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Important Notice

This version of the script “Thermodynamics and Statistical Mechanics” is a
preliminary one. Hence it should come as no surprise to the reader that, for
example, in parts it might have been formatted far better. At least I hope
all the serious and less serious errors have been found and removed.

Alas, all such hope must be in vain. Therefore you are kindly asked to
report any errors, be they orthographic or related to physics, by sending an
email to me (Christian Hettlage, that is). Your mail should be directed to
hettlage@uni-sw.gwdg.de.

Of course, you may feel free to produce a hardcopy of this script. But
please keep in mind that there is still a final version to come, which you then
again might like to print. Hence, if you would like to save on paper and ink
you might decide not to produce a printed version right now. On the other
hand, reading a hardcopy probably enhances the chance to find some errors,
and for that rather selfish reason, I suggest that using a printer right now
might be a praiseworthy idea.

Finally, I hope you enjoy reading this version of the script and that you
find it helpful in your quest of understanding statistical physics.
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Chapter 1

Introduction

The concept of fundamental theories such as classical mechanics, electrody-
namics, or quantum mechanics is to simplify physical systems as far as possi-
ble in order to obtain a set of fundamental rules containing all the physics, i.e.
they attempt to understand the world (or, more humbly, the system under
consideration) in terms of basic constituents and fundamental interactions.
In what might perhaps be called its most glorious triumph, this reductionistic
approach has led to the conclusion that the everyday world can be described
by means of three particles (electron, up quark, and down quark) and four
(strong, weak, electromagnetic, and gravitational) interactions only.

However, this approach runs into difficulty if we are to explain more
complex systems: An understanding of a cow on the meadow (or the inner
workings of the brain of the reader) in terms of quarks and electrons is just
impossible, the reason being, of course, that there are just so many of these
constituents (and thus possibilities for combining them).

This clearly shows the need for synthetic theories, which statistical physics
is an example of. The idea here is not to try and know all there is to know
about a given system (e.g. all the positions and velocities of all its atoms),
but rather to concentrate on bulk properties, accepting the need to content
oneself with some average description. While arguably such an approach
may seem slightly unsatisfactory, it proves tremendously powerful. Indeed,
statistical physics has been one of the most sucessful theories of the 20th
century.

In order to give a flavor of what to expect from statistical physics., Fig. 1.1
shows its relation to various other fields of interest. From this figure, it can
be gathered that the mechanism of statistical physics works for classical
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Relation of statistical physics to other fields of interest.

and quantum mechanics alike. Furthermore, it can be used with some non-
physical input such as rules governing finance markets or social systems.

One of the major fields of application is given by condensed matter
physics. In addition, statistical physics may be used to shed some light on
the origin of the well-known laws of thermodynamics. Hence it should come
as no surprise that initially thermodynamics constituted the main impetus
for its establishment.

Finally, it should be noted that coincidentally statistical physics and
quantum field theory are formally equivalent: Whereas the former is gov-
erned by the Boltzmann factor e−H/kBT (where H denotes the Hamiltonian,
kB the Boltzmann constant, and T the temperature), in the latter, time
development is described by means of e(i/~)Ht (where H now denotes the
Hamiltonian operator). Accordingly, using the replacement

1

kBT
←→ i

~
Ht

one can map statistical physics onto quantum field theory, and vice versa.



Chapter 2

Preliminaries

Our discussion of statistical physics will require classical and quantum me-
chanics, as well as some probability theory. We therefore revise each of these
subjects in turn, stressing the concepts which will prove useful later on.

2.1 Classical mechanics

A classical system of N (point) particles can be described by a set of N
position vectors qi and conjugated momenta pi. Assuming that the particles
live in d dimensions, such a system can hence be interpreted as a single point
(p, q) in the 2 · d · N dimensional phase space Γ made of the position and
momentum coordinates. Here, q and p denote the vectors (q1, q2, . . . , qN)
and (p1,p2, . . . ,pN), respectively (cf. Fig. 2.1). As classical mechanics is
governed by an ordinary differential equation of first order (i.e. Newton’s
second law), so that the whole dynamics of a given system can be described
by stating the position and the velocity of its constituents at some time t0,
it is evident that through each point of Λ there runs exactly one trajectory
describing a time evolution.

Figure 2.1: Phase space. Each system of classical mechanics can be viewed as
a point (p, q) in phase space. The physically allowed momenta and positions
may constitute a subset of the phase space, which we denote by Γ. For
simplicity, only two dimensions are shown.

9



10 CHAPTER 2. PRELIMINARIES

In any textbook on classical mechanics (e.g., cf. [4]) it is shown that this
time evolution (q(t), p(t)) of a system is given by the canonical equations

dqr
dt

=
∂H

∂pr
,

dpr
dt

= −∂H
∂qr

,

where the qr and pr denote the d ·N elements of the vectors q and p. If one
employs the Poisson bracket

{u, v} ≡
d·N∑
r=1

[
∂u

∂pr

∂v

∂qr
− ∂u

∂qr

∂v

∂pr

]
, (2.1)

one may paraphrase these equations as

q̇r = {H, qr} , ṗr = {H, pr}.

Here, H denotes the Hamiltonian. A typical example would be the Hamilto-
nian

H(p, q, t) =
N∑
i=1

p2
i

2m
+

N∑
i=1

V (qi) +
1

2

N∑
i,j=1
(i6=j)

U(qi − qj)

of N particles of the same mass m in an external field with a two-particle
interaction. Knowing the dynamics of a system, one may compute the time
evolution of some observable A. If the observable depends on the positions
and momenta only, A = A(p, q), one obtains

dA(p, q)

dt
=

dA(p(t), q(t))

dt
=

d·N∑
r=0

[
∂A

∂pr

dpr
dt

+
∂A

∂qr

dqr
dt

]

=
d·N∑
r=0

[
∂A

∂pr

(
−∂H
∂qr

)
+
∂A

∂qr

∂H

∂pr

]
.

In the last step, the canonical equations have been used. From Eq. 2.1 then
follows the neat formula

Ȧ(p, q) = {H,A}.

From the aforementioned it should be clear that a point (p, q) ∈ Γ may
be regarded as a complete microscopic description. Therefore, it is referred
to as a microstate. Now for any system encountered in everyday life, N � 1



2.1. CLASSICAL MECHANICS 11

Figure 2.2: Ensemble in phase space. While a single point in phase space
corresponds to a microstate, a statistical ensemble can be regarded as a cloud
of points.

holds valid. (Remember that for example in 1 gram of water there are about
3×1022 molecules!) This means, however, that any attempt to describe auch
a system by means of its microstate is doomed to fail. Indeed, one can even
say that, given any realistic device, the preparation of a specifically chosen
microstate is impossible.

In order to get around this problem, we turn from the discussion of a single
system to that of a set of similar systems. To this end, let us assume that
initially we have N identical systems. If we subject them to some realistic
preparation procedure (such as “add a heat energy of 1 kJ”), the outcome
will be a set of N slightly different systems, which we call an ensemble. In
terms of phase space diagrams, such an ensemble corresponds to a cloud of
points, as illustrated in Fig. 2.2.

A moment’s thought will show that if you increase the number N of
systems in an ensemble, the average distance between neighbouring points in
this cloud of points decreases. In the limit of an infinite number of systems,
N −→ ∞, the discrete distribution in phase space will be indistinguishable
from a continuous one. Hence it makes sense to describe an ensemble of
sufficiently many systems by a continuous function ρ(p, q, t) defined by

∀B ⊂ Γ :

∫
B

ρ(p, q, t)dd·Np dd·Nq ∝ number of ensemble points in B

and the normalization ∫
Γ

ρ(p, q, t)dd·Np dd·Nq = 1.

It is easy to see that the ρ thus defined is just a probability density in
phase space. Evidently it can be used to describe the average behaviour of
sufficiently many systems. However, as will be discussed more thoroughly
and in more detail later on, a single large system may be considered as
an ensemble of smaller subsystems, so that its macroscopic properties arise
from averaging over an ensemble. ρ(p, q, t) therefore is called a macrostate
of classical mechanics.
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Figure 2.3: Example of a distribution function F (x).

Figure 2.4: Example of a histogram corresponding to the distribution func-
tion shown in Fig. 2.3.

We shall now turn to the statistical treatment of measured values in a
given macrostate. To this end, let us assume that we have an ensemble ρ of
Nρ systems and an observable A(p, q). If, for the sake of simplicity, we take
the measuring device used to be ideal, the measurement of A performed on
the ensemble yields Nρ values A′

µ ≡ A(pµ, qµ). Then the mean (or average)
〈A〉ρ is given by

〈A〉ρ ≡
1

Nρ

Nρ∑
µ=1

A′
µ, (2.2)

whereas the variance is σ2
A,ρ defined as

σ2
A,ρ ≡

〈
(A− 〈A〉ρ)

2
〉
ρ

=
〈
A2
〉
ρ
− 〈A〉2ρ . (2.3)

It is left as an exercise for the reader to prove the right hand side of Eq. 2.3
by means of Eq. 2.2. In addition, we may introduce the distribution FA,ρ:

FA,ρ(A
′) ≡ number of systems µ with Aµ 6 A′ (2.4)

See Fig. 2.3 for an example of a distribution. We note in passing that distri-
butions are by definition monotonously increasing function. If we divide the
range of possible values of A into a number of bins ∆Ai and plot the number
of Aµ’s in these bins, we obtain a histogram. Fig. 2.4 shows an example.

The generalization of Eqs. 2.2 to 2.4 to the case of infinitely many systems,
i.e. to the case of a macrostate is straightforward, one basically just has to
replace sums by integrals. But in order to avoid some cumbersome notation,
we first introduce a short notation for the volume element in phase space:

Definition 1 Let Γ be a 2 · d ·N dimensional phase space. Then we denote
its differential volume element by dΓph, i.e.

dΓph ≡ dd·Np dd·Nq.
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In the following definitions, we assume that Γ is a phase space. We can now
state the definition of the average:

Definition 2 Let ρ be a macrostate and A = A(p, q) an observable. Then
the average (or mean) of A is given by

〈A〉ρ ≡
∫

Γ

A(p, q)ρ(p, q, t)dΓph.

The definition of the variance remains completely unchanged:

Definition 3 The variance σρ(A) of an observable A = A(p, q) is defined
for a macrostate ρ as

σ2
A,ρ ≡

〈
(A− 〈A〉ρ)

2
〉
ρ

=
〈
A2
〉
ρ
− 〈A〉2ρ .

For the distribution we get

Definition 4 The distribution FA,ρ of an observable A = A(p, q) for a
macrostate ρ is given by

FA,ρ(A
′) ≡

∫
Γ

Θ(A′ − A(p, q))ρ(p, q, t)dΓph = 〈Θ(A′ − A(p, q))〉ρ ,

where Θ is the Heaviside function,

Θ(x) =

{
0 (x < 0)
1 (x ≥ 1)

.

So far, we have carefully distinguished between the observable A (which is a
function) and its possible values (for which we used the symbol A′). In the
following, we shall drop this distinction, so that A may stand for either the
observable or its values. Furthermore, we omit the subscript A. We then can
proceed with introducing the probability density:

Definition 5 The probability density pρ of an observable A for a macrostate
ρ is the derivative of the distribution:

pρ(A) ≡ dFρ(A)

dA
=

∫
Γ

δ(A− A(p, q))ρ(p, q, t)dΓph = 〈δ(A− A(p, q))〉ρ
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While the concept of a distribution should be immediately clear, the reader
may rightfully what is the meaning of the various statistical quantities in-
troduced so far. Alas, concerning the mean and the variance, an answer has
to be postponed until Sect. 2.3. But at least we can briefly comment on the
probability density.

Consider a histogram bin from, say, A′ to A′+∆A. Then the correspond-
ing histogram value h(A,A+ ∆A) can be computed by means of

h(A,A+ ∆A) =

∫
Γ

[Θ(A+ ∆A− A(p, q))−Θ(A− A(p, q))] ρ(p, q, t)dΓph

= Fρ(A+ ∆A)− Fρ(A).

But then we can conclude that

lim
∆A−→0

h(A,A+ ∆)

∆A
= lim

∆A−→0

Fρ(A+ ∆A)− Fρ(A)

∆A
=

dFρ(A)

dA
= pρ(A).

In this sense we may say that the probability density is the limit of histograms
for vanishing bin width. Finally, we conclude with two remarks:

(i) The probability density corresponding to the microstate (p0, q0) in a
2 ·d ·N dimensional phase space obviously is given by the delta function
ρ(p, q) = δd·N(p−p0)δ

d·N(q−q0). Putting this ρ into Definitions 1 to 4,
we recover Eqs. 2.2 to 2.4, as should be expected.

(ii) The probability density changes non-trivially under coordinate trans-
formations. To see this, we consider the coordinate transformation
(p, q) −→ (p′, q′) and compute the mean of some observable A(p, q)
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(which must be independent of the specific coordinates chosen) in both
old and new coordinates:

〈A〉ρ =

∫
Γ

A(p, q)ρ(p, q)dd·Np dd·Nq

=

∫
Γ

A(p(p′, q′), q(p′, q′)) · ρ(p(p′, q′), q(p′, q′), t)·

·
∣∣∣∣ det

(
∂(p, q)

∂(p′, q′)

)∣∣∣∣︸ ︷︷ ︸
Jacobian

·dd·Np′dd·Nq′

(1)
=

∫
Γ

A′(p′, q′) · ρ(p(p′, q′), q(p′, q′), t)·

·
∣∣∣∣ det

(
∂(p, q)

∂(p′, q′)

)∣∣∣∣ · dd·Np′dd·Nq′
(2)
=

∫
Γ

A′(p′, q′)dd·Np′dd·Nq′.

(2.5)

Here, step (1) follows from the fact that the observable transforms as

A′(p′, q′) = A(p(p′, q′), q(p′, q′)),

whereas in step (2) we make use of the fact that the mean of the
observable must be an invariant. As Eq. 2.5 must hold valid for all
observables, for the probability density we obtain the transformation
law

ρ′(p′, q′) = ρ(p, q)

∣∣∣∣ det

(
∂(p, q)

∂(p′, q′)

)∣∣∣∣ .
2.2 Quantum mechanics

We saw in Sect. 2.1 that in classical mechanics, a microstate (i.e., as the
reader will undoubtedly remember, “all there is to know about a given sys-
tem”) can be regarded as a point in phase space. Things are somewhat more
complicated in quantum mechanics. Here, a microstate corresponds to a
normalized vector |ψ〉 in a (appropriately chosen) Hilbert space H. To keep
things simple, we shall assume throughout the following that the Hilbert
space under consideration has a countable basis.
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In order to paraphrase the basic postulate of the preceding paragraph in
a slightly different form, we start with reminding the reader of the definition
of a projecton operator.

Definition 6 An operator P̂ on a Hilbert space H is a projection operator
(or projector) if it fulfils the following conditions:

(i) P̂ = P̂ †

(ii) P̂ 2 = P̂

In addition, the trace of a projector onto a direction has the value 1:

(iii) tr P̂ = 1

The reader might like to check that this definition implies that in Rn a
projector projects onto some fixed direction, which is after all what you
would expect a projector to do.

Now consider a projector P̂ onto some arbitrary direction. Then from
condition (ii) of Def. 6 it follows that for an eigenvector |p〉 of P̂

(p2 − p) |p〉 = P̂ 2 |p〉 − P̂ |p〉 = P̂ |p〉 = P̂ |p〉 = 0,

so that p2 − p = 0. Hence, P̂ can only have 0 and 1 as its eigenvalues. But
then condition (iii) of Def. 6 implies that there is exactly one eigenvector |ψ〉
with eigenvalue 1, as otherwise the trace would be either zero or larger than
1. Accordingly, P̂ may be written as P̂ = |ψ〉 〈ψ|.

Conversely, it is easy to show that for any operator of the form |ψ〉 〈ψ|,
the three conditions of Def. 6 hold valid. Thus there is a one-to-one corre-
spondence between normalized vectors and projectors onto a direction. In
order to reinforce this notion, in the following we shall employ the notation
Pψ ≡ |ψ〉 〈ψ|. Now the postulate of the first paragraph can be restated in a
different way:

Postulate 1 Each microstate corresponds to a projector onto a direction on
some Hilbert space H.

Whereas in classical mechanics, ordinary functions are sufficient to describe
a measurement, things are again more difficult in quantum mechanics:
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Postulate 2 Every observable A corresponds to some Hermitean operator Â
on H. The possible values obtained by a measurement of the observable are
given by the eigenvalues of Â.

As the operator Â corresponding to the observable A is Hermitean, there
must be a complete set (|α1〉 , |α2〉 , . . . , |αk〉 . . .) of orthonormal eigenvectors
|αi〉 with eigenvalues αi. Postulate 2 has left open the question how prob-
able it is to obtain some given value αi if a measurement of an observable
is performed on a microstate. However, there is a simple answer to that
question:

Postulate 3 Let P̂ψ be a microstate and Â the operator corresponding to
some observable A. Furthermore, let {|α1〉 , |α2〉 , . . .} be a complete set of
orthonormal eigenvectors of Â. Then if a measurement of A is performed
on the given microstate, the probability of obtaining the value αi is given by
|〈αi| ψ〉|2.

The importance of Postulates 2 and 3 shouldn’t be underestimated. Together
they imply that the outcome of a measurement is not fully determined by a
microstate. Loosely speaking, we might say that in quantum mechanics gen-
erally even nature itself cannot predict the result of measuring an observable.

Hence, for quantum mechanical systems an ensemble treatment is called
for at the level of microstates. We therefore turn to the computation of
the mean of an observable (which in this respect often is referred to as the
expectation value). To this end, let h denote the dimension of H (which may
be infinite). Then for a microstate Pψ

〈A〉 =
h∑
i=1

|〈αi| ψ〉|2 αi =
h∑
i=1

αi 〈ψ| αi〉 〈αi| ψ〉 = 〈ψ|

{
h∑
i=1

αi |αi〉 〈αi|

}
|ψ〉

But the term in the curled brackets is just the operator Â, and we get the
well-known result

〈A〉 = 〈ψ| Â |ψ〉 . (2.6)
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We may rewrite this result in another form by noting that for a complete set
{|α〉} of orthonormal vectors we get

〈ψ| Â |ψ〉 = 〈ψ|

{∑
α

|α〉 〈α|

}
︸ ︷︷ ︸

1

Â |ψ〉 =
∑
α

〈ψ| α〉 〈α| Â |ψ〉

=
∑
α

〈α| Â |ψ〉 〈ψ| α〉 =
∑
α

〈α|
{
ÂP̂ψ

}
|α〉 ,

(2.7)

where
∑

α denotes the sum over all vectors |α〉. As the right hand side of
Eq. 2.7 is just a trace, together with Eq. 2.6 we obtain

〈A〉 = tr ÂP̂ψ.

Similarly to the case of classical mechanics, also in quantum mechanics
it is impossible to prepare some specific microstate. We therefore again
have to resort to investigating a statistical ensemble. Here, in order to
avoid rather technical problems, let us take for granted that the prepa-
ration procedure used to generate our ensemble ρ allows a countable set
M = {|ψ1〉 , |ψ2〉 , . . . , |ψk〉 , . . .} of possible outcomes only. The ensemble
considered shall consist of Nρ systems, E = {|φ1〉 , |φ2〉 , . . . ,

∣∣φNρ

〉
}, where

for all i |φi〉 ∈ M and where |ψγ〉 occurs Nγ times in E. Then the mean of
an observable A is given by (cf. Eqs. 2.2, 2.6 and 2.7)

〈A〉ρ =
1

Nρ

Nρ∑
i=1

〈φi| Â |φi〉 =
1

Nρ

∑
|ψγ〉∈M

Nγ 〈ψγ| Â |ψγ〉

If we define wγ as wγ ≡ Nγ/Nρ, we thus get

〈A〉ρ =
∑

|ψγ〉∈M

wγ 〈ψγ| Â |ψγ〉 =
∑

|ψγ〉∈M

wγ tr(ÂP̂ψγ )

= tr

∑
ψγ∈M

wγP̂ψγ

 Â

 .

(2.8)

As the operator appearing in the curled brackets is of considerable impor-
tance, we give it a name of its own:
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Definition 7 The density matrix (or state operator) of the ensemble just
decribed is given by

ρ̂ ≡
∑
ψγ∈M

wγP̂ψγ .

With the density matrix, we may cast Eq. 2.8 in a compact form:

〈A〉ρ = tr(ρ̂Â).

The density matrix contains the whole statistics of any observable A and
may thus be considedered as a macrostate. To see this, we write Â in terms
of its eigenvectors |αi〉 and eigenvalues αi, i.e. Â =

∑h
i=1 αi |αi〉 〈αi| with

h = dimH. Then a function f of Â can be defined by

f(Â) ≡
h∑
i=1

f(αi) |αi〉 〈αi| .

In particular, for the Dirac δ-function we get

δ(a− Â) =
h∑
i=1

δ(a− αi) |αi〉 〈αi| . (2.9)

Now the expectation value of some function f of the observable A for a
microstate |ψ〉 has the value

〈f(A)〉 =
h∑
i=1

|〈ψ| αi〉|2 f(αi) = 〈ψ|

{
h∑
i=1

f(αi) |αi〉 〈αi|

}
|ψ〉 = 〈ψ| f(Â) |ψ〉

Hence from an argument completely analogous to that of Eq. 2.8 we may
conclude that in an ensemble ρ the average of f(A) is given by

〈f(A)〉ρ = tr(ρ̂f(Â)).

But then from Def. 5 and Eq. 2.9 we obtain for the probability density pρ,A
of A

pρ,A(a) = 〈δ(a− A)〉ρ = tr

(
h∑
i=1

δ(a− αi) |αi〉 〈αi| ρ̂

)
.

As pρ,A completely describes the statistical behavior of A, it is thus clear that
ρ̂ indeed fully determines the statistics of the ensemble ρ.

We finish this section by stating three basic properties of density matrices:
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(i) A density matrix is Hermitean, ρ = ρ†.

(ii) For a density matrix ρ̂ =
∑

γ wγPψγ all wγ lie in the range from 0 to 1.

(iii) All density matrices ρ̂ are non-negative, i.e.

∀ |ψ〉 ∈ H : 〈ψ| ρ̂ |ψ〉 > 0.

The proof is left an exercise for the reader.

2.3 Probability theory

2.3.1 Kolmogorov’s axioms

Intuitively, the probability of some event E is the relative frequency with
which it occurs, i.e.

probability of event E ≡ number of occurences of E

number of trials
.

But if the number of trials is small, there will be a large statistical uncertainty
in the actual number of occurences of E. This should be mirrored in the
definition of the probability, and hence it is tempting to resort to the limit
of an infinite number of trials:

probability of event E ≡ lim
number N of trials−→∞

number of occurences of E

N

Evidently, this approach assumes that this limit converges, and a rather
skeptical reader might ask whether that is necessarily the case. Furthermore,
things get slightly cumbersome if we are not dealing with a limited number
of events (such as the number of spots on the uppermost face of a die, say)
but rather with a continuum of events (such as the lifetime of a bulb).

Therefore we will adopt a mathematically-oriented approach to probabil-
ity theory (cf. [5]). To this end, let us first introduce two straightforward
definitions:

Definition 8 An experiment is any operation the outcome of which is not
completely determined.
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Definition 9 The sample space Ω of an experiment is the set of its possible
outcomes.

From the plethora of possible examples we just choose the following three:

(i) One of the simplest experiments is throwing a coin and looking which
side comes up. Here, the sample space is given by

Ω = {heads come up, tails come up}.

(ii) If the experiment consists of rolling a die and counting the number of
spots on its uppermost face, the sample space can be written as

Ω = {1, 2, 3, 4, 5, 6}.

(iii) The lifetime of a single radioactive nucleus is undetermined, so that its
measurement constitutes an experiment. It has Ω = R+

0 as its sample
space.

Note that Ω doesn’t have to be a set of numbers. Indeed, we might have
written the sample space of example (ii) more explicitly as

Ω = {The number of spots on the uppermost face is 1.,

. . . ,The number of spots on the uppermost face is 6.}.

If Ω = {ω1, ω2, . . . , ωk, . . .} is countable, one may assign to each ωk ∈ Ω a
number Pk with 0 6 Pk 6 1, so that

∑
ωi∈Ω Pi = 1. These numbers Pi are

referred to as the probabilities of the experiment under consideration.
In order to cover the general case of a continuous Ω we need some further

prerequisites. We start wth the concept of events:

Definition 10 A subset of a sample space Ω is called an event. We say that
an event occurs if the outcome of the experiment is an element of E.

Perhaps the notion of an event as a subset of sample space seems somewhat
counterintuitive. But it makes sense: Consider, for example, the rolling of a
die. Here perhaps we might be interested not in the actual number of spots on
its uppermost face, but rather in whether this number is odd. “The number
is odd.” may then qualify as an event, and as this statement corresponds to
the subset {1, 3, 5} of Ω, all is well.

Now for a moment things will get rather technical. We turn to the defi-
nition of a σ-algebra:
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Definition 11 A non-empty system S of subsets of a set M is called a σ-
algebra, if it fulfils the following conditions:

(i) M and the empty set ∅ are elements of S, M ∈ S and ∅ ∈ S.

(ii) If A is member of S, so is its complement:

A ∈ S ⇒ M\A ∈ S

(iii) Let A1, A2, . . . , Ak, . . . ∈ S. Then their union and intersection are
also elements of S:

Ai ∈ S ∀i ∈ N ⇒
∞⋃
i=1

Ai ∈ S and
∞⋂
i=1

Ai ∈ S

One may construct a σ-algebra from a countable set by forming all unions
of its subsets. Similarly, a σ-algebra is generated from an interval [a, b] by
forming the unions and intersections of all closed subintervals.

What do we need Def. 11 for? To give an answer to this question, we
must first note that for a given experiment the set of all events constitutes
a σ-algebra, as all the required conditions follow from basic logic. But the
existence of a σ-algebra is sufficient for the definition of a measure. Hence we
can introduce a measure on the set of all events, and that is precisely what
we’ll do in a moment.

However, before doing so, let us state that intuitively any probability
should have three fundamental properties:

(i) Any probability is non-negative.

(ii) The probability that something (no matter what) happens in an exper-
iment is one.

(iii) The probability that either of two completely distinct events happens
is the sum of the probabilities for the two events. To put in a nutshell:
Probability is additive.

These properties, which are so profound that one could scarcely do without,
are the rationale for the general definition of probability:
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Definition 12 (Kolmogorov’s axioms) Let S be the set of all events of
some sample space Ω. Then a function P : S −→ R is called a probability
function, if it is a normalized measure, i.e. if the following conditions are
filfilled:

(i) P (A) > 0 ∀A ∈ S

(ii) P (Ω) = 1

(iii) Let {Ai} be a countable set of events with An∪Am = ∅ for n 6= m.
Then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

Now the reason for our discussion of σ-algebras should be clear: As the set
of all events constitutes a σ-algebra, as the existence of a σ-algebra allows
the definition of measure, and as the probability function may be regarded
as a (normalized) measure, we can rest assured that a probability function
really exists.

Maybe the reader has wondered why we have stressed that the probability
of the sample space must be one, while completely ignoring the fact that the
probability of the empty set should vanish (after all, the probability that
nothing happens in an experiment is zero). The reason for this restraint
becomes evident from the following theorem:

Theorem 1 Let A ∈ Ω be an event and P a probability function. Then
P (Ω\A) = 1− P (A).

Proof: The proof is straightforward: We know that Ω = A ∪ (Ω\A) with
A∩(Ω\A) = ∅. Hence we can conclude from conditions (2) and (3) of Def. 12
that

1 = P (Ω) = P (A) + P (Ω\A),

which is the desired result. (QED)

In particular, because of ∅ = Ω\Ω, Theorem 1 implies that

P (∅) = 1− P (Ω) = 1− 1 = 0.

So there was no reson for bothering about the probability of the empty set,
as we get this as a bonus, anyway.
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Figure 2.5: Principle of a measurement. By means of a measuring device
every element of the sample space Ω is related to some number.

2.3.2 Random variables

As was pointed out in Sect. 2.3.1, the elements of a sample space Ω need not
be numbers, and the same then must be true for events. However, in a real
experiment we are interested in obtaining some numerical value. Of course,
this aim is achieved by the measuring device used. Fig. 2.5 illustrates the
situation.

Mathematically speaking, a measurement M may thus be regarded as
mapping the sample space Ω into R, so that we may describe it by means of
an ordinary function

M : Ω 3 ω −→M(ω) ∈ R

Any such function is called a stochastic or random variable. One should be
careful not to confuse it with one of its values. In order to avoid this pitfall,
in the following we shall denote random variables by upper case letters and
their values by the corresponding lower case letters.

Now the distribution function of an observable A at some value a is just
the probability that A has a value less than a. However, the state of a
(random) system (or its preparation) may be viewed as an experiment, and
we might think of a measuring device which faithfully records the values of
the observable to be considered. Hence, it is evident that any observable
gives rise to a corresponding random variable, which we shall denote by the
same letter. Concerning the the distribution function FA this implies that
we may write

FA(a) = P ({ω ∈ Ω |A(ω) 6 a})

As above, the probability density pA of a random variable (or observable) is
defined just as the derivative of the distribution:

pA(a) ≡ dFA(a)

da
=

d

da
P ({ω ∈ Ω |A(ω) 6 a})

Now imagine we are not interested in the values x of some random variable X
but rather in a real-valued one-to-one function f of these values, i.e. we are
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interested in the distribution of f(x). Clearly, as f is of the form f : R −→ R,
the function

Y ≡ f ◦X : Ω 3 ω −→ y = f(X(ω)) ∈ R
is a random variable, the probability density of which describes the desired
distribution of the values y = f(x). Its distribution function can be written
as

FY (y) = P ({ω ∈ Ω |Y (ω) 6 y}). (2.10)

We have to distinguish between two cases: As it is one-to-one, f may be
either monotonously increasing or monotonously decreasing. In the former
case we obtain from Eq. 2.10

FY (y) = P ({ω ∈ Ω |X(ω) 6 f−1(y)}) = FX(f−1(y)),

whereas using Theorem 1 in the latter case we get

FY (y) = P ({ω ∈ Ω |X(ω) > f−1(y)}) = 1− P ({ω ∈ Ω |X(ω) 6 f−1(y)})
= 1− FX(f−1(y)).

Differentiating both sides of these equations, taking into account the chain
rule and the definition of the probability density, we arrive at

pY (y) = pX(f−1(y))

∣∣∣∣df(y)

dy

∣∣∣∣−1

, (2.11)

where we employed the relations d(f−1)/dy = (df/dy)−1 and (for a function
which decreases monotonously) df/dy = −|df/dy|. Fortunately, the gener-
alization of random variables to random vectors is straightforward. We just
give the relevant definitions and a theorem corresponding to Eq. 2.11:

Definition 13 An N-dimensional random vector X is a function of the
form

X : Ω 3 ω −→X(ω) ∈ RN .

Definition 14 The distribution function FX of an N-dimensional random
vector X is given by

FX (x) ≡ P ({ω ∈ Ω |X1(ω) 6 x1, . . . , XN(ω) 6 xN}).

The corresponding probability density pX is defined as

pX (x) ≡
∂NFX (x)

∂x1 . . . ∂xN
.
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Theorem 2 Let X and f be an N-dimensional random vector and an in-
vertible transformation, respectively Then the probability distribution of the
random vector Y ≡ f(X) ≡ f ◦X(x) can be computed from

pY (y) = pX (f−1(y))

∣∣∣∣ det
∂(y1, . . . , yN)

∂(x1, . . . , xN)

∣∣∣∣ .
To keep things as simple as possible, in the following we shall limit ourselves
to the one-dimensional case again. Before going on, though, let us remark
on two things:

(i) There can be rather non-trivial sets of probability 0. (Note, for exam-
ple, that Q has the measure 0 in R.)

(ii) As usual, the discrete case can be recovered from the continuous one.
The probability density of a discrete random variable is of the form

pX(x) =
∑
α

Pα(x− xα),

where the Pα are the probabilities of the xα.

We may now define the mean of random variables:

Definition 15 Let X be a random variable. Then the mean or average of
X is given by

〈X〉 ≡
∫
pX(x)x dx.

As the function of a random variable is itself a random variable, its mean
must be given by the preceding definition. However, we may rewrite it in a
far more suitable way:

Theorem 3 Let X be a random variable and f a real-valued function. Then
the mean of f(X) has the value

〈f(X)〉 =

∫
pX(x)f(x)dx.
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Proof: We divide R into disjoint intervals I on which f is either strictly
monotonous or constant. Let us first turn to the strictly monotonous case.
Here, we can assume that f is one-to-one, and by using the inverse of the
transformation law of Theorem 2 we obtain∫

f(I)

pY,x∈I(y)y dy =

∫
I

pY,x∈I(f(x))

∣∣∣∣dfdx
∣∣∣∣ dx =

∫
I

pX(x)f(x)dx,

where pY,x∈I denotes the probability density of the random variable Y ≡
f(X) under the constraint X(ω) ∈ I. Now for all y /∈ f(I) pY,x∈I(y) = 0, so
that we may write ∫

R
pY,x∈I(y)y dy =

∫
I

pX(x)f(x)dx.

On the other hand, for a constant function f(x) ≡ y0 on I it follows that∫
f(I)

pY,x∈I(y)y dy = y0 · P ({ω ∈ Ω | f(X(ω)) = y0 ∧X(ω) ∈ I}).

But the condition f(X(ω)) = y0 is fulfilled by definition, and of course
pY,x∈I(y) vanishes for all y /∈ I. Hence again we get∫

R
pY,x∈I(y)y dy =

∫
f(I)

pY,x∈I(y)y dy = y0 · P ({ω ∈ Ω |X(ω) ∈ I})

= y0

∫
I

pX(x)dx =

∫
I

pX(x)f(x)dx.

