical Field Theory

What we have seen is that it is indeed possible to express classical mechanics in a time-independent
language. The mechanical structure of our world does not require the concept of a preferred
variable representing a physical time. One can extend the covariant formulation to classical field
theories (cf. [7, 110]). Let us just briefly sketch how the implementation works. One employs
the presymplectic formulation of classical mechanics. Again, the presymplectic space C is defined
by C ≈ 0. It is assumed that the initial value problem is well-posed such that each dynamical
trajectory in the configuration space Vc is completely specified by its initial data. Then C carries a
natural presymplectic structure defined by the solutions of the field equations, it is a presymplectic
manifold, which in general does not have a natural cotangent bundle structure. In the common
case of gauge theories C includes the Hamiltonian constraint as well as all the gauge constraints.
The orbits determined by the presymplectic structure coincide with the Hamiltonian or gauge
transformations. All solutions of the field equations which are in the same gauge equivalence class
have to be identified physically. The gauge equivalence classes span the physical phase space which
inherits a natural symplectic structure. It is the covariant phase space Γc. Actually things are
a bit more subtle in field theory, because the integrals defining the symplectic structure may not
converge. This issue can be avoided when the boundary conditions are adjusted carefully.

5For k = 1, C = Hc is the covariant Hamiltonian and everything is supplied as before.
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The covariant formulation of classical theories becomes really necessary, and is actually quite
natural, if one wants to incorporate generally covariant systems, since the notion of a state or ob-
servable at a given instant of time, requiring the concept of a simultaneity surface, does not make
any physical sense because of the diffeomorphism covariance. Remarkably, all fundamental (classi-
cal) dynamical systems in Nature seem to exhibit a presymplectic structure, while there are systems
that can be formulated this way, but which do not admit a Hamiltonian symplectic formulation.
The most prominent example of a system which permits a covariant formulation but (presumably)
no symplectic one, is general relativity. The existence of presymplectic non-Hamiltonian systems
may serve as a profound indication for the physical importance of the covariant approach. In the
case of general relativity Γc is isomorphic to the reduced ADM phase space, but the covariant for-
mulations emphasizes that general covariance is preserved. For general relativity the adjustment
of the boundary conditions is done e.g. in [7] for globally hyperbolic spacetimes and gravitational
fields which are asymptotically flat at spatial infinity.

B.2 Covariant Formulation of Quantum Mechanics

Conventional quantum mechanics is usually understood in terms of the Copenhagen interpretation
of quantum theory, either in the Schrödinger picture or in the Heisenberg picture. It is founded
on well-known postulates [39]. A covariant ansatz to cast quantum mechanics into a form which
does not require a (non-weakly vanishing) Hamiltonian was treated among others by Hartle [62].
A geometrical quantisation procedure was proposed by Souriau [119]. Other promising timeless
approaches are discussed in [66, 69], using e.g. internal clock variables to describe the dynamics of
the system by means of conditional probabilities. Our description follows Rovelli [105, 110] and
Reisenberger and Rovelli [101], and is in close analogy with the classical covariant approach.

Spacetime States

In standard quantum mechanics it is assumed that measurements are instantaneous. Dropping this
idealization a covariant formulation becomes possible, as quantum version of the classical covariant
counterpart. The conventional Hamiltonian formulation is based on a Hilbert space H, or, more
rigorously, on a rigged Hilbert space S ⊂ H ⊂ S ′,6 which is identified as the state space, and self-
adjoint operators acting on H, which represent the observables of the theory. Moreover, one has a
Hamiltonian H which generates the time evolution. The Hamiltonian is a self-adjoint operator on
H with a spectrum bounded from below. In the Heisenberg picture the time-dependence is carried
by the observables while states are time-independent,

d

dt
A(t) = −i[A(t), H] ⇔ A(t) = eitHA(0)e−itH . (B.10)

To make things concrete, let us consider for the time being a non-relativistic particle without spin,
then we have H = L2(R3,d3x). Every state |Ψ〉 may be expanded in terms of the generalised
eigenstates |x〉 ∈ S of the position operator X,

|Ψ〉 =

∫
d3xψ(x) |x〉 . (B.11)

