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Abstract
This chapter reviews the theoretical description of interacting fermions in one
dimension. The Luttinger liquid concept is elucidated using the Tomonaga-
Luttinger model as well as integrable lattice models. Weakly coupled chains
and the attempts to experimentally verify the theoretical predictions are dis-
cussed.
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1. Introduction
In this chapter we attempt a simple selfcontained introduction to the main

ideas and important computational tools for the description of interacting fermi-
ons in one spatial dimension. The reader is expected to have some knowledge of
the method of second quantization. As in section 3 we describe a constructive
approach to the important concept of bosonization, no quantum field-theoretical
background is required. After mainly focusing on the Tomonaga-Luttinger
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model in sections 2 and 3 we present results for integrable lattice models in
section 4. In order to make contact to more realistic systems the coupling of
strictly

���
systems as well as to the surrounding is addressed in section 5. The

attempts to experimentally verify typical Luttinger liquid features like anoma-
lous power laws in various correlation functions are only shortly discussed as
this is treated in other chapters of this book.

2. Luttinger liquids - a short history of the ideas
As an introduction the basic steps towards the general concept of Luttinger

liquids are presented in historical order. In this exposition the ideas are discussed
without presenting all technical details. This is done in section 3 by disregarding
the historical aspects aiming at a simple presentation of the important practical
concepts like the “ bosonization of field operators”.

2.1 Bloch’s method of “sound waves” (1934)
In a paper on incoherent x-ray diffraction Bloch [1] realized and used the

fact that one-dimensional � ������� noninteracting fermions have the same type
of low energy excitations as a harmonic chain. The following discussion of this
connection is very different from Bloch’s own presentation.
The low energy excitations determine e.g. the low temperature specific heat.
Debye’s famous 	�
 -law for the lattice contribution of three dimensional solids
reads in

����� 
����������� ��� ����� � ��� 	!" 
�#%$'& (1.1)

where 
�# is the sound velocity. At low temperatures the electronic contribution
to the specific heat in the “Fermi gas” approximation of Pauli is also linear in	 and involves the density of states of the noninteraction electrons at the Fermi
energy. This yields for spinless fermions in

�����
)(�*,+�-/.� � � � � � � ��� 	!"1032 $4& (1.2)

where
052

is the Fermi velocity. With the replacement 
 #76 082 the results are
identical. This suggests that apart from a scale factor the (low energy) excitation
energies and the degeneracies in the two types of systems are identical. For the
harmonic chain the excited states are classified by the numbers 9�: of phonons in
the modes ;<: whith 9=: taking integer values from zero to infinity. The excitation
energy is given by >?�A@B9C:)DFE �HG >FI �KJ : D !" ;<:�DL9=:)D . For small wave numbers�3M

the dispersion is linear ;�: DON 
 #8P �3M P . Therefore the excitations energies
are multiples of

!" 
 # �RQ8�CSHT � for periodic boundary conditions and multiples ofU �WV !" 
 # �CSHT for fixed boundary conditions. The calculation of the partition
function is standard textbook material. This is also true for noninteracting
electrons but there the calculation involves fermionic occupation numbers 9 2:
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which take values zero and one. The two textbook calculations yield Eqs. (1.1)
and (1.2), but through the “clever” use of the grand canonical ensemble in order
to simplify the fermionic calculation the identity (apart from 
 #X6 082 ) remains
mysterious. A deeper understanding involves two steps:

1) Linearization of the kinetic energy Y3: � !"[Z � Z S\�RQH] � of the free fermions
around the Fermi point

� 2
for fixed boundary conditions or both Fermi points^_� 2

for periodic boundary conditions. As the argument is simplest for fixed
boundary conditions [2] which lead to

�`Ma� ]4�CSHT we discuss this case for the
moment. Then the energies YH:)b G Y 2 are integer multiples of

U 2 V !"c0 2 �CSHT
where

032
is the Fermi velocity.