A summation over all intervals I yields

〈f(X)〉 = 〈Y 〉 =

∫
R
pY (y)y dy =

∫
R

{∑
I

pY,x∈I(y)

}
y dy

=
∑
I

∫
R
pY,x∈I(y)y dy =

∑
I

∫
I

pX(x)f(x)dx =

∫
R
pX(x)f(x)dx,

which is the desired result. (QED)

Note that instead of 〈f(X)〉 one often simply writes 〈f(x)〉. For further
reference, we need to generalize Theorem 3 to the case of random vectors.
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Theorem 4 Let X be an N-dimensional random vector and f some real-
valued function. Then the mean of f(X) has the value

〈f(X)〉 =

∫
pX (x)f(x)dNx.

Proof: We give a hand-waving argument showing the correctness of the
proposition. To this end, let us divide RN into intervals ∆i centered on
vectors x(i),

∆i ≡ {x |x(i)
1 − δ/2 6 x1 6 x

(i)
1 + δ/2, . . . , x

(i)
N − δ/2 6 xN 6 x

(i)
N + δ/2}.

Here, assume that the set of ∆i’s is countable. If δ is sufficiently small, we
may approximate f by the “step function” f̄ defined as

f̄(x) ≡ f(xi) for the i with x ∈ ∆i,

which leads to

F ≡
∫

RN

f(x)pX (x)dNx ≈
∫

RN

f̄(x)pX (x)dNx =
∑
i

∫
∆i

f̄(x)pX (x)dNx

=
∑
i

f(xi)

∫
∆i

pX (x)dNx =
∑
i

f(xi) · P ({ω ∈ Ω |X(ω) ∈ ∆i}).

The f(xi) give rise to the set {fj | ∃i : fj = f(xi)}, where fi 6= fj for i 6= j
is assumed. With this set of values of f we obtain

F =
∑
j

fj ·
∑
i

f̄(x)=fj

P ({ω ∈ Ω |X(ω) ∈ ∆i}),

and due to the fact that the P ({ω ∈ Ω |X(ω) ∈ ∆i}) are piecewise disjoint
and together cover the whole of RN , we may conclude that

F =
∑
j

fjP ({ω ∈ Ω | f̄(ω) = fj}) =

∫
y · p

f̄(X)
(y)dy ≈

∫
y · p

f(X)
(y)dy

= 〈f(X)〉

Hence in the limit of vanishing ∆i’s the proposition follows. (QED)
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As an important example of functions of random variables we introduce
the moments:

Definition 16 The n-th moment µn of a random variable X is defined as

µn ≡ 〈Xn〉 .

The moments can be obtained from differentiating what is known as the
characteristic function:

Definition 17 The characteristic function χX of a random variable X is
the Fourier transform of the probability density,

χX(k) ≡
∫
e−ikxpX(x)dx =

〈
e−ikX

〉
.

Alternatively, the probability density may be viewed as the inverse Fourier
transform of the characteristic function,

pX(x) =

∫
dk

2π
eikxχX(k).

χX is a generating function for the moments:

∂nχX(k)

∂kn

∣∣∣∣
k=0

= (−i)n 〈Xn〉

If we want to, we may express the probability density of a random variable
by means of the delta function. This is shown by the following theorem.

Theorem 5 Let X and f be a random variable and a real-valued function,
respectively. Then

pf(X)(f(x)) = 〈δ(f(x)− f(X))〉 .

Proof: Let y ≡ f(x). Then from Def. 17 we get

pf(X)(f(x)) = pf(X)(y) =

∫
dk

2π
eikyχf(X)(k) =

∫
dk

2π
eiky

〈
e−ikf(X)

〉
=

∫
dk

2π
eiky

∫
dx pX(x)e−ikf(x) =

∫
dx pX(x)

∫
dk

2π
eikye−ikf(x)

=

∫
dx pX(x)δ(y − f(x)) = 〈δ(y − f(X))〉 ,

where in the last step we used Theorem 3. Replacing y by f(x) on the right
hand side yields the proposition. (QED)
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The variance σ2
X of a random variable X is defined as usual, i.e.

σ2
X ≡

〈
(X − 〈X〉)2

〉
=
〈
X2
〉
− 〈X〉2 .

Its square root σX is called standard deviation. Independent of the specific
experiment and random variable considered, the variance is a measure of the
“spread” of the corresponding probability density. This statement is put in
a quantitative form by the Chebychev inequality.

Theorem 6 (Chebychev Inequality) If X is a random variable with mean
〈X〉 and variance σ2

X , then the relation

P (|X − 〈X〉| > ε) 6
σ2
X

ε2

holds valid.

It should be clear that in the Chebychev inequality P (|X − 〈X〉| > ε) is just
an abbreviation for P ({ω ∈ Ω | |X(ω)− 〈X〉| > ε}).

Proof: Consider the function Θ(|X(ω) − 〈X〉| − ε) of ω ∈ Ω. Evidently,
it is non-zero if and only if |X(ω) − 〈X〉| > ε, i.e. if and only if σ2

X/ε
2 > 1.

Therefore we can conclude that

∀ω ∈ Ω : Θ(|X(ω)− 〈X〉| − ε) = 1 ·Θ(|X(ω)− 〈X〉| − ε) 6
σ2
X

ε2
,

where the final step follows from the fact that the Heaviside function is
less equal 1. But the mean of the Heaviside function Θ(g(X)) is just the
probability of the event {ω ∈ Ω|g(X(ω)) > 0}. Thus, as σ2

X/ε
2 is just a

number, we get

P (|X − 〈X〉| > ε) = 〈Θ(|X − 〈X〉| − ε)〉 6

〈
σ2
X

ε2

〉
=
σ2
X

ε2
,

which is the Chebychev inequality. (QED)

Sometimes one is not interested in the overall probability of some event A1,
but rather in the probability of that event given that some other event A2

occurs. This is known as a conditional probability. For example, a student
may wonder not so much whether he’ll pass an exam, but may be concerned
with the question whether he’ll fail if he doesn’t revise the subject properly.
Naively, we suspect that such a conditional probability should fulfill the
requirements
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(i) that it is a probability,

(ii) that if two events A and B are mutually exclusive (or, as the more
mathematically-minded might put it, if A ∩ B = ∅), the conditional
probability of A given B is zero, and

(iii) that for events A1, A2 which are subsets of B, the ratio of the con-
ditional probabilities of A1 and A2 given B should equal that of the
respective “normal” probabilities.

This motivates the following definition:

Definition 18 Consider an experiment with sample space Ω and a probabil-
ity P . Let S denote the set of all events, and let B ∈ S. Then the function

P (·|B) : S 3 A −→ P (A|B) ∈ R

is called a conditional probability if

(i) it is a probability,

(ii) A ∩B = ∅ ⇒ P (A|B) = 0, and

(iii) ∀A1, A2 ⊂ B :
P (A1|B)

P (A2|B)
=
P (A1)

P (A2)
.

Loosely speaking, the conditional probability should be the “normal” prob-
ability normalized for the constraining event B. This is made more precise
by the following theorem.

Theorem 7 Let P be a probability, and let B be an event. Then to P and
B there corresponds a unique conditional probability P (·|B), which is given
by

∀A ⊂ Ω : P (A|B) =
P (A ∩B)

P (B)
. (2.12)

Proof: Let us first show that Eq. 2.12 indeed defines a conditional prob-
ability: By construction, P (·|B) is a real-valued function on the set of all
events. Evidently, P (A|B) > 0 for all events A, and

P (Ω|B) =
P (Ω ∩B)

P (B)
=
P (B)

P (B)
= 1.
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In addition, for a set {A1, A2, . . . , Ak, . . .} of pairwise disjoint events

P

(
∞⋃
i=1

Ai

)
=
P ((

⋃∞
i=1Ai) ∩B)

P (B)
=
P (
⋃∞
i=1(Ai ∩B))

P (B)
=

∑∞
i=1 P (Ai ∩B)

P (B)

=
∞∑
i=1

P (Ai|B),

where in the last-but-one step condition (iii) of Def. 12 has been used. Hence
all the conditions of Def. 12 are fulfilled, and P (·|B) must be a probability.
Of course, if A and B are disjoint, P (A|B) vanishes,

P (A|B) =
P (A ∩B)

P (B)
=
P (∅)

P (B)
= 0.

Finally, we obtain for two events A1, A2 ⊂ B

P (A1|B)

P (A2|B)
=
P (A1 ∩B)

P (B)
· P (B)

P (A2 ∩B)
=
P (A1)

P (A2)
,

so that we have verified all the requirements of Def. 18. Thus P (·|B) as given
by Eq. 2.12 is in fact a conditional probability.

It remains to be shown that the conditional probability is uniquely defined
by Eq. 2.12. However, if P (·|B) is a conditional probability, we may write

P (A|B) = P ((A ∩B) ∪ (A\(A ∩B))|B) = P (A ∩B) + P (A\(A ∩B)),

where we have made use of the fact that P (·|B) is a probability. As B and
A\(A ∩B) are disjoint by definition, the second term of the right hand side
must vanish, and we get

P (A|B) = P (A ∩B|B).

In particular, it follows that 1 = P (Ω|B) = P (Ω ∩ B|B) = P (B|B). Using
this result together with condition (iii) of Def. 18, we obtain

P (A|B) =
P (A ∩B|B)

1
=
P (A ∩B|B)

P (B|B)
=
P (A ∩B)

P (B)
,

which implies the uniqueness of the conditional probability. (QED)



2.3. PROBABILITY THEORY 33

For some random variable X1 and an event B, we may compute the prob-
ability density pX1(·|B) of X1 corresponding to the conditional probability
P (·|B) by means of the standard definition,

pX1(x1|B) =
d

dx1

P ({ω ∈ Ω|X(ω) 6 x1}|B).

Here, normally we are interested in the probability density of X1 given some
other random variable X2 has some specific value. In order to derive an
expression for this conditional probability density, let us first compute that
for a (small) range of values x2, i.e. let us consider pX1(x1|B∆) with

B∆ ≡ {ω ∈ Ω |x2 6 X2(ω) 6 x2 + ∆}.

We then obtain

pX1(x1|B∆) =
d

dx1

(
P ({ω ∈ Ω|X(ω) 6 x1} ∩B∆)

P (B∆)

)
=

d

dx1

(
FX1,X2(x1, x2 + ∆)− FX1,X2(x1, x2)

FX2(x2 + ∆)− FX2(x2)

)
=

d

dx1

(
FX1,X2(x1, x2 + ∆)− FX1,X2(x1, x2)

∆
·

· ∆

FX2(x2 + ∆)− FX2(x2)

)
.

In the limit of ∆ −→ 0 one thus gets

lim
∆−→0

pX1(x1|B∆) =
∂

∂x1

(
∂

∂x2

FX1,X2(x1, x2) ·
∆

∆ · pX2(x2)

)
= pX1,X2(x1, x2) ·

1

pX2(x2)
.

This motivates the following definition:

Definition 19 Let X1, X2 be random variables and let pX1,X2, pX2 the prob-
ability densities of the random vector (X1, X2) and of X2, respectively. Then
the conditional probability density pX1(·|x2) is defined as

pX1(x1|x2) ≡
pX1,X2(x1, x2)

pX2(x2)
.

As shown above, the conditional probability density may be viewed as the limit

pX1(x1|x2) = lim
∆−→0

pX1(x1 | {ω ∈ Ω|x2 6 X2(ω) 6 x2 + ∆}).
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Having introduced the concept of a conditional probability density, we may
now discuss the statistical dependence of random variables.

Definition 20 Two random variables X1, X2 are called statistically inde-
pendent, if the conditional probability density pX1(x1|x2) is function of x1

only.

Alternatively we may say that two random variables are independent, if their
probability density factorizes:

Theorem 8 Two random variables X1, X2 are statistically independent if
and only if their probability density pX1,X2 factorizes, i.e.

pX1,X2(x1, x2) = pX1(x1)pX2(x2)

for all x1, x2.

Proof: Let pX1(x1, x2) ≡ f(x1), i.e. consider two statistically independent
random variables. Then

pX1,X2(x1, x2) = pX1(x1|x2)pX2(x2) = f(x1)pX2(x2),

and integration of both sides over R with respect to x2 yields

pX1(x1) =

∫
dx2 pX1,X2(x1, x2) =

∫
dx2 f(x1)pX2(x2) = f(x1),

so that
pX1,X2(x1, x2) = pX1(x1)pX2(x2).

Conversely, if pX1,X2(x1, x2) = pX1(x1)pX2(x2) we obtain

pX1(x1|x2) =
pX1,X2(x1, x2)

pX2(x2)
=
pX1(x1)pX2(x2)

pX2(x2)
= pX1(x1),

so that pX1(x1|x2) doesn’t depend on x2. (QED)

We should mention an important corollary of Theorem 8:

Theorem 9 The mean of the product of two independent random variables
X1, X2 is equal to the product of the means of the random variables,

〈X1X2〉 = 〈X1〉 〈X2〉 .
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Proof: The proposition follows directly from the fact that for independent
variables the probability density factorizes:

〈X1X2〉 =

∫
dx1

∫
dx2 pX1,X2(x1, x2) =

∫
dx1 pX1(x1)

∫
dx2 pX2(x2)

= 〈X1〉 〈X2〉

(QED)

The degree of statistical dependence of two random variables may be de-
scribed by means of their covariance or their correlation coefficient.

Definition 21 Let X1, X2 be random variables. Then the covariance σX1X2

or cov(X1, X2) of X1 and X2 is given by

cov(X1, X2) ≡ 〈(X1 − 〈X1〉)(X2 − 〈X2〉)〉 = 〈X1X2〉 − 〈X1〉 〈X2〉 ,

whereas the correlation coefficient cor(X1, X2) is defined as

cor(X1, X2) ≡
cov(X1, X2)

σX1σX2

,

where σ denotes the square root of the variance.

It is left as an exercise for the reader to show that the absolute value of the
correlation coefficient is always less equal 1.

2.3.3 Law of large numbers. Central limit theorem

So far, we have been concerned with single measurements for some given
experiment. However, it is the lot of physicists that they have to measure
the quantities of interest more than once. At first sight, this seems to be a
piece of bad news, as within the framework of our theory of probability a
measurement (as known as a random variable) is a given function and as such
must be fixed. Accordingly, in order to describe a repetition of measurements,
we have to invoke more than one experiment. But such an extension is not
provided for by the formalism developed in the preceding sections. So, do
we have to embark on looking for a more general approach to probability?

Fortunately enough, the answer is no. We are spared the trouble by the
observation that a set of (several) experiments is itself a (single) experiment.
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Indeed, consider N experiments Ek with sample spaces Ωk. Then all the Ek
together may be regarded as an experiment E with the sample space

Ω = Ω1 × Ω2 × . . .× ΩN = {(ω1, . . . , ωN) |ω1 ∈ Ω1 ∧ . . . ∧ ωN ∈ ΩN}.

The corresponding set of all events may be expressed as

S = S1 × . . .× SN

This gives us the possibility to make sense of the concept of repeated mea-
surements on the same experiment: Let X̃k be a random variable for the
experiment Ek. Then by means of

∀Ai ⊂ Ωi : X((A1, . . . , AN)) ≡ X̃k(Ak)

we can define a corresponding random variable Xk of the experiment E. Note
that if some experiments Ei are identical (i.e. if they have the same sample
space and probability), the X̃i may be the same. On the other hand, for i 6= j
the corresponding random variables Xi, Xj are different from each other, and
in a moment, we’ll see that they are even statistically independent. But, as
we haven’t introduced this term for more than two dimensions yet, we should
first define it:

Definition 22 N random variables are called statistically independent, if
their joint probability density factorizes, i.e. if

pX1,...,XN
(x1, . . . , xN) =

N∏
i=1

pXi
(xi).

The reader should convince themselves that this is consistent with Def. 20
for the two-dimensional case. Now consider the random variables introduced
above. As they belong to completely independent (though possibly identical)
experiments, the condition

P ({ω ∈ Ω|X1 6 x1} ∩ . . . ∩ {ω ∈ Ω |XN 6 xN}) =
N∏
i=1

P ({ω ∈ Ω |Xi 6 xi})

should hold valid. But this implies that the distribution and hence the prob-
ability density factorizes. In particular, this is true for a repeated mea-
surement, so that we have reached a conclusion of utmost importance: The
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random variables corresponding to a repeated measurement are statistically
independent. Incidentally, for N independent random variables one obtains
(analogously to the case of two dimensions)

〈X1 . . . XN〉 =

∫
dx1 . . .

∫
dxN pX1,...,XN

(x1, . . . , xN)

=

∫
dx1 pX1(x1) · . . . ·

∫
dxN = 〈X1〉 . . . 〈XN〉 ,

and thus the mean of the product of independent random variables is equal
to the product of the means of the random variables. Now let X1, . . . , XN

be independent random variables. Then the function X̄ defined as

X̄N ≡
1

N

N∑
i=1

Xi

is itself a random variable, the mean of which evidently has the value

〈
X̄N

〉
=

1

N

N∑
i=1

〈Xi〉 .

Its variance can be expressed as

σ2
X̄N

=
〈
X̄2
N

〉
−
〈
X̄N

〉2
=

1

N2

N∑
i=1

N∑
j=1

(〈XiXj〉 − 〈Xi〉 〈Xj〉).

Assume that the Xi are statistically independent. Then 〈XiXj〉 = 〈Xi〉 〈Xj〉
for i 6= j and thus

σ2
X̄N

=
1

N2

N∑
i=1

(
〈
X2
i

〉
− 〈Xi〉2) =

1

N2

N∑
i=1

σ2
Xi
.

If the variance is the same for all random variables, σ2
Xi
≡ σ2

X , we get

σ2
X̄N

=
1

N
σ2
X

and from the Chebychev inequality it follows that

P (|x̄N −
〈
X̄N

〉
| ≥ ε) ≤

σ2
X̄N

ε2
=

σ2
X

Nε2
.
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Hence we have proved that in the limit of largeN the probability of measuring
a value of X̄N outside the 1σ interval centered on 〈XN〉 (i.e. outside the
interval [

〈
X̄N

〉
− σ2

X̄N
,
〈
X̄N

〉
+ σ2

X̄N
]) becomes arbitrarily small. This is the

essential content of the law of large numbers.

Theorem 10 Let X1, . . . , XN be N independent identically distributed ran-
dom variables, and define

X̄N ≡
1

N

N∑
i=1

Xi.

Then for any arbitrary (but fixed) ε > 0 and 〈Xi〉 ≡ 〈X〉

lim
N−→∞

P (|x̄N − 〈X〉| 6 ε) = 0.

Obviously the law of large numbers constitutes the rationale of measuring
quantities more than once, as, loosely speaking, if you carry out sufficiently
many identical measurements, the mean of your measured value will be very
probably very close to the mean of the respective quantity. Note that we made
no assumption concerning the form of the distribution of the random variable
under consideration.

This result may seem sufficiently surprising; but we can do even better. To
see this, let X1, . . . , XN again be N independent and identically distributed
random variables. Then the probability density factorizes (cf. Def. 22),

pX1,...,XN
(x1, . . . , xN) = pX1(x1) . . . pXN

(xN). (2.13)

Now consider the random variable X̄N ≡
∑N

i=1Xi. Eventually, we will be
interested in the limit of its probability density pX̄N

for an infinite number of
variables N , but for the moment, we make no assumption concerning N . We
start from the simple observation that the probability density of a random
variable may be regarded as the mean of a delta function (which can readily
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be deduced from Theorem 4), use Eq. 2.13 and employ the inverse Fourier
transform of the delta function:

pX̄N
(x̄) =

〈
δ(x̄− X̄N)

〉
=

∫
dx1 . . . dxN pX1(x1) . . . pXN

(xN)δ

(
x̄− 1

N

N∑
i=1

xi

)

=

∫
dλ

2π

∫
dx1 . . . dxN pX1(x1) . . . pXN

(xN)eiλ(x̄−
1
N

PN
i=1 xi)

=

∫
dλ

2π
eiλx̄

∫
dx1 pX1(x1)e

−i λ
N
x1 . . .

∫
dxN pXN

(xN)e−i
λ
N
xN

Now as the Xi are identically distributed, their probability density must be
the same each. We write pXi

≡ p and, using the characteristic function χ,
we get

pX̄N
(x̄) =

∫
dλ

2π
eiλx̄

(∫
dx e−i

λ
N
xp(x)

)N
=

∫
dλ

2π
eiλx̄χ

(
λ

N

)N
=

∫
dλ

2π
eiλx̄+N lnχ( λ

N ).

To proceed further, we have to assume that the characteristeric function can
be expanded up to second order in a Taylor series about 0, i.e.

χ(k) = χ(0) +
dχ(k)

dk

∣∣∣∣
k=0

k +
1

2

d2χ(k)

dk2

∣∣∣∣
k=0

k2 +O(k3)

and thus (as χ is a generating function and as χ(0) = 1, cf. Def. 17)

χ(k) = 1− i 〈X〉 k − 1

2

〈
X2
〉
k2 +O(k3),

where 〈Xm〉 here and in the following denotes the mean of Xm
i . Hence the

statement that χ can be expanded up to second order may also be put in
the form that the first two moments of the random variables exist. We will
comment on this assumption below, but for the moment, let us take it for
granted. Together with the Taylor expansion of ln(z) about y = 1,

ln(y) = (y − 1)− 1

2
(y − 1)2 +O((y − 1)3),
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we then obtain

ln

(
χ

(
λ

N

))
= ln

(
1− i λ

N
〈X〉 − 1

2

λ2

N2

〈
X2
〉

+O

(
λ3

N3

))
= −i λ

N
〈X〉 − 〈X

2〉 − 〈X〉2

2N2
λ2 +O

(
λ3

N3

)
= −i λ

N
〈X〉 − σ2

X

2N2
λ2 +O

(
λ3

N3

)
Hence pX̄N

may be expressed as

pX̄N
(x̄) =

∫
dλ

2π
eiλ(x̄−〈X〉)e

−λ2 σ2
X

2N
+O

“
λ3

N3

”
.

For N � 1 the term O
(
λ3

N3

)
can be neglected, so that

pX̄N
(x̄)

N�1−→
∫

dλ

2π
eiλ(x̄−〈X〉)e−λ

2 σ2
X

2N . (2.14)

Now for all positive a and b∫ +∞

−∞
dz e−az

2+ibz =

∫ +∞

−∞

du√
a
e
−u2+ ib√

a
u

=
1√
a

∫ +∞

−∞
du e

−
“
u− ib

2
√

a

”2
+−b2

4a

=
1√
a
e
−b2

4a

∫ +∞

−∞
du e

−
“
u− ib

2
√

a

”2

=
1√
a
e
−b2

4a

∫ +∞− ib
2
√

a

−∞− ib
2
√

a

dv e−v
2

The path of integration of the integral on the right hand side runs parallel to
the real axis. However, from the calculus of residues we may conclude that
instead we may integrate along the real axis itself, and thus we obtain1

∫ +∞

−∞
dz e−az

2+ibz =
1√
a
e
−b2

4a

∫ +∞

−∞
dv e−v

2

=

√
π

a
e
−b2

4a (2.15)

1We employ the well-known relation I ≡
∫ +∞
∞ e−x2

dx =
√

π, which follows directly
from

I2 =
∫ +∞

−∞
dx

∫ +∞

−∞
dy e−(x2+y2) =

∫ 2π

0

dφ

∫ ∞
0

dr re−r2
= π,

where r and φ are polar coordinates.
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Applying Eq. 2.15 to Eq. 2.14 finally yields

pX̄N
(x̄)

N�1−→ 1√
2πN−1σ2

X

exp

(
−(x̄− 〈X〉)2

2N−1σ2
X

)
,

Hence we have proved the following remarkable proposition:

Theorem 11 Let X1, . . . , XN be N independent identically distributed ran-
dom variables, the first and second moment of which exist. Let 〈X〉 and
σ2
X denote the mean and the variance of the Xi, respectively. Then in

the limit of large N the probability distribution pX̄N
of the random variable

X̄N ≡ 1
N

∑N
i=1Xi approaches a Gaussian distribution with mean 〈X〉 and

variance σ2
X/N :

pX̄N
(x̄)

N�1−→ 1√
2πN−1σ2

X

exp

(
−(x̄− 〈X〉)2

2N−1σ2
X

)
. (2.16)

Let us add two remarks concerning the applicability of this theorem:

(i) While the condition that the first two moments of the random vari-
able under consideration actually exist may seem slightly technical,
one should bear in mind that it is not fulfilled automatically. As an
example, consider the innocent-looking Cauchy distribution

p(x) ∝ 1

x2 + a2
.

Here, neither the first nor the second moment exists, and Theorem 11
cannot be applied. In particular, the mean of the Cauchy distribution
is infinite, while of course the probability of large values of x is small.
Hence in this case the mean value is not a good measure of what value
to expect for the random variable.

(ii) There is an important example of dependent random variables: Usu-
ally, in a computer-based random number generator, a random number
(corresponding to a random variable) is constructed from previous ones.
Hence, quite some care has to be taken. The reader is referred to [8]
for a discussion on this topic.
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Figure 2.6: Probability densities pX̄N
(x) as given by Eq. 2.16. While all

curves are centered at the same value, their width decreases with increasing
N . In the limit of infinite N one gets a delta function, pX̄n

(x̄) = δ(x̄− 〈X〉).

The content of Theorem 11 may be stated in various ways, which we will
now discuss in turn. (We adopt the notation of this theorem and assume its
conditions to be fulfilled.)

• As is illustrated in Fig. 2.6, Eq. 2.16 implies that (in the limit of large
N) the probability density of X̄N is a Gaussian distribution which inde-
pendent of N is centered at 〈X〉 and the width of which decreases with
increasing N . In the limit of infinite N one obtains a delta function.

• The probability density pSN
of the random variable

SN ≡
N∑
i=1

Xi

can be obtained from that of X̄N by a simple transformation according
to Eq. 2.11. One gets

pSN
(s̄)

N�1−→ 1√
2πNσ2

X

exp

(
−(s̄−N 〈X〉)2

2Nσ2
X

)
, (2.17)

so that the probability densities are centered at N 〈X〉. Their width
increases with increasing N . This is shown in Fig. 2.7. However, the
relative fluctuations are given by(

σ2
SN

〈SN〉2

)1/2

=

(
Nσ2

X

N2 〈X〉2

)1/2

= O

(
1√
N

)
,

and thus they decrease for increasing N .

• Finally, considering the random variable

ZN ≡
1√
N

N∑
i=1

(Xi − 〈X〉) =
√
N(X̄N − 〈X〉)
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Figure 2.7: Probability densities pSN
according to Eq. 2.17. If N increases,

the width of the curves increases, and their centre moves to larger values.

and applying Eq. 2.11, one obtains

pZN
(z)

N�1−→ 1√
2πσ2

X

exp

(
− z2

2σ2
X

)
.

Hence the limiting probability density doesn’t depend on N any longer.

At least from a mathematical point of view, of the three random variables
X̄N , SN , and ZN , ZN is the most appropriate, as it is the only one which has a
well-defined probability density in the limit N −→∞. That this probability
is (as shown above) of Gaussian form is the proposition of what is known as
the central limit theorem.

Theorem 12 (Central Limit Theorem) Let X1, . . . , XN be N indepen-
dent identically distributed random variables, the first two moments of which
exist. Furthermore, let 〈X〉 and σ2

X denote the mean and the variance of the
Xi, respectively, and define

ZN ≡
1√
N

N∑
i=1

(Xi − 〈X〉).

Then in the limit of infinite N the probability density pZN
becomes a Gaussian

distribution of width σ2
X centered at zero, i.e.

lim
N−→∞

pZN
(z) =

1√
2πσ2

X

exp

(
− z2

2σ2
X

)
.

When embarking on our discussion of probability theory, we started with
mentioning the intuitive notion of probabilities as relative frequencies. Using
the results proved in the present section, we can now elaborate a little bit
on this concept. To this end, let us consider a discrete sample space, Ω =
{k | k ∈ N}, where the various k have the probabilities Pk. Formally, we may
extend Ω to R and use

P : Ω = R ⊃ I −→ P (I) ≡
∑
k∈I∩N

Pk
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as the probability. Then the identity function (i.e. X : x −→ x) constitutes
a random variable, the distribution of which is given by

FX(x) = P ({x′ |x′ 6 x}) =
∑
k6x′

PkΘ(x− k),

so that the corresponding probability density may be written as

pX(x) =
dFX(x)

dx
=
∑
k

Pkδ(x− k).

Now consider the function

nl(x) ≡
{

1 (x = l)
0 (otherwise)

.

Clearly, nl(X) denotes the random variable describing the act of obtaining
the element l of the sample space. Its mean and variance are given by

〈nl(X)〉 =

∫
dxnl(x)pX(x) =

∫
dxnl(x)

∑
k

Pkδ(x− k) =
∑
k

Pknl(k) = Pl

and

σ2
nl(X) =

〈
(nl(X)− 〈nl(X)〉)2

〉
=

∫
dx pX(x)(nl(x)− Pl)2

=

∫
dx

(∑
k

Pkδ(x− k)

)
(nl(x)− Pl)2 =

∑
k

Pk(nl(k)− Pl)2

= Pl(1− Pl)2,

respectively. Now consider N independent random variables n
(1)
l (X), . . . ,

n
(N)
l (X) distributed according to nl(X) and define the random variable

n̄N,l(X) =
1

N

N∑
i=1

n
(i)
l (X),

which corresponds to the relative frequency of the occurrence of ωl. Then
from the law of large numbers we can conclude that for all positive ε

lim
N−→∞

P (|n̄N,l − Pl| > ε) = 0.
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Thus in the limit of inifinite N , i.e. in the limit of infinitely many repeated
measurements, the probability that the relative frequency of an event ob-
served is not very close to the probability of this event gets exceedingly small.
So one can indeed make sense of the intuitive notion that probabilities are
relative frequencies in infinitely repeated experiments.
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Chapter 3

Ensembles of Equilibrium

Having revised the necessary concepts, we can now turn to the discussion of
statistical mechanics. Here, we will first concentrate on systems in equilib-
rium, and hence we should ask how such systems can be prepared.

Empirically, one finds the simple prescription illustrated in Fig. 3.1: You
start with some arbitrary system and wait until it has become stationary,
i.e. until no (macroscopic) changes occur any longer.1 The system then will
have reached a state of equilibrium.

The simplicity of the recipe shouldn’t fool the reader. While everyday
experience clearly suggsts that any system left alone must eventually reach
equilibrium, it proves hard to explain why this should be the case. Within
the scope of this chapter, however, we will just take the existence of equilibria
for granted.

3.1 Time Development of Macrostates

3.1.1 Liouville Equation

Let us reconsider systems of classical mechanics, as illustrated by Fig. 3.2.
In the case of a single microstate the whole dynamics can be described by

1Actually, in the meantime you might help yourself to a decent cup of coffee, say.

Figure 3.1: How to prepare a system in equilibrium.

47
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Figure 3.2: Dynamics in phase space. Left: A microstate (p0, q0) moves
along some trajectory in phase space. Right: The constituent points of a
macrostate move along non-intersecting trajectories.

a single trajectory in phase space, which means that assuming the system
considered consists of N (point) particles in d dimensions, the phase space
density ρ(p, q, t) can be expressed as

ρ(p, q, t) = δd·N(p− pt(p0, q0, t))δ
d·N(q − qt(p0, q0, t)),

where p0 (q0) denotes the initial momentum (position) of all the particles
at an initial time t0. Evidently, the functions pt and qt, which describe the
motion of the microstate along its trajectory in phase space, must be given
by the canonical equations, i.e.

dqt,i
dt

=
∂H

∂pi
,

dpt,i

dt
= −∂H

∂qi
. (3.1)

Let us now turn to an arbitrary macrostate and consider the differential
volume element dd·Np0d

d·Nq0 located at (p0, q0) at the time t0. At some
later time t this element will have been mapped onto the volume element
dd·Np dd·Nq, where p and q are given by p = pt(p0, q0, t) and q = qt(p0, q0, t),
respectively. However, as different trajectories in phase space must remain
separate and as the number of systems in an ensemble is a constant, we know
that

ρ(p0, q0, t0)|dd·Np0d
d·Nq0| = ρ(p, q, t)|dd·Np dd·Nq|,

and thus we can infer that

ρ(p0, q0, t0) =

∣∣∣∣ ∂(pt, qt)

∂(p0, q0)

∣∣∣∣ ρ(p, q, t). (3.2)

On the other hand we may write ρ(p, q, t) as

ρ(p, q, t) =

∫
ρ(u,v, t)δd·N(p− u)δd·N(q − v)dd·Nu dd·Nv

=

∫
ρ(u,v, t)δd·N(p− u(ũ, ṽ))δd·N(q − v(ũ, ṽ))·

·
∣∣∣∣∂(u,v)

∂(ũ, ṽ)

∣∣∣∣ dd·N ũ dd·N ṽ.

(3.3)
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In particular, we might assume that in the last step of Eq. 3.3 the coordinate
transformation from (ũ, ṽ) to (u,v) is given by (pt, qt). Denoting ũ and ṽ
by p0 and q0, respectively, we see from Eqs. 3.3 and 3.2 that

ρ(p, q, t) =

∫
ρ(u,v, t)δd·N(p− u(p0, q0))δ

d·N(q − v(p0, q0))·

·
∣∣∣∣ ∂(pt, qt)

∂(p0, q0)

∣∣∣∣ dd·Np0 dd·Nq0

=

∫
ρ(p0, q0, t0)δ

d·N(p− pt(p0, q0, t))·

· δd·N(q − qt(p0, q0, t))d
d·Np0 dd·Nq0.