ψ(x) = 〈x|Ψ〉 is the wavefunction of the particle. X |x〉 = |x〉 implies X(t) |x; t〉 = x |x; t〉 when
|x; t〉 ≡ eitH |x〉. Clearly ψ(x, t) ≡ 〈x; t|Ψ〉 satisfies the Schrödinger equation. Now, given a suitable
space of complex test functions E acting on spacetime, one defines for a function f ∈ E

|f〉 :=

∫
d3x dt f(x, t) |x; t〉 . (B.12)

Whenever |f〉 is normalizable it is called a spacetime state. Spacetime states are generalisations
of conventional states where f(x, t) = ψ(x)δ(t), ψ(x) ∈ L2(R3). However, they are reinterpreted,

6A rigged Hilbert space is a triple S ⊂ H ⊂ S′, the Gelfand triple, where H is a Hilbert space, S a proper subset
which is dense in H, and S′ the dual of S (see [15] for more details). A manifold M with measure dµ determines
a rigged Hilbert space SM ⊂ HM ⊂ S′M , where SM is the space of smooth functions on M with fast decrease,
HM = L2(M, dµ), and S′M is the space of tempered distributions on M .

151



APPENDIX B. COVARIANT FORMALISM IN CLASSICAL AND QUANTUM MECHANICS

ordinary quantum states in H which form a dense subset. Note further, that the identification
f 7→ |f〉 is highly degenerated. One can associate a wave function ψf satisfying the Schrödinger
equation to each spacetime state |f〉 via

ψf (x, t) = 〈x; t|f〉 =

∫
d3x′ dt′ 〈x|e−i(t−t

′)H |x′〉 f(x′, t′). (B.13)

An important class of spacetime states is given for fO(x, t) := χO(x, t), where O is assumed to be
a compact region in spacetime, and χ is the characteristic function. Let us denote the state |fO〉
after normalization by |O〉.

What is the meaning of spacetime states? To understand that, let us envisage a position
measurement of the particle. While conventional states may be thought of as being associated
with results of instantaneous position measurements with finite resolution in space,7 spacetime
states correspond to the results of realistic measurements, where the measuring device also has a
finite resolution in time. If the particle is e.g. detected in x0 at time t0 by a measuring apparatus
with space resolution of order ∆x and time resolution of order ∆t the state prepared by the
measurement is a spacetime state |f〉, with f localised in [x0 −∆x, x0 + ∆x]× [t0 −∆t, t0 + ∆t].
Moreover, using the usual probabilistic interpretation of the wave function one can show that for
sufficiently small8 regions O the probability that an ideal detector detects the particle in O is

PO = | 〈O|Ψ〉 |2. (B.14)

In turn, one can establish that the probabilistic interpretation in terms of detection probabilities
in spatial regions can be derived from (B.14), i.e. both interpretations are physically equivalent,
though (B.14) does not refer to a notion of time.

To sum up, spacetime states become natural objects if one drops the unrealistic idealization
that measurements are instantaneous. They are a necessary technical ingredients for a spacetime
symmetric formulation of quantum mechanics.

Wheeler-DeWitt Equation

Similar to the classical case, the covariant approach requires a reformulation of a Hamiltonian
quantum system as a constrained system. Again, one may incorporate gauge symmetries, which we
forego here for simplicity. Studying the quantisation of constrained systems dates back to Dirac
[45], who described a general procedure to do that. Certain subtleties in Dirac’s quantisation
scheme are resolved in a modern technique called group averaging, which supplies a constructive
method for obtaining an inner product on the physical state space. For an overview see [82]. The
general idea is to quantise the unconstrained system in the usual way and obtain an auxiliary
so-called kinematical state space K, on which the constraints are to be formulated as operators.
Those states which are annihilated by the constraints form the physical state space Hc. Group
averaging uses the Hilbert space structure of K to solve the constraints and define a physical inner
product on Hc in such a way that self-adjoint operators on K that commute with all the constraints
are self-adjoint operators on Hc, as well (which is important for the concept of observables). This
construction will be used for the covariant formulation. Therein the dynamics of a standard
quantum system is defined by the Wheeler-DeWitt equation