2) Classification of any state of the Fermi system by the number 9Cd of upward
shifts by e units of

U 2
with respect to the ground state. As the fermions

are indistinguishable the construction of the @B9=d8E shown in Fig. 1.1, where
the highest occupied level in the excited state is connected with the highest
occupied level in the ground state and so forth for the second, third f�f�f highest
levels, completely specifies the excited state. As the 9=d can run from zero to
infinity like bosonic quantum numbers and the excitation energy is given byJ d �ge U 2 � 91d the canonical partition function for the noninteracting fermions
has the same form as the canonical partition function for the harmonic chain
apart from

U 2 6 U � if one assumes the Fermi sea to be infinitely deep [3].
As we have linearized ;�: for small

�
as well as YH: around

� 2
this equivalence

only holds for the low temperature specific heats � �[� 	ah !" ;Ci *kj & ��� 	ahlY 2 � .
If we denote the creation (annihilation) operator of a fermion with

�cmn�9=�CSHT by 
�om � 
 mc� and assume a strictly linear dispersion Y -/./pm � !"1032 �5m for all�3mrqns
a more technical formulation of the discussed equivalence can be given

by the exact operator identity	 � tum3vxw !"c032 �3m 
 om 
 m� !"[082 �T y tu z vxw[{}| oz | z`~ �Qc� � � ~ ����� & (1.3)

where the operators | z with {<� � are defined as| z V �� { tuM�vxw 
 oM 
 MX� z (1.4)

and � V�J tm3vxw 
 om 
 m is the fermionic particle number operator. The proof of
the “Kronig identity” (1.3) is simple (see Ref. [4]) . The operators | z obey
commutation relations � | z & | z���� �as and for {���{��� | z & | oz���� � �� {�{ �

z �uMXvxw 
 oM 
 M�� zg�1z�� f (1.5)
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Figure 1.1. Example for the classification scheme for the excited states in terms of the numbers��� of upward shifts by � units of ��� . In the example shown the nonzero �H� are ���x�����R� ���¡ �R� ¢<�£� and �[¤¥� ¡ .
For all ¦ -particle states P/§x¨ª©�«¬ ­ VK® ¬m8vxw 
 o¯ b PVac ­ in which the °±�,²�¦ � lowest
one-particle levels are all occupied one obtains� | z & | oz���� P/§=¨ª©�«¬ ­ �O³ z´z � P/§=¨g©�«¬ ­ (1.6)

for { & {��}µ ° , i.e. these operators obey boson commutation relations � | z & | oz�� � �³ z�z �·¶�
in this subspace of all possible ¦ -particle states.

Later it turns out to be useful to work with ¸	 V 	 G�¹ 	 ­ I G»º I¼¸� , where¹ 	 ­ I � U 2 9 2 ��9 2 ~ ��� S8Q is the ground-state energy,
º I � U 2 ��9 2 ~ � S8Q �

is the chemical potential of the noninteracting fermions and ¸� V � G 9 2 ¶� .Then ¸	 is of the form as the rhs of Eq. (1.3) with � � � ~ ��� replaced by ¸� Z .
2.2 Tomonaga (1950): Bloch’s method of sound waves

applied to interacting fermions
When a two-body interaction between the fermions is switched on, the ground

state is no longer the filled Fermi sea but it has admixtures of (multiple) particle-
hole pair excitations. In order to simplify the problem Tomonaga studied the
high density limit where the range of the interaction is much larger than the
interparticle distance, using periodic boundary conditions [5]. Then the Fourier



5

transform ¸0 � �[� of the two-body interaction is nonzero only for values P � P µ �[½
where the cut-off

��½
is much smaller than the Fermi momentum

�\½ h � 2 .
This implies that for not too strong interaction the ground state and low energy
excited states have negligible admixtures of holes deep in the Fermi sea and
particles with momenta P � P G¾� 2À¿ �5½ . In the two intermediate regions around
the two Fermi points

^_� 2
, with particle-hole pairs present, the dispersion Y : is

linearized in order to apply Bloch’s “sound wave method”� N ^_� 2ÀÁ Y�: � Y 2 ^ 032 � �ÃÂ � 2 � f (1.7)

Tomonaga realized that the Fourier components of the operator of the density¶Ä m � Å �\Æ Z� �`Æ Z ¶Ä ��Ç �,È � ¯ :)b�É � Ç �KÅ �`Æ Z� �\Æ Z¥Ê o ��Ç � Ê ��Ç �,È � ¯ :�bHÉ � Ç� u m � 
 om � 
 m � ��m & (1.8)

where 
 om � 
 mc� creates (annihilates) a fermion in the state with momentum
�cmË�Z,Ì� 9 , plays a central role in the interaction term, as well as the kinetic energy.