(3.4)

Differentiating both sides of this equation with respect to time and keeping
in mind the chain rule and the relation

d

dx
f(x′ − x) = − d

dx′
f(x′ − x)

we get the time development of the macrostate:

∂ρ(p, q, t)

∂t
=

∫
dd·Np0 dd·Nq0ρ(p0, q0, t0)·

·
d·N∑
i=1

[
ṗt,i(p0, q0, t)

(
− ∂

∂pi

)
+ q̇t,i(p0, q0, t)

(
− ∂

∂qi

)]
·

· δ(p− pt(p0, q0, t))δ(p− pt(p0, q0, t))

ṗt,i and q̇t,i are given by the canonical equations (Eq. 3.1). In addition, due
to the delta functions these functions only contribute if pt,i = pi and qt,i = qi,
so that no dependence on p0 or q0 is left. Hence we may draw these terms
in front of the integral, and we obtain

∂ρ(p, q, t)

∂t
=

d·N∑
i=1

[
∂H

∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

]
·

·
∫
ρ(p0, q0, t0)δ(p− pt(p0, q0, t))·

· δ(q − qt(p0, q0, t))d
d·Np0 dd·Nq0.

According to Eq. 3.4, the integral on the right hand side is just the phase
space density. Therefore, using the Poisson bracket (Eq. 2.1) we arrive at
Liouville’s theorem.
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Theorem 13 (Liouville’s Theorem) The time development of the density
ρ(p, q, t) in phase space is given by

ρ(t)

∂t
= −{H, ρ}. (3.5)

We add two brief remarks:

(i) The phase space velocity ṽ = (ṗ, q̇) has a vanishing divergence, as can
be seen from the canonical equations:

∇ṽ =
d·N∑
i=1

(
∂ṗi
∂pi

+
∂q̇i
∂qi

)
=

d·N∑
i=1

(
− ∂2H

∂pi∂qi
+

∂2H

∂qi∂pi

)
= 0.

This result can be used to show that Eq. 3.5 has the form of a continuity
equation,

∂ρ

∂t
= −{H, ρ} = −

d·N∑
i=1

(
∂H

∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi

)

= −
d·N∑
i=1

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
= −∇ρ · ṽ = −(∇ρ · ṽ + ρ · ∇ṽ)

= −∇(ρṽ),

which mirrors the fact that the number of ensemble points is a con-
served quantity.

(ii) Consider the phase space density ρ(p(t), q(t), t) along some trajectory.
From Liouville’s theorem and the canonical equations one gets

dρ

dt
=
∂ρ

∂t
+

d·N∑
i=1

(
∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i

)
=
∂ρ

∂t
+

d·N∑
i=1

(
− ∂ρ
∂pi

∂H

∂qi
+
∂ρ

∂qi

∂H

∂pi

)
=
∂ρ

∂t
+ {H, ρ} = 0.

Hence for an ensemble point the phase space density is a constant.
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3.1.2 von Neumann Equation

After the somewhat technical derivation of Liouville’s theorem in the previous
section, the reader might feel glad that, amazingly, the derivation of the
corresponding equation in quantum mechanics is somewhat easier.

Indeed, consider an arbitrary quantum mechanical macrostate, i.e. a den-
sity matrix ρ̂, in a Hilbert space with a countable basis. From the discussion
in Sect. 2.2 we know that ρ̂ must be Hermitean, so that there is a basis {|αi〉}
in which it is of diagonal form,

ρ̂ =
∞∑
i=1

w̃i |αi〉 〈αi| ,

where the w̃i are real constants. Of course, we can express the vectors |αi〉
as linear combinations of the eigenvectors |Ei〉 of the Hamiltonian Ĥ. Hence
we may write ρ̂ as

ρ̂ =
∞∑

i,j=1

wij |Ei〉 〈Ej| ,

where again the wij denote some constants. The time evolution of the density
matrix is obtained by differentiating both sides of this equation with respect
to time:

∂ρ̂

∂t
=

∞∑
i,j=1

(
wij|Ėi〉 〈Ej|+ |Ei〉 〈Ėj|

)
.

Now |Ėk〉 and 〈Ėk| are given by the Schrödinger equation and its complex
conjugate:

i~|Ėk〉 = i~
∂

∂t
|Ek〉 = Ĥ |Ek〉 (3.6)

−i~〈Ėk| = −i~
∂

∂t
〈Ek| = 〈Ek| Ĥ (3.7)

Thus we obtain

i~
∂ρ̂

∂t
=
∑
i,j

wij

(
Ĥ |Ei〉 〈Ej| − |Ei〉 〈Ej| Ĥ

)
= Ĥρ̂− ρ̂Ĥ,

and hence we have proved what is known as the von Neumann equation.
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Theorem 14 (von Neumann Equation) The time development of a den-
sity matrix ρ̂ is given by

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
,

where Ĥ denotes the Hamiltonian.

But we may even go a step further: As the |Ei〉 are eigenvectors of the
Hamiltonian, the relations

Ĥ |Ek〉 = Ei |Ek〉
〈Ek| Ĥ = 〈Ek|Ek

hold valid, and the von Neumann equation becomes

i~
∂ρ̂

∂t
=

∞∑
i,j=1

wij(Ei − Ej) |Ei〉 〈Ej| .

If the macrostate under consideration is stationary, the left hand side of this
equation vanishes. This implies that for all Ei 6= Ej the statistical weights
wij must be zero as well, and we get the following nice result:

Theorem 15 The density matrix of a stationary macrostate has a diagonal
representation in terms of the eigenstates of the Hamiltonian.

In the next section we will see that this theorem is of considerable importance.

3.2 Microcanonical ensemble

In principle, all statistical mechanics is included in Liouville’s theorem and
the von Neumann equation, as they can be used to compute the time de-
velopment of any given system. Alas, as noted already in the introductory
paragraph of this chapter, in practice such a calculation is far from possible.
We therefore need an additional postulate, which, while not being able to
prove it, we will at least make plausible.

To this end, we start by noting that it was shown at the end of Sect. 3.1.1
that the phase space density ρ is constant along trajectories in phase space.
Hence if we assume that the macrostate under consideration is stationary, at
least along trajectories we might express ρ in terms of constants of motion.
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Figure 3.3: Particles moving in opposite directions along a line. While it is
true that the phase space density along the trajectories in phase space can
be written in terms of a conserved quantity (namely the momentum), its
functional form depends on the trajectory chosen.

However, in general the functional form may be different for different trajec-
tories. As an example consider the simple case of a stream of non-interacting
particles moving with some fixed speed in opposite directions along a line
(Fig. 3.3). Here along the particle path, the phase space density is a sum of
two delta functions of the momentum, whereas everywhere else it vanishes
identically. But now let us concentrate on equlibrium systems. These are
undoubtedly stationary, and thus along some given trajectory their phase
space density will be some function of conserved quantities. But there is
more to equilibria than the mere absence of time dependence, which after all
applies to the fluid depicted in Fig. 3.3 as well. Loosely speaking, we might
say that the main property of an equilibrium state must be something like
“having as few distinct features as possible.” We therefore make the bold
assumption that for equilibrium states the functional form of the phase space
density is the same everywhere.

At first sight, this doesn’t help much, as there are infinitely many con-
stants of motion. However, we may narrow down the number of possible
quantities appearing in the phase space density by splitting the system un-
der consideration into two subsystems with phase space densities ρ1 and ρ2.
Then the phase density ρ of the total system must equal the product of ρ1

and ρ2, so that

ln ρ = ln ρ1 + ln ρ2,

which implies that ln ρ is an additive quantity and as such should depend
on a linear combination of additive constants of motion only. However, in
mechanics there are just seven independent additive constants of motion –
energy, the three components of momentum and the three components of
angular momentum.

Although this has considerably improved the situation, we haven’t fin-
ished yet. But before going on we need to clarify what kind of systems we
are about to discuss. Indeed, to keep things straightforward, we shall assume
for the moment that the system(s) under consideration are finite and closed,



54 CHAPTER 3. ENSEMBLES OF EQUILIBRIUM

Figure 3.4: Microcanonical ensemble. A system is called a microcanonical
ensemble if it is in an equilibrium state and if its energy E, volume V and
particle number N are fixed.

which means that there is no change in energy, volume or particle number.
Such systems are known as microcanonical ensembles.

Definition 23 An equilibrium system with fixed energy, volume, and particle
number is called a microcanonical ensemble.

The notion of a microcanonical ensemble is illustrated in Fig. 3.4. Now we
know from the Noether theorem that the conservation of energy arises from
time invariance, that of momentum from translational invariance and that of
angular momentum from rotational invariance. Thinking of a microcanon-
ical system as a box with well-insulated walls, we note that it is invariant
under neither translations in space nor rotations. Hence we may suspect that
neither momentum nor angular momentum constitutes a constant of motion.
Concerning the phase space density, this leaves us just with a dependence on
energy.

In the argument put forward, the Liouville theorem was invoked only for
showing that the phase space density is a constant of motion. However, due
to the von Neumann equation, the same can be said of the statistical weights
of the density matrix. As the rest of the argument remains valid in quantum
mechanics as well, we see that the conclusion reached is true independent of
whether the system under consideration is classical or quantum mechanical.

It should be stressed that the previous was not intended as a formal proof
but as a handwaving argument which has led to the following hypothesis:

Hypothesis 1 The phase space density of a classical microcanonical en-
semble depends on the total energy only. The same is true for the statisti-
cal weights of density matrix corresponding to a microcanonical ensemble in
quantum mechanics.

Now there may be classical systems such as spin configurations treated in
a classical way (see below) or dipoles in an electric field which are not re-
ally covered by the phase space formalism advocated so far. However, the
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Figure 3.5: States with energies in the range [E −∆, E].

quantum mechanical content of the preceding hypothesis suggests a general-
ization, which may be regarded as the fundamental hypothesis of statistical
physics:

Hypothesis 2 In a microcanonical ensemble the probability of
some microstate depends on the total energy only.

We put a nice box around this hypothesis in order to emphasize its impor-
tance, as basically the whole of statistical physics follows from this innocent-
looking result. Concerning the phase space density ρmc of a classical micro-
canonical ensemble we obtain from it the relation

ρmc(p, q) =
1

ω(E)
δ(E −H(p, q)), (3.8)

where E denotes the energy, H the Hamiltonian, and where ω(E) constitutes
a normalization factor to be discussed below in more detail.

So far we have taken the energy to be fixed precisely, which is of course
a somewhat dubious assumption, as in real life there are always limited pre-
cision and unavoidable disturbances. We shall therefore allow the energy
to lie in a small range [E − ∆, E], as is illustrated in Fig. 3.5. Then the
correspunding probability density ρ∆

mc will be given by2

ρ∆
mc(p, q) =

1

ω∆

(Θ(E −H(p, q))−Θ(E −∆−H(p, q))) , (3.9)

where for small ∆ we can approximate the normalization factor ω∆ by ω∆ ≈
∆ · ω(E)·. In addition, we may expand Θ(E − ∆ − H(p, q)) to first order,
i.e.

Θ(E −∆−H(p, q)) ≈ Θ(E −H(p, q))−∆ · δ(E −H(p, q)).

2Strictly speaking, Hypothesis 2 doesn’t cover this case, as it applies to states of con-
stant energy only. However, assuming that ω(E) is a continuous function and that ∆ is
sufficiently small, we may assume that the normalization factor is a constant.
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Accordingly, in the limit of a vanishing ∆ we recover the microcanonical
phase space density,

lim
∆−→0

ρ∆
mc(p, q) = lim

∆−→0

∆ · δ(E −H(p, q))

∆ · ω(E)
= ρmc(p, q).

This justifies the use of ρ∆
mc. Actually, at this stage let us remark that we

will see later that almost all of the phase space volume with energies E ′ less
than some given value E is located in an (almost) arbitrarily thin shell at
the hypersurface corresponding to the energy E.

Looking at the formal definition given in Sect. 2.3.2 one notes that po-
sitions and momenta are not random variables as they have a dimension
instead of being just real numbers. Hence strictly speaking the phase space
density ρmc is not a probability density. However, if one rescales ρmc (and
thus ω) by means of

ρmc −→ (2π~)d·Nρmc

ω −→ 1

(2π~)d·N
ω

(3.10)

the outcome will be dimensionless and qualifies as a probability density. The
reason for choosing (2π~)d·N as the rescaling constant will become clear later;
for the moment, suffice it to say that it is motivated by quantum mechanics.
In the following, ρmc and ω shall denote these rescaled density and normaliza-
tion factor, respectively. Of course, the differential volume element of phase
space needs to be rescaled accordingly,

dd·Np dd·Nq −→ dd·Np dd·Nq

(2π~)d·N
.

From a classical point of view, different particles are always distinguish-
able, even though they may belong to the same species. Hence classical
physics asserts that we might for example label two electrons “red” and
“green”, and interchanging the red and green electron would matter.

But classical mechanics is wrong. In fact, it is shown in quantum me-
chanics that particles belonging to the same species are completely indistin-
guishable. Hence given some arbitrary state, if you can reach another state
simply by pairwise interchange of particle positions and momenta, the new
state is identical to the original one. This is illustrated in Fig. 3.6.

To be more precise, we should have said that the wave function of a set
of particles of the same kind is either completely symmetric or completely
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Figure 3.6: Indistinguishable particles. If the particles under consideration
are indistinguishable, the two states shown (obtained from each other by
exchanging two particles) are the same.

antisymmetric. Indeed, the former is true for bosons, whereas the latter holds
valid for fermions. We will discuss this in detail in a later chapter.

However, the property of being indistinguishable must carry over into the
realm of classical physics, so that we must take phase space points differing
by a particle interchange to be the same. Hence, as there are N ! ways of
arranging N particles, the phase space volume must be smaller by a factor
of 1/N ! than expected naively.

Using Eq. 3.8 (and bearing in mind that now we deal with the corre-
sponding rescaled quantities), we get for the normalization condition of the
the probability density that

1
!
=

1

N !

∫
dd·Np dd·Nq

(2π~)d·N
ρmc(p, q) =

1

ω(E)

∫
1

N !

dd·Np dd·Nq

(2π~)d·N
δ(E −H(p, q)).

(3.11)
From now on, we shall employ an abbreviating notation for the differential
element involved in the integratetion over phase space.

Definition 24 The differential element dΓ is defined as

dΓ ≡ 1

N !

dd·Npdd·Nq

(2π~)d·N
.

So finally, we obtain

ω(E) =

∫
δ(E −H(p, q))dΓ. (3.12)

This quantity is called microcanonical partition function.
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3.3 Microcanonical density matrix and level

density

Consider a discrete stationary quantum mechanical system. As we have seen
in Sect. 3.1.2, the corresponding density matrix ρ̂ may be expressed as

ρ̂ =
∑
i

wi |Ei〉 〈Ei| ,

where here and in the following i runs over all elements of a basis of orthonor-
mal energy eigenvectors |Ei〉, which we will denote by B. If the system under
consideration happens to be a microcanonical ensemble, we know from the
previous section that the statistical weights depend on the energy only, so
that for a given energy E we get

ρ̂mc =
∑
Ei=E

1

ω(E)
|Ei〉 〈Ei| .

The normalization factor ω(E) can be obtained from the normalization con-
dition 1 = tr ρ̂ =

∑
iwi:

ω(E) =
∑
Ei=E

1 = number of states |Ei〉 in B with Ei = E.

Again, w(E) is known as the partition function. Contrary to the case of clas-
sical mechanics it obviously is dimensionless, and no rescaling is necessary.
But this time another technical difficulty arises: As the energy spectrum of
the system under consideration normally is discrete, the partition function
will be different from zero for a discrete set of energies only.

We solve this problem by allowing the energy to lie in a range of width
∆, where ∆ is assumed to be small. Then the density matrix becomes3

ρ̂mc =
∑

E−∆6Ei6E

1

ω∆(E)
|Ei〉 〈Ei| ,

and the normalization condition yields

ω∆(E) =
∑

E−∆6Ei6E

1 = number of states |Ei〉 in B with Ei ∈ [E −∆, E].

3The content of footnote 2 on page 58 is valid here as well.
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Figure 3.7: N (E) and g(E). Left: Example of N (E) for a discrete energy
spectrum. Right: Corresponding level density g(E).

Now let us denote with N (E) the number of states in B with energies less
equal E. Then the level density g(E) is defined as

g(E) ≡ dN (E)

dE
.

As illustrated by Fig. 3.7, for a discrete system g(E) must be a sum of delta
functions. But in everyday life the spacing betweeen neighboring energy lev-
els is extremely small, so that we may replace g(E) by a continuous function
ḡ(E). Then we may express ω∆ in terms of ḡ by means of

ω∆ = N (E)−N (E −∆) =

∫ E

E−∆

g(E ′)dE ′ ≈ ḡ(E) ·∆.

We now have all the prerequisites necessary for discussing the partition func-
tion of the ideal gas.

3.4 Example: Counting states of the ideal gas

As we have seen in the previous section, in order to figure out the value of the
partition function of a quantum mechanical system, one basically has to count
energy eigenstates. This doesn’t mean, however, that one has to count all
eigenstates, a caveat which gets relevant if one considers degenerate energies:
If there are two or more linear independent energy eigenvectors, there must
be an uncountable number of eigenstates, but nonetheless when “counting
the states” we just count the states that belong to a given basis.

This may seem a somewhat biased approach, as after all we might have
chosen a different basis and thus would have counted different states. True
indeed. But of course the result doesn’t depend on our particular choice of
basis vectors, as we are interested in the number of vectors only.

Concerning the classical case, there is no such problem, as here rather
than counting a discrete set of eigenstates we integrate over the continuous
phase space. Still, we shall call this procedure counting of the states as well.

We will now procede to carrying out the appropriate counting of the
states of an ideal gas for both the classical and the quantum mechanical
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case. Before doing this, however, we need to consider the volume and surface
area of high-dimensional spheres.

3.4.1 Of high-dimensional apples

From the area of a circle and the volume of the sphere it is straightforward
to guess that the volume of a sphere in N dimensions with radius R should
be proportional to RN . The necessary prefactors, on the other hand, elude
simple guesswork. They are given by the following theorem.

Theorem 16 Let N > 2. Then the volume VN(R) and surface area AN(R)
of an N-dimensional sphere with radius R are given by

VN(R) =
πN/2

N
2
Γ
(
N
2

)RN (3.13)

AN(R) =
2πN/2

Γ
(
N
2

)RN−1 (3.14)

Proof: We may assume without loss of generality that the center of the
sphere S is located at the origin of our coordinate system. Then S is just
the set

S = {x ∈ RN | |x| 6 R},
and hence it makes sense to introduce spherical coordinates r = |x|, φ1, . . . ,
φN−1, which are related to cartesian coordinates x1, . . . , xN via the coordi-
nate transformations

x1 = r · f1(φ1, . . . , φN−1)

...

xN = r · fN(φ1, . . . , φN−1)

In principle we might give explicit formulae for the functions fi, but as it turns
out this is both (the bad news) tedious and (the good news) superfluous. But
even without knowing the exact form of the coordinate transformation we
can state that

det
∂(x1, . . . , xN)

∂(r, φ1, . . . , φN−1)
=

∣∣∣∣∣∣∣∣
f1 r∂φ1f1 . . . r∂φN−1

f1

f2 r∂φ1f2 . . . r∂φN−1
f2

. . . . . . . . . . . . . . . . . . .
fN r∂φ1fN . . . r∂φN−1

fN

∣∣∣∣∣∣∣∣
= rN−1g(φ1, . . . , φN−1).
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where the (unknown) function g does not depend on the radius r. Therefore,
if we use the notation

dΩ ≡ g(φ1, . . . , φN−1)dφ1 . . . dφN−1,

we may write the volume integral of the sphere as

VN(R) =

∫
|x|6R

dx1 . . . dxN

=

∫ R

0

dr

∫
dφ1 . . . dφN−1r

N−1g(φ1, . . . , φN−1)

=

∫
dΩ ·

∫ R

0

dr rN−1.

(3.15)

We won’t try to compute
∫

dΩ by brute force. Instead, we investigate a

seemingly completely unrelated integral, namely
∫

RN dNx e−|x|2 . In spherical
coordinates this becomes∫

RN

dNx e−|x|2 =

∫ ∞

0

dr rN−1

∫
dΩ e−r

2

=

∫ ∞

0

dr rN−1e−r
2 ·
∫

dΩ,

where the radial part can be computed by means of the transformation u = r2

and the definition

Γ(s) ≡
∫ ∞

0

xs−1e−xdx

of the Gamma function:∫ ∞

0

dr rN−1e−r
2

=

∫ ∞

0

du

2
√
u
u

N−1
2 e−u =

1

2
Γ

(
N

2

)
Hence we get ∫

RN

dNx e−|x|2 =
1

2
Γ

(
N

2

)
·
∫

dΩ (3.16)

On the other hand, we may compute
∫

RN dNx e−|x|2 in cartesian coordinates
(cf. Footnote 1 on page 43):∫

RN

dNx e−|x|2 =

∫
dx1 e

−x2
1

∫
dx2 e

−x2
2 . . .

∫
dxN e

−x2
N

=

(∫
dx e−x

2

)N
=
√
π
N
.

(3.17)
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Taking together Eqs. 3.16 and 3.17 we find that∫
dΩ =

2πN/2

Γ
(
N
2

) .
Inserting this result into Eq. 3.15 finally yields the volume of the sphere,

VN(R) =
2πN/2

Γ (N2)
·
∫ R

0

dr rN−1 =
πN/2

N
2
Γ
(
N
2

)RN ,

and we get the corresponding surface area by a mere differentiation,

AN(R) =
dVN(R)

dR
=

2πN/2

Γ
(
N
2

)RN−1.

Thus VN and AN are indeed given by Eqs. 3.13 and 3.14. (QED)

Now consider the volume V∆,N(R) of a spherical shell comprising the radii
from R−∆ to R. Clearly

V∆,N(R) = VN(R)− VN(R−∆) =
πN/2

N
2
Γ
(
N
2

)(RN − (R−∆)N),

and therefore the ratio V∆,N/VN has the value

V∆,N(R)

VN(R)
=
RN − (R−∆)N

RN
= 1−

(
1− ∆

R

)N
.

But 1−∆/R is less than 1, so that

lim
N−→∞

V∆,N(R)

VN(R)
= 1.

Thus for high-dimensional spheres almost all of the volume is to be found
near the surface. Concerning statistical physics, this result implies that the
overwhelming majority of states with energies less than some energy E are
located very close to the hypersurface of constant energy E. Concerning
fruits, it gives rise to a useful rule of thumb, with which we conclude this
section: Never peel a high dimensional apple! 4

4The reason being, of course, that almost nothing of the apple would remain. – Rumor
has it that, by sheer coincidence, in the case of three-dimensional apples the same is true
for both vitamins and pesticides alike. We leave it as an exercise for the reader to figure
out whether or not to peel such apples.
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3.4.2 Classical case

The Hamiltonian of a classical ideal, non-interacting gas consisting of N
particles is simply given by

H(p, q) =
N∑
i=1

p2
i

2m
,

where the mass m is assumed to be the same for all particles. Accordingly,
from Eq. 3.12 and Def. 24 we obtain the relation

ω(E) =

∫
dΓ δ(E −H(p, q)) =

1

N !

∫
d3Np d3Nq

(2π~)3N
δ

(
E −

N∑
i=1

p2
i

2m

)

for the microcanonical partition function. As the integrand is independent
of the particle positions, the integration over all position coordinates yields
just the N -th power of the volume V of the container in which the gas is
contained, i.e.

ω(E) =
1

N !

V N

(2π~)3N
·
∫

d3Np δ

(
E −

N∑
i=1

p2
i

2m

)
.

The integration over the momenta may be simplified by introducing spherical
coordinates. Denoting |p| by p, we the get

ω(E) =
1

N !

V N

(2π~)3N

∫
dΩ

∫ ∞

0

dp p3N−1δ

(
E − p2

2m

)
=

1

N !

V N

(2π~)3N

∫
dΩ

∫ ∞

0

dp p3N−1 m√
2mE

·

·
{
δ(
√

2mE − p) + δ(−
√

2mE − p)
}
,

where in the last step we employed the well-known transformation rule

δ(f(x)) =
∑

f(xi)=0

1

|f ′(x)|
δ(xi − x)
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for delta functions. Evidently, δ(−
√

2mE − p) vanishes for all non-negative
p, so that together with the notation R ≡

√
2mE and the fact that the delta

function constitutes the derivative of the Heaviside function, it follows that

ω(E) =
1

N !

V N

(2π~)3N

m√
2mE

∫
dΩ

∫ ∞

0

dp p3N−1δ(R− p)

=
1

N !

V N

(2π~)3N

m√
2mE

d

dR

∫
dΩ

∫ ∞

0

dp p3N−1Θ(R− p)

=
1

N !

V N

(2π~)3N

m√
2mE

dV3N(R)

dR
=

1

N !

V N

(2π~)3N

m√
2mE

A3N(R)

=
1

N !

V N

(2π~)3N

m√
2mE

A3N(
√

2mE).

Here V3N(R) and A3N(R) denote the volume and the surface area of the 3N -
dimensional sphere of radius R, respectively. Hence from Eq. 3.14 we can see
that

ω(E) =
1

N !

V N

(2π~)3N

m√
2mE

2π3N/2

Γ
(

3N
2

)√2mE
3N−1

=
1

N !Γ
(

3N
2

) 1

E

[
V

(
mE

2π~2

) 3
2

]N
.

When considering a small energy interval [E−∆, E] rather than a completely
fixed energy E, the partion function becomes

ω∆(E) =
1

N !

∫
d3Np d3Nq

(2π~2)3N

[
Θ

(
E −

3N∑
i=1

p2
i

)
−Θ

(
3N∑
i=1

p2
i − (E −∆)

)]

=
1

N !

V N

(2π~2)3N

∫
d3NpΘ(

√
2mE − |p|)

− 1

N !

V N

(2π~2)3N

∫
d3NpΘ(|p| −

√
2m(E −∆))

= V3N(
√

2mE)− V3N(
√

2m(E −∆))

=
1

N ! · N
2
Γ
(

3N
2

) [V ( 1

2π~2

) 3
2

]N {
(2mE)3N/2 − (2m[E −∆])3N/2

}
,

(3.18)

where in the last step Eq. 3.13 was used.
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Figure 3.8: Momentum quantum numbers of a single particle. The quantum
numbers form a rectangular lattice in momentum space with 2π~/a1, 2π~/a2,
and 2π~/a3 as its lattice constants.

3.5 Quantum mechanical case

Let us now consider the quantum mechanical analogue of the ideal gas dis-
cussed in the previous section, with the additional simplification that we take
the constituent particles to be distinguishable. Then the wave function ψi of
an energy eigenstate for the i-th particle satisfies the Schrödinger equation

− ~2

2m
∆ψi(x) = Eiψi(x),

where x and Ei denote the position in ordinary three-dimensional space and
the particle energy, respectively. We assume that the gas is in a rectangular
box with side lengths a1, a2, and a3, and that we have periodic boundary
conditions, so that

ψ(x1, x2, x3) = ψi(x1 + a1, x2, x3) = ψi(x1, x2 + a2, x3) = ψi(x1, x2, x3 + a3).

Then, as the reader should check for themselves, the ψi are given by

ψi(x) =
1√
V
e

i
~pix,

where V is the volume and where

pi ∈
{

2π~
(
n1

a1

,
n2

a2

,
n3

a3

) ∣∣∣∣ ni ∈ Z
}
. (3.19)

Hence the quantum numbers of the particle momentum form a lattice in
momentum space, as is illustrated by Fig. 3.8. But now the wave functions
ψ of the energy eigenstates of the N particles can be written in the form

ψ(x) =
N∏
i=1

ψi(x) =
N∏
i=1

1√
V
e

i
~pix,

where of course all the pi must satisfy Eq. 3.19, so that altogether the mo-
mentum quantum numbers of the ideal gas may be viewed as a lattice L in
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Figure 3.9: Counting states. In order to obtain the partition function, one
has to count the number of points of the lattice formed by the momentum
quantum numbers that lie in the spherical shell for energies between E −∆
and E. For simplicity only two dimensions are shown.

the 3N -dimensional momentum space. Hence we might say the state density
in momentum space is just

1 state

/[(
2π~
a1

)(
2π~
a2

)(
2π~
a3

)]N
= 1 state

/
(2π~)3N

V N
. (3.20)

From the discussion of Sect. 3.3 it is clear that the partition function ω∆(E)
equals the number of energy eigenstates with energies between E − ∆ and
E. Hence we obtain the partition function by counting the number of lattice
points of L that lie in a spherical shell with radii between

√
2m(E −∆) and√

2mE (cf. Fig. 3.9).

Counting this number will in general be rather difficult. However, in the
limit of a large box (i.e. for 2π~/ak � 1), the error made by assuming
that the state density is continuous will be negligibly small. Thus we may
compute the number of states by multiplying the density given in Eq. 3.20
with the volume of the spherical shell,

ω∆(E) =
V N

(2π~)3N

[
V3N(
√

2mE)− V3N(
√

2m(E −∆))
]

=
1

3N
2

Γ
(

3N
2

) [V ( 1

2π~2

) 3
2

]N {
(2mE)3N/2 − (2m[E −∆])3N/2

}
.

(3.21)

But (apart from the factor 1/N ! missing as we have considered distinguish-
able particles) this is exactly the result we got at the end of Sect. 3.4.2.
Accordingly, the choice for the scaling factor advocated in Eq. 3.10 has been
a wise one, as any other value for this factor would have resulted in an in-
consistency between the classical and the quantum mechanical treatment.
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Figure 3.10: Derivation of Stirling’s approximation. lnN ! may be viewed as
the area of rectangles whose height is given by lnn, where n runs from 1 to
N . This area can be compared to that of the natural logarithm.

3.6 Stirling’s approximation

In statistical physics, factors involving some factorial crop up on a regular
basis, and as we shall see throughout the following sections, it is frequently
necessary to take their logarithm. We might therefore ask whether there is
some approximation which simplifies such logarithmic factors.

Due to the large numbers involved, at least for macroscopic systems such
an approximation does in fact exist. It is generally known as Stirling’s ap-
proximation and can be stated in the following way:

Theorem 17 (Stirling’s approximation) Let N be a large positive inte-
ger. Then the logarithm of N ! may be approximated by

lnN ! ≈ N lnN −N +O(lnN).

Proof: The logarithm of N ! may be written as

lnN ! = ln

(
N∏
n=1

n

)
=

N∑
n=1

lnn,

where the sum on the right hand side can be regarded as the area of the
N rectangles of side-lengths 1 and n with n = 1, 2, . . . , N . But then from
Fig. 3.10 we see that lnN ! must fulfil the two relations

lnN ! >
∫ N

1

lnx dx = [x lnx− x]N1 = N lnN −N + 1

lnN ! 6
∫ N+1

1

lnx dx = [x lnx− x]N+1
1 = (N + 1) ln(N + 1)− (N + 1) + 1

Hence we get

N lnN −N + 1 6 lnN ! 6 N lnN −N +N ln
N + 1

N
+ ln(N + 1). (3.22)
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For large N we may expand ln((N + 1)/N) to first order, so that

N ln
N + 1

N
= N

{
N + 1

N
− 1 +O

((
N + 1

N
− 1

)2
)}

= N

{
1

N
+O

(
1

N2

)}
= 1 +O(N−1).

Inserting this result into Eq. 3.22, we obtain

N lnN −N +O(1) 6 lnN ! 6 N lnN −N +O(N−1) +O(lnN),

from which we can derive lnN ! = N lnN −N +O(lnN). (QED)

The reader is strongly encouraged to memorize Stirling’s approximation. Per-
haps this task can be accomplished more easily, if they note that it just as-
serts that lnN is approximately equal to the value of the anti-derivative of
the natural logarithm at N .

3.7 Macroscopic limit and thermostatic en-

tropy

Evidently, the precise form of the distribution function of a given system
depends on the geometry, the boundary conditions, and so forth. However,
these effects will vanish for macroscopic systems and thus can be discarded.
Hence for such systems the bulk behavior is governed by the substance un-
der consideration only, which clearly forms the basis for the bulk properties
known from thermodynamics (such as pressure or energy).

Broadly speaking, concerning these bulk properties there are two main
classes: Either a quantity depends on the amount of matter present or it
doesn’t. But let us be a little bit more precise about this. An extensive
quantity is proportional to the particle number N , i.e. it is of the order
O(N). Examples would be the volume V , the energy E, and of course N
itself. From a formal point of view, extensive quantities pose a problem, as
in the limit of infinitely many particles they will diverge and hence possess
no well-defined limit.

One gets rid of this annoyance by considering specific quantities, which
are the ratio of extensive quantities. Here, as both the nominator and the
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denominator scale like N , the existence of a proper limit is ensured. For
example, instead of V one may consider the specific volume v = V/N or the
(particle) density n = v−1 = N/V , and instead of E one may discuss the
energy per particle, e = E/N , or the energy density ε = E/V .

More generally, quantities which are independent of the amount of matter
are called intensive. Thus it ought to be clear that while every specific must
be an intensive quantity, the converse cannot be correct (temperature may
serve as a counter-example).

As an additional bit of terminology we note that the process of letting
the extensive quantities go towards infinity so that the specific quantities
have a well-defined limit is called macroscopic or thermodynamic limit. It is
precisely this limit that enables us to derive formulae describing the everyday
world of macroscopic objects, as we shall see in due course.

We may now introduce the first quantity known from thermodynamics,
which is also a further example of an extensive quantity.

Definition 25 The (thermostatic) entropy S of a microcanonical ensemble
is defined as

S(E) = kB lnω∆(E), (3.23)

where kB and ω∆ are an appropriately chosen constant5 and the partition
function for the case of slightly variable energies, respectively.