Hcψ(x, t) = 0, (B.15)

where the Wheeler-DeWitt operator Hc is supposed to be the covariant Hamiltonian,

Hc(T,X, Pt, P ) = Pt +H
.
= −i∂t −

n∑
j=1

∂2
j

2mj
+ V (x1, . . . xn). (B.16)

Using the Wheeler-DeWitt constraint equation the special role of time has disappeared. If one
starts from the classical covariant configuration space Vc = V × R, the standard quantisation

7Note that for the preparation of the state |x〉 6∈ H an infinite resolution in space would be needed, as well.
8That means smaller than any other physically relevant dimension involved in the problem. The probabilities

corresponding to larger regions depend on the relative phase of the wavefunction at different spacetime points.
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scheme leads to a rigged Hilbert space S ⊂ K ⊂ S ′. S is the state of smooth functions on Vc with
fast decrease, K = L2(Vc,d

nxdt), and S ′ contains the tempered distributions on Vc. The solutions
of the Wheeler-DeWitt equation form a linear space Hc. Let us construct a natural inner product
on Hc via the group averaging method [101, 110].9 We first introduce the densely defined operator

P : S ′ → Hc, f(x, t) 7→
∫

dτ e−iτHcf(x, t). (B.17)

By Fourier-expanding f(x, t) w.r.t. t one shows that [101]

(Pf)(x, t) =

∫
dnx′ dt′ 〈x|e−i(t−t

′)H |x′〉 f(x′, t′) = ψf (x, t), (B.18)

and, thus, Pf is indeed a solution of the Wheeler-DeWitt equation. Roughly speaking the highly
degenerate mapping P projects down on the space of solutions. However, in general P is not a
projector, because its domain is a proper subset of S ′. Nevertheless, one has S ⊂ D(P ). Defining

〈f |f ′〉S := 〈f |P |f ′〉K (B.19)

gives a degenerate inner product on S. Dividing S by the kernel of this inner product, that is
identifying f and f ′ whenever Pf = Pf ′ and completing in norm, one obtains a Hilbert space.
But if Pf = Pf ′, f and f ′ define the same solution of the Wheeler-DeWitt equation, it is the
solution which corresponds to the spacetime state |f〉. Consequently, the Hilbert space can be
identified with Hc in the category of linear spaces. Thus Hc (or P , respectively) equips Hc with a
Hilbert space structure. Given two solutions ψf = Pf and ψf ′ = Pf ′, the inner product is

〈ψf |ψf ′〉Hc ≡ 〈f |P |f
′〉K . (B.20)

PS is dense in Hc, whence the latter one is completely determined by S and Hc. The covariant
state space Hc is canonically isomorphic to the conventional Hilbert space H containing states at
the fixed time t = t0. Under this identification 〈·|·〉Hc is precisely the usual inner product 〈·|·〉H.
The main conclusion however is that the mapping

P : S → Hc, f 7→ |f〉 , 〈x; t|f〉 = ψf (x, t) (B.21)

has been expressed in terms of the covariant Hamiltonian instead of the ordinary one, i.e. the scalar
product on Hc is definable just from S and Hc without identifying a time variable or falling back
upon the Hilbert space structure of the instantaneous state space H.

Covariant Formulation

These results give the opportunity to extend quantum mechanics to a more general class of sys-
tems. Let us start with a classical constrained system (Vc, σc, Hc). By the canonical quantisation
procedure one constructs a rigged Hilbert space S ⊂ K = L2(Vc,d

nx) ⊂ S ′ like the one in the pre-
vious subsection, the kinematical state space, where now Vc does not need to be of the form V ×R
anymore. Furthermore the quantisation of the covariant Hamilton function leads to a self-adjoint
operator Hc = Hc(X,P ) acting on K, the covariant Hamiltonian. The covariant state space Hc
consists of all ψ ∈ K which are solutions of the Wheeler-DeWitt equation,

Hc(x,−i∂x)ψ = 0. (B.22)

Like in presymplectic mechanics these Heisenberg states represent histories of the system. Hc is a
linear space. To define a Hilbert space structure, one uses the improper projector