Apart from an additional term linear in the particle number operator [4], which
is usually neglected, the two-body interaction is given by¶Í � �Q8T um[Îv I ¸0 � � m � ¶Ä m ¶Ä � m ~ �Q8TF� Z ¸0 � s � (1.9)

Tomonaga’s important step was to split

¶Ä m for P �5m P h � 2 into two parts, one
containing operators of “right movers” i.e. involving fermions near the right
Fermi point

� 2
with velocity

052
and “left movers” involving fermions nearGF� 2

with velocity
G 0 2¶Ä m�� um ��Ï I 
 om � 
 m � ��m ~ um ��Ð I 
 om � 
 m � ��m V ¶Ä m�Ñ � ~ ¶Ä m Ñ � (1.10)

where the details of the splitting for small P 9 � P are irrelevant. Apart from the
square root factor the

¶Ä m Ñ Ò are similar to the | z defined in Eq. (1.4) . Their
commutation relations in the low energy subspace are� ¶Ä MÓÑ Ò & ¶Ä m�Ñ Ô � �KÕ ] ³ Ò8Ô ³ MÓÑ � m ¶� f (1.11)

If one defines the operators| m�V �Ö P 9 PØ× ¶Ä m Ñ � for 9 q�s¶Ä m Ñ � for 9Ù² s (1.12)

and the corresponding adjoint operators | om this leads using Ä om�Ñ Ò � Ä � m�Ñ Ò to the
bosonic commutation relations� | m & | M � �as & � | m & | oM � �O³�MÚm ¶� f (1.13)
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Now the kinetic energy of the right movers as well as that of the left movers
can be “bosonized” as in Eq. (1.3). The interaction

¶Í
is bilinear in the

¶Ä m as
well as the

¶Ä m�Ñ Ò . Therefore apart from an additional term containing particle
number operators the Hamiltonian for the interacting fermions is a quadratic
form in the boson operators¸Û � um�Ü I !" �5m × � 032 ~ ¸0 � � m �Q8� !" $ÀÝ | om | m ~ | o � m | � m Þ~ ¸0 � �3m[�Q8� !" Ý | om | o � m ~ | � m | m Þxß ~ !" �Q8T � 0 ¬ ¸� Z ~ 05à\á Z �V Û � ~ Û�âã Ñ ä & (1.14)

where ¸� V ¸� � ~ ¸� � is the total particle number operator relative to the
Fermi sea,

á V ¸� �aG ¸� � the “current operator”, and the velocities are
given by

0 ¬ � 082 ~ ¸0 � s � SH� !" and
0 à � 032

. Here
0 ¬ determines the en-

ergy change for adding particles without generating bosons while
0 à

enters the
energy change when the difference in the number of right and left movers is
changed. Similar to the discussion at the end of section 1.1 we have defined¸Û V Û G >¼åI G � º I ~ ¸0 � s � 9=I � ¸� , where >æåI is the Hartree energy and 9<I
the particle density. As the particle number operators ¸� Ò commute with the
boson operators | M � | oM � the two terms

Û �
and
Û âã Ñ ä in the Hamiltonian com-

mute and can be treated separately. Because of the translational invariance the
two-body interaction only couples the modes described by | om and | � m . With
the Bogoliubov transformation

Õ om � 
 m | om Gèç�m | � m the Hamiltonian
Û �

can
be brought into the formÛ �é� um[Îv I !" ; m\Õ om Õ=m ~ const f & (1.15)

where the ; mË� 032 P �3m P Ö � ~ ¸0 � �3m[� SH� !"1082 follow from Q�êëQ eigenvalue prob-
lems corresponding to the condition � Û � & Õ om � � !" ; m�Õ om . For small

� m
one

obtains for smooth potentials ¸0 � �[� again a linear dispersion ; m N 0 ½ P � m P , with
the “charge velocity”

0 ½Ë� � 0 ¬ 0 à , which is larger than
0 2

for ¸0 � s �rq±s .
The expression for the coefficients 
 m and

ç�m
with 
 Zm G�ç Zm �ì� will be pre-

sented later for the generalized model Eq. (1.17) . For fixed particle numbers¦ � and ¦ � , the excitation energies of the interacting Fermi system are given
by
J M !" ; M 9 M with integer occupation numbers

s µ 9 M ²îí . For small
enough excitation energies the only difference of the excitation spectrum for
fixed particle numbers with respect to the noninteracting case is the replacement082 6 0 ½ .