Before making a few comments on this definition, as an example we compute
the entropy of the ideal gas. Here, Eq. 3.21 together with a prefactor 1/N !
for indistinguishable particles yields

ω∆(E) =
1

3N
2

Γ
(

3N
2

) [V ( 1

2π~2

) 3
2

]N {
(2mE)3N/2 − (2m[E −∆])3N/2

}
.

But for a sufficiently small ∆ we may use the approximation

(2mE)3N/2 − (2m[E −∆])
3N
2 ≈ 3N

2
E

3N
2
−1∆,

and we obtain

ω∆(E) =
∆

N ! Γ
(

3N
2

) 1

E

[
V

(
mE

2π~2

) 3
2

]N
.

5It will turn out to be the Boltzmann constant.
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From this we may compute the corresponding entropy:

S(E, V ) = kB lnω∆(E) = kB ln

 ∆

N ! Γ
(

3N
2

) 1

E

[
V

(
mE

2π~2

) 3
2

]N
= kB

{
ln ∆− lnN !− ln Γ

(
3N

2

)
− lnE

+N lnV +
3N

2
lnE +

3N

2
ln

m

2π~2

}
As we are interested in the macroscopic limit, we may get rid of the factorial
by means of the Stirling approximation,

lnN ! ≈ N lnN −N.

Similarly, as Γ(N) = (N − 1)!, it follows that for even N

ln Γ

(
3N

2

)
= ln

(
3N

2
− 1

)
! ≈

(
3N

2
− 1

)
ln

(
3N

2
− 1

)
−
(

3N

2
− 1

)
≈
(

3N

2

)
ln

(
3N

2

)
−
(

3N

2

)
holds valid. However, due to the conutinuity of the gamma function, the
same approximation can be used for odd N as well, so that we get

S(E, V ) ≈ kB

{
ln ∆−N lnN +N − 3N

2
ln

3N

2
+

3N

2
− lnE

+N lnV +
3N

2
lnE +

3N

2
ln

m

2π~2

}
.

Using the specific quantities v = V/N and e = E/N we thus obtain

S(E, V ) = kB

{
ln ∆−N lnN +N − 3N

2
ln

3

2
− 3N

2
lnN +

3N

2
− lnN

− ln e+N lnN +N ln v +
3N

2
lnN +

3N

2
ln e+

3N

2
ln

m

2π~2

}
= kBN

{
5

2
+ ln

[
v
( me

3π~2

)3/2
]}

+ kB ln ∆− kB lnN − kB ln e.
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As ln ∆, lnN , and ln e grow more slowly than N , one can see immediately
that in the macroscopic limit the entropy of the ideal gas will scale like N , so
that it constitutes an extensive quantity. The corresponding specific entropy
sN , must then be a specific quantity, and indeed it has a well-defined limit s:

s(e, v) = lim
N−→∞

sN

(
E

N
,
V

N

)
= lim

N−→∞

S(Ne,Nv)

N

= kB

{
5

2
+ ln

[
v
( me

3π~2

)3/2
]}

+ kB lim
N−→∞

ln ∆

N

− kB lim
N−→∞

lnN

N
− kB lim

N−→∞

ln e

N
.

But the last three terms on the right hand side vanish, and thus we arrive at
the result

s(e, v) = kB

{
5

2
+ ln

[
v
( me

3π~2

)3/2
]}

, (3.24)

which depends on specific quantities only. In particular, one should note that
there is no dependence on the rather arbitrary parameter ∆ any longer.

As promised above, we may now comment on our definition of the entropy:

(i) Eq. 3.23 is just a definition, and in fact, in due course we shall meeet
other definitions of entropy. Fortunately, all these definitions will be
consistent with each other in the case of equilibrium systems.

(ii) From the previous remark it should be clear that the equivalence (or
at least consistency) of the thermostatic entropy with the one known
from thermodynamics remains to be shown.

(iii) The value of the constant kB hasn’t been fixed yet. We will make up
for that as soon as we have introduced the concept of temperature.

For the ideal gas, the entropy turned out to be extensive, so that we could
introduce a specific entropy in a meaningful way. Now the question is, of
course, whether that perhaps was just a happy coincidence. That this is not
the case and that rather on the contrary the entropy is extensive for a broad
class of Hamiltonians, is asserted by the following theorem:

Theorem 18 If the Hamiltonian of a microcanonical ensemble with N par-
ticles is given by

H(p, q) =
N∑
i=1

p2
i

2m
+
∑
i<j

U(qi − qj),
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where for U the relation
U(−q) = U(q)

holds valid, then

sN(e, v) ≡ 1

N
S(eN, vN)

has a well defined limit

s(e, v) = lim
N−→∞

sN(e, v),

which doesn’t depend on the thickness ∆ of the energy shell considered. Hence
the specific entropy exists for the given Hamiltonian.

Proof: We don’t attempt to give the proof, which is rather technical.
Instead, we refer the interested reader to Chapter 3 of [9], where the thermo-
dynamic limit of the entropy is discusssed from an even more general point
of view. (QED)

3.8 Canonical Ensemble

So far, we have contented ourselves with microcanonical ensembles, i.e. with
systems that have a fixed energy, volume, and particle number. However,
under many circumstances these conditions will not be present. Imagine, for
example, an experiment with no thermal isolation. Here, clearly, an energy
flow to or from the surroundings will occur, spoiling energy conservation.

Hence, an extension of our formalism is called for. While this may sound
like a piece of bad news, things turn out to surprisingly positive: Rather
than rendering the computations more difficult, our generalized formalism
will faciliate them.

Throughout the following sections we will investigate systems where en-
ergy, volume, and particle number may vary. In this section we shall start by
allowing energy fluctuations, but keeping both volume and particle number
fixed. In the next section, in addition we will allow for a variable volume.
Finally, in Sect. 3.13 we will consider systems with varying energy and par-
ticle number. In all cases we shall assume that the system to be considered
is placed in a very large second system, where both systems together form a
microcanonical ensemble, and in addition we make the assumption that we
may neglect the interaction energy between the two systems.
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Figure 3.11: Two canonical ensembles, i.e. systems with fixed volume and
particle number, but variable energy. Together the two systems are assumed
to form a microcanonical ensemble.

Actually, the recipe used for obtaining the respective probability den-
sities6 will be the same for every system under consideration. It may be
summarized as follows:

1. Write the probability density of the first system as an integral over that
of the combined system, where the integration is carried out over all
possible states of the second (large) system.

2. Expand the entropy of the second system, which occurs in the inte-
grand, to first order.

3. Give appropriate names (such as temperature or pressure) to the first-
order derivatives of this expansion, and thus obtain the desired proba-
bility density.

4. Convince yourself that the name given in the previous step was well-
chosen, i.e. identify the defined quantities with quantities known from
thermodynamics.

We will elaborate on each of these steps in the discussion to come. But first
things first. Therefore, let us focus on systems with varying energy, but fixed
volume and particle number. Such systems are called canonical ensembles.
We assume that there are two canonical ensembles, which together constitute
a microcanonical ensemble (cf. Fig. 3.11). The interaction energy between
the two systems is taken to be negligible, which is motivated by the fact
that whereas the energies of the two systems are extensive quantities, the
interaction just depends on the common surface area. Hence the Hamiltonian
of the composite system is given by

H = H1 +H2 +H12 ≈ H1 +H2, (3.25)

6Henceforth we shall speak of probability densities, even though dimensional quantities
are considered.
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where H1, H2, and H12 denote the Hamiltonian of the first system, the second
system, and the interaction, respectively. Analogously, for the corresponding
energies we obtain

E = E1 + E2 + E12 ≈ E1 + E2.

Before going on, we need to give a more precise meaning to the notion of a
“very large system”. This is accomplished by the definition of reservoirs:

Definition 26 Let there be two systems 1 and 2 with extensive quantities
A(1), A(2), . . . , A(M). Then we call system 2 a reservoir of the A(k) if

(i) system 2 is in equilibrium,

(ii) the relation
A(k) ≡ (N1 +N2)a

(k) ≈ N2a
(k)

holds valid for all A(k) (i.e. system 1 can be neglected as compared to
system 2), and

(iii) the specific entropy of system 2 can be approximated as

s2

(
A(1) − A(1)

1

N2

, . . . ,
A(M) − A(M)

1

N2

)

≈ s2

(
A(1)

N2

, . . . ,
A(M)

N2

)
−

M∑
k=1

∂s2

∂(A(k)/N2)

(
A(1)

N2

, . . . ,
A(M)

N2

)
· A

(k)
1

N2

+O

(
1

N2
2

)
.

In particular, if one of the A(k) is the energy, system 2 is known as a heat
bath.

The reader might have an objection concerning this definition: We introduced
the entropy in the context of microcanonical ensembles, and whereas it is
true that the total system is a microcanonical ensemble, its two subsystems
definitely are not. So does it make sense to speak of the entropy of system 2?

The answer is yes. To see this, the reader should remember that the
entropy basically was defined as a logarithm of a sum or integral over ac-
cessible states, and hence is fixed by the Hamiltonian of the system under
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consideration. Or to put it more bluntly, entropy is just a definition which
we can apply to any system which possesses a Hamiltonian. (Whether the
application is a meaningful one, is a completely diffferent question.)

Actually, condition (3) of Def. 26 may be restated in terms of the entropy
of system 2:

S2(A
(1) − A(1)

1 , . . . , A(M) − A(M)
1 ) = N2s2

(
A(1) − A(1)

1

N2

, . . . ,
A(M) − A(M)

1

N2

)

≈ N2

{
s2

(
A(1)

N2

, . . . ,
A(M)

N2

)
−

M∑
k=1

∂s2

∂(A(k)/N2)

(
A(1)

N2

, . . . ,
A(M)

N2

)
· A

(k)
1

N2

+O

(
1

N2
2

)}

= S2(A
(1), . . . , A(M))−

M∑
k=1

∂S2

∂A(k)
(A(1), . . . , A(M)) · A(k)

1 +O(N−1
2 ).

(3.26)

We can now use the recipe stated above in order to investigate an equilibrium
system with variable energy, but fixed volume and particle number, which is
placed in a heat bath. Such systems are called canonical ensembles. We’ll
go through the recipe step by step for a system with a non-countable set of
states. However, everything remains correct for systems with discrete states,
as the reader should check for themselves.
step 1:
Let system 1 and 2 be the system under consideration and the heat bath, re-
spectively. As we assume the combined system is a microcanonical ensemble,
we may write down its phase space density ρ immediately,

ρ(p, q) =
1

ω(E)
δ(E −H(p, q)),

and employing Eq. 3.25 we obtain

ρ(p, q) =
1

ω(E)
δ(E −H1(p1, q1)−H2(p2, q2)). (3.27)

Now one gets the corresponding phase space density ρ1 of system 1 by inte-
grating ρ over the phase space Γ2 of system 2,

ρ1(p1, q1) =

∫
dΓ2ρ(p, q) =

∫
dΓ2

1

ω(E)
δ(E −H1(p1, q1)−H2(p2, q2)).
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But 1/ω(E) is a constant and hence may be drawn in front of the integral.
Thus it follows that

ρ1(p1, q1) =
1

ω(E)

∫
dΓ2 δ(E −H1(p1, q1)−H2(p2, q2))

=
1

ω(E)
· ω2(E −H1(p1, q1)),

where in the last step we have just used the definition of the microcanonical
partition function, Eq. 3.12. Together with Def. 25 this leads to

ρ1(p1, q1) =
1

ω(E)
· exp

(
− 1

kB

S2(E −H1(p1, q1))

)
. (3.28)

step 2:
The total energy E may be regarded as the value of the Hamiltonian of
the combined system. Because system 2 constitutes a heat bath, we may
therefore use Eq. 3.26 to expand the entropy occuring in Eq. 3.28:

S2(E −H1(p1, q1)) ≈ S2(E)− ∂S2(E)

∂E
·H1(p1, q1) +O(N−1

2 ).

In the thermodynamic limit we obtain

ρ1(p1, q1) =
1

ω(E)
· exp

(
− 1

kB

{
S2(E)− ∂S2(E)

∂E
·H1(p1, q1)

})
. (3.29)

step 3:
Let us now give the first-order derivative of Eq. 3.29 a nice and decent name.

Definition 27 The temperature T of a heat bath with entropy S and energy
E is given by

1

T
≡ ∂S(E)

∂E
.

This definition is not particularly intuitive, but we shall show in the next
step that it makes sense, and in addition we will generalize the concept of
temperature to systems which aren’t heat baths.
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At any rate, inserting the temperature into Eq. 3.29 yields

ρ1(p1, q1) =
1

ω(E)
· exp

(
−S2(E)

kB

− 1

kBT
·H1(p1, q1)

)
=
e−S2(E)/kB

ω(E)
· e−H1(p1,q1)/kBT .

Here e−S2(E)/kB/ω(E) is a constant, the value of which we need not compute,
as we know that ρ1 must be normalized,

∫
dΓ1 ρ1 = 1. Hence we have proved

the following theorem:

Theorem 19 The phase space density ρ of a canonical ensemble with a con-
tinuum of states is given by

ρ(p, q) =
1

Z(T )
e−H(p,q)/kBT ,

where T denotes the temperature of the surrounding heat bath and

Z(T ) ≡
∫

dΓ e−H(p,q)/kBT

is the canonical partition function.

As stated above, the reasoning which led to the preceding theorem remains
valid for discrete states as well. We therefore get

Theorem 20 Consider a canonical ensemble with discrete microstates si,
i ∈ N. Then the probability P (sk) of the state sk has the value

P (sk) =
1

Z(T )
e−H(sk)/kBT ,

where T is the temperature of the surrounding heat bath, H(sk) denotes the
value of the Hamiltonian for sk, and

Z(T ) ≡
∑
si

e−H(si)/kBT

is the canonical partition function.
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In Theorems 19 and 20 we have made our first acquaintance with the factor
1/kBT . It is of such importance that introducing a special notation for it is
an extremely reasonable idea.

Definition 28 The factor 1/kBT is abbreviated as β,

β ≡ 1

kBT
.

step 4:
It remains to be shown that the temperature as defined by Def. 27 is con-
sistent with the notion of temperature known from phenomenological ther-
modynamics. To do this, we start by checking that all is well for the case of
a heat bath consisting of an ideal gas. Here from Eq. 3.7 we may infer that
the entropy can be written as

S(E) =
3

2
NkB lnE + terms not depending on E,

so that the temperature is given by

1

T
=
∂S(E)

∂E
=

3

2

NkB

E
. (3.30)

Hence we recover the well-known relation E = 3
2
NkBT between inner energy

and temperature of the ideal gas. This clearly makes our choice for the
definition a plausible one.

Now let us take a more general point of view. So far, we have defined
temperature only for heat baths; but we may extend the definition to cover
other systems in equilibrium as well:

Definition 29 Consider an equilibrium system with an entropy S, and let
Ē denote its most probable energy. Then the temperature of the system is
defined as the inverse of the derivative of S with respect to the energy E at
Ē,

1

T
≡ ∂S(Ē)

∂E
.

Note that this is consistent with Def. 27, as in the case of a heat bath, the
energy can be assumed to remain constant and thus by definition may be
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regarded as the most probable energy of the system. In addition, it should
be pointed out that as a derivative of an extensive with respect to another
extensive quantity, temperature must be an intensive quantity.

From phenomenological thermodynamics we know that if two systems are
in equilibrium they have the same temperature, and we will now proceed to
show that this holds valid for our definition of temperature.

To this end consider a microcanonical ensemble composed of two canon-
ical ensembles 1 and 2, none of which needs to be a heat bath. Then the
probability density ρ1(E1) of the energy of system 1 is just the probability
density of the Hamiltonian of that system,

ρ1(E1) = ρH1(E1) =

∫
dh1ρH1(h1)δ(h1 − E1) = 〈δ(H1 − E1)〉 (3.31)

Assume we are dealing with indistinguishable particles in d dimensions. Then
at first sight, the differential “phase space volume element” of the combined
system should be

dΓ =
1

(N1 +N2)!

dd·N1p1 dd·N1q1 dd·N2p2 dd·N2q2
(2π~)d·(N1+N2)

, (wrong!)

because after all we have (N1 + N2)! indistinguishable particles. But the
factorial in this expression arose from the fact that states which are obtained
by merely exchanging particles may be identified with each other and thus
must be counted once only. However, when discussing particles in two sepa-
rate systems, one normally doesn’t consider particle exchanges between the
systems, so that the necessity of identifying states connected with each other
via such exchanges does not arise.

Hence, as particle exchanges within the individual systems still have to
be taken care of, the phase space volume element to be used is given by

dΓ1 dΓ2 =
1

N1!N2!

dd·N1p1 dd·N1q1 dd·N2p2 dd·N2q2
(2π~)d·(N1+N2)

. (3.32)
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But then from Eq. 3.31, Eq. 3.27, and Theorem 4 we can infer that ρ1(E1)
may be written as

ρ1(E1) = 〈δ(H1(p1, q1)− E1)〉 =

∫
dΓ1 dΓ2 ρ(p, q)δ(H1(p1, q1)− E1)

=

∫
dΓ1 dΓ2

1

ω(E)
δ(E −H1(p1, q1)−H2(p2, q2))δ(H1(p1, q1)− E1)

=

∫
dΓ1 dΓ2

1

ω(E)
δ(E − E1 −H2(p2, q2))δ(H1(p1, q1)− E1),

where in the last step we used the fact that δ(H1−E1) is non-zero for E1 = H1

only. As the total energy E is a constant, we may draw the factor 1/ω(E) in
front of the integral, and together with the definition of the microcanonical
partition function we obtain

ρ1(E1) =
1

ω(E)

∫
dΓ1 δ(E1 −H1(p1, q1))

∫
dΓ2 δ(E − E1 −H2(p2, q2))

=
1

ω(E)
ω1(E1)ω2(E − E1).

Accordingly, the derivative of ρ1(E1) is given by

ρ′1(E1) =
1

ω(E)
(ω′1(E1)ω2(E − E1)− ω1(E1)ω

′
2(E − E1)) .

The most probable energy Ē1 of system 1 obviously must fulfill the relation
ρ′1(Ē1) = 0, so that

ω′1(Ē1)

ω1(Ē1)
=
ω′2(E − Ē1)

ω2(E − Ē1)
.

Due to energy conservation E = E1 + E2 and thus Ē2 = E − Ē1. Hence
together with the formula (lnω)′ = ω′/ω and the definition of the entropy
we get

∂S1(Ē1)

∂Ē1

= kB
∂ lnω1(Ē1)

∂Ē1

= kB
ω′1(Ē1)

ω1(Ē1)
= kB

ω′2(Ē2)

ω2(Ē2)
=
∂S2(Ē2)

∂Ē2

,

and hence from Def. 29 we may conclude:

Theorem 21 Two canonical ensembles which are in equilibrium with each
other (so that together they constitute a microcanonical ensemble) have the
same temperature.
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Figure 3.12: One-dimensional array of non-interacting spins in a homoge-
neous magnetic field B. While the spins may point in any direction, only the
components parallel to B are relevant for the Hamiltonian.

Thus our definition of temperature is a reasonable one, and Eq. 3.30 shows
that it coincides with that of the empirical temperature measured with nor-
mal thermometers. The Boltzmann constant kB may be fixed by demanding
that temperature is measured in Kelvin (i.e. the appropriate SI unit). In
that case kB has the value

kB ≈ 1.38× 10−23 J/K ≈ 8.62× 10−5 eV/K.

In thermodynamics, instead of kB one often uses the ideal gas constant R,
which is defined as the product of the Boltzmann constant and Avogadro’s
number NA,7

R ≡ kBNA ≈ 1.38× 10−23 J/K · 6.022× 1023 mol−1 ≈ 8.31
J

K ·mol
.

To conclude this section, we note that if the entropy is a monotonously
increasing function of energy, temperature is sctrictly non-negative. While
this is true in everyday life, one may devise systems where this condition
is not met, so that negative temperatures may arise. We will discuss an
example for this in the following section.

3.9 Example: spins in a magnetic field

As an example of the formalism introduced in the previous section, we con-
sider a one-dimensional lattice of N non-interacting electron spins in an ho-
mogenous external magnetic field B, as depicted in Fig. 3.12. From quantum
mechanics we know that for such a system the operator µ̂ corresponding to
the magnetic moment is given by

7The reader might note the first three digits of the numerical factor of R (i.e. 831) are
just the mirror image of the first three digits of that of kB (i.e. 138). While this is sheer
coincidence, of course, it may nonetheless serve as a mnemonic.
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µ̂ = − e

me

N∑
i=1

ŝi,

where me and e denote the electron mass and charge magnitude, respectively.
The spin operator ŝ for each electron has the form

ŝ =
~
2

(
σ̂x σ̂y σ̂z

)
≡ ~

2
σ̂

with the well-known Pauli matrices σ̂x,y,z. Accordingly the system is de-
scribed by the Hamiltonian

Ĥ = µ̂B = − e~
2me

N∑
i=1

σ̂iB.

Now without loss of generality we may assume that B points in the z direc-
tion, Bz = B, so that

Ĥ =
e~

2me

N∑
i=1

σ̂z,iB.

As σ̂z has the form

σ̂z =

(
1 0
0 −1

)
so that its eigenvalues are -1 and +1, it is clear that for the case of just
one spin, from the point of view of statistical mechanics one may replace the
quantum mechanical Hamiltonian Ĥ = (e~/2me)σ̂z by the classical Hamilto-
nian H = (e~/2me)σ with σ ∈ {−1, 1}. However, as all the spin operators ŝz
commute, the transition from one to N spins adds no quantum mechanical
nature, and the system containing N spins can be replaced by a classical
system possessing the Hamiltonian

H =
e~

2me

N∑
i=1

σi, (3.33)

where again σi ∈ {−1, 1}. To faciliate the notation, let us define h ≡ e~/2me.
Then it is easy to see that the possible energies E of the system under
consideration must lie in the range

−Nh 6 E 6 Nh,
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which implies that the energy is bounded from above. Hence we should
expect some surprise along the way. But first let us introduce the quantities
N+ and N− denoting the number of spins pointing upward and downard,
respectively. Their difference obviously equals the sum M of all σi,

M ≡
N∑
i=1

σi = N+ −N−,

and their sum just corresponds to the number of spins, N+ +N− = N . Now
as each spin can adopt one of two states, as the spins are distinguishable,
and as there is a one-to-one correspondence between M and N+, one may
conclude from elementary combinatorics that the number ω(M) of states
with a given M has the value

ω(M) =

(
N
N+

)
=

N !

N+!(N −N+)!
.

Using n+ ≡ N+/N and employing the Stirling approximation, we thus get

lnω(M) ≈ N lnN −N −N+ lnN+ +N+

− (N −N+) ln(N −N+) + (N −N+)

= N lnN −N −Nn+(lnN + lnn+) +Nn+

−N(1− n+)(lnN + ln(1− n+)) +N(1− n+)

= −N(n+ lnn+ + (1− n+) ln(1− n+)).

We may express n+ by means of N and M as

n+ =
N+

N
=
N+ +N− +N+ −N−

2N
=
N +M

2N
,

and from Eq. 3.33 we may see that the energy E of the system is given by

E = h
N∑
i=1

σi = h(N+ −N−) = hM.
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Figure 3.13: Entropy per spin as a function of energy per spin for the one-
dimensional spin lattice.

But the logarithm of ω(M) is just the entropy divided by the Boltzmann
constant. Hence, putting all together and introducing the energy e per spin,
e ≡ E/N , we arrive at

S(E) = kB lnω(M(E))

= −NkB

(
M(E) +N

2N
ln
M(E) +N

2N

+

(
1− M(E) +N

2N

)
ln

(
1− M(E) +N

2N

))
= −1

2
NkB

((
1 +

e

h

)
ln
(
1 +

e

h

)
+
(
1− e

h

)
ln
(
1− e

h

))
.

Evidently the entropy is extensive (as should have been expected), and the
entropy s per spin has the value

s(e) ≡ S(E)

N
= −1

2
kB

((
1 +

e

h

)
ln
(
1 +

e

h

)
+
(
1− e

h

)
ln
(
1− e

h

))
.

Now from Def. 29 we can obtain the β = 1/kBT of the system,

β =
1

kB

dS(E)

dE
=

1

kB

ds(e)

de
=

1

2h
ln

1 + e/h

1− e/h
,

and thus its temperature,

T =
h

kB

ln
1− e/h
1 + e/h

.

In Figs. 3.13 and 3.14 the entropy per spin and the temperature are plotted
as a function of the energy per spin. One sees that for negative energies
the temperature actually becomes negative, a perhaps somewhat unexpected
result.

The reader now may wonder whether or not to worry about this. After
all, from everyday experience they must have got the impression that tem-
perature is strictly non-negative, after all. There are various replies to this:
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Figure 3.14: Temperature as a function of the energy per spin for the one-
dimensional spin lattice.

First, one should bear in mind that Def. 29 is, well, just a definition. Hence
from a purely formal point of view you might just shrug your shoulders, say-
ing if one makes up strange definitions, one shouldn’t wonder about their
outcome.

Second, the notion of positive energies is based on heat baths and the
like, in which surely the energy is not bounded. However, this condition is
not fulfilled in the system just discussed.

Finally, looking at the Boltzmann factor, one notes that a negative energy
implies that the probability of some state increases with its energy. Such an
inverted population constitutes one of the key ingredients for any laser.

3.10 Example: Maxwell velocity distribution

As a second example of a canonical ensemble let us consider the momentum
distribution of a classical gas of N interacting particles of mass m. However,
before doing so, we briefly consider a general random vector X with some
probability distribution ρX (x). Then from Theorem 4 we obtain for the
mean of δ(x−X):

〈δ(x−X)〉 =

∫
dNx δ(x− x′)ρX (x′) = ρX (x).

Thus we have proved the following theorem (cf. Eq. 3.31):

Theorem 22 Let X be some random variable. Then the probability density
ρX (x) of X can be expressed as

ρX (x) = 〈δ(x−X)〉 .

We may now apply this result to the classical gas of interacting particles.
The corresponding Hamiltonian is given by

H(r1, . . . , rN ,p1, . . . ,pN) =
N∑
i=1

p2
i

2m
+ φ(r1, . . . , rN),
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where r and p denote the position and the momentum of the particles, and
where φ is the interaction potential. As the phase space density ρΓ has the
form ρΓ = e−H/kBT/Z, using Theorems 22 and 4 we arrive at

ρpk
(pk) =

∫
dΓ′ δ(pk − p′k)ρΓ(r′1, . . . , r

′
N ,p

′
1, . . . ,p

′
N)

=
1

Z

∫
d3r′1 . . . d

3r′Nd3p′1 . . . d
3p′N

(2π~)3N
δ(pk − p′k)·

· exp

{
− 1

kBT

(
N∑
i=1

p′2i
2m

+ φ(r′1, . . . , r
′
N

)}

=
1

Z
e−p2

k/2mkBT

∫ ∏N
i=1
i6=k

d3p′i

(2π~)3N
e−p′2

i /2mkBT ·

·
∫

d3r′1 . . . d
3rNe

−φ(r′1,...,r′N )/kBT

= Ce−p2
k/2mkBT ,

where the constant C follows from the normalization condition for ρpk
, i.e.

from

1
!
=

∫
d3p ρpk

(p) = C

∫
d3p e−p

2/2mkBT .

If we set K ≡ 1/2mkBT , use e−Kp
2

= e−K(−p)2 , and employ Footnote 1 on
page 43, we may compute the integral on the right hand side as follows:∫

d3p e−p
2/2mkBT =

∫
d3p e−Kp

2

= 4π

∫ ∞

0

dp p2e−Kp
2

= −4π
∂

∂K

∫ ∞

0

dp e−Kp
2

= −2π
∂

∂K

∫ ∞

−∞
dp e−Kp

2

= −2π
∂

∂K

(√
π

K

)
= π3/2K−3/2 = (2πmkBT )3/2.

We thus find that C = (2πmkBT )−3/2. Obviously, the distribution doesn’t
depend on the specific particle chosen. Hence we may drop the subscript pk

and obtain

ρ(p) =
1

(2πmkBT )3/2
e
− p2

2mkBT .
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Figure 3.15: Maxwell velocity distribution ρ(v) for a classical electron gas at
various temperatures T . The gas is assumed to be sufficiently dilute so that
electron-electron interactions can be neglected.

This is known as the Maxwell momentum distribution. We leave it for the
reader to show that the corresponding distribution of the absolute value of
the momentum is given by

ρ(p) = 4πp2ρ(p) =

√
2

π

(
1

mkBT

)3/2

p2e−p
2/2mkBT ,

so that the distribution of the particle velocity v = p/m must be of the form

ρ(v) =

√
2

π

(
m

kBT

)3/2

∗ v2 ∗ e−mv2/2kBT .

The velocity distribution is shown in Fig. 3.15 for the case of electrons at
various temperatures.

3.11 Example: Barometric formula

To conclude our discussion on canonical ensembles, let us turn to the deriva-
tion of the barometric formula describing the density of the atmosphere. As
(at least in this respect) the curvature of the Earth is negligibly small, we
may assume that concerning the potential, there is just a dependence on the
height z above the surface of the Earth. Correspondingly, for N particles of
mass m we obtain the relation

H(r1, . . . , rN ,p1, . . . ,pN) =
N∑
i=1

p2
i

2m
+

N∑
i=1

mgzi

for the Hamiltonian. Now we treat the surface below and the atmosphere
above the N particles under consideration as a heat bath, and in addition
we assume that the volume is constrained to some fixed value. Then we have
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a canonical ensemble, and with the aid of Theorem 22 we get for the height
distribution of the k-th particle that

ρzk
(z) = 〈δ(z − zk)〉

=
1

Z

∫
dΛδ(z − zk) exp

{
− 1

kBT

(
N∑
i=1

p2
i

2m
+

N∑
i=1

mgzi

)}
= Ce−mgz/kBT ,

where C is a constant the value of which can be computed from the normal-
ization condition

1
!
=

∫ ∞

0

dzρzk
(z) =

∫
dz Ce−mgz/kBT = C

kBT

mg
.

Again, the distribution doesn’t depend on the particle, so that we can drop
the index zk

. We thus obtain

ρ(z) =
mg

kBT
e−mgz/kBT .

Note that this formula may be used to measure heights by means of a barome-
ter: If the temperature is known, the height is just a function of the difference
between the atmospheric pressure at ground level and that at the height to
be measured.8

3.12 Canonical ensemble with variable vol-

ume

So far we have considered canonical ensembles with a fixed volume V only.
We now drop this assumption, so that it is reasonable to write the Hamilto-
nian and thus the entropy as a function of both energy and volume.

This raises the question whether introducing volume as an additional
coordinate is merely an act of convenience or of necessity. The answer is

8Niels Bohr proposed various other methods for measuring the height of a building
with a barometer. For example, one might drop the barometer from the top and measure
the time of flight. Alternatively, and perhaps more reliably, one might give it as a present
to the caretaker in return for the desired piece of information.



3.12. CANONICAL ENSEMBLE WITH VARIABLE VOLUME 89

Figure 3.16: Canonical ensembles with variable volume, i.e. systems where
energy and volume may vary, but where the particle number remains fixed.
The two systems together are supposed to form a microcanonical ensemble.

somewhat ambiguous. On the one hand, if you really compute the Hamilto-
nian in terms of the positions and moments of all particles, there is no need
for an additional coordinate. On the other hand, for example, in the case of
a gas contained in a box with a moveable piston this would mean that we
have to provide a complete microscopic description of the piston, which is of
course hardly possible.

Hence we introduce a volume-dependence of the Hamiltonian, if the state
of some part of the system (such as the piston mentioned in the previous
paragraph) can be fully described by specifying the volume of the system.
Thus it usually constitutes the part of the Hamiltonian due to work done
by or on the system. We will come back to this point at the beginning of
Chapter ??.

A system with fixed particle number but variable energy and volume
is called canonical ensemble with variable volume. Similarly to the case of
canonical ensembles, we consider two canonical ensembles with variable vol-
ume (henceforth called ’system 1’ and ’system 2’), which are in contact with
each other and together form a microcanonical ensemble of energy E and
volume V (cf. Fig. 3.16). The interaction energy between these two systems
is assumed to be negligible, i.e. the Hamiltonian of the composite systems is
given by

H = H1 +H2 +H12 ≈ H1 +H2,

so that in addition

E = E1 + E2 + E12 ≈ E1 + E2.
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Let us take system 2 to be a heat bath and volume reservoir. Then we know
from Def. 26 and Eq. 3.26 that the energies, volumes, particle numbers, and
entropies involved must fulfill the following conditions:

E ≡ (N1 +N2)e ≈ N2e

V ≡ (N1 +N2)v ≈ N2v

S2(E − E1, V − V1) ≈ S2(E, V )− ∂S2

∂E
(E, V ) · E1 −

∂S2

∂V
(E, V ) · V1

+O(N−1
2 )

(3.34)

In order to obtain the probability density ρ1 of system 1, we may now again
go through the four steps of the recipe advocated in Sect. 3.8:

step 1:
As stated above, there is nothing wrong with using additional variables.
We may therefore consider the probability density of both the phase space
coordinates and the two volumes V1 and V2. Furthermore, ρ1 can be written
as an integral of the probability density ρ of the combined systems over all
possible states of system 2, so that we get

ρ1(p1, q1, V1) =

∫
dΓ2

∫
dV2ρ(p1, q2,p2, q2, V1, V2). (3.35)

Here ρ(p1, q1,p2, q2, V1, V2) is given by

ρ(p1, q1,p2, q2, V1, V2) = ρ(p1, q1,p2, q2) · δ(V − V1 − V2),

which follows from the fact that the probability must be normalized and that
it must vanish for any V1 and V2 which do not add up to V .