P : S → Hc, f(x) 7→
∫

dτ e−iτHcf(x) ≡ 〈x|f〉 (B.23)

9One cannot use the inner product of K, because the continuous nature of the spectrum of the constraint operator
makes the solutions of the Wheeler-DeWitt equation to infinite-norm states in K. One could pull back the inner
product from H to Hc by evaluating the elements in Hc at t = t0, but we do not want to use this time structure.
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and proceeds as above. To each finite region O ⊂ Vc one associates the normalized spacetime
state |O〉. Now, one postulates that for sufficiently small regions the probability to find a quantum
system in the state |Ψ〉 in the region O to be

PO := | 〈O|Ψ〉 |2. (B.24)

If the system has been detected to be in O, the state after the measurement is given by |O〉. The
theory is defined by the same postulates as conventional quantum mechanics in the Heisenberg
picture (excluding the time axiom), which all immediately carry over to the covariant case. Ac-
cording to Reisenberger and Rovelli [101] dropping the time axiom does not compromise the
other axioms or the probabilistic interpretation of the theory.

Observables

We use definition B.1.1 to distinguish between (complete) observables and partial observables
[105, 109]. The latter ones are the self-adjoint operators acting on the kinematical state space K.
Note that also time is treated as an operator T (supposed that the system stems from a Hamiltonian
system) which acts in the position representation by multiplication, T |x, t〉 = t |x, t〉. Clearly this
is necessary because time and position have to be on the same footing. As usual, a complete
observable is a self-adjoint operator on the covariant state space Hc. It is a conjunction of partial
observables. Equivalently, a self-adjoint operator A defined on K is an observable whenever10

[A,Hc] = 0. (B.25)

Quantum mechanics is about correlations between partial observables, an ordinary time variable
possibly among them. What an observable actually measures, is the value of a partial observable
assuming that a measurement of another partial observable has given a certain value. The dif-
ferentiation between these two types of observables is important. For instance we emphasize that
according to the covariant approach neither position nor time are observables but only position at
a given time. There exists no observable corresponding to the classical variables t or x, [X,Hc] 6= 0,
[T,Hc] 6= 0. Nevertheless, for both position and time exist measuring procedures that produce a
number, they are partial observables.

In conventional quantum mechanics in the Heisenberg picture observables are time-dependent.
One may interpret an expression like A(t) by saying it is the observable which measures the physical
quantity A at time t. Alternatively, the reading of a clock can be included in the list of operations
that define an observable. In that case A(t) and A(t′) have to be regarded as different observables,
which are related by the time axiom

A(t′) = ei(t
′−t)HA(t)e−i(t

′−t)H . (B.26)

However, if no time is available, one can use some partial observable X as internal time operator
(for the use of internal times to describe a dynamical evolution see also [92]). Clearly, A(s) will
in general not satisfy (B.26). s is supposed to be the result of the measurement of X, it reflects a
clock time. The evolution of A in s is implicitly contained in (B.25). One can neither expect s to
be a Hamiltonian time nor the evolution to be unitary, so that the total probability does not need
to be conserved. Only partial observables with suitable properties generate a unitary evolution.
Those partial observables may not exist. Moreover, it may happen that the set of all observables
for a fixed s does not form a complete set. If so, the outcome of measurements of all observables
at clock time s does not uniquely determine the state.

In the covariant approach time is interpreted as a particular structure on the set of observ-
ables. This structure codes the fact that observables are defined in terms of correspondences of
partial observables. Generically, observables of physical interest are constructed out of two partial
observables, one of which is the reading of a clock. After fixing a suitable clock time, the set
of all observables can be foliated into one-parameter families that are given by the same partial
observables at different clock readings. This interpretation captures the idea that the passage of
time should be identified with correlations inside the system.