In his seminal paper Tomonaga did not realize the anomalous decay of corre-
lation functions of the model because in his discussion of the density correlation
function he missed the Q � 2 -contribution discussed in section 3.
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Figure 1.2. Energy dispersion as a function of momentum. The dashed curve shows the usual
“nonrelativistic” dispersion and the full curve the linearized version used (apart from a constant
shift) in Eq. (1.3) for ï7ðrñ for fixed boundary conditions. The dot-dashed parts are the additional
states for ïBò �£ó���ô õ ïB� . The model discussed by Luttinger corresponds to ïBòxö óx÷ .

2.3 Luttinger (1963): no discontinuity at the Fermi surface
Luttinger, apparently unaware of Tomonaga’s work, treated spinless, mass-

less fermions (in the relativistic sense, but 
 6 0`2 ) in one dimension, i.e.
two infinite branches of right and left moving fermions with dispersion

^ 0[2 �
[6]. As Luttinger himself made an error with the fact that his Hamiltonian
is not bounded from below, it is useful to switch from Tomonaga’s to Lut-
tinger’s model keeping a band cut-off

� I such that
� � � I � Q8�¥]4I�SHT with] I ² s for the right movers and correspondingly for the left movers (see Fig.

1.2). Fortunately Luttinger’s error had no influence on his inquiry if a sharp
Fermi surface exists in the exact ground state of the interacting model. After a
rather complicated calculation using properties of so-called “Toeplitz determi-
nants” Luttinger found that the average occupation

¹ 9�: Ñ � ­ in the ground state
for
� N � 2 behaves as¹ 9=: Ñ � ­ G �Q4ø�ùùùù

�ËGé� 2�5½ ùùùù
Ò5ú

sign � � 2 Gé�[� & (1.16)

where
Õ � depends on the interaction strength (see below) [7]. “Thus, in this

model, the smallest amount of interaction always destroys the discontinuity of¹ 9=: ­ at the Fermi surface” [6]. This can be related to the fact that the equal
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time correlation functions
¹ Ê oÒ ��Ç � Ê Ò � s � ­ decay as

� S P Ç P wA�¥Ò5ú in the interacting
system in contrast to

¹ Ê oÒ ��Ç � Ê Ò � s � ­ ø � S P Ç P û (with
�Ë���

) in the noninteracting
case. Therefore

Õ � is called the “anomalous dimension”[8].
Apart from the different dispersion Luttinger also used a different interaction.

In contrast to Tomonaga he only kept an interaction between the right and left
movers but not the term ø ¸0 � � m[� � | om | m ~ | o � m | � mc� in Eq. (1.14) . In the limit
of a delta interaction of the right and left movers his model is identical to the
massless Thirring model (1958) [9] at that time not well known in the solid
state physics community.

2.4 Towards the “Luttinger liquid” concept
Luttinger’s treatment of the Dirac sea was corrected in a paper by Mattis

and Lieb (1965) [10] which also offered a simpler way to calculate
¹ 9L: Ñ Ò ­ .

The time dependent one-particle Green’s function for the spinless Luttinger
model was calculated by Theumann (1967) [11] by generalizing this method.
She found power law behaviour in the corresponding spectral function Ä � � & ; � ,
especially Ä � � 2 & ; � ø Õ � P ; P Ò ú � w , i.e. no sharp quasiparticle for