For the probability density of system 1 we obtain

ρ(p1, q1,p2, q2, V1, V2) =
1

ω(E, V )
δ(E −H1(p1, q1, V1)−H2(p2, q2, V2))·

· δ(V − V1 − V2),

(3.36)
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where we have employed Eq. 3.12. The delta function δ(V − V1− V2) had to
be added in order to ensure that the total volume remains constant. Inserting
Eq. 3.36 into Eq. 3.35 yields

ρ1(p1, q1, V1) =
1

ω(E, V )

∫
dΓ2

∫
dV2 δ(E −H1(p1, q1, V1)−H2(p2, q2, V2))

· δ(V − V1 − V2)

=
1

ω(E, V )

∫
dΓ2δ(E −H1(p1, q1, V1)−H2(p2, q2, V − V2)

=
1

ω(E, V )
ω2(E −H1(p1, q1, V1), V − V1)

=
1

ω(E, V )
exp

{
kB lnω2(E −H1(p1, q1, V1), V − V1)

kB

}
=

1

ω(E, V )
exp

{
S2(E −H1(p1, q1, V1), V − V1)

kB

}
.

step 2:
The entropy S2 may be expanded by means of Eq. 3.34. One then gets

ρ1(p1, q1, V1) =
1

ω(E, V )
exp

{
1

kB

[
S2(E, V )− ∂S2

∂E
(E, V ) ·H1(p1, q1, V1)

− ∂S2

∂V
(E, V ) · V1 +O(N−1

2 )

]}
=
eS2(E,V )/kB

ω(E, V )
exp

{
1

kB

[
−∂S2

∂E
(E, V ) ·H1(p1, q1, V1)

− ∂S2

∂V
(E, V ) · V1 +O(N−1

2 )

]}
,

and thus in the thermodynamic limit

ρ1(p1, q1, V1) =
eS2(E,V )/kB

ω(E, V )
exp

{
1

kB

[
−∂S2

∂E
(E, V ) ·H1(p1, q1, V1)

− ∂S2

∂V
(E, V ) · V1

]}
.

(3.37)

step 3:
We know already that the derivative ∂S/∂E is just the temperature. This
leaves us with the task to identify ∂S/∂V with some thermodynamic quantity.
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However, as the dimension of the product of this derivative, temperature, and
volume must be that of an energy, it seems (correctly) that pressure divided
by temperature might be a good choice.

Definition 30 The thermodynamic pressure p of a heat bath and volume
reservoir with entropy S, energy E, and volume V is given by

p ≡ T
∂S(E, V )

∂V
.

We were careful to include the word “thermodynamic” in the definition, as it
remains to be shown that the quantity p thus introduced is consistent with
the pressure known from classical mechanics. We’ll worry about this in a
moment. First, we use Def. 30 and Eq. 3.37 to obtain

ρ1(p1, q1, V1) =
eS2(E,V )/kB

ω(E, V )
exp

{
− 1

kBT
[H1(p1, q1, V1) + pV ]

}
.

The value of the constant eS2(E,v)/kB/ω(E, V ) follows from the normalization
condition

∫
dΓ1

∫
dV1 ρ1 = 1. Accordingly we have derived the following

theorem:

Theorem 23 The probability density ρ of a canonical ensemble with variable
volume and a continuum of states is given by

ρ(p, q, V ) =
1

Z̃(T, p)
e−(H(p,q,V )+pV )/kBT ,

where T and p denote the temperature and pressure of the surrounding heat
bath and volume reservoir, and where

Z̃(T, p) ≡
∫

dΓ

∫
dV e−(H(p,q,V )+pV )/kBT

is the canonical partition function with variable volume.

Again, everything remains valid if one considers a system with discrete rather
than continuous states. We therefore get
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Theorem 24 Consider a canonical ensemble with variable volume possess-
ing the microstates (si, V ), i ∈ N. Then the probability P (sk, V ) of the state
(sk, V ) has the value

P (sk, V ) =
1

Z̃(T, p)
e−(H(sk,V )+pV )/kBT ,

where T and p are the temperature and pressure of the surrounding heat
bath and volume reservoir, H(sk, V ) denotes the value of the Hamiltonian
for (sk, V ), and

Z̃(T, p) ≡
∞∑
i=1

∫
dV e−(H(sk,V )+pV )/kBT

is the canonical partition function with variable volume.

step 4:
We still have to figure out the meaning of the thermodynamic pressure. To
this end, let us start with the ideal gas. Here, the entropy may be written as

S(E, V ) = NkB lnV + terms not depending on V ,

so that

p = T
∂S(E, V )

∂V
=
NkB

V
.

But this is just the equation of state, if we identify p with ordinary pressure,
as known from phenomenological thermodynamics. So at least in the case of
ideal gases thermodynamic pressure is what one should have expected from
its name.

Can this be said more generally, too? We start finding an answer to
this question by means of generalizing our definitions of temperature and
(thermodynamic) pressure.

Definition 31 Consider a canonical ensemble with variable volume in equi-
librium with a heat bath and volume reservoir. The temperature T and ther-
modynamic pressure p of this system are given by

1

T
≡ ∂S(Ē, V̄ )

∂E

and
p

T
≡ ∂S(Ē, V̄ )

∂V
,

where Ē and V̄ are the most probable energy and volume, respectively.
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The reader should convince themselves that this is consistent with our pre-
vious definitions 29 and 30.

If two canonical ensembles with variable volume are in equilibrium with
each other, their pressures and temperatures are the same. The proof of this
assertion basically runs along the lines of that of Theorem 21: As (E1, V1)
constitutes a random vector, Theorem 22 implies that their probability den-
sity ρ1 is given by

ρ1(Ē1, Ṽ1) =
〈
δ((Ē1, Ṽ1)− (E1, V1))

〉
=
〈
δ(Ē1 − E1)δ(Ṽ1 − V1)

〉

Using Eq. 3.36 we thus obtain (cf. the discussion preceding Eq. 3.32)

ρ1(Ē1, Ṽ1) =

∫
dΓ1dΓ2dV1dV2ρ(p, q, V1, V2)δ(Ē1 − E1)δ(Ṽ1 − V1)

=

∫
dΓ1dΓ2dV1dV2

ω(E, V )
δ(E −H1(p1, q1, V1)−H2(p2, q2, V2))·

· δ(V − V1 − V2) · δ(Ē1 −H1(p1, q1, V1))δ(Ṽ1 − V1)

=

∫
dΓ1dΓ2

1

ω(E, V )
δ(E − Ē1 −H2(p2, q2, V − Ṽ1))·

· δ(Ē1 −H1(p1, q1, Ṽ1))

=
1

ω(E, V )

∫
dΓ1 δ(Ē1 −H1(p1, q1, Ṽ1))·

·
∫

dΓ2δ(E − Ē1 −H2(p2, q2, V − Ṽ1))

=
1

ω(E, V )
ω1(Ē1, Ṽ1)ω2(E − Ē1, V − Ṽ1).



3.12. CANONICAL ENSEMBLE WITH VARIABLE VOLUME 95

For the most probable energy (volume) Ē1 (V̄1) of system 1 the derivative
∂ρ1/∂E (∂ρ1/∂V ) must vanish, which yields the two relations

0
!
=
∂ω1(Ē1, V1)

∂E
ω2(E − Ē1, V − V1)− ω1(Ē1, V1)

∂ω2(E − Ē1, V − V1)

∂E

(3.38)

0
!
=
∂ω1(E1, V̄1)

∂V
ω2(E − E1, V − V̄1)− ω1(E1, V̄1)

∂ω2(E − E1, V − V̄1)

∂V
(3.39)

and thus

∂S1(Ē1, V1)

∂E
= kB

∂ω1(Ē1, V1)/∂E

ω1(Ē1, V1)
= kB

∂ω2(E − Ē1, V − V1)/∂E

ω2(E − Ē1, V − V1)

=
∂S2(E − Ē1, V − V1)

∂E

(3.40)

∂S1(E1, V̄1)

∂V
=
∂S2(E − E1, V − V̄1)

∂V
(3.41)

As energy and volume are conserved, we may conclude that E − Ē1 and
V − V̄1 are the most probable energy and volume of system 2. In addition,
we may set V1 = V̄1 in Eq. 3.40 and E1 = Ē1 in Eq. 3.41. Then looking at
the definitions of temperature and thermodynamic pressure, we see that we
have proved the above assertion:

Theorem 25 If two canonical ensembles with variable volume are in equi-
librium with each other, their temperatures and thermodynamic pressures are
the same.

Let us now turn to the example of an ideal gas in a rectangular box with
a piston (of cross section A) moving freely in z direction, where there is
an outer potential φ depending on z only (Fig. 3.17). We assume that the
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Figure 3.17: Box with a piston containing an ideal gas.

outer medium can be treated as a heat bath and volume reservoir. Then the
Hamiltonian of the system can be written as

H(p, q, V ) = H(p, q, Az) = H0(p, q) + φ(z),

and the probability density of the ideal gas is given by

ρ(p, q, V ) =
1

Z̃(T, p)
e−(H0(p,q)+φ(z)+pV )/kBT .

The probability density of the volume is obtained by integrating over the
whole phase space of the system, i.e.

ρ(V ) =

∫
dΓ ρ(p, q, V ) =

1

Z̃(T, p)

∫
dΓ e−H0(p,q)/kBT︸ ︷︷ ︸

independent of V

·e−(φ(z)+pV )/kBT .

For a sufficiently large system, we may assume that the volume is identical
to the most probable volume (cf. Sect. 3.15), i.e. the derivative of ρ(V ) must
vanish. Hence

0
!
=
∂ρ(V )

∂V
=

1

Z̃(T, p)

∫
dΓ e−H0(p,q)/kBT · 1

kBT

(
− 1

A

dφ(z)

dz
− p
)

and therefore

p = − 1

A

dφ(z)

dz
.

But −dφ/dz is just the force exerted on the piston, so that we obtain

thermodynamic pressure = p =
force

area
= mechanical pressure.

Of course, we have proved the equivalence of thermodynamic and mechanical
pressure only for the special case of an ideal gas. However, we know from
Theorem 25 that the thermodynamic pressure is the same for all systems in
equilibrium with each other. Accordingly, the equivalence holds valid for all
canonical ensembles with variable volume.

Theorem 26 The thermodynamic pressure of a canonical ensemble with
variable volume is equivalent to the mechanical pressure exerted on the sys-
tem.
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Figure 3.18: Grand canonical ensembles. Whereas the volume is assumed to
be constant, both energy and particle number may vary. The two systems
together constitute a microcanonical ensemble.

replacement rules

V −→ N∫
dV −→

∞∑
N=0

δ(V − V ′) −→ δN,N ′

Table 3.1: Replacement rules for the transition from the case of a canonical
ensemble with variable volume to that of a grand canonical ensemble.

3.13 Grand canonical ensemble

Equilibrium systems with constant volume V but variable energy E and par-
ticle number N are known as grand canonical ensembles. For their analysis
one may again resort to the case of two such systems in contact with each
other, which together form a microcanonical ensemble, as shown in Fig. 3.18.
We confine ourselves to the case of one kind of particles; the generalization
would be straightforward.

Fortunately, the treatment parallels that of canonical ensembles with vari-
able volume, if one uses the three replacements stated in Table 3.1. Hence
the only thing that remains to be done is to give the derivative ∂S/∂E an
appropriate name:

Definition 32 The chemical potential µ of a heat bath and particle reservoir
of energy E and particle number N is defined as

µ ≡ −T ∂S(E,N)

∂N
.

The reader should note the negative sign in this definition. The analogues of
Theorems 23 and 24 read:
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Theorem 27 The probability density ρ of a grand canonical ensemble with
a continuum of states is given by

ρ(p, q, N) =
1

Ẑ(T, µ)
e−(H(p,q,N)−µN)/kBT ,

where T and µ denote the temperature and chemical potential of the sur-
rounding heat bath and particle reservoir, and where

Ẑ(T, µ) ≡
∞∑
N=0

∫
dΓ e−(H(p,q,N)−µN)/kBT

is the grand canonical partition function.

Theorem 28 Consider a grand canonical ensemble with microstates (si, N),
i, N ∈ N. Then the probability P (sk, N) of the state (sk, V ) has the value

P (sk, N) =
1

Ẑ(T, µ)
e−(H(sk,N)−µN)/kBT ,

where T and µ are the temperature and chemical potential of the surrounding
heat bath and particle reservoir, H(sk, V ) denotes the value of the Hamilto-
nian for (sk, N), and

Ẑ(T, µ) ≡
∞∑
N=0

∞∑
i=1

e−(H(si,N)−µN)/kBT

is the grand canonical partition function.

As usual, we may generalize the concept of the chemical potential (and that
of temperature):

Definition 33 Consider a grand canonical ensemble in equilibrium with a
heat bath and particle reservoir. The temperature T and chemical potential
µ of this system are given by

1

T
≡ ∂S(Ē, N̄)

∂E

and

µ ≡ T
∂S(Ē, N̄)

∂N
,

where Ē and N̄ are the most probable energy and particle number, respec-
tively.
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And of course the following theorem holds valid:

Theorem 29 If two grand canonical systems are in equilibrium with each
other, they have the same temperature and chemical potential.

Concerning the meaning of the chemical potential, the reader is asked for
some patience. It will be discussed at a later stage.

3.14 Quantum mechanical point of view

So far, we have discussed classical systems only. Fortunately, quantum sys-
tems behave quite similarly, the differences being of rather technical nature:
Whereas in the classical case we deal with real-valued functions, we now have
to turn to operators, so that it should come as no surprise that the various
distributions have to be stated in form of operators:

Theorem 30 The density matrices of the canonical, canonical with variable
volume, and grand canonical distribution are given by

ρ̂c =
1

Z(T, V,N)
e−βĤ

ρ̂c,variable V =
1

Z̃(T, p,N)
e−β(Ĥ+pV̂ )

ρ̂grand =
1

Ẑ(T, V, µ)
e−β(Ĥ−µN̂),

where the partition functions are given by

Z(T, V,N) ≡ tr ρ̂c

Z̃(T, p,N) ≡ tr ρ̂c,variable V

Ẑ(T, V, µ) ≡ tr ρ̂grand

and where temperature T , pressure p, and chemical potential µ are defined
as in the classical case.

Thus at first sight, one would be inclined to say that quantum calcula-
tions run along the same lines as their classical counterparts. However one
should bear in mind that quantum statistics involve non-commuting oper-
ators, which makes things considerably more difficult. We will discuss this
important caveat in more detail later on.
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Figure 3.19: Typical form of the probability density ρ(E) of the energy E in
a canonical ensemble, if it is assumed that the entropy increases with energy.

3.15 Fluctuations

When going through the discussion of the various kinds of ensembles, the
reader perhaps has wondered whether there are any differences between them
from a practical point of view. After all, from everyday experience we know
(or at least seem to know, see below) that the inner energy, the volume, and
the particle number of a macroscopic system don’t change.

Paraphrasing, we might ask whether in macroscopic systems there are any
appreciable fluctuations of the various thermodynamic variables introduced
in the preceding sections. If this is the case, distinguishing between the
various ensembles is important for observations. Otherwise, it is at least of
no observational relevance.

To answer this question let us start with the canonical ensemble, where, as
the reader will recall, only the energy E can fluctuate. Indeed, its probability
distribution ρ(E) can be computed from Theorems 19 and 22:

ρ(E) = 〈δ(E −H)〉 =

∫
dΓ ρ(p, q)δ(E − h) =

∫
dΓ

e−βH

Z(T )
δ(E −H)

=
e−βE

Z(T )

∫
dΓ δ(E −H) =

e−βE

Z(T )
ω(E) =

e−βE

Z(T )
eS/kB

=
1

Z(T )
e−β(E−TS),

where here and in the following we write Z(T ) rather than Z(T, V,N).
Fig. 3.19 shows the typical form of ρ(E), based on the assumption that
the entropy increases with the energy. The maximum of the curve (i.e. the
most probable energy Ẽ) has already been obtained in Sect. 3.8; but let us
nonetheless consider it again. Obviously Ẽ corresponds to the zero of the
derivative of the probability density, i.e

0
!
=

∂ρ

∂E

∣∣∣∣
Ẽ

= −β
(

1− T ∂S

∂E

∣∣∣∣
Ẽ

)
e−β(Ẽ−TS),
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so that we recover the condition

∂S

∂E

∣∣∣∣
Ẽ

=
1

T

known from Def. 27. But of course we are mainly interested in the width of
the distribution, that is, in its variance σ2

H , given by

σ2
H =

〈
H2
〉
− 〈H〉2 . (3.42)

We start with the calculation of the mean energy, which at first sight looks
slightly cumbersome,

〈H〉 =

∫
dΓ ρcanonH =

∫
dΓ

1

Z(T )
e−βHH (3.43)

However, we may now apply a standard trick of statistical mechanics, which
is of utmost importance and which will crop up over and over again: We
carry out the calculation in terms of the partition function. In fact, it is easy
to see that we may write Eq. 3.43 as

〈H〉 = − ∂

∂β
lnZ(β), (3.44)

where Z(β) stands short for Z(T = 1/kBβ). This looks somewhat simpler
than Eq. 3.43. And, who knows, perhaps forming the second derivative of
lnZ yields some further insight. We just give it a try:

∂2

∂β2
lnZ(β) = − ∂

∂β
〈H〉 = − ∂

∂β

∫
dΓ

1

Z(β)
e−βHH

=

∫
dΓ

1

Z(β)2

∂Z(β)

∂β
e−βHH +

∫
dΓ

1

Z(β)
He−βHH

= −
(
− ∂

∂β
lnZ(β)

)∫
dΓ

1

Z(β)
e−βHH +

∫
dΓ

Z(β)
e−βHH2

= −〈H〉 〈H〉+
〈
H2
〉

(3.45)

But lo behold: Looking at Eq. 3.42 we see this implies that

σ2
H = − ∂

∂β
〈H〉 ,
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which may also be written as

σ2
H = −∂T

∂β

∂ 〈H〉
∂T

= kBT
2∂ 〈H〉
∂T

.

Now we know from elementary thermodynamics that ∂ 〈H〉 /∂T is just the
specific heat c. Hence we have proved:

Theorem 31 The mean 〈H〉 of the energy in a canonical ensemble has the
value

〈H〉 = − ∂

∂β
lnZ(β),

and the variance is proportional to the specific heat,

σ2
H = kBT

2c.

In particular, if the specific heat is extensive, so is the variance of the energy.
Then in the thermodynamic limit, the energy fluctuations grow infinite. So
what is wrong about our above-mentioned intuitive notion of there being no
energy fluctuations in a macroscopic system?

Nothing, really. When considering fluctuations in everyday life, we are
concerned with relative fluctuations. And these do vanish in the thermody-
namic limit. Indeed,

σ2
H

〈H〉2
∼ O(N)

O(N2)

N→∞−→ 0.

As the reader should check for themselves, everything said so far basically
remains valid for the case of a canonical ensemble with variable volume and
that of a grand canonical ensemble as well. In addition it is straightforward
to prove two theorems corresponding to Theorem 31. We begin with the one
dealing with volume:

Theorem 32 In a canonical ensemble with variable volume the mean 〈V 〉
of the volume V has the value

〈V 〉 = − 1

β

∂

∂p
ln Z̃(β, p),

and the variance σ2
V is given by

σ2
V = kBT 〈V 〉κ,
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where the compressibility κ is defined as

κ ≡ − 1

〈V 〉
∂ 〈V 〉
∂p

.

We leave the proof as a simple exercise to the reader. The case of particle
number fluctuations in a grand canonical ensemble can be treated completely
analogously:

Theorem 33 In a grand canonical ensemble the mean 〈N〉 of the particle
number N has the value

〈N〉 =
1

β

∂

∂µ
ln Ẑ(β, µ),

and the variance σ2
N is given by

σ2
N = kBT

∂ 〈N〉
∂µ

.

Again the reader is asked to show this result. Needless to say, the fluctuations
of both volume and particle number vanish in the thermodynamic limit:

σ2
V

〈V 〉2
=

O(N)

O(N2)

N→∞−→ 0

σ2
N

〈N〉2
=

O(N)

O(N2)

N→∞−→ 0

Hence in the thermodynamic limit the fluctuations of the specific energy,
specific volume, and particle density vanish. In that sense all the ensembles
discussed so far are equivalent.

3.16 Macroscopic Equivalence of Ensembles

We have seen in the previous section that in the macroscopic limit all relative
fluctuations vanish, so that the various ensembles are equivalent. However,
this doesn’t mean that they are the same; after all, they describe differ-
ent physical situations: For a microcanonical ensemble, energy conservation
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Figure 3.20: Approximation of eNf(x) in the Laplace integral IN .

holds valid, a canonical ensemble pertains to some system in a heat bath,
a canonical ensemble with variable volume can be regarded as a system in
a heat bath and volume reservoir, and last but not least a grand canoni-
cal ensemble is obtained if one places a system in a heat bath and particle
reservoir.

Hence different ensembles are described by different functions known as
their respective thermodynamic potentials. In the following we will introduce
these potentials and show that they can be transformed into each other
in a well-defined way. Hence we provide a mathematical backing to the
equivalence of potentials.

3.16.1 A useful integral

Before turning to the thermodynamic potentials, we need to discuss an inte-
gral which at first sight may seem slightly pathological. It is given by

IN ≡
∫ ∞

0

dx eNf(x).

As the reader will undoubtedly believe, this integral will have no analytical
solution, unless f(x) happens to be rather simple. However, this changes in
the limit of infinite N .

To see what is meant by this, let us assume that the (well-behaved)
function f(x) has exactly one maximum x̄, but no minimum whatsoever.
Then for large N only the vicinity around x̄ contributes significantly to the
value of IN , as the exponential is much smaller everywhere else. We may
therefore expand f(x) to second order around x̄ (cf. Fig. 3.20),

f(x) ≈ f(x̄) + (x− x̄) f ′(x̄)︸ ︷︷ ︸
=0

+
1

2
(x− x̄)2f ′′(x̄) = f(x̄) +

1

2
(x− x̄)2f ′′(x̄).
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Here f ′(x̄) vanishes, because by definition the maximum of f happens to be
at x̄. Employing this approximation, we may now compute IN quite easily:

IN =

∫ ∞

0

dx eNf(x) ≈
∫ ∞

0

dx eNf(x̄)+N
2

(x−x̄)2f ′′(x̄)

= eNf(x̄)

∫ ∞

0

dx e−
1
2
Nf ′′(x̄)(x−x̄)2 ≈ eNf(x̄)

∫ ∞

−∞
dx e−

1
2
Nf ′′(x̄)(x−x̄)2

= eNf(x̄)

√
2π

Nf ′′(x̄)
.

In the last step we have used the formula for Gaussian integrals (cf. Foot-
note 1 on page 43). Hence we get

ln IN ≈ Nf(x̄) +
1

2
ln

2π

f ′′(x̄)
− 1

2
lnN

and thus
ln IN
N

= f(x̄) +O

(
lnN

N

)
, (3.46)

We may use this relation for computing Laplace transforms asymptotically.
To this end, consider a function g(x). The Laplace transform L[g] of g is
given by

L[g](s) ≡
∫ ∞

0

dx e−sxg(x).

Assuming that g is strictly positive, we can rewrite this as

L[g](s) =

∫ ∞

0

dx e−sx+ln g(x),

so that if ln g(x) − sx is of the order O(N) and has exactly one maximum
x̄ = x̄(s) and no minimum in R+

0 we see from Eq. 3.46 that in the limit of
large N , the Laplace transform may be expressed by means of

lnL[g](s)

N
=

1

N
(ln g(x̄(s))− sx̄(s)) +O

(
lnN

N

)
, (3.47)

which will prove extremely helpful in the next section.
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3.16.2 Thermodynamic potentials

Now let us turn once again to the partition functions of the ensembles to be
considered. We start by noting that the canonical partition function Z as a
function of β can be written as

Z(β, V,N) =

∫
dΓ e−βH =

∫ ∞

0

dE

∫
dΓδ(E −H(V,N))e−βE

=

∫ ∞

0

dE e−βEω(E, V,N).

(3.48)

so that it may be regarded as a Laplace transform of the microcanonical
partition function. Similarly, the partition function of the canonical ensem-
ble with variable volume constitutes a Laplace transform of the canonical
partition function,

Z̃(β, p,N) =

∫ ∞

0

dV

∫
dΓ e−β(H(V,N)+pV ) =

∫ ∞

0

dV e−βpV
∫

dΓe−βH(V,N)

=

∫ ∞

0

dV e−βpVZ(β, V,N).

(3.49)

Finally, the grand canonical partition function can be expressed in the form

Ẑ(β, V, µ) =
∞∑
N=0

∫
dΓ e−β(H−µN) =

∞∑
N=0

eβµN
∫

dΓ e−βH

=
∞∑
N=0

eβµNZ(β, V,N),

(3.50)

where the last term may be viewed as a discrete Laplace transform. For
this transform in the thermodynamic limit a relation similar to Eq. 3.47
holds valid: If the particle number is large, in the sum over N the only
term contributing significantly is the one for which βµN + lnZ reaches its
maximum. Hence denoting the corresponding particle number by N̄ we get

Ẑ(β, V, µ) =
∞∑
N=0

eβµN+lnZ(β,V,N) ≈ eβµN̄+lnZ(β,V,N̄)

and thus
ln Ẑ(β, V, µ) = βµN̄ + lnZ(β, V, N̄). (3.51)
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As the reader should check themselves, βE, βpV , and the logarithms of the
partition function are of the order O(N). Therefore from Eqs. 3.48–3.50 and
Eqs. 3.47, 3.51 we can deduce immediately that

lnZ(β, V,N) = lnL{ω}(β, V,N) = lnω(Ē, V,N)− βĒ +O(lnN)

(3.52)

ln Z̃(β, p,N) = lnL{Z}(β, βp,N) = lnZ(β, V̄ , N)− βpV̄ +O(lnN)
(3.53)

ln Ẑ(β, V, µ) = lnLdiscrete{Z}(β, V, βµ) = lnZ(β, V, N̄) + βµN̄ +O(lnN),
(3.54)

where Ē, V̄ , and N̄ are given by the conditions

∂

∂E
(lnω(E, V,N)− βE)

∣∣∣E=Ē = 0 ⇐⇒ ∂ lnω

∂E

∣∣∣∣
E=Ē

= β (3.55)

∂

∂V
(lnZ(β, V,N)− βpV )

∣∣∣V=V̄ = 0 ⇐⇒ ∂ lnZ

∂V

∣∣∣∣
V=V̄

= βp (3.56)

∂

∂N
(lnZ(β, V,N) + βµN)

∣∣∣N=N̄ = 0 ⇐⇒ ∂ lnZ

∂N

∣∣∣∣
N=N̄

= −βµ. (3.57)

From Eq. 3.52 and Theorem 31 we may conclude that

〈E〉 ≡ 〈H〉 = − ∂

∂β
lnZ(β, V,N)

= − ∂

∂β
(lnω(Ē(β), V,N)− βĒ(β) +O(lnN))

= − ∂ lnω

∂E

∣∣∣∣
E=Ē(β)

∂Ē

∂β
+ Ē(β) + β

∂Ē(β)

∂β
+O(lnN)

= −β∂Ē
∂β

+ Ē(β) + β
∂Ē(β)

∂β
+O(lnN),

where the last step follows from Eq. 3.55. Hence we get the relation

〈E〉 = Ē +O(lnN). (3.58)
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Completely analogously one may prove from Theorems 32, 33 and Eqs. 3.53,
3.54, 3.56, 3.57 the corresponding equations for the average volume and par-
ticle number,

〈V 〉 = V̄ +O(lnN) (3.59)

〈N〉 = N̄ +O(lnN). (3.60)

As promised above, we may now introduce some thermodynamic potentials:

Definition 34 In the following, the definitions of various thermodynamic
potentials are given:

S(E, V,N) ≡ kB lnω(E, V,N) entropy

F (T, V,N) ≡ −kBT lnZ(T, V,N) (Helmholtz) free energy

G(T, p,N) ≡ −kBT ln Z̃(T, p,N) Gibbs free energy or free enthalpy

Ω(T, V, µ) ≡ −kBTẐ(T, V, µ) grand canonical potential

Of course the definition of the entropy is just the one used so far; it is included
for the sake of completeness only.

If one writes Eqs. 3.52–3.54 in terms of the thermodynamic potentials, pays
attention to Eqs. 3.58–3.60, and omits any terms of the order O(lnN) (which
is justified in the macroscopic limit, of course), one obtains a set of relations
which are of utmost importance for thermodynamics, as we shall see in a
later chapter.

Theorem 34 In the macroscopic limit the following relations between ther-
modynamic potentials hold valid:

F (T, V,N) = 〈E〉 (T, V,N)− TS(〈E〉 (T, V,N), V,N)

G(T, p,N) = F (T, 〈V 〉 (T, p,N), N) + p 〈V 〉 (T, p,N)

Ω(T, V, µ) = F (T, V, 〈N〉 (T, V, µ))− µ 〈N〉 (T, V, µ)

The reader should note two things: Firstly, in phenomenological thermody-
namics one might use the equations of the preceding theorem as the defini-
tions of the various thermodynamic potentials. Then evidently the content
of Def. 34 has the status of a theorem which needs to be proved.
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Secondly, it is tempting to simplify the relations between the thermo-
dynamic potentials by means of omitting the brackets 〈〉 and the explicitly
given arguments of the mean values, so that one obtains

F (T, V,N) = E − TS (imprecise!)

G(T, p,N) = F (T, V,N) + pV (imprecise!)

Ω(T,N, µ) = F (T, V,N)− µN (imprecise!)

Although it may save on writing, using this form of the relations is not
encouraged, at least not at the beginning, as it tends to obscure the variable
dependencies involved. In case the reader (understandably) protests that
the other form is more difficult to memorize (after all, one has to remember
which quantities are mean values), here is a simple remedy: Remembering
the set of rules

• F corresponds to a canonical ensemble and thus
depends on T , V , and N .

• G corresponds to a canonical ensemble with vari-
able volume and thus depends on T , p, and N .

• Ω corresponds to a grand canonical ensemble and
thus depends on T , V , and µ.

is completely sufficient; any quantity appearing on the right hand side of one
of the equations in Theorem 34 which is not mentioned in these rules must
be a mean value (and depend on the quantities given in the respective rule).

Theorem 34 may be used to obtain various simple formulae which prove
useful in thermodynamics. They are collected in the following theorem.

Theorem 35 The thermodynamic potentials, pressure, volume, and chemi-
cal potential fulfill the following relations:
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∂F

∂T
= −S ∂F

∂V
= −p ∂F

∂N
= µ

∂G

∂T
= −S ∂G

∂p
= V

∂G

∂N
= µ

∂Ω

∂T
= −S ∂Ω

∂V
= −p ∂Ω

∂µ
= −N

Here, all volumes and particle numbers (apart from ∂/∂V and ∂/∂N) are
to be understood as mean values, so that for example F stands short for
F (T, 〈V 〉 , 〈N〉).

The reader should remember that temperature, pressure, and chemical po-
tential are given by Defs. 29, 31 and 33.

Proof: Let us prove the relation ∂F/∂V = −p. To this end, we write
〈E〉 ≡ Ē, 〈V 〉 ≡ V̄ , and 〈N〉 ≡ N̄ , so that by virtue of Theorem 34 we get

∂F (T, V̄ , N̄)

∂V
=

∂

∂V
(Ē(T, V̄ , N̄)− TS(Ē(T, V̄ , N̄), V̄ , N̄)

=
∂Ē(T, V̄ , N̄)

∂V
− T ∂S(Ē(T, V̄ , N̄), V̄ , N̄)

∂E

∂Ē(T, V̄ , N̄)

∂V

− T ∂S(Ē(T, V̄ , N̄), V̄ , N̄)

∂V
,

and hence from Defs. 29 and 31 we see that

∂F (T, V̄ , N̄)

∂V
=
∂Ē(T, V̄ , N̄)

∂V
− T · 1

T
· ∂Ē(T, V̄ , N̄)

∂V
− T · p(T, V̄ , N̄)

T
= −p(T, V̄ , N̄),

which is just the desired result. The other relations can be proved completely
analogously; this is left as an exercise to the reader. (QED)

So far, we have put no emphasis on the mathematical structure underlying
the concept of thermodynamic potentials. It is given by the Legendre trans-
form, as we shall discover in the next but one subsection. We therefore now
turn to briefly revising its main properties.
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3.17 Legendre Transform

The reader may know Legendre transforms and their properties from a course
on theoretical mechanics, and thus might be tempted to skip this section.
Alas, as it seems, the definition of the Legendre transform varies in the
literature, so that at least familiarizing oneself with the actual definition we
use might be a good idea.

Having said this, let us proceed directly to the introduction of the desired
transform:

Definition 35 Let f(x) be concave or convex, i.e. an at least twice differen-
tiable function with d2f(x)/dx2 6= 0 for all x. Then the Legendre transform
L[f ] of f is defined as

L[f ](x) = yf ′(x)− f(x).

Now it can be seen plainly that this definition makes sense even if f(x) is
neither convex nor concave, i.e. if its second derivative has zeroes. So why
bother about d2f(x)/dx 6= 0? The answer is that alternative definitions
require this condition, which perhaps is made clear by the following theorem
stating a useful alternative form of the Legendre transform.

Theorem 36 Let f be a convex or concave function, and let z ≡ f ′(x).
Then there exists a function g so that x = g(z), and the Legendre transform
may be written as

L[f ](x) = L[f ](g(z)) = zg(z)− f(g(z)) ≡ L̃[f ](z).