10This condition makes sure, that the range of A is indeed in Hc. Observables defined in this way correspond to
the classical ones which are constant along the orbits of the presymplectic system.
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“When” a measurement of an observable A(t) or A(s) takes place is meaningless, because
the states do not evolve. The reformulation of a Hamiltonian quantum mechanical system in the
covariant formalism makes dynamics trivial. On the other hand, the kinematics become non-trivial.
One has to solve the problem of identifying which observable measures a given physical quantity
at a given internal time, i.e. one has to determine a time structure on the set of all observables. In
a presymplectic quantum system which corresponds to a Hamiltonian system, the observables are
precisely the Heisenberg observables, and the vanishing commutator between the observables and
the covariant Hamiltonian simply reduces to the time axiom.

There remains a conceptual difficulty regarding the possibility of associating probabilities to
sequences of measurements. A measurement of an observable A is accompanied by the collapse
of the wavefunction. The state is projected on an eigenstate of the corresponding observable A.
As said before, the time of the measurement has no meaning, but, according to the Copenhagen
interpretation, the order in which two different measurements are performed plays a crucial role in
the theory. Even if the observables describe measurements of certain quantities at a given clock time
s, the problem may be that s does not need to define an ordering relation for the measurement
procedures. However, the ordering is not necessarily related to time. In conventional quantum
mechanics one may e.g. ask for the conditional probability that the outcome of a measurement of
A(t1) was a, assuming that at time t2 > t1 one has measured the eigenvalue b of B(t2), in the
same way one would do it for t2 < t1. The ordering is really a matter of question and does neither
depend on the presence of time nor on an ordering relation defined by that time.

In this section it was shown how to put quantum mechanics into a form where the time variable
is treated on an equal footing with the other dynamical variables in the extended configuration
space. The special role of time essentially depends on idealizations in the measurement.

B.3 Concluding Remarks

It seems reasonable to complete this appendix with some remarks concerning the covariant refor-
mulations presented here. In classical mechanics the covariant formalism is a rather unproblematic
generalisation of the standard approach, which can be used to treat a larger class of dynamical
systems. Physically one essentially has to drop the notion of the idealized distinguished Newtonian
notion of time. The covariant approach does not distinguish any internal variable as time, but once
a Hamiltonian time can be chosen, both approaches are perfectly equivalent.

Nevertheless, one problem could be that the observables are required to commute with the
Hamiltonian constraint. For certain dynamical systems this requirement might be extremely re-
strictive [131] (the same is expected to be true in the associated quantum theory). Time merely
emerges as a phenomenological concept in the covariant approach associated with internal times.
In order to avoid inconsistent predictions, restrictions on the time structure have to be imposed. A
severe challenge is to characterise those partial observables which are suitable for playing the role
of an internal time and give rise to a well-defined, consistent clock time [131]. Since our intention
has mainly been to get rid of the notion of time, this aspect is rather secondary for us.

In the quantum case things are more involved. Apart from the modifications which were
done in analogy with the classical case, the introduction of spacetime states was necessary, and
the probabilistic interpretation concerning measurements procedures had to be adapted to the
covariant framework, source of a couple of additional problems (see also [69, 76]). The quantum
systems which have been explicitly studied in the covariant formalism are of a rather elementary
nature, and only for these systems it has been shown that the predictions reduce to those of
ordinary quantum mechanics in suitable limits (e.g. that passing from spacetime states to the
usual temporally sharp localised states gives back the ordinary probability interpretation). It may
happen that one has to struggle with problems when dealing with more complex quantum systems.

A crucial aspect which has to be clarified concerns the correct treatment of measurement
procedures. Let us consider e.g. a quantum system whose state is prepared by certain non-
commensurable measurements in two disjoint spacetime regions, such that parts of the first lie
in the future of the second and vice versa. Since there is no natural ordering there is the issue
about the final state of the system, i.e. the order in which the corresponding projections has to be
applied to the initial state.11

11A possible solution could be to reduce both measurements to one single measurement (cf. [101]).
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Further typical issues concern operator-ordering problems in the quantisation procedure of
covariant systems, the question how to interpret the observables and how to measure them prac-
tically. Eventually one has to expect serious technical difficulties (in both, the classical and the
quantum case), because it is generally a hard challenge to construct e.g. the covariant phase space
in concrete models, which requires determining the space of solutions to the equations of motion.
In addition, observables in constrained systems are extremely difficult to construct (see [118]).