�ü�ý� 2
consistent with Luttinger’s result for the occupation numbers (Fig.1.3). For a
delta interaction her results agreed with an earlier calculation for the massless
Thirring model by Johnson (1961) [12]. Later the time dependent one-particle
Green’s function was calculated by various other methods, e.g. using Ward
identities (Dzylaloshinski and Larkin (1974) [13]) as well as the important
method of the ”bosonization of the field operator” (Luther and Peschel (1974)
[14]) which will be addressed in detail in section 3. It was first proposed in a
different context by Schotte and Schotte (1969) [15].
What is now usually called the “Tomonaga-Luttinger (TL) model” is the fol-
lowing generalization of Eq. (1.14)¸ÛËþ � � Q8� !"T um�Ü I 9 × � 082 ~ ÿ � � �3mc�Q8� !" $ÀÝ | om | m ~ | o � m | � m Þ~ ÿ Z � �5m\�Q8� !" Ý | om | o � m ~ | � m | m Þ ß ~ !" �Q8T � 0 ¬ ¸� Z ~ 0 à\á¾Z�� & (1.17)

where
0 ¬ � 082 ~ � ÿ � � s � ~ ÿ Z � s �·� S8Q8� !" and

0 à � 082 ~ � ÿ � � s �CG ÿ Z � s �·� S8Q8� !" .
The interaction parameters

ÿ Z � �3m[� and
ÿ � � �3m[� are allowed to be different. As

Tomonaga’s original model the TL model is exactly solvable, i.e. it can also
be brought into the form of Eq. (1.15). The eigenvector components in

Õ om �
 m | om Géç�m | � m are given by
 m�� �Q � Ö � m ~ �� � m $'& çBm�� �Q � Ö � mæG �� � m $ (1.18)
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with
� m�� Ö 0 à � �3mc� S 0 ¬ � �3m[� , where

0 à ¨ ¬ « � �3mc�LV 032 ~ � ÿ � � �5mc�·Â ÿ Z � �3mc� � S8Q8� !" .
The frequencies are given by ; m � P �5m P Ö 0 à � �3m[� 0 ¬ � �3m[� V P �5m P 0 ½ � �5mc� . The
TL-Hamiltonian corresponds to a fermionic Hamiltonian that conserves the
number of right and left movers.

−2 −1 0 1 2
(k−kF)/kc

0

0.5

1
<n

k,
+>

Figure 1.3. The full line shows the average occupation � ���
	 �
� for a TL model with � ú � ñ ô � .
The dashed line shows the expectation from Fermi liquid theory, where the discontinuity at ï��
determines the quasi-particle weight � ��� in � ��� ï � ����� . As discussed following Eq. (1.48) this
can also be realized in a TL model with ��� � ñ �Ø� ñ . There also the details of the interaction are
specified.

A more general model including spin and terms changing right movers into
left movers and vice versa is usually called the “

ÿ
-ology model”. An important

step towards the general Luttinger liquid concept came from the renormalization
group (RG) study of this model. It was shown that for repulsive interactions (see
section 3) the renormalized interactions flow towards a fixed point Hamiltonian
of the TL-type unless in lattice models for commensurate electron fillings strong
enough interactions (for the half filled Hubbard model discussed in section �
this happens for arbitrarily small on-site Coulomb interaction U) destroy the
metallic state by opening a Mott-Hubbard gap. The RG approach is described
in detail in reviews by Sólyom (1979) [16] and Shankar (1994) [17]. These
results as well as insight from models which allow an exact solution by the
Bethe ansatz led Haldane [18, 19] to propose the concept of Luttinger liquids
(LL) as a replacement of Fermi liquid theory in one dimension, which “fails
because of the infrared divergence of certain vertices it assumes to remain
finite” [19] . At least for spinless fermions Haldane was able to show that “the
Bogoliubov transformation technique that solves the Luttinger model provides a
general method for resumming all infrared divergences present”[19]. Similar to
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Fermi liquid theory in higher dimensions this new LL phenomenology allows to
describe the low energy physics in terms of a few constants, two for the spinless
case: the “stiffness constant”

� V � I � Ö 0 à S 0 ¬ (also called
ÿ

in various
publications) and the “charge velocity”

0 ½Ë� � 05à 0 ¬ . In his seminal paper
Haldane showed explicitly that the LL relations survive in not exactly soluble
generalizations of the TL model with a non-linear fermion dispersion. He also
gave a clear presentation how to calculate general correlation functions and e.g.
the occupancies shown in Fig. 1.3 for the TL model. The technical details are
addressed in section 3.