Proof: There isn’t much to prove, really. As f is convex or concave, its
second derivative never vanishes. Hence f ′ can be inverted, and the function
g must exist. Furthermore, as g is the inverse of f ′, we get f ′(g(z)) = z and
therefore obtain

L[f ](x) = L[f ](g(z)) = g(z)f ′(g(z))− f(g(z)) = g(z)z − f(g(z)),

which is just the desired relation. (QED)

Incidentally, we may also represent the Legendre transform L̃[f ] as an ex-
tremum, a fact which will prove useful in the next section:
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Theorem 37 Let f be a concave or convex function, and let z = f ′(x).
Then the Legendre transform L̃[f ] can be written as

L̃[f ](z) = extr
y

(yz − f(y)),

where extr
y

denotes the extremum with respect to y.

Proof: Obviously, the extremum of yz−f(y) with respect to y follows from
the condition

0
!
=

d

dy
(yz − f(y) = z − f ′(y),

which in the terminology of Theorem 36 is equivalent to y = g(z). Accord-
ingly, we obtain

extr
y

(yz − f(y)) = g(z)z − f(g(z)),

and using Theorem 36 we arrive at the proposition. (QED)

It is natural to ask how the Legendre transform can be inverted, and the first
guess might be that one simply has to apply the transform again. Indeed,
this is nearly right – but only nearly, as the following theorem illustrates.

Theorem 38 A convex or concave function f can be related to its Legendre
transform by means of the relation

f(x) = L[L̃[f ]](f ′(x))

Note that in a practical calculation a technical problem arises: If we don’t
know f , we don’t know f ′ either, and a straightforward computation of the
right hand side of Eq. 38 is impossible.

Proof: Set z = f ′(x) and φ(z) ≡ L̃[f ](z). Then

φ(z) = L̃[f ](z) = zg(z)− f(g(z)),

where as usual g is the inverse of f ′. Thus (together with f ′(g(z)) = z)

L[L̃[f ]](f ′(x)) = L[φ](z) = zφ′(z)− φ(z)

= z(g(z) + zg′(z)− f ′(g(z))g′(z))− (zg(z)− f(g(z))

= zg(z) + zg′(z)− zg′(z)− zg(z) + f(g(z))

= f(g(z)) = f(x),

which is the desired relation. (QED)
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As a simple example, let us consider the sine in the interval [0, π/2]. Then
f(x) = sinx, z = f ′(x) = cosx, and therefore g(z) = arccos z. Hence for the
Legendre transform it follows that

L[f ](x) = xf ′(x)− f(x) = x cosx− sin x

or, equivalently,

L̃[f ](z) = zg(z)− f(g(z)) = z arccos z − sin(arccos z).

Furthermore we get

L[L̃[f ]](y) = yL̃[f ]′(y)− L̃[f ](y)

= y

(
arccos y + y

(
− 1√

1− y2

)
−

(
− 1√

1− y2

)
cos(arccos y)

)
− (y arccos y − sin(arccos y))

= sin(arccos y),

and choosing y = f ′(x) = cosx we arrive at

L[L̃[f ]](f ′(x)) = sin(arccos(cosx)) = sinx = f(x),

as should have been expected from Theorem 38. For comparison, we also
note that

L[L[f ]](x) = xL[f ]′(x)− L[f ](x)

= x(cosx− x sin x− cosx)− (x cosx− sin x)

= sinx− x2 sin x− x cosx 6= f(x),

i.e. the Legendre transform of the Legendre transform does not yield the
original function.

Perhaps, looking at the rather mathematical treatment so far, the reader
shrugs their shoulders, wondering what one can actually use the Legendre
transform for. If so, the following theorem might prove helpful:

Theorem 39 Consider a function f(x, y) which, if viewed as a function of
x only, is convex or concave. Let u ≡ ∂f/∂x, v ≡ ∂f/∂y, and denote the
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Legendre transform of f with respect to x by φ(u, y) ≡ L̃x[f ](u, y). Then x
and v can be expressed as a function of u and y in the following way:

x(u, y) =
∂φ(u, y)

∂u

v(u, y) = −∂φ(u, y)

∂y
.

Proof: The differential of f may be written as

df =
∂f

∂x
dx+

∂f

∂y
dy = udx+ vdy, (3.61)

whereas due to
φ(u, y) = ux(u, y)− f(x(u, y), y)

the differential of the Legendre transform is given by

dφ = xdu+ udx− df. (3.62)

Inserting Eq. 3.61 into Eq. 3.62 yields

dφ = xdu+ udx− udx− vdy = xdu− vdy. (3.63)

On the other hand we know that

dφ =
∂φ

∂u
du+

∂φ

∂y
dy. (3.64)

By comparing Eqs. 3.63 and 3.64 we finally obtain the desired result. (QED)

In order to convince the reader that this theorem is useful in physics, we
consider a single point particle in one dimension with position q, velocity q̇,
and a time-independent Lagrangian L = L(q, q̇). The conjugated momentum
p of this particle is defined as p ≡ ∂L/∂q̇. Then obviously the Hamiltonian

H(q, p) ≡ q̇p− L(q, q̇(q, p))

represents the Legendre transform of the Lagrangian with respect to the
velocity, and thus we may conclude from Theorem 39 that

q̇ =
∂H

∂p
∂L

∂q
= −∂H

∂q
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The first of these equations represents one of the canonical equations of
classical mechanics. And if one inserts the Lagrange equation

∂L

∂q
=

d

dt

∂L

∂q̇
= ṗ

into the left hand side of the second equation, one obtains

ṗ = −∂H
∂q

,

i.e. the second of the canonical equations.

3.18 General reservoirs

Throughout the last sections we have discussed various reservoirs, introduc-
ing important thermodynamic quantities along the way. However, as the
reader undoubtedly noticed, the discussion did not depend particularly on
the specific quantities under consideration. Indeed, we may generalize the
treatment of reservoirs in a straightforward way, and may thus elucidate the
underlying mathematical structure.

To this end, let us consider an arbitrary system (“system 1”) placed in
a heat reservoir (“system 2”) which at the same time is a reservoir of some
quantity A (called a generalized thermodynamic coordinate). As usual, we
assume that the interaction potential can be neglected and that the entropy
S2 of the reservoir fulfills the relation

S2(E −H1, A− A1) ≈ S2(E,A)− ∂S2(E,A)

∂E
E1 −

∂S2(E,A)

∂A
A1, (3.65)

where H1 is the Hamiltonian of system 1 and where the E and A refer to
the total system composed of system 1 and 2, which may be considered as
a microcanonical ensemble. Then everything said in Sect. 3.12 applies, if
we replace the volume by the quantity A and the pressure by its respective
counterpart. We thus get:

Definition 36 Consider a canonical ensemble with a variable generalized
thermodynamic coordinate A in equilibrium with a heat bath and reservoir of
A. The temperature T and the conjuagate coordinate α of A of this system
are given by

1

T
≡ ∂S(Ē, Ā)

∂E
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and

α ≡ ∂S(Ē, Ā)

∂A
,

where Ē and Ā are the most probable energy and A, respectively.

Theorem 40 The probability density ρ of a canonical ensemble with a vari-
able thermodynamic generalized coordinate A and a continuum of states is
given by

ρ(p, q, A) =
1

Z̃(T, α)
e−(H(p,q,A)+αA)/kBT ,

where T and α denote the temperare and conjugate coordinate of A, respec-
tively, and where

Z̃(T, α) ≡
∫

dΓ

∫
dAe−(H(p,q,A)+αA)/kBT

is the canonical partition function with variable A.

Theorem 41 If two canonical ensembles with variable generalized thermo-
dynamic quantity A are in equilibrium with each other, their temperatures
and conjugate coordinates are the same.

Of course, there is a discrete analogue to Theorem 40. However, we leave it
as an exercise for the reader to write this down (cf. Theorem 24) and content
ourselves with discussing the continuous case.

Evidently, the canonical partition function with variable A can be written
as

Z̃(T, α) =

∫
dAdΓ e−(H(p,q,A)+αA)/kBT

=

∫
dAe−αA/kBT

∫
dΓe−H(p,q,A)/kBT =

∫
dAe−βαAZ(T,A),

where Z denotes the ordinary canonical partition function. Hence Z̃ can be
interpreted as a Laplace transform, and from Eq. 3.47 we can infer that

ln Z̃(T, α) = lnZ(T, Ā(T, α))− βαĀ(T, α),

where Ā is chosen to maximize lnZ(T,A)− βαA. Accordingly we obtain

ln Z̃(T, α) = max
A

(lnZ(T,A)− βαA). (3.66)

In order to proceed, we now introduce the generalized free energy and en-
thalpy.
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Definition 37 The generalized free energy F (T,A) and generalized free en-
thalpy G(T, α) of a canonical ensemble with a variable generalized thermody-
namic coordinate A are defined as

F (T,A) ≡ −kBT lnZ(T,A)

and

G(T, α) ≡ −kBT ln Z̃(T, α),

respectively.

Inserting this definition into Eq. 3.66, we obtain

−G(T, α) = max
A

(−F (T,A)− αA)

or (employing Theorem 37)

−G(T,−α) = max
A

(αA− F (T,A)) = L̃A[F ](T, α),

i.e. we may cum grano salis regard the generalized free enthalpy as the Leg-
endre transform of the generalized free energy. Thus in view of Theorem 39 it
should come as no surprise that relations such as those given in Theorem 35
exist. However, we don’t comment on this any further.

What we do comment on, though, is the overall behavior of the free
enthalpy: It is quite straightforward to show that it must be a concave
function. To see this, we start by computing its first derivative with respect
to α (cf. Theorem 40),

∂G(T, α)

∂α
= −kBT

∂

∂α
ln Z̃(T, α) = −kBT

1

Z̃(T, α)

∂Z̃(T, α)

∂α

= −kBT
1

Z̃(T, α)

∂

∂α

∫
dΓ

∫
dAe−β(H(p,q,A)+αA)

= −kBT
1

Z̃(T, α)

∫
dΓdA (−βA)e−β(H(p,q,A)+αA)

=

∫
dΓ

∫
dAA

1

Z̃(T, α)
e−β(H(p,q,A)+αA) = 〈A〉 .
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From this we may easily obtain the second derivative,

∂2G(T, α)

∂α2
=

∂

∂α

(
1

Z̃(T, α)

∫
dΓ

∫
dAAe−β(H(p,q,A)+αA)

)
= − 1

Z̃(T, α)2

∂Z̃(T, α)

∂α

∫
dΓ

∫
dAAe−β(H(p,q,A)+αA)

+
1

Z̃(T, α)

∫
dΓ

∫
dA (−β)A2e−β(H(p,q,A)+αA)

= β

(∫
dΓ

∫
dAA

1

Z̃(T, α)
e−β(H(p,q,A)+αA)

)2

− β
∫

dΓ

∫
dAA2 1

Z̃(T, α)
e−β(H(p,q,A)+αA)

= β(〈A〉2 −
〈
A2
〉
).

But because of 〈A〉2 6 〈A2〉 this implies

∂2G(T, α)

∂α2
6 0,

so that G(T, α) is indeed concave. From this one may show in addition that
the generalized free energy consitutes a convex function.

Finally, we note that for the case of structureless point particles the only
extensive variables are energy, volume, and particle number. Such systems
are called simple fluids.

3.19 Entropy and Information

We live, as it is said, in an information era. However, what is this supposed
to mean? What is information, after all?

From a naive, everyday life point of view, we might be inclined to as-
sociate information with semantics: This script contains information, as the
reader (hopefully) can gain knowledge from reading it. Accordingly, we would
readily embrace the idea that the sentence I’ve never seen snow in my life.
provides some information, whereas we arguably would reject the idea that
this is true of an arbitrary accumulation of letters such as Xtjymnol hcvywas
Tdc ashjc.
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But from the point of view of information theory, there are problems with
this notion: Firstly, the semantic content of something is difficult to quantify.
Secondly and more importantly, information seen in this way depends on the
beholder. For example, the statement Cogito, ergo sum. will mean nothing
to you, unless you either know about philosophy or speak some Latin.

We therefore need a more robust definition of information, which doesn’t
depend on semantics at all. In order to find this, let us reconsider the sentence
I’ve never seen snow in my life. If it was uttered by a local person from
Central Africa living far away from any mountain, we wouldn’t be surprised.
If, on the other hand, a Swedish person said so, we would be set thinking and
would wonder whether our conversational partner might perhaps be blind.
In this case, it seems, the sentence contains more information.

The difference between these two cases is of course that it is extremely less
likely that the event A Swedish person has never seen snow. takes place. It
is thus tempting to conclude that information is a function of the probability.
And as we wanted to discard all semantical meaning, we should expect (or
define) that this function is independent of the specific sample space under
consideration.

A further property of information can be obtained, if we consider two or
more independent events. Here, the total information should be just the sum
of the amounts of information contained in the individual events. In other
words, information constitutes an additive quantity.

Changing a probability just a little should not result in drastic changes
of the respective information. We therefore also conclude that information
must be a continuous function.

In addition, information must be normalized in some way. We achieve
this by demanding that for some arbitrary number a > 1 the information
corresponding to the the probability 1/a is just 1.

Having said all this, we may now define information in a rigorous manner.

Definition 38 Consider a discrete sample space Ω with some probability P .
Then the information Ielement(ω) of an element ω ∈ Ω is given by

Ielement(ω) = f(P (ω)),

with a continuous function f : ]0, 1] −→ R, which is normalized by demanding
that

f

(
1

a

)
= 1
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for an arbitrarily chosen a > 1. Information is additive, i.e. the total infor-
mation of two elements (possibly belonging to different sample spaces) is the
sum of the individual amounts of information.

Note that f is not defined for vanishing probabilities. Somewhat surprisingly,
this rather general definition is sufficient to entirely fix the functional form
of the function f , so that indeed information is uniquely defined:

Theorem 42 Let Ω be a discrete sample space with some probability P .
Then the information Ielement(ω) of an element ω ∈ Ω has the value

Ielement(ω) = − loga P (ω).

Proof: Consider two independent events ω1 ∈ Ω1, ω2 ∈ Ω2. Then we know
from Def. 38 that the total information corresponding to these events is given
by

Ielement,total(ω1, ω2) = Ielement(P1(ω1)) + Ielement(P2(ω2)).

On the other hand, we may regard the Cartesian product ω1 × ω2 as an
event of the sample space Ω1 × Ω2. As the two events are assumed to be
independent, the probability of this event must have the value

P (ω1 × ω2) = P1(ω1) · P2(ω2),

so that we get

f(P1(ω1) · P2(ω2)) = f(P (ω1 × ω2)) = Ielement,total

= Ielement(P1(ω1)) + Ielement(P2(ω2))

= f(P1(ω1)) + f(P2(ω2)).

As the sample spaces and probabilities are completely arbitrary, this implies
that

f(x · y) = f(x) + f(y) (3.67)

for all x, y ∈]0, 1]. Furthermore we have from Def. 38 that

f

(
1

a

)
= 1 (3.68)

But the only continuous function fulfilling Eqs. 3.67 and 3.68 is the negative
of the logarithm to base a. (The reader should consult a textbook on calculus
for a proof of this statement.) Hence we have obtained the desired result.
(QED)
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Normally one chooses a = 2, so that for some ω ∈ Ω Ielement(ω) = − lbP (ω).
In this case the information is measured in bits, which is achieved by merely
appending the word bit to the numerical value obtained from Theorem 42
for a = 2.

If we are interested in the information of a sample space rather than that
of an individual element, we just have to take the average of the amounts of
information corresponding to the elements of the sample space.

Definition 39 The information I of a discrete sample space with probability
P is the average of the amounts of information contained in its elements,

I(Ω) ≡ 〈Ielement(ω)〉ω∈Ω =
∑
ω∈Ω

P (ω)Ielement(ω).

Of course, we may use Theorem 42 to state an explicit expression for this
information:

Theorem 43 The information I of some sample space Ω has the value

I(Ω) = −〈loga P (ω)〉ω∈Ω = −
∑
ω∈Ω

P (ω) loga P (ω).

Apart from the somewhat formal derivation of information outlined so far,
there is a more intuitive approach. As an illustration consider a single pawn
on a checkerboard. Here, the probability that it is located on some arbitrary
field (C5, say) obviously is 1/64. Accordingly, the information of the sample
space consisting of all the events “The pawn is placed on a specific field.” is
given by

I = −〈lbP (The pawn is placed on a specific field.)〉 = −
〈

lb
1

64

〉
= 6 bit.

Now imagine that we had to find out the actual position by asking questions
which can be answered by “yes” or “no” only. Then it would be a good idea
to succesively bisect the field where the pawn might be. Table 3.2 gives an
example of this procedure.

One can see readily that independent of the actual field occupied by the
pawn, six questions are required for figuring out the position. Hence the
number of questions is equivalent to the information as measured in bits.

This result may be generalized. To this end consider a sample space Ω the
elements ωi of which have probabilities of the form Pi = 2−ni with ni ∈ N.
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Question Answer
Is the pawn located in the rectangle with corners A1 and D8? yes
Is it located in the rectangle with corners A1 and D4? no
Is it located in the rectangle with corners A5 and B8? no
Is it located in the rectangle with corners C5 and D6? yes
Is it located in the rectangle with corners C5 and C6? yes
Is it located on the field C5? yes
conclusion: The pawn is on field C5.

Table 3.2: Figuring out the position of a pwan located on the field C5 of a
checkerboard. With each question the remaining space is cut in half.

Figure 3.21: Generalized method for singling out an element ω of some sample
space Ω. Omega is divided up into Ω1 and Ω2 so that P (Ω) = P (Ω2) = 1/2.
The Ωi in which ω lies then is taken as the new sample space, and the process
is repeated as long as necessary.

Assume that one of these elements has occured. Then the best strategy for
figuring out this event by means of yes-and-no questions will be to bisect
Ω into Ω1 and Ω2 so that P (Ω1) = P (Ω2) = 1/2, and to ask in which half
the desired element lies. This half is taken as the new sample space (i.e.
its probability is renormalized to 1), and the process can be repeated as
long as necessary (cf. Fig. 3.21). As the reader may show for themselves,
following this recipe, one needs ni = lnPi questions to single out ωi. Thus
the average number of questions to be asked is just

∑
i Pi lnPi, and again

we obtain the result that the information is equal to the average number of
questions necessary for singling out an element of the sample space under
consideration.

Alas, this isn’t true in general. As a simple counterexample we may take
the sample space Ω = {ω1, ω2} consisting of two elements with probabilities
P1 = 1/3 and P2 = 2/3. The information of Ω is given by

I(Ω) = −P1 lbP1 − P2 lbP2 = −1

3
lb

1

3
− 2

3
lb

2

3
.

On the other hand, the question Has ω1 occured? is sufficient to single
out any of the two elements of Ω. Hence in this case the average number
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of necessary questions (namely one) clearly is different from the amount of
information contained in the sample space.

As our discussion so far hasn’t involved any physics, it should be clear
that it applies to both classical and quantum mechanical systems. Here the
latter may be treated fairly easily:

Theorem 44 Consider a macrostate ρ̂ with discrete microstates |ψi〉 form-
ing an orthonormal basis. Then the information contained in the macrostate
has the value

I(ρ̂) = − tr(ρ̂ loga ρ̂).

Proof: Let Pi denote the probability of the microstate |ψi〉. Then we may
express ρ and loga ρ̂ as

ρ̂ =
∑
i

Pi |ψi〉 〈ψi|

loga ρ̂ =
∑
i

loga Pi |ψi〉 〈ψi| ,

and due to the orthonormality of the |ψi〉 we get

tr(ρ̂ loga ρ̂) = −
∑
i

〈ψi|

(∑
r

Pr |ψr〉 〈ψr|
∑
s

loga Ps |ψs〉 〈ψs|

)
|ψi〉

= −
∑
i

∑
r

∑
s

Pr loga Ps 〈ψi|

|ψr〉 〈ψr| ψs〉︸ ︷︷ ︸
δrs

〈ψs|

 |ψi〉
= −

∑
i

∑
r

Pr loga Pr 〈ψi| ψr〉︸ ︷︷ ︸
δir

〈ψr| ψi〉︸ ︷︷ ︸
δri

= −
∑
i

Pi loga Pi.

But the last term is just the definition of information, so that the proposition
has been proved. (QED)

Let us now turn to the case of continuous sample spaces with some prob-
ability density ρ. At first sight, one might guess that here the concept of
information may be introduced by merely forming the limit of the discrete
case for infinitely many elements. To be more precise, this would mean that
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we have to consider the limit − lim∆xi→0

∑
i ρi∆xi loga(ρi∆Ωi), where ρi is

the probability density for some xi ∈ ∆xi. This may look nice, but actually
isn’t. Indeed, without loss of generality we assume that all the ∆xi are of
the same size ∆x and rewrite the limit as

− lim
∆xi→0

∑
i

ρi∆xi loga(ρi∆xi) = − lim
∆x→0

∑
ρi∆x loga(ρi∆x)

= − lim
∆x→0

∑
i

ρi∆x︸ ︷︷ ︸
1

loga ∆x− lim
∆x→0

∑
i

ρi∆x loga ρi

= − lim
∆x→0

loga ∆x− 〈loga ρ〉

Evidently, the first term goes towards infinity for ∆x −→ 0, so that we
get the result that a continuous sample space contains an infinite amount
of information. This shouldn’t come as a surprise really, as we have seen
above that information is related to the the number of questions necessary
for singling out an element of the sample space considered. However, as a
continuous sample space has infinitely many elements, it requires infinitely
many questions.

Of course, while consistent with everything said so far, a definition leading
to an infinite amount of information obviously is of no avail. So what can be
done?

The simplest solution is to just drop the diverging term and live happily
without it. And fortunately enough, that is precisely what is done:

Definition 40 Consider a continuous sample space Ω with some probability
density ρ. Then the information 〈I〉 (Ω) of Ω is given by

〈I〉 (Ω) ≡ 〈loga ρ〉 ,

where a is the constant known from the definition of information for discrete
sample spaces.

It should be kept in mind that in the case of systems in statistical mechanics
the usual differential phase space volume (i.e. dΓ = d3Npd3Nq/N !h3N) is
used.

Remarkably, there is a strong connection between information theory and
statistical mechanics, which is hinted at by the following definition.



3.19. ENTROPY AND INFORMATION 125

Definition 41 The information entropy of some system (not necessarily in
a state of equilibrium) is defined as kB times the information contained in
this system for a = e. More explicitly, the information entropy of a classical
system is given by

Ŝ[ρ] ≡ kB 〈I〉a=e = −kB 〈ln ρ〉 ,

whereas that of a quantum mechanical system has the value

Ŝ[ρ̂] ≡ kB 〈I〉a=e = −kB 〈ln ρ̂〉

Here ρ and ρ̂ denote the probability density and density matrix, respectively.

Note that this is just a definition. So far, we don’t know whether informa-
tion entropy has anything to do with the thermostatic entropy known from
Def. 3.23. However, the terminology used implies that there might be some
relation, and this is precisely what the following theorem asserts.

Theorem 45 For equilibrium systems the information entropy is equal to
the thermostatic entropy.

Before turning to the proof of this assertion, let us discuss what the term
“thermostatic entropy of an equilibrium system” is supposed to mean. Of
course, if the system happens to be a microcanonical ensemble, in principle
the entropy is just kB times the logarithm of the microcanonical partition
function. Still, there is a small caveat: As 〈ρ〉 doesn’t make sense for delta
distributions, in the following we have to employ the probability density given
by Eq. 3.9.

In the case of a canonical ensemble (possibly with some variable thermo-
dynamic coordinate such as volume) the energy isn’t fixed and thus, being
a function of the energy, the entropy should vary. However, as the (relative)
fluctuations are small, we may define the entropy as the respective value for
the average energy (and thermodynamic coordinate).

Proof: We consider microcanonical ensembles and canonical ensembles
with and without a variable continuous thermodynamic coordinate, confin-
ing ourselves to the classical case. Other equilibrium systems (such as sys-
tems including a variable discrete thermodynamic coordinate or quantum
mechanical ones) can be treated analogously.
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microcanonical ensemble
As stated above, we assume that the probability density is given by Eq. 3.9,
i.e. by

ρ∆
mc(p, q) =

1

ω∆(E)
(Θ(E −H(p, q))−Θ(E −∆−H(p, q))).

Hence we obtain for the information (with a = e)

〈I〉 = −
〈
ρ∆

mc

〉
= −

∫
dΓ

1

ω∆(E)
(Θ(E −H(p, q))−Θ(E −∆−H(p, q)))·

· ln
(

1

ω∆(E)
(Θ(E −H(p, q))−Θ(E −∆−H(p, q)))

)
=

∫
E−∆6H(p,q)6E

dΓ
1

ω∆(E)
ln

1

ω∆(E)
= − lnω∆(E)

ω∆(E)

∫
E−∆6H(p,q)6E

dΓ︸ ︷︷ ︸
ω∆(E)

= − lnω∆(E),

so that the information entropy is equal to

Ŝ[ρ∆
mc] = kB 〈I〉 = −kB lnω∆(E),

which according to Eq. 3.23 is just the thermostatic entropy.
canonical ensemble
The canonical probability density is given by

ρc(p, q) =
1

Z(T )
e−H(p,q)/kBT ,

and thus we get for the information (with a = e)

〈I〉 = −〈ln ρc〉 = −
〈

1

Z(T )
e−H(p,q)/kBT

〉
= −〈− lnZ(T )−H(p, q)/kBT 〉 = lnZ(T ) + 〈H〉 /kBT.

Multiplying both sides by kBT and using the free energy yields

T Ŝ[ρc] = kBT 〈I〉 = −F (T ) + 〈H〉 .
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Comparing this result with the first equation given in Theorem 34, one sees
immediately that the information entropy must be identical to the thermo-
static one.
canonical ensemble with variable thermodynamic coordinate A
Let α denote the conjugate coordinate of A (cf. Def. 36). Then the probability
density is of the form

ρc,variable A(p, q, A) =
1

Z̃(T, α)
e−(H(p,q,A)+αA)/kBT ,

so that we obtain for the information (again assuming a = e)

〈I〉 = −〈ln ρc,variable A〉 = −
〈

ln
1

Z̃(T, α)
e−(H(p,q,A)+αA)/kBT

〉
= −

〈
− ln Z̃(T, α)−H(p, q, A)/kBT − αA/kBT

〉
= ln Z̃(T, α) + 〈H〉 /kBT + α 〈A〉 /kBT.

Multiplying both sides by kBT and employing the generalized free energy
and enthalpy, we get

T Ŝ[ρc,variable A] = kBT 〈I〉 = −G(T, α) + 〈H〉+ α 〈A〉 .

Comparing with the first two equations of Theorem 34 (where we may with-
out loss of generality replace V and p by A and α, respectively), we arrive
at

〈H〉 − T Ŝ[ρc,variable A] = G(T, α)− α 〈A〉 = F (T, 〈A〉)
= 〈H〉 − TS(〈H〉 , 〈V 〉).

Hence information entropy and thermostatic entropy are the same. (QED)

We have shown that information entropy is consistent with thermostatic
entropy for quilibrium systems. However, it can be applied to any system
whatsoever and thus can be regarded as an extension of the original definition
of entropy.

3.20 Principle of Maximum Entropy

The concept of information entropy introduced in the previous section lends
itself to establishing an upper bound for the entropy of an arbitrary (physical)
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system. However, in order to see why this should be the case, we first need
to prove a fairly general relation known as the Gibbs inequality. We first
state its version for ordinary function:

Theorem 46 (Gibbs inequality) Let ρ(x) and ρ1(x) be probability densi-
ties of a (possibly more-dimensional) random variable x. Then the relation

〈ln ρ1〉ρ 6 〈ln ρ〉ρ

holds valid.

Proof: We confine ourselves to the case of a one-dimensional random
variable; the more-dimensional case can be treated completely analogously.

Let B ≡ 〈ln ρ1〉ρ − 〈ln ρ〉ρ.Then

B = 〈ln ρ1〉ρ − 〈ln ρ〉ρ = 〈ln ρ1 − ln ρ〉ρ =

∫
dx (ln ρ1(x)− ln ρ(x))

=

∫
dx ρ(x) ln

ρ1(x)

ρ(x)
.

There is a small technical subtlety: The integral runs over all real numbers.
(We will see below why we have to ensure this.) However, ρ(x) may vanish
for some x ∈ R, so that in form of ρ1(x)/ρ(x) we end up with a division
by zero, which is of course not well-defined. Fortunately, we are saved from
grievous trouble by the fact that ρ(x) appears as a prefactor and that we
take the logarithm of the dubious ratio. Hence the problematic term only
appears as ρ(x) ln(ρ1(x)/ρ(x)), which vanishes for ρ(x) −→ 0.

The careful reader might object that there is even worse trouble lurking
in the depths of vanishing probability densities: For a x ∈ R with ρ1(x) =
0 6= ρ(x) we may get a divergence we cannot discuss away any longer. True.
But this divergence doesn’t matter, as the upper bound to be derived in a
moment remains valid.

Thus we don’t really have to bother about vanishing probability densities
and may proceed with our proof: For any y ∈ R+ the relation

ln y 6 y − 1

is fulfilled (cf. Fig. 3.22), and thus we get
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Figure 3.22: lnx and x− 1. One can see that the relation ln x 6 x− 1 holds
valid for all x ∈ R+.

B 6
∫

dxρ(x)

(
ρ1(x)

ρ(x)
− 1

)
=

∫
dx (ρ1(x)− ρ(x))

=

∫
dx ρ1(x)−

∫
dx ρ(x).

As ρ and ρ1 are normalized and as the integral runs over all real numbers
(here is where we need this), we finally obtain

B 6
∫

dx ρ1(x)︸ ︷︷ ︸
1

−
∫

dx ρ(x)︸ ︷︷ ︸
1

= 1− 1 = 0.

But B 6 0 is equivalent to 〈ln ρ1〉ρ 6 〈ln ρ〉ρ. (QED)

We also give an operator version of the Gibbs inequalty:

Theorem 47 (Gibbs inequalty, operator version) Let ρ̂ and ρ̂1 denote
density matrices. Then the logarithms of ρ̂ and ρ̂1 fulfill the inequalty

〈ln ρ̂1〉ρ 6 〈ln ρ̂〉ρ .

Proof: The proof basically runs along the same lines as that of the classical
version. We may write the density matrices as

ρ̂ =
∑
n

wn |ψn〉 〈ψn|

ρ̂1 =
∑
n

w̃n |φn〉 〈φn|

and their logarithms as

ln ρ̂ =
∑
n

lnwn |ψn〉 〈ψn|

ln ρ̂1 =
∑
n

ln w̃n |φn〉 〈φn| .
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Here the wn, w̃n are non-negative numbers, and both the |ψn〉 and the |φn〉
may without loss of generality be assumed to form complete orthonormal
sets. The trouble arising from vanishing wn and w̃n can be discussed away
as in the proof of the classical version.

Let us denote the term 〈ln ρ̂1〉ρ − 〈ln ρ̂〉ρ by B. Then as the trace can be
formed with any orthornormal set, we get

B = 〈ln ρ̂1〉 − 〈ln ρ̂〉ρ = 〈ln ρ̂1 − ln ρ̂〉ρ = tr(ρ̂[ln ρ̂1 − ln ρ̂])

=
∑
n

〈ψn| ρ̂(ln ρ̂1 − ln ρ̂) |ψn〉 =
∑
n

∑
k

wk 〈ψn| ψk〉︸ ︷︷ ︸
δnk

〈ψk| (ln ρ̂1 − ln ρ̂) |ψn〉

=
∑
n

wn 〈ψn| (ln ρ̂1 − ln ρ̂) |ψn〉

=
∑
n

wn 〈ψn| ln ρ̂1 |ψn〉 −
∑
n

∑
r

wn 〈ψn| ψr〉︸ ︷︷ ︸
δnr

〈ψr| lnwr |ψn〉

=
∑
n

wn 〈ψn| (ln ρ̂1 − lnwn) |ψn〉 =
∑
n

wn 〈ψn| ln
ρ̂1

wn
|ψn〉

=
∑
n

∑
s

wn ln
w̃s
wn
〈ψn| φs〉 〈φs| ψn〉 =

∑
n

∑
s

| 〈ψn| φs〉 |2wn ln
w̃s
wn
.

If we apply the relation ln x 6 x − 1 known already from the proof of the
classical version, we obtain

B 6
∑
n

∑
s

| 〈ψn| φs〉 |2wn
(
w̃s
wn
− 1

)
=
∑
n

∑
r

| 〈ψn| φs〉 |2(w̃s − wn)

=
∑
s

w̃s
∑
n

| 〈ψn| φs〉 |2︸ ︷︷ ︸
1

−
∑
n

wn
∑
s

| 〈ψn| φs〉 |2︸ ︷︷ ︸
1

=
∑
s

w̃s −
∑
n

wn

= 1− 1 = 0,

where the last but one step follows from the fact that the wn and w̃s are to
be interpreted as probabilities, which have to add up to unity (cf. Sect. 2.2).
Accordingly, we have shown that B 6 0, which is equivalent to the desired
result. (QED)

Now consider the density matrices ρ̂ of some quantum mechanical sys-
tem Q and ρ̂mc of a microcanonical ensemble, and assume that both systems
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possess the same Hamiltonian Ĥ and that for both systems the energy is
fixed to the same value E (up to a small uncertainty ∆). Then from the
Gibbs inequality we may infer

Ŝ[ρ̂] = −kB 〈ln ρ̂〉ρ̂ 6 −kB 〈ln ρ̂mc〉ρ̂ . (3.69)

As the microcanonical density matrix is given by

ρ̂mc =
∑

E−∆6En6E

1

ω∆(E)
|En〉 〈En| ,

and as any orthonormal basis may be used for forming a trace, the right hand
side may be expressed as

−kB 〈ln ρ̂mc〉ρ̂ = −kB

∑
Ek

〈Ek| ρ̂ ln ρ̂mc |Ek〉

= −kB

∑
Ek

∑
E−∆6En6E

ln
1

ω∆(E)
〈Ek| ρ̂ |En〉 〈En| Ek〉︸ ︷︷ ︸

δnk

= kB lnω∆(E)
∑

E−∆6En6E

〈En| ρ̂ |En〉 .