Howsoever, the covariant formulations of classical and quantum mechanics, even if not yet
fully exploited and understood, do suggest that there is in principle the possibility to abandon
the concept of time for defining the basic concepts of these theories. There is no incompatibility
between classical and quantum mechanics and the notion of a fundamentally timeless world.
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cal Physics, eds. Baumgärtel, Lassner, Pietsch and Uhlmann, Leipzig: Teubner Verlagsge-
sellschaft 146-153 (1978)

[29] Buchholz D., and Wichmann E. H.: Causal Independence and the Energy-Level Density of
States in Local Quantum Field Theory, Commun. Math. Phys. 106, 321-344 (1986)

[30] Buchholz D., D’Antoni C., and Fredenhagen K.: The Universal Structure of Local Algebras,
Commun. Math. Phys. 111, 123-135 (1987)

[31] Buchholz D., and Jacobi P.: On the Nuclearity Condition for Massless Fields Lett. Math.
Phys. 13, 313-323 (1987)

[32] Buchholz D., D’Antoni C., and Longo R.: Nuclear Maps and Modular Structure II: Applica-
tions to Quantum Field Theory, Commun. Math. Phys. 129, 115-138 (1990)

[33] Buchholz D., and Verch R.: Scaling Algebras and Renormalization Group in Algebraic Quan-
tum Field Theory, Rev. Math. Phys. 7, 1195-1239 (1996)

[34] Buchholz D., and Haag R.: The Quest for Understanding in Relativistic Quantum Physics,
J. Math. Phys. 41, 3674-3697 (2000)

[35] Butterfield J., and Isham C. J.: On the Emergence of Time in Quantum Gravity, in: The
Arguments of Time, ed. Butterfield, Oxford: Oxford University Press (1999)

[36] Candelas P., and Dowker J. S.: Field Theories on Conformally Related Spacetimes: Some
Global Considerations, Phys. Rev. D 19, 2902-2907 (1979)

[37] Carroll S. M.: What if Time Really Exists?, FQXi essay contest on The Nature of Time
(2008)

[38] Casini H., and Huerta M.: Reduced Density Matrix and Internal Dynamics for Multicompo-
nent Regions, Class. Quantum Grav. 26, 185005 (2009)
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(1973)

[41] Connes, A.: Noncommutative Geometry, New York: Academic Press (1994)

158



BIBLIOGRAPHY

[42] Connes A., and Rovelli C.: Von Neumann Algebra Automorphisms and Time-Thermodyna-
mics Relation in Generally Covariant Quantum Theories, Class. Quantum Grav. 11, 2899-
2917 (1994)

[43] D’Antoni C., Doplicher S., Fredenhagen K., and Longo R.: Convergence of Local Charges
and Continuity Properties of W∗-Inclusions, Commun. Math. Phys. 110, 325-348 (1987)

[44] Davies P. C. W.: About Time, London: Viking (1995)

[45] Dirac P. A. M.: Lectures on Quantum Mechanics, New York: Belfer Graduate School of
Science (1964)

[46] Driessler W.: On the Type of Local Algebras in Quantum Field Theory, Commun. Math.
Phys. 53, 295-297 (1977)

[47] Dunford N., and Schwartz J. T.: Linear Operators – Part II: Spectral Theory, New York:
Interscience Publishers (1963)

[48] Ellis G. F. R.: On the Flow of Time, FQXi essay contest on The Nature of Time (2008)

[49] Engel K.-J., and Nagel R.: A Short Course on Operator Semigroups, Berlin: Springer (2005)

[50] Fredenhagen K.: On the Modular Structure of Local Algebras of Observables, Commun. Math.
Phys. 97, 79-89 (1985)

[51] Fredenhagen K., and Haag R.: Generally Covariant Quantum Field Theory and Scaling
Limits, Commun. Math. Phys. 108, 91-115 (1987)

[52] Gallavotti G., and Verboven E.: On the Classical KMS Boundary Condition, Il Nuovo Ci-
mento 28 B, 274-286 (1975)

[53] Gibbons G. W., and Hawking S. W.: Cosmological Event Horizons, Thermodynamics, and
Particle Creation, Phys. Rev. D 15, 2738-2751 (1977)
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