Due to the fact that both systems under consideration have the same Hamil-
tonian, not only for the microcanonical ensemble, but also for Q the vector
|En〉 corresponds to the energy En. In particular, this implies that for any
Er /∈ [E −∆, E] ρ̂ |Er〉 must vanish, as otherwise the energy of Q wouldn’t
be fixed after all. Hence we obtain

kB 〈ln ρ̂mc〉ρ̂ = kB lnω∆(E)
∑

E−∆6En6E

〈En| ρ̂ |En〉

= kB lnω∆(E)
∑
En

〈En| ρ̂ |En〉 = kB lnω∆(E) tr ρ̂︸︷︷︸
1

= kB lnω∆(E)

But the last term is just the entropy of the microcanonical ensemble, and
thus from Eq. 3.69 and Theorem 45 we obtain

Ŝ[ρ̂] 6 Ŝ[ρ̂mc] = S(E).

We see that the microcanonical ensemble has the largest possible information
entropy for a given Hamiltonian and energy. As should be expected, this
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result holds valid for the classical case as well. The proof, which is completely
analogous to the quantum mechanical one, is left as an exercise for the reader.

Let us now compare a canonical ensemble with an arbitrary macrostate
having the same Hamiltonian and average energy. Focussing again on the
quantum mechanical case, we can represent the arbitrary macrostate and the
canonical ensemble by means of their density matrices ρ̂ and

ρ̂c =
1

Z(T )
e−Ĥ/kBT ,

respectively. The demand of equal average energies then translates into〈
Ĥ
〉
ρ̂

=
〈
Ĥ
〉
ρ̂c

. (3.70)

From the Gibbs inequality we get

Ŝ[ρ̂] = −kB 〈ln ρ̂〉ρ̂

6 −kB 〈ln ρ̂c〉ρ̂ = −kB

〈
ln

(
1

Z(T )
e−Ĥ/kBT

)〉
ρ̂

= −kB ln
1

Z(T )
+ kB

〈
Ĥ
〉
ρ̂
/kBT.

From this, Eq. 3.70, and Theorem 45 it follows that

Ŝ[ρ̂] 6 −kB ln
1

Z(T )
+ kB

〈
Ĥ
〉
ρ̂c

/kBT = −kB

〈
ln

(
1

Z(T )
e−Ĥ/kBT

)〉
ρ̂c

= −kB 〈ln ρ̂c〉ρ̂c = Ŝ[ρ̂c] = S(Ē(T )).

Again the ensemble entropy is the largest one compatible with the given
Hamiltonian and average energy. The reader should check for themselves
that replacing the operators by the corresponding ordinary functions in the
previous lines yields the respective proof for the classical case.

Evidently, systems with constant average energy and some constant aver-
age thermodynamic coordinate A (with conjugate variable α) can be treated
in the same manner. If we consider an arbitrary quantum mechanical macro-
state with the density matrix ρ̂ and a canonical ensemble with the same
Hamiltonian Ĥ, average energy, and average A, represented by its density
matrix

ρ̂c,variable A =
1

Z̃(T, α)
e−(Ĥ+αÂ)/kBT
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the relations 〈
Ĥ
〉
ρ̂

=
〈
Ĥ
〉
ρ̂c, variable A〈

Â
〉
ρ̂

=
〈
Â
〉
ρ̂c, variable A

must hold valid. Employing these and (as usual) the Gibbs inequality, and
Theorem 45, we get

Ŝ[ρ̂] = −kB 〈ln ρ̂〉ρ̂

6 −kB 〈ln ρ̂c, variable A〉ρ̂ = −kB

〈
ln

(
1

Z̃(T, α)
e−(Ĥ+αÂ)/kBT

)〉
ρ̂

= −kB ln
1

Z̃(T, α)
+ kB

〈
Ĥ
〉
ρ̂
/kBT + kBα

〈
Â
〉
ρ̂
/kBT

= −kB ln
1

Z̃(T, α)
+ kB

〈
Ĥ
〉
ρ̂c, variable A

/kBT + kBα
〈
Â
〉
ρ̂c, variable A

/kBT

= −kB

〈
ln

(
1

Z̃(T, α)
e−(Ĥ+αÂ)/kBT

)〉
ρ̂c, variable A

= −kB 〈ρ̂c, variable A〉ρ̂c, variable A
= Ŝ[ρ̂c, variable A] = S(Ē(T, α), Ā(T, α)).

Therefore (not surprisingly any longer) we arrive at the result that the en-
tropy of the canonical ensemble with a variable thermodynamic coordinate
is the largest entropy consistent with the conditions imposed. The respective
proof for the classical case again is obtained by replacing the operators by
ordinary functions.

We may summarize all the things said so far in a neat theorem known as
principle of maximum entropy :

Theorem 48 (principle of maximum entropy) The largest information
entropy compatible with a given Hamiltonian and with some given values of
thermodynamic quantities is that of the respective ensemble. More explicitly,

fixed energy E: Ŝ[ρ] 6 Ŝ[ρmc] = S(E)

fixed average energy Ē: Ŝ[ρ] 6 Ŝ[ρc] = S(Ē(T ))

fixed Ē and Ā: Ŝ[ρ] 6 Ŝ[ρc, variable A] = S(Ē(T, α), Ā(T, α))
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In all these relations the probability densities ρ may be replaced by the corre-
sponding density matrices ρ̂.

In the case of the canonical ensemble, we may restate the principle of maxi-
mum entropy as a principle of minimum free energy F (T ), if we use

F [ρ] = Ē − T Ŝ[ρ].

We know this equation to be true for canonical ensembles, and for all other
systems we may accept it as a definition. To prove the minimum principle
we just have to employ the principle of maximum entropy:

F [ρ] = Ē − T Ŝ[ρ] > Ē − T Ŝ[ρc] = F [ρc].

A completely analogous argument holds valid for quantum mechanical sys-
tems as well, as the reader might like to show for themselves. Hence the
minimum free energy consistent with a given Hamiltonian and fixed average
energy is the one of the canonical ensemble.

3.21 Information Entropy and Irreversibility

In the previous section we have seen that the information entropy becomes
maximal for an ensemble system. This suggests the question whether perhaps
there exists a time development of the entropy whichs leads to ever-increasing
entropies until the maximum (i.e. the equilibrium state) is reached.

Hence, might it be that irreversibility can be explained by means of in-
formation entropy? This surely looks promising. It perhaps even looks rea-
sonable. But it is wrong.

The sad truth is told by the following theorem:

Theorem 49 The information entropy of a physical system with a time-
independent Hamiltonian is constant in time.

Proof: We give a quantum mechanical proof. Consider a time-dependent
density matrix ρ̂(t) with a time-independent Hamiltonian Ĥ. Then ρ̂(t) is
given by

ρ̂(t) = e
i
~ Ĥtρ̂(0)e−

i
~ Ĥt,

which follows directly from

ρ̂(t = 0) = e
i
~ Ĥ·0ρ̂(0)e−

i
~ Ĥ·0 = 1 · ρ̂ · 1 = ρ̂(0)
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and from the fact that this ρ̂(t) fulfills the von Neumann equation (cf. The-
orem 14),

˙̂ρ =
i

~
Ĥe

i
~ Ĥtρ̂(0)e−

i
~ Ĥt − i

~
e

i
~ Ĥtρ̂(0)Ĥe−

i
~ Ĥt =

i

~
Ĥρ̂(t)− i

~
ρ̂(t)Ĥ =

i

~
[Ĥ, ρ̂].

Accordingly, we may write down the information entropy as a function of
time t,

Ŝ[ρ̂](t) = Ŝ[ρ̂(t)] = −kB 〈ln ρ̂(t)〉 = −kB

〈
ln
(
e

i
~ Ĥtρ̂(0)e−

i
~ Ĥt
)〉

= −kB

〈
i

~
Ĥt+ ln ρ̂(0)− i

~
Ĥt

〉
= −kB 〈ln ρ̂(0)〉 = Ŝ[ρ̂(0)] = Ŝ[ρ̂](0),

and we see that it doesn’t depend on time. (QED)

Accordingly, information entropy cannot be used for studying irreversibility.

3.22 The Classical Ideal Gas in Equilibrium

Ensembles

The Hamiltonian of a classical ideal gas of N identical non-interacting par-
ticles in three dimensions is given by

H(p, q) =
N∑
i=1

p2
i

2m
.

We will now discuss this charmingly simple example for the various equilib-
rium ensembles we have encountered throughout this chapter. And lo behold,
we will be able to recover the ideal gas law known so well from phenomeno-
logical thermodynamics.
microcanonical ensemble
We place the ideal gas in a box, so that energy E, volume V , and particle
number N remain constant. Fortunately the somewhat tedious calculation
yielding the specific entropy of this microcanonical ensemble has already been
carried out in Sect. 3.7, where the formula

s(e, v) = kB

{
5

2
+ ln

[
v
( me

3π~2

)3/2
]}
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with e = E/N and v = V/N was obtained (cf. Eq. 3.24). Thus the entropy
S = Ns must be given by

S(E, V,N) = NkB ln

[
V

N

(
m

3π~2

E

N

)3/2
]

+
5

2
NkB,

which is known as the Sackur-Tetrode equation.
canonical ensemble
Now let us put the box containing the ideal gas in thermal contact with a heat
bath of temperature T . Then the canonical partition function Z(T, V,N) is
of the form

Z(T, V,N) =

∫
dΓ e−H(p,q) =

∫ ∏N
k=1 d3pk d3qk
N !(2π~)3N

exp

(
−β

N∑
i=1

pi
2m

)

=
1

N !

∫
d3Nq

(2π~)3N

∫
d3Np exp

(
−β 1

2m

3N∑
r=1

p2
r

)

=
1

N !

V N

(2π~)3N

(∫
dp e

− p2

2mkBT

)3N

.

The remaining integral is a Gaussian one, the value of which is given by√
2πmkBT (cf. Footnote 1 on page 43). We therefore obtain

Z(T, V,N) =
1

N !

V N

(2π~)3N

√
2πmkBT

3N
,

and inserting the thermal de Broglie wavelength λ defined by

λ ≡ h√
2πmkBT

(which can be regarded as the quantum mechanical wave length of a particle
with energy kBT ), it follows that

Z(T, V,N) =
1

N !

(
V

λ3

)N
. (3.71)

Now consider for the moment the classical Hamiltonian of N particles with
an interaction independent of the momenta,

H(p, q) =
N∑
i=1

p2
i

2m
+ V (q).
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Here, as the reader should prove as an exercise, the canonical partition func-
tion becomes

Z(T, V,N) =
1

N !(2π~)3N

[
3N∏
i=1

∫
dpi e

− p2
i

2mkBT

]∫
d3Nq e

−V (q)

kBT

= Zideal gas(T, V,N)

∫
d3Nq e−V (q)/kBT .

The remaining spatial integral is known as a configuration integral and is
denoted by QN , so that

QN ≡
∫

d3Nq e−V (q)/kBT

and thus

Z(T, V,N) = Zideal gas(T, V,N) ·QN(T, V,N).

Hence in classical mechanics the momentum integral can be performed for
all systems the interaction of which is momentum-independent.

Let us now return to the ideal gas. From Eq. 3.71 we can infer directly
that

F (T, V,N) = −kBT lnZ(T, V,N) = −kBT ln

(
1

N !

(
V

λ3

)N)
= kBT lnN !−NkBT ln

V

λ3
,

and using the Stirling approximation lnN ! ≈ N lnN −N we see that

F (T, V,N) ≈ NkBT lnN −NkBT −NkBT ln
V

λ3

= −NkBT

(
1 + ln

V

Nλ3

)
= NkBT

(
1 + ln

v

λ3

)
.

Thus from Theorem 35 we may compute the pressure p,

p(T, V̄ , N̄) = −∂F (T, V̄ , N̄)

∂V
=
N̄kBT

V̄
.

Obviously we have recovered the ideal gas law.
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canonical ensemble with variable volume:
The canonical partition function with variable volume Z̃(T, p,N) can be
obtained readily from the partition function Z(T, V,N):

Z̃(T, p,N) =

∫
dV

∫
dΓ e−β(H+pV ) =

∫
dV e−βpV

∫
dΓ e−βH

=

∫
dV e−βpVZ(T, V,N) =

∫
dV e−βpV

1

N !

(
V

λ3

)N
=

1

N !λ3N

∫
dV V Ne−βpV .

By means of an N -fold partial integration it is straightforward to show that
the volume integral has the value∫

dV V Ne−βpV =
N !

(βp)N
,

so that we get

Z̃(T, p,N) =
1

N !λ3N

N !

(βp)N
=

1

pNβNλ3N
.

Accordingly, the Gibbs free enthalpy is given by

G(T, p,N) = −kBT ln Z̃(T, p,N) = −kBT ln
1

pNβNλ3N

= NkBT (ln p+ ln β + 3 lnλ),

and Theorem 35 implies

V̄ (T, p, N̄) =
∂G(T, p, N̄)

∂p
=
N̄kBT

p
.

Again we have arrived at the equation of state of the ideal gas.
grand canonical ensemble:
Similarly to the case of a canonical ensemble with variable volume, the grand
canonical partition function Ẑ(T, V, µ) can be obtained from the canonical
one:

Ẑ(T, V, µ) =
∞∑
N=0

∫
dΓ e−β(H−µN) =

∞∑
N=0

eβµN
∫

dV e−βH

=
∞∑
N=0

eβµNZ(T, V,N) =
∞∑
N=0

eβµN
1

N !

(
V

λ3

)N
.
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Employing the fugacity z = eβµ, we may rewrite Ẑ(T, V, µ) as

Ẑ(T, V, µ) =
∞∑
N=0

1

N !

(
zV

λ3

)N
.

The series on the right hand side constitutes the Taylor expansion of the
exponential function, and hence we find that

Ẑ(T, V, µ) = exp

(
zV

λ3

)
.

Thus the grand canonical potential is given by

Ω = −kBT ln Ẑ(T, V, µ) = −kBT
zV

λ3
= −kBT

eβµV

λ3
,

so that we may conclude from Theorem 35 that

p(T, V̄ , N̄) = −∂Ω(T, V̄ , N̄)

∂V
= kBT

eβµ

λ3

and

N̄(T, V̄ , µ) = −∂Ω(T, V̄ , N)

∂µ
= kBT

βeβµV̄

λ3
= V̄

eβµ

λ3
.

Comparing these two equations, we note that

p(T, V̄ , N̄)

N̄
=
kBT

V̄
,

so that – what a surprise – we regain the ideal gas law.
Having proved the equation of state of the ideal gas from several points

of view, we might aswell state it as a theorem. After all, it is of utmost
importance.

Theorem 50 The equation of state of a gas consisting of classical ideal non-
interacting particles is given by the ideal gas law,

p(T, V̄ , N̄)V̄ = N̄kBT.

Note that both an average volume and average particle number are used in
the ideal gas law.
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Chapter 4

The Monte Carlo Method

In the previous chapter we have developed the statistical description of equi-
librium systems, and we have seen that partition functions may be considered
as the “Holy Grail” of statistical mechanics.

But while it is quite simple to state the recipe for obtaining the partition
function (just compute the relevant integral or sum over phase space), it
turns out to be quite difficult to implement it for arbitrary systems. As
usual, analytic solutions are rare, and we normally have to resort to numerical
methods.

In this chapter we shall therefore discuss at length a numerical method
that might be called the workhorse for calculations in statistical mechanics –
the Monte Carlo method. Alas, our treatment can hardly be called exhaus-
tive, and the interested reader is kindly referred to books on Monte Carlo
methods (such as [7]) for additional information.

4.1 Calculating partition functions is difficult

4.1.1 Non-interacting particles

As we will see in a moment, calculating partition functions can be a huge
burden. However, let us begin our discussion with the one case where this is
not true, namely systems of non-interacting particles.

To this end, consider such a system (taken to be classical and continu-
ous) with N non-distinguishable particles, and denote its time-independent
Hamiltonian by H = H(p, q). Then as the particles don’t interact with

141
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Figure 4.1: Cubic lattice of spins pointing along a crystallographic axis, which
is taken to lie in z direction.

each other, H must be the sum of the N single-particle Hamiltonians hi =
hi(pi, qi), i.e.

H(p, q) =
N∑
i=1

hi(pi, qi).

Accordingly, the canonical partition function must be of the form

Z(T, V,N) =

∫
dΓ e−βH(p,q) =

∫
d3Np d3Nq

N !(2π~)3N
exp

(
−β

N∑
i=1

hi(pi, qi)

)

=
1

N !

N∏
i=1

∫
d3pi d

3qi
(2π~)3

e−βhi(pi,qi) =
1

N !

N∏
i=1

Zi(T, V,N),

where Zi is the the one-particle partition function for the i-th particle. The
result obtained looks even nicer for distinguishable particles, as here the
prefactor 1/N ! doesn’t appear. At any rate, we have shown that the N -
particle problem can be reduced to a set of one-particle problems, which of
course is easier to solve.

If, however, we have to take some interaction into account, the exponential
function doesn’t factorize any longer, and that is precisely where the trouble
starts. We now turn to a simple model where this actually is the case.

4.1.2 Ising Model

As an example for a system of interacting particles consider a cubic lattice of
N atoms with spin 1/2 (such as, say, EuO). For simplicity, we assume that
there exists a crystal anisotropy forcing all the spins to point along some
crystallographic axis, which we may without loss of generality assume to be
the z axis of the coordinate system used (cf. Fig. 4.1). If we can neglect any
motion of the atoms (which we take for granted), the Hamiltonian Ĥ of the
spin lattice just depends on the N spins. Thus, as all the spins point in z
direction, Ĥ may be written as

Ĥ(ŝ1, . . . , ŝN) = Ĥ(ŝ1z, . . . , ŝN,z).
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Figure 4.2: Nearest neighbors. The grey atoms are nearest neighbors of the
black atom, the wite ones are not.

But we may treat all the atoms as distinguishable particles, and all the
ŝi commute. Hence the system is equivalent to a classical one with the
Hamiltonian obtained from the quantum mechanical one by replacing the
spin operators ŝi,z by ordinary coordinates si,z. The allowed states are given
by the set

M = {s1z, . . . sN,z | si,z eigenvalues of ŝi},

and as the eigenvalues of the spin operators are given by si,z = ~σi/2 with
σi ∈ {−1, 1} we get

M =

{
~
2
σ1, . . . ,

~
2
σN

∣∣∣∣ σi ∈ {−1, 1}
}
. (4.1)

Now assume we apply a homogeneous magnetic field B in z direction. Then
the corresponding Hamiltonian Hexternal is of the form (cf. Sect. 3.9)

Hexternal(s1z, . . . , sN,z) = −
N∑
i=1

µiB = −
N∑
i=1

e~
2me

σiB ≡ −h
N∑
i=1

σi,

where h ≡ e~B/2me must not be confused with the Planck constant. Apart
from this contribution to the Hamiltonian there must in addition be a contri-
bution Hinternal due to spin-spin interactions. This will in general be of rather
short range, so that it is reasonable to assume that it is effective between
nearest neighbors only (cf. Fig. 4.2). Hence we obtain

Hinternal(s1z, . . . , sN,z) =
∑

nearest
neighbors i,j

E(σi, σj).

Here E(σi, σj) constitutes the interaction energy between the i-th and j-th
spin. In order to maintain a concise notation, we define < i, j > to denote
all pairs of nearest neighbors, so that we can write

Hinternal(s1z, . . . , sN,z) =
∑
<i,j>

E(σi, σj).
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We take the interaction energies E(σi, σj) to depend linearly on both σi and
σj,

E(σi, σj) = −Jσiσj =

{
−J for σi = σj
+J for σi = −σj

If the constant of proportionality J is positive, the system is ferromagnetic;
if it is negative, we have antiferromagnetism. The total Hamiltonian H of
the system now is just the sum of Hinternal and Hexternal,

H = Hinternal +Hexternal = −J
∑
<i,j>

σiσj − h
N∑
i=1

σi.

The model of spin lattices outlined so far is known as the Ising model. Its
canonical partition function clearly is obtained by summing over all states,

Z(T, V,N) =
∑
σ1=±1

. . .
∑

σN=±1

exp

(
−βJ

∑
<i,j>

σiσj − βh
N∑
i=1

σi

)
, (4.2)

and similarly, the canonical average 〈A〉c of some thermodynamic coordinate
A = A(σ1, . . . , σN) can be computed by means of

〈A〉c =
1

Z(T, V,N)

∑
σ1=±1

. . .
∑

σN=±1

A(σ1, . . . , σN)·

· exp

(
−βJ

∑
<i,j>

σiσj − βh
N∑
i=1

σi

)
.

(4.3)

In general there exist no closed expressions for Z and 〈A〉. This doesn’t seem
to be a real problem though, as after all, both Eq. 4.2 and Eq. 4.3 involve
a finite number of terms only. Hence, while surely not wanting to carry out
the sums by hand, we can surely write a C program doing that job, start the
calculation, go and have some lunch, come back, and enjoy the result, can’t
we?

Can we really? Let us have a somewhat closer look! Being modest physi-
cists, we content ourselves with a three-dimensional lattice of 10× 10× 10 =
1000 spins. (Not too much, isn’t it?) Hence the sums

∑
σ1=±1, . . . ,

∑
σ1000=±1
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Figure 4.3: Simple numerical integration. The integrand f(x) is replaced by
a piecewise constant function.

lead to 21000 ≈ 10301 terms. If we assume that each of these terms can be
computed in the Planck time, i.e. in 5.31× 10−43 s,1, it takes about

10301 terms · 5.31× 10−43 s/term ≈ 5× 10258 s

to complete the job. On the other hand, the age of the universe is roughly

1.5× 1010 years · 3.15× 107 s/year ≈ 5× 1017 s.

Hence it takes about 10241 ages of the universe to carry out the calculation!
Computing partition functions by brute force is impossible.

Accordingly, we have to think of a more appropriate (numerical) ap-
proach, and the Monte Carlo method will turn out to be a good choice.
Before showing this, however, we will embark on a useful detour and discuss
the numerical evaluation of integrals.

4.2 Estimating integrals

Integrals in statistical mechanics for obvious reasons tend to involve a large
number of dimensions. Still, let us first focus on the somewhat simpler case of
one-dimensional integration of a non-pathological function f(x) from x = a
to x = b, i.e. on

I ≡
∫ b

a

dx f(x). (4.4)

The most straightforward approach to solving such an integral is illus-
trated by Fig. 4.3: You divide the interval [a, b] into N pieces of equal length
∆ = (b − a)/N , and replace f(x) by a function which is piecewise constant
on these subintervals.

To be more precise, let

xi ≡ a+ (i− 1)∆ = a+ (i− 1)
b− a
N

.

1As it seems, we aren’t modest concerning the efficiency of our computer. . .
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Then the integral is approximated by means of∫ b

a

dx f(x) ≈
N−1∑
i=0

f(xi)(xi+1 − xi) =
N−1∑
i=0

f(xi)
b− a
N

.

In order to estimate the error made in this approximation, we note that f(x)
can be Taylor expanded about the xi,

f(x) = f(xi) + f ′(xi)(x− xi) +O((x− xi)2),

so that the integral can be written as∫ b

a

dx f(x) =
N−1∑
i=0

∫ xi+1

xi

dx f(x)

=
N−1∑
i=0

∫ xi+1

xi

dx
[
f(xi) + f ′(xi)(x− xi) +O((x− xi)2)

]
,

and we obtain for the error ∆I that

∆I =

∫ b

a

dx f(x)−
N−1∑
i=0

f(xi)(xi+1 − xi)

=
N−1∑
i=0

∫ xi+1

xi

dx
[
f ′(xi)(x− xi) +O((x− xi)2)

]
.

Assuming that f(x) is sufficiently well-behaved, so that we may neglect the
second-order term, we get

∆I =
N−1∑
i=0

∫ xi+1

xi

dx f ′(xi)(x− xi) =
N−1∑
i=0

f ′(xi)

∫ xi+1

xi

dx (x− xi)

=
N−1∑
i=0

f ′(xi) ·
1

2
(xi+1 − xi)2 =

N−1∑
i=0

f ′(xi) ·
1

2
∆2

=
N−1∑
i=0

f ′(xi) ·
1

2

(b− a)2

N2
∼ O

(
N · 1

N2

)
.

Hence the error made is of the order O(N−1). Of course, there is a huge
amount of variants of this naive version for estimating one-dimensional inte-
grals. However, as the spirit of all these is basically the one outlined so far,
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the conclusions concerning the order of magnitude of error basically remains
the same independent of the specific variant under consideration. Readers
interested in learning more about the subtleties of this kind of numerical
integration are kindly referred to [8] for more information on this subject.

There exists an alternative, more unorthodox approach for estimating the
integral I given by Eq. 4.4. In order to see this, we rewrite I in the form

I =

∫ b

a

dx f(x) =

∫ ∞

−∞
dx f(x)Θ(x− a)Θ(b− x)

and note that the probability distribution pu(x) for a random variable X
distributed uniformly in [a, b] is given by

pu(x) =
1

b− a
Θ(x− a)Θ(b− x),

so that using Theorem 3 we obtain

I = (b− a)
∫

dx pu(x)f(x) = (b− a) 〈f(X)〉 .

Hence apart from a prefactor b− a, I can be regarded as the average of the
integrand (provided its argument is distributed uniformly). Now consider
N random variables Xi distributed uniformly in [a, b]. Then the f(Xi) con-
stitute N identically distributed random variables, and Theorem 11 implies
that

1

N

N∑
i=1

f(xi) = 〈f(X)〉+O

(
σf(X)√
N

)
.

But σf(X) doesn’t depend on N , so that we finally get

I = (b− a) 〈f(X)〉 =
b− a
N

N∑
i=1

f(Xi) +O

(
1√
N

)
.

In practical terms this means that we can estimate the value of I by gen-
erating N random numbers xi distributed uniformly in [a, b], compute the
corresponding f(xi), and form their average multiplied by b− a, i.e.

I =
b− a
N

N∑
i=1

f(xi) +O

(
1√
N

)
.
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N estimate for π
10 4.10049

100 3.09209
1000 3.17717

10000 3.17515
100000 3.14371

1000000 3.13951

Table 4.1: Estimates of π obtained by the C++ program shown in Fig. 4.4 for
various numbers N of random numbers. Note that the results depend on the
implementation of the random number generator and thus on the compiler
and operating system used.

This method of employing random numbers in order to estimate integrals is
known as Monte Carlo integration. Evidently, its convergence (O(N−1/2)) is
worse than that of the “conventional method” outlined above (O(N−1)).

As a simple example of a Monte Calo integration we calculate the value
of π by estimating the integral

Iπ =

∫ 2

0

dx
√

4− x2.

A straightforward C++ program carrying out this computation is shown in
Fig. 4.4; some typical results are stated in Table 4.1.

Let us now be slightly bolder and turn to the discussion of M -dimensional
integrals

I ≡
∫
V

dMx f(x),

where for simplicity we assume that the volume V of integration is a cube of
side length ∆, i.e. that the M variables x(i) are constrained by the relations

a1 6 x(1) 6 b1 = a1 + ∆

a2 6 x(2) 6 b2 = a2 + ∆

. . .

aM 6 x(M) 6 bM = aN + ∆
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#include <iostream.h>

#include <math.h>

#include <stdlib.h>

int main(int argc, char **argv)

// Simple program for estimating pi by means of a

// Monte Carlo integration of sqrt(4-x*x) from

// a=0 to b=4.

// This program must be called with the number of

// random numbers to be used.

{

long i;

long N; // amount of random numbers used

double random_number;

const double a=0; // lower limit of integration

const double b=4; // upper limit of integration

double average,pi;

if (argc!=2) {

cerr << "You have to supply exactly one argument.\n";

exit(0);

}

N=atol(argv[1]);

average=0;

for (i=1;i<=N;i++) { // computing N times the average

random_number=a+(b-a)*drand48();

// random number (uniformly distributed in [a,b])

average+=sqrt(4-random_number*random_number);

}

average/=(double)N;

pi=(b-a)*average;

cout << N << " random numbers ---> pi=" << pi << endl;

}

Figure 4.4: C++ program for estimating π by means of a Monte Carlo
integration of

√
4− x2 from 0 to 4.
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We now divide the volume of integration into N cubes of equal volume. Then
evidently the volume of such a small cube is given by ∆M/N , so that its side
length δ has the value

δ =

(
∆M

N

)1/M

.

Similarly to the one-dimensional case, we may expand the integrand f(x)
about a corner xc,k of the k-th cube Vk,

f(x) = f(xc,k) + (x− xc,k) · ∇f(xc,k) +O((x− xc,k)
2)

and thus may approximate the integral I as

I =
N∑
k=1

∫
Vk

dMx
[
f(xc,k) + (x− xc,k) · ∇f(xc,k) +O((x− xc,k)

2)
]
.

Assuming that f(x) is sufficiently well-behaved, we can neglect the second-
order term. Hence we see that we may estimate the integral by means of

I =

∫
V

dMx f(x) ≈
N∑
k=1

∫
Vk

dMx f(xc,k) =
N∑
k=1

f(xc,k)

∫
Vk

dMx

=
N∑
k=1

f(xc,k)Vk =
N∑
k=1

f(xc,k)
∆M

N
.

The imprecision ∆I of this approximation can be expressed as

∆I =
N∑
k=1

∫
Vk

dMx (x− xc,k) · ∇f(xc,k) =
N∑
k=1

∇f(xc,k) ·
∫
Vk

dMx (x− xc,k)

=
N∑
k=1

∇f(xc,k) ·

δ
M+1/2

...
δM+1/2

 =
1

2

(
∆M

N

)(M+1)/M N∑
k=1

∇f(xc,k) ·

1
...
1


∼ O

(
1

N1+1/M
·N
)
∼ O

(
N−1/M

)
.

Accordingly, the convergence of this method deteriorates with an increasing
number of dimensions M , and in the limit of infinitely many dimensions,
there is no convergence at all.
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Things look utterly different for Monte Carlo integration: Here we con-
sider N M -dimensional random vectors Xk distributed uniformly in the in-
tegration volume V (again taken to be a cube with side length ∆). Then the
probability density pu of the Xk can be written as

pu(x) =
1

∆M

M∏
i=1

Θ(xi − ai)Θ(bi − xi),

and from Theorem 4 we obtain

I ≡
∫
V

dMx f(x) =

∫
dMx f(x)

M∏
i=1

Θ(xi − ai)Θ(bi − xi)

= ∆M

∫
dMx pu(x)f(x) = ∆M 〈f(X)〉 .

On the other hand, as the f(Xk) constitute N independent, but identically
distributed random variables, we know from Theorem 11 that

〈f(X)〉 =
N∑
k=1

f(X i) +O

(
1√
N

)
,

As in the one-dimensional case, we get the result that for N random numbers
distributed uniformly in the integration volume the relation

I = ∆M 〈f(X)〉 =
∆M

N

N∑
k=1

f(xi) +O

(
1√
N

)
,

which can be used for estimating the integral. Obviously, the convergence
(O(N−1/2)) does not depend on M , so that for high dimensions Monte Carlo
integration clearly surpasses the conventional method for estimating inte-
grals.

Concerning the naive version of conventional numerical integration dis-
cussed above, Monte Carlo integration becomes more effective as soon as
−1/M > −1/2, i.e. if M > 2. In practice, conventional algorithms may
compete slightly longer; here the turnover occurs for M & 3 . . . 4. At any
rate, the high-dimensional integrals occuring in statistical mechanics should
be tackled by means of Monte Carlo integration.



152 CHAPTER 4. THE MONTE CARLO METHOD

4.3 Importance sampling

The simple Monte Carlo method outlined in the previous section involved
generating random numbers according to a uniform distribution. This is
generally known as simple sampling. While it has been declared the method
of choice for high-dimensional integrals, without a serious modification it is
doomed to fail for many integrals, in particular if the integrals happen to be
relevant for statistical mechanics.

Perhaps the reader is surprised about this statement. After all, haven’t
we proved that Monte Carlo integration provides a reliable estimate? Yes and
no. While we did indeed show that the imprecision will vanish as CN−1/2,
we said nothing whatsoever concerning the constant of proportionality C in
this expression. And it is precisely this constant which may cause quite a lot
of trouble.

In order to fully appreciate the problem, consider the innocent-looking
function

f(x) ≡
{

1010 (1
2

6 x 6 1
2

+ 10−10)
0 (otherwise)

.

Clearly the integral I of f from 0 to 2 has the value

I ≡
∫ 2

0

dx f(x) = 1.

Furthermore it is straightforward to adopt the program given in Fig. 4.4 in
order to compute I; one just has to replace the line

average+=sqrt(4-random_number*random_number);

by

average+=random_number<0.5 ? 0 :

(random_number<0.5+1e-10 ? 1e10 : 0);

(Ask your local C guru, if you don’t about the meaning of the ternary oper-
ator ?.) Running this modified program (try it!), however, turns out to be
depressing: For all the numbers of random numbers from 1 to, say, 107 you
get (in all likelihood) 0 as the estimate of I.

The reason for this can be seen fairly easily. If you generate a random
number according a uniform distribution in [0, 2], the probability Pnot that
it doesn’t lie in the support of f (i.e. in [1/2, 1/2 + 10−10]) is given by
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Pnot = 1 − 10−10/2. Hence the probability P that at least one of N such
random numbers lies in the support has the value

P = 1− PN
no = 1− (1− 10−10/2)N ,

so that for N = 107 we get P ≈ 0.0005, which for all purposes is equal to
zero. We therefore can assume that no random number hits the support, and
of course this explains why we get zero as the estimate of I.

Obviously, if we could take many more than 1010 random numbers, the
Monte Carlo method would yield reliable results again. And while this may
seem feasible, we could have rendered any efforts of solving the problem with
a computer useless by narrowing the support to, say, [1/2, 1/2 + 10−30].

Perhaps the reader thinks that although all this is correct, we just have
discussed an artificially contrived (and thus irrelevant) example. If so, they
are quite mistaken. In fact, integrals in statistical mechanics tend to be of
the form ∫

dΓA(p, q)e−βH(p,q),

so that by simply generating a random point in phase space we almost cer-
tainly end up with a negligible Boltzmann factor, which doesn’t really con-
tribute to the integral under consideration.

Not all is lost, though. The decisive strategy for coping with the problem
just described is not to use uniformly distributed random numbers, but rather
to choose a distribution which is more appropriate for the integrand under
consideration. This approach is known as importance sampling.

In order to discuss importance sampling in more detail, let us consider
an integral of the form

I ≡
∫
V

dMx f(x)g(x),

where g(x) is taken to be normalized,∫
V

dMx g(x) = 1,

and where again we assume that the volume of integation V is a cube of side
length ∆. In addition, let g(x) ≡ 0 for all x /∈ V .Then the simple sampling
approach would be to interpret I as

I = ∆M

∫
V

dMx f(x)g(x)pu(x).
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However, instead of using a uniformly distributed random vector X we may
also introduce a random vector Y the probability density of which is given
by pY (y) = g(y), so that we may write

I =

∫
V

dMy f(y)g(y) =

∫
dMy f(y)pY (y) = 〈f(Y )〉 .

Hence analogous to the case of simple sampling we obtain an estimate of I
by generating N random number vectors yk and using the relation

I =

∫
V

dMy f(y)g(y) = 〈f(Y )〉 ≈ 1

N

N∑
k=1

f(yk) +O

(
1√
N

)
.

As a simple example of importance sampling let us reconsider the integral
discussed at the beginning of this section. Here we may choose

f(x) ≡ 1

and

g(x) ≡
{

1010 (1
2

6 x 6 1
2

+ 10−10)
0 (otherwise)

,

as this g(x) surely is normalized and vanishes outside [0, 2]. In order to obtain
random numbers distributed according to g(y), in our Monte Carlo program
shown in Fig. 4.4 we have to change the line

random_number=a+(b-a)*drand48();

into

random_number=0.5+1e-10*drand48();

In addition, the line

average+=sqrt(4-random_number*random_number);

needs to be replaced by

average+=1;
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With these changes, independent of the number N of random numbers, the
program yields 1 as its estimate of the integral. Hence by employing im-
portance sampling we have managed to obtain the exact solution from the
Monte Carlo integration.

This all sounds too good to be true, the reader might think. There must
be a drawback somewhere. And of course there is. Importance sampling
hinges on the fact that we can find random vectors distributed according
to some given probability density. But the task of generating such random
vectors is far from trivial. We will explain how to do this in the following
sections.

However, let us first briefly comment on estimating sums. Here, the
discussion runs along the same lines as that for the case of integrals. To see
this, consider a finite set of M states S = {s1, . . . , sN} and some function f
of these states, and assume that we are interested in the sum

S ≡
M∑
i=1

f(si).

Then we may express this sum as

S = M · 1

M

M∑
i=1

f(si) = M 〈f(s)〉 ,

so that if we generate N states sk distributed uniformly among the set S of
states, we can estimate S by means of

S = M 〈s〉 ≈M · 1

N

N∑
k=1

f(sk) +O

(
1√
N

)
.

Of course, we may also evaluate a sum by means of importance sampling. In
this case we write S in the form

S ≡
M∑
i=1

f(si)g(si),

where g is assumed to be normalized, i.e.

M∑
i=1

g(si) = 1.
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Then if we generate N states sk distributed so that g(sk) is the probability
of sk, the sum S can be approximated as

S ≈ 1

N

N∑
k=1

f(sk) +O

(
1√
N

)
.

To be more specific, note that the canonical average 〈A〉 of the Ising model
with M spins is given by

〈A〉 =
∑

{σ1,...,σM

A({σk})
1

Z(T )
e−H({σk})/kBT .

For these averages it is thus reasonable to carry out a Monte Carlo integration
with importance sampling, where f(s) = A(s) and g(s) = e−H(s)/kBT/Z(T ).
Hence we have to come up with an idea of how to construct states distributed
according to the Boltzmann distribution.

4.4 Stochastic Processes

At the beginning of Sect. 2.3.3 we saw that from the point of view of proba-
bility theory, a sequence of N experiments with random variables (or, more
generally, vectors) Xi can formally be regarded as a single experiment with
the random vector X = (X1, . . . , XN), where Xi refers to the random vari-
able of the i-th experiment. The probability density of X then may be
written in the usual way as

pX (x) = pX (x1, . . . , xN).

An important example of a sequence of experiments is of course the same
experiment repeated at various times. In this case, it is reasonable not to
simply label the various random variables related to the various times with
somewhat meaningless subscripts, but to introduce a functional X(·), so that
X(t) corresponds to the random variable of the experiment carried out at the
time t (and as such is not a real number, but a function). Similarly we might
like to write x(tk) rather than xk, so that we can express the probability
density as

pX (x) = pX (x(t1), . . . , x(tN)).
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Figure 4.5: Typical outcome of the stochastic process with p(x) =∏∞
i=1 Θ(x(ti))Θ(1− x(ti)), where ti ≡ i is assumed.

Obviously, we may drop the assumption that there is a finite number of times
and just demand that a countable set of times is considered, so that

pX (x) = pX (x(t1), x(t2), . . .).

Of course, we might even allow the time to be continuous; however we then
would run into trouble concerning the notation used so far. We will discard
this possibility.

Temporal sequences of experiments are known as stochastic processes. If
there is no correlation between the experiments conducted at the various
times, the probability density of a stochastic processes factorizes, i.e.

p(x(t1), x(t2), . . .) =
∞∏
i=1

pi(x(ti)),

where here and in the following the subscript X is omitted. This property
may be described by saying that the correlation time is zero for the process.
As a simple example consider

pi(x(ti)) ≡ Θ(x(ti))Θ(1− x(ti))

with ti ≡ i. Fig. 4.5 shows a typical outcome of this process.
In general the probability of a certain outcome at the time tk depends

on all the outcomes for the times ti < tk, so that the probability densities
p(x(t1), . . . , x(tk)) of the first k and p(x(t1), . . . , x(tk−1)) of the first k − 1
times are related as

p(x(t1), . . . , x(tk)) = g(x(tk)|x(t1), . . . , x(tk−1)) · p(x(t1), . . . , x(tk−1)), (4.5)

where g may be regarded as a conditional probability (cf. Def. 18). Now
assume that the probability density at the time tk depends just on that at
the time tk−1, i.e. that the process under consideration can only “remember”
the previous step. Then g can only be a function of x(tk) and x(tk−1),
g = g(x(tk)|x(tk−1)), and Eq. 4.5 simplifies to

p(x(t1), . . . , x(tk)) = g(x(tk)|x(tk−1)) · p(x(t1), . . . , x(tk−1)). (4.6)
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Stochastic processes for which this condition is fulfilled are known as Markov
processes or, if the set of possible values of the random variable(s) is count-
able, also as Markov chains, and they are the only processes we shall consider
in the following.

Before going on, let us introduce the notation

p(xk, tk;xk−1, tk−1; . . . ;x2, t2, x1, t1) ≡ p(x(t1), x(t2), . . . , x(tk−1), x(tk))

and similarly

g(xk, tk|xk−1, tk−1) ≡ g(x(tk)|x(tk−1)),

which obviously is somewhat redundant, as dropping all the ti wouldn’t really
change any meaning. Note that in p the order of the arguments has been
reversed. In addition, we will take t0 rather than t1 as the offset of our
Markov chain.

Using this notation and iteratively applying the Markov condition Eq. 4.6,
we obtain

p(xk, tk;xk−1, tk−1; . . . ;x0, t0)

= g(xk, tk|xk−1, tk−1)p(xk−1, tk−1;xk−2, tk−2; . . . ;x0, t0)

= g(xk, tk|xk−1, tk−1)g(xk−1, tk−1|xk−2, tk−2)·
· p(xk−2, tk−2;xk−3, tk−3), . . . , x0, t0)

= . . .

= g(xk, tk|xk−1, tk−1)g(xk−1, tk−1|xk−2, tk−2) · . . . ·
· g(x2, t2|x1, t1)g(x1, t1|x0, t0)p(x0, t0).

Here p(x0, t0) consitutes the initial condition of the Markov process. Now
(loosely speaking) we normally are interested in the probability density of
the random variable X(tk) independent of what the previous outcomes have
been, i.e. we are interested in the probability density p(xk, tk) given by

p(xk, tk) =
∑

xk−1∈Ω,...,x0∈Ω

p(xk, tk;xk−1, tk−1; . . . ;x0, t0), (4.7)
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Figure 4.6: Time evolution of a Markov process. g(x, tk|y, tk−1) constitutes
the transition probability from the element y at tk−1 to x at tk, and in order
to obtain the probability p(x, tk) all elements y at tk−1 must be considered.

where Ω is the sample space under consideration. This probability may be
rewritten by means of the Markov condition as

p(xk, tk) =
∑

xk−1∈Ω,...,x0∈Ω

g(xk, tk|xk−1, tk−1)p(xk−1, tk−1; . . . ;x0, t0)

=
∑

xk−1∈Ω

g(xk, tk|xk−1, tk−1)·

·
∑

xk−2∈Ω,...,x0∈Ω

p(xk−1, tk−1;xk−2, tk−2; . . . ;x0, t0),

and applying Eq. 4.7 for p(xk−1, tk−1) rather than p(xk, tk), we obtain

p(xk, tk) =
∑

xk−1∈Ω

g(xk, tk|xk−1, tk−1)p(xk−1, tk−1).

If we replace xk−1 by y and drop the subscript k in xk, we thus arrive at what
is known as the Chapman-Kolmogorov equation,

p(x, tk) =
∑
y∈Ω

g(x, tk|y, tk−1)p(y, tk−1).

Fig. 4.6 illustrates this equation. In order to cast it into a somewhat more
useful form, let us assume that the random variable X(t) can assume N
distinct values x(i), which don’t depend on the specific time chosen. Then
we can define a probability vector p(t) as

p(t) ≡ (p(X(t) = x(1)), p(X(t) = x(2)), . . . , p(X(t) = x(N)))T,

and in addition we may introduce the matrix ĝ(tk, tk−1) with the elements
ĝij(tk, tk−1) ≡ g(x(i), tk|x(j), tk−1). But this implies that we may write the
Chapman-Kolmogorov equation in matrix form,

p(tk) = ĝ(tk, tk−1)p(tk−1),
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Figure 4.7: Left: Example of an ergodic Markov process. The number at an
arrow from x(j) to x(j) corresponds to the component ĝij of the stochastic
matrix. If no arrow is shown, ĝij = 0 is assumed for this transition. For sim-
plicity, homogeneity is assumed. Right: Example of a non-ergodic process.
No other element can be reached from x(4).

which has the advantage that we may use the formalism of linear algebra for
discussing it in more detail. Note that in principle we might live without the
condition that N is finite. However, in the case of an infinite, but countable
set of x(i), the technical details get more troublesome. We will skip the details
and just tacitly assume that, if need be, all the results obtained for the finite
case remain valid in the infinite case as well.

So far, we didn’t put any severe constraints on the Markov processes con-
sidered. However, in order to proceed, we have to concentrate on processes
which don’t change with time and which cover all the sample space elements.
But first let us put these properties in a more rigid form:

Definition 42 A Markov process is called homogeneous, if its transition
matrix doesn’t change with time, i.e. if

ĝij(tk, tk−1) ≡ g(x(i)|x(j)) ≡ const.

Definition 43 A Markov process is called ergodic, if it is possible to reach
all elements of the sample space from any given element, i.e. if for each x(i)

and x(j) there exists an N so that

[ĝ(tN , tN−1) · ĝ(tN−1, tN−2) · . . . · g(t1, t0)]ij 6= 0.

An example of an ergodic and an example of a non-ergodic Markov pro-
cess are given in Fig. 4.7. Especially in the case of a homogeneous Markov
chain we may assume without loss of generality that the discrete times tk
are equidistant, so that tk+1 − tk ≡ ∆ for all k. In this case we denote the
stochastic matrix and its components by

ĝ∆ ≡ ĝ(t+ ∆, t)

and
ĝ∆(x|y) ≡ g(x, t+ ∆|y, t).
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If a probability distribution generated by a Markov process is constant in
time, it is called a stationary state. We may put this in a slightly more
formal form as follows:

Definition 44 A probability vector p(t) is called a stationary state of some
Markov process, if it is an eigenvector of the stochastic matrix with eigen-
value 1, i.e. if (cf. the Chapman-Kolmogorov equation)

p(tk) = ĝ(tk, tk−1)p(tk−1) = p(tk−1)

for all times tk.

Do all Markov chains have a stationary state? Surely not. As a simple coun-
terexample consider the homogeneous Markov chain given by the stochastic
matrix

ĝ∆ =

(
0 1
1 0

)
.

The N -th power of this matrix can easily be computed,

ĝN∆ =


(

0 1
1 0

)
≡ Ĝ1 (N odd)(

1 0
0 1

)
≡ Ĝ2 (N even)

.

But Ĝ1 possesses the eigenvectors2 (1/2, 1/2) and (1/2,−1/2), whereas Ĝ2

has the eigenvectors (1, 0) and (0, 1). Hence there are no common eigenvec-
tors, and there exists no stationary state.

Note that the Markov process considered here is both ergodic and ho-
mogeneous, so that these two properties are not sufficient for the existence
of stationary states. However, as we will see in a moment, they are nearly
so. In order to see why (and what we have to add for sufficiency), we need
an important theorem from linear algebra known as Perron’s theorem. In
order to understand it, the reader should remember that a matrix A = (Aij)
is called positive, if all the Aij are positive. Analogously, a positive vector
x = (xi) has positive xi only.

2As the eigenvectors are supposed to be probability vectors, they are normalized so
that the sum of their components is 1.
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Theorem 51 (Perron’s theorem) Let A be a positive matrix. Then there
exists a real and positive eigenvalue λmax which is not degenerate and the
absolute value of which is larger than those of the other eigenvalues. In
addition, the corresponding eigenvector emax is positive.

Perron’s theorem was proved by Perron in 1907 and generalized to irreducible
matrices by Frobenius in 1912. [1, 10] Hence it or its generalized version are
aloso known as Frobenius-Perron theorem.

Proof: The proof is somewhat lengthy, and rather than attempting to give
it, we adopt the viewpoint of John 20, 29.3 Readers feeling uneasy about this
may find a proof of the generalized version of the Frobenius-Perron theorem
in [1] or [10]. (QED)

Perron’s theorem forms the key ingredient for the following remarkable the-
orem on the convergence of Markov processes.

Theorem 52 Let the n × n matrix ĝ∆ be the stochastic matrix of a homo-
geneous and ergodic Markov process with constant timesteps ∆, and assume
that all diagonal elements of ĝ∆ are positive. Then there exists a stationary
state pstat of the Markov process. In addition, the Markov process converges
to pstat independent of the initial state, i.e.

lim
N→∞

ĝN∆p(t0) = pstat

for all probability vectors p(t0).

Proof: We start by showing that there exists a K ∈ N so that the K-th
power of ĝ∆ is positive. To this end consider some arbitrary, but fixed i
and j. Then due to the ergodicity of the Markov process, there must be a
K(i, j) ∈ N for which (ĝ

K(i,j)
∆ )ij > 0. Furthermore, as all the components

of both ĝ∆ and ĝ
K(i,j)
∆ can be regarded as transition probabilities, it is clear

that they need to be non-negative. Hence we may conclude that

(ĝ
K(i,j)+1
∆ )ij = (ĝ

K(i,j)
∆ ĝ∆)ij =

n∑
k=1

(ĝ
K(i,j)
∆ )ik︸ ︷︷ ︸

>0

(ĝ∆)kj︸ ︷︷ ︸
>0

> (ĝ
K(i,j)
∆ )ij︸ ︷︷ ︸
>0

(ĝ∆)jj︸ ︷︷ ︸
>0

> 0.

(Remember that (ĝ∆)jj > 0 was assumed in the theorem.) Thus by induction
we see that (ĝK

′
∆ )ij > 0 for all K ′ > K(i, j). But then if K denotes the

3“blessed are they that have not seen, and yet have believed” [6]
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maximum of all the K(i, j), (ĝK
′

∆ )rs must be positive independent of the
specific r and s chosen, i.e. ĝK∆ is positive, which is what we set out to show.

Now consider an arbitrary positive eigenvector e of ĝK∆ with eigenvalue λ,
and assume that it is normalized to be a probability vector. Due to the
fact that as a product of stochastic matrices, ĝ∆ must itself be a stochastic
matrix, we can infer for the choice p(t0) = e that

1 =
n∑
i=1

(ĝK∆p(t0))i =
n∑
i=1

(ĝK∆e)i =
n∑
i=1

(λe)i = λ
n∑
i=1

(e)i = λ,

so that the only possible eigenvalue for probability vectors is 1. On the
other hand, as ĝK∆ is positive, we can deduce from Perron’s theorem that it
has a non-degenerate (real) eigenvalue λmax with a positive eigenvector emax.
Hence we have seen that concerning probability vectors, ĝK∆ possesses exactly
one eigenvector emax, and the corresponding eigenvalue λmax is 1.

Now let us take emax as the initial state p(t0). Then

ĝK∆p(t1) = ĝK∆ ĝ∆p(t0) = ĝK+1
∆ emax = ĝ∆ĝ

K
∆emax = ĝ∆(λmaxemax)

= λmaxĝ∆p(t0) = λmaxp(t1) = p(t1),

which implies that p(t1) is also an eigenvector of ĝK∆ . Thus from the unique-
ness of the eigenvector it follows that

p(t1) = emax = p(t0).

In other words, emax is a eigenvector of the stochastic matrix and hence a
stationary state.

It remains to be shown that the Markov process converges to the sta-
tionary state thus found. We prove this first for the special case that the
stochastic matrix has n (possibly complex) linear independent eigenvectors
ek with eigenvalues λk. Then the eigenvectors form a basis, and choosing
e1 ≡ emax, we can write an arbitrary inititial state in the form

p(t0) ≡ qemax +
n∑
k=2

rkek, (4.8)

where q, rk ∈ C. We therefore get

ĝN∆p(t0) = ĝN∆

(
qemax +

n∑
k=2

rkek

)
= qemax +

n∑
k=2

rkλ
N
k ek



164 CHAPTER 4. THE MONTE CARLO METHOD

But from Perron’s theorem we know that the absolute values of the λk for
k > 2 must be less than that of λmax, i.e. |λk| < 1 for k > 2. Accordingly,
|λNk | and thus also λNk vanish in the limit of infinite N , and we are left with

lim
N→∞

ĝN∆p(t0) = qemax.

But as ĝN∆ is a stochastic matrix, so will be limN→∞ ĝN∆ . Hence the right
hand side in this equation must be a probability vector, so that q = 1 and

lim
N→∞

ĝN∆p(t0) = emax.

Let us now turn to the general case, where we cannot assume that the eigen-
vectors of the stochastic matrix form a basis. This means, of course, that
we cannot rely on the existence of the decomposition of Eq. 4.8 any longer.
However, assuming that there are u eigenvectors ek with eigenvalues λk and
choosing e1 ≡ emax, we may express the matrix ĝN∆ as

ĝN∆ =
C(1)
1
χ (1)

+
u∑
k=2

1

(mk − 1)!

C(λ)
k
χ (λ)

λN

mk−1∣∣∣∣∣∣
λ=λk

,

wheremk is the degree of degeneracy of λk and χ(λ) denotes the characteristic
polynomial,

χ(λ) ≡
N∏
k=1

(λ− λk)mk .

C(λ) constitutes the reduced adjoint matrix, C(λ) ≡ (λ · 1− ĝ∆)−1χ(λ), and
k
χ (λ) is defined as

k
χ (λ) ≡ χ(λ)

(λ− λk)mk
.

We refer the reader to Ch. XIII, § 7 of [1] and Ch. V, § 3 of [2] for a proof.
As above, for k > 2, λNk and thus λN ·mk

k vanish in the limit of N −→ ∞, so
that

lim
N→∞

ĝN∆ =
C(1)
1
χ (1)

.

Hence ĝN∆ converges. Now assume there existed an initial state p(t0) which
doesn’t converge to a stationary state. Then there would be some ε, ε′ > 0
so that for every N ∈ N we could find a N ′ ∈ N with

max
i
|(ĝN ′+1

∆ p(t0)− ĝN
′

∆ p(t0))i| > ε
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or, equivalently,
max
i,j
|(ĝN ′+1

∆ − ĝN ′

∆ )ij| > ε′.

Thus ĝN∆ wouldn’t converge, contrary to what we have just shown. Accord-
ingly, any initial state must converge into the stationary state emax, and the
theorem has been proved. (QED)

The conceptual importance of Theorem 52 should not be underestimated: If
a physical system can be modeled by a homogeneous, ergodic Markov chain,
it will end up in a (or rather the) stationary state, independent of where it
started off. This goes a long way towards explaining why the simple recipe
advocated at the beginning of Chapter 3 for preparing an equilibrium system
(“just leave the system alone and wait long enough”) actually works.

We finish this section by providing a version of Theorem 52 which requires
only somewhat weakened conditions and will prove helpful when discussing
the Metropolis algorithm in the next section.

Theorem 53 Let the n × n matrix ĝ∆ be the stochastic matrix of a homo-
geneous and ergodic Markov process with constant timesteps ∆, and assume
that for all i either the diagonal element gii is positive or there exists a k
such that both (ĝ∆)kk and (ĝ∆)ik are positive. Then there exists a stationary
state pstat of the Markov process. In addition, the Markov process converges
to pstat independent of the initial state, i.e.

lim
N→∞

ĝN∆p(t0) = pstat

for all probability vectors p(t0).

Proof: Evidently, it is sufficient to prove that for a sufficiently large K ′ ĝK
′

∆

is positive, as then we can just use the proof provided for Theorem 52. We
may assume without loss of generality that for 1 6 i 6 r the (ĝ∆)ii are posi-
tive, whereas for r + 1 6 i 6 n they vanish. Then by arguments completely
analogous to those given at the beginning of the proof for Theorem 52, it
can be shown that there exists a K such that the (ĝK∆ )ij are positive for all
i 6 r. However, choosing any k > r, we know that there must be a l 6 r
with (ĝ∆)kl > 0, and thus we get

(ĝK+1
∆ )kk =

n∑
s=1

(ĝ∆)ks(ĝ
K
∆ )sk = (ĝ∆)kl︸ ︷︷ ︸

>0

(ĝK∆ )lk︸ ︷︷ ︸
>0

+
∑
s=1
s 6=l

(ĝ∆)ks︸ ︷︷ ︸
>0

(ĝK∆ )sk︸ ︷︷ ︸
>0

> 0.
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Furthermore, as a power of a stochastic matrix for an ergodic Markov process,
ĝK+1
∆ is itself a stochastic matrix for an ergodic process. We therefore can

use the arguments given at the beginning of the proof of Theorem 52 to show
that there exists a K ′ so that (ĝK∆ )K

′
= ĝK·K

′
∆ is positive, which is all we had

to prove. (QED)

4.5 The Metropolis algorithm

At the end of Sect. 4.3 we realized that in order to employ a Monte Carlo sim-
ulation with importance sampling, we need to construct states which are dis-
tributed according to a given probability density. Having discussed Markov
prpcesses, we are now in the position to successfully tackle this problem.

In order to do so, we start by noting that in the case of a finite number
of states (which we shall be content with), the (discrete) probability density
can be interpreted as a probability vector. Hence we might paraphrase our
task by stating that we need to construct some given probability vector.

But lo behold! From Theorem 52 we know that all homogeneous, ergodic
Markov processes converge to their (unique) stationary state. Hence, if we
have a Markov process with the desired probability density as its stationary
state, we have a solution to our problem: We just have to start with an
arbitrary probability vector and run the Markov process sufficiently long. In
a way, we have replaced our old problem by a new one, as we still have to
provide a recipe of how to find an appropriate Markov process for a given
stationary state.

This, however, will turn out to be simpler than might be thought at first
sight. But let us leave aside the question for the moment and reconsider the
Chapman-Kolmogorov equation,

p(x, tk) =
∑
y∈Ω

g(x, tk|y, tk−1)p(y, tk−1).

Subtracting p(x, tk−1) on both sides of the equation, we get

p(x, tk)− p(x, tk−1) =
∑
y∈Ω

g(x, tk|y, tk−1)p(y, tk−1)− p(x, tk−1),

and remembering that for any stochastic matrix
∑

y∈Ω g(y, t
′|x, t) = 1 holds

valid, we obtain the Master equation.
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Figure 4.8: Interpretation of the Master equation. The right hand side of
Eq. 4.9 may be regarded as a sum of terms describing scattering in and
out of an element in phase space. Left: There is a gain at x ∈ Ω due
to transitions from (other) sample space elements (“scattering in”). Right:
There is a loss at x due to transitions from this to other elements in sample
space (“scattering out”).

Theorem 54 The time development of a probability distribution in a Markov
process is given by the Master equation:

p(x, tk)− p(x, tk−1) =
∑
y∈Ω

[g(x, tk|y, tk−1)p(y, tk−1)− g(y, tk|x, tk−1)p(x, tk−1)]

(4.9)

From a “physical” point of view, the master equation may be viewed as a
description of scattering in and out of some sample space element. This is
illustrated by Fig. 4.8.

Dividing both sides of the Master equation by tk − tk−1 yields

p(x, tk)− p(x, tk−1)

tk − tk−1

=
∑
y∈Ω

[g∗(x, tk|y, tk−1)p(y, tk−1)

− g∗(x, tk|y, tk−1)p(x, tk−1)],

where the transition probabilities per time g∗ are defined by

g∗(x, tk|y, tk−1) ≡
g(x, tk|y, tk−1)

tk − tk−1

.

Thus in the limit of infinitely small time steps we obtain the continuous
version of the Master equation:

dp(x, t)

dt
=
∑
y∈Ω

[g∗(x, t|y, t)p(y, t)− g∗(y, t|x, t)p(x, t).

If for all x, y ∈ Ω (and all times) the relation g(x, tk|y, tk−1)p(y, tk−1) =
g(y, tk|x, tk−1)p(x, tk−1) holds valid, we say that detailed balance is fulfilled.
In this case, obviously the left hand side of the Master equation vanishes,
and we get the following theorem.
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Figure 4.9: Metropolis algorithm. An arbitrary initial snew has to be supplied.
After sufficiently many loops snew can be taken as the output of the algorithm.

Theorem 55 A state which fulfils detailed balance is a stationary state of
the Markov process under consideration.

This theorem is good news indeed: In order to construct a homogeneous
Markov process for a given stationary state we just have to come up with a
stochastic matrix ĝ so that ĝ and the given state fulfil detailed balance.

We can now finally come back to the simulation of canonical ensembles,
which can be carried out by means of the Metropolis algorithm. In order to
discuss this algorithm, let us consider a system with n states and a Hamil-
tonian H.

Basically the Metropolis algorithm consists in a repeated application of
a step turning a given initial state sold into a new state snew. Here, the
step can be divided into two parts: First, an ergodic (and possibly random)
construction is employed in order to obtain a state s′ from sold. Second, the
energies H(s′) and H(sold) are compared. If the energy of s′ is less than
that of sold, it is used as the new state snew. Otherwise a random number r
distributed uniformly between 0 and 1 is generated. If r < e−β(H(s′)−H(sold)),
s′ is chosen as snew; if r > e−β(H(s′)−H(sold)), sold is kept. In other words,

snew =


s′ for H(s′) < H(Sold)
s′ for H(s′) > H(Sold) and r < e−β(H(s′)−H(sold))

sold for H(s′) > H(Sold) and r > e−β(H(s′)−H(sold))

. (4.10)

Fig. 4.9 may serve as an illustration. The idea behind the Metropolis algo-
rithm is of course that the state obtained after sufficiently many repetitions
will be distributed according to the Boltzmann distribution.

Theorem 56 Consider a system with n states si and a Hamiltonian H.
Assume

1. that for all i, j it is equally likely to get s′ = si from sold = sj as it is
to get s′ = sj from sold = si, and

2. that for all i either s′ = si can be obtained from sold = si or there exists
a k so that H(sk) < H(si) and s′ = si can be obtained from sold = sk.
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Then after sufficiently many steps the state yielded by the Metropolis algo-
rithm will be distributed according to the Boltzmann distribution, i.e. p(si) =
e−βH(si)/Z.

Admittedly, assumption (2) made in this theorem seems slightly technical.
However, it isn’t superfluous. For example, consider a single spin which may
either be directed parallel or antiparallel to some given direction. Obviously,
if there is no external field, the energy of this two-state system doesn’t on
the state whatsoever. Now we might realize the construction of s′ required
by the Metropolis algorithm by

s′ =

{
s2 for sold = s1

s1 for sold = s2

Then the stochastic matrix of the Markov process corresponding to the
Metropolis algorithm has the form

ĝ =

(
0 1
1 0

)
,

and we know from the beginning of the previous section that there is no
convergence for this matrix. Hence the Metropolis algorithm in this case
doesn’t yield the correct result.

It has to be stressed, though, that this is a rather artificial and atypical
example. In practice, the Metropolis algorithm converges to the equilibrium
distribution even if assumption (2) of Theorem 56 isn’t fulfilled. After all,
it was needed only to ensure that some power of the stochastic matrix is
positive. But of course while the assumption is sufficient for this, it clearly
isn’t necessary.

Proof: The Metropolis algorithm may be viewed as a Markov process, the
stochastic matrix ĝ of which may be written in the form

ĝij = Ĉij · T̂ij,

where Ĉ and T̂ are the stochastic matrices corresponding to the construction
of s′ (from sold) and snew (from s′). As Ĉ is ergodic by definition and as T̂
doesn’t render any transition impossible, it is evident that ĝ must be ergodic
as well. Homogeneity is ensured by definition.

Now consider a state si for which ĝii = 0. Then by assumption there
exists a k with H(sk) < H(si) and Ĉik > 0. For this k 0 < Tik < 1 holds
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valid, and thus both ĝkk and ĝik must be positive. Hence we see that either
gii > 0 or there is a k with ĝkk > 0 and ĝik > 0.

Accordingly, all the conditions of Theorem 53 are met, and we can con-
clude that the Markov process converges to a stationary state. It remains to
be shown what this stationary state looks like.

As we would like to prove that the Metropolis algorithm yields the Boltz-
mann distribution p(si) = e−βH(si)/Z, it seems reasonable to try and see
whether this happens to be the stationary state we are looking for. In order
to convince ourselves that this indeed the case, let us consider two arbitrary
states si and sk, which may or may not be the same.

Let us assume first that H(si) < H(sk). Then from Eq. 4.10 we know
that Tik = 1, so that

ĝikp(sk) = T̂ikĈikp(sk) = Ĉik
e−βH(sk)

Z
. (4.11)

Conversely, as the probability for a random number distributed uniformly in
[0, 1] to be smaller than x is just x, we can gather from Eq. 4.10 that T̂ki =
e−β(H(sk)−H(si)). Furthermore, from assumption (1) we have that Ĉik = Ĉki.
We therefore get

ĝkip(si) = T̂kiĈkip(si) = e−β(H(sk)−H(si)) · Ĉik ·
e−βH(si)

Z
= Ĉik

e−βH(sk)

Z
. (4.12)

By comparing Eqs. 4.11 and 4.12, we are led to the conclusion that detailed
balance is fulfilled,

ĝikp(sk) = ĝkip(si).

We now turn to the case of H(si) > H(sk). Here, using the same arguments
as above, we obtain the equations

ĝikp(sk) = T̂ikĈikp(sk) = e−β(H(si)−H(sk)) · Ĉik ·
e−βH(sk)

Z
= Ĉik

e−βH(si)

Z

and

ĝkip(si) = T̂kiĈkip(si) = Ĉik
e−βH(si)

Z
,

so that again we obtain obtained balance. Hence from Theorem 55 we can
infer that the Boltzmann distribution is indeed the stationary state of the
Markov process. Hence after sufficiently many steps, the state resulting from
the Metropolis algorithm will be distributed according to this distribution,
which is precisely what we wanted to prove. (QED)
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Strictly speaking, one has to wait until the Metropolis algorithm has (suffi-
ciently) converged. The number of steps (or “time”) this takes is known as
equilibration time. Furthermore, as the new state obtained from a Metroplis
step is not independent from the old one, it is clear that there should lie some
steps between two subsequent states used for a Monte Carlo simulation. The
number of steps one has to wait for this is called correlation time.

Finally, let us briefly discuss the implementation of the Ising model with
N spins. Basically, this just requires turning the Metroplis algorithm into
a computer program, which is quite straightforward. However, we have to
clarify how to construct the state s′ from a state sold. One solution would be
to generate a random integer k distributed uniformly in [1, N ] and then to
flip the k-th spin. It is easy to see that this method fulfils the conditions of
Theorem 56.

Another solution is to flip the first spin in the first step, the second in
the second step, the third in the third step, and so forth. N steps (during
which each spin is flipped once) are known as a sweep of the lattice. While
this method surely works in practice, it should be noted that it violates
assumption (2) of Theorem 56.

The reader is encouraged to try and compose a program for solving the
Ising model by means of the methods just outlined. An exemplary C++
program is given in Appendix ??. Those that would like to include a graphical
interface are referred to [3] for more information.
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Appendix A

Simple C program for the Ising
model

In the following, a simple C program for solving the Ising model (cf. Sect. 4.1.2)
by means of the Metropolis algorithm (cf. 4.5). Some comments are offered
at the bottom of the program.

still to be included
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