Before we do this two additional important aspects of LL-behaviour should
be mentioned. The first concerns the strong influence of impurities on the low
energy physics [20, 21, 22, 23, 24, 25], especially the peculiar modification
of the electronic properties of a LL when a single impurity with an arbitrarily
weak backscattering potential is present. For a spinless LL with a repulsive
two-body interaction, i.e.

� ² � a perturbative bosonic RG calculation [25]
shows that the backscattering strength

Í �
is a relevant perturbation which grows

as � � � w when the flow parameter � is sent to zero. This leads to a breakdown
of the perturbative analysis in

Í �
. On the other hand a weak hopping between

the open ends of two semi-infinite chains is irrelevant and scales to zero as� �"! ¤ � w . Assuming that the open chain presents the only stable fixed point
it was argued that at low energy scales even for a weak impurity physical
observables behave as if the system is split into two semi-infinite chains. This
leads to a conductance which vanishes with a power law in 	 at low temperatures
[25]. A more technical discussion is presented in section 3.

Electrons are spin one-half particles and for their description it is necessary
to include the spin degree of freedom in the model. For a fixed quantization axis
the two spin states are denoted by # �"$ &&% . The fermionic creation (annihilation)
operators 
 om�Ñ 'xÑ ( � 
 m Ñ 'xÑ (\� carry an additional spin label as well as the

¶Ä m�Ñ 'xÑ ( and
the boson operators | m Ñ ( which in a straightforward way generalize Eq. (1.12).
The interactions

ÿ*) � �[� with + � Q & � in Eq. (1.17) become matrices
ÿ (,( �)

in the
spin labels. If they have the form

ÿ
(,( �) � �[�Ó� ³ (BÑ ( � ÿ ).- � �[� ~ ³ (BÑ � ( � ÿ )0/ � �[� it is
useful to switch to new boson operators | m�Ñ 1 with 2 � 
 & ç| m�Ñ ½ V �� Q � | m Ñ 3 ~ | m�Ñ 4 �| m�Ñ # V �� Q � | m,3 G | m�Ñ 4 � & (1.19)

which obey 5 | 1�Ñ m & | 1 � Ñ m �76 �as and
� | 1BÑ m & | o1 � Ñ m �g� �O³ 1
1 � ³ mHm � ¶� . The kinetic energy

can be expressed in terms of “charge” ( 
 ) and “spin” (
ç
) boson operators using| om�Ñ 3 | m Ñ 3 ~ | om84 | m,4 � | om�Ñ ½ | m Ñ ½ ~ | om�Ñ # | m�Ñ # . If one defines the interaction matrix
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elements
ÿ9) Ñ 1 �;: � via ÿ ) Ñ ½ �;: � V ÿ ).- �;: � ~ ÿ )0/ �;: �ÿ9) Ñ # �;: � V ÿ ).- �;: ��G ÿ )0/ �;: � & (1.20)

and defines ¸� Ò`Ñ ½ ¨ # « V �X¸� Ò`Ñ 3 ^ ¸� Ò`Ñ 4 � S � Q one can write the TL-Hamiltonian¸Û ¨ w Æ Z «þ � for spin one-half fermions as¸Û ¨ w Æ Z «þ � � ¸ÛËþ � Ñ ½ ~ ¸Û�þ � Ñ # & (1.21)

where the ¸ÛËþ � Ñ 1 are of the form Eq. (1.17) but the interaction matrix elements
have the additional label 2 . The two terms on the rhs of Eq. (1.21) commute,
i.e. the “charge” and “spin” excitation are completely independent. This is usu-
ally called “spin-charge separation”. The “diagonalization” of the two separate
parts proceeds exactly as before and the low energy excitations are “massless
bosons” ; m�Ñ 1 N 0 1 P �5m P with the charge velocity

0 ½Ú� � 0 à
<�0 ¬ < � w Æ Z and the spin
velocity

0 # � � 0 à
= 0 ¬ = � w Æ Z . The corresponding two stiffness constants are given
by
� ½Ú� � 0 à < S 0 ¬ < � w Æ Z and

� # � � 0 à>= S 0 ¬ = � w Æ Z . Because of Eq. (1.21) the de-
pendence of the velocities on the interaction strength (1.20) is obtained using
the results for the spinless model following Eq. (1.18).

The low temperature thermodynamic properties of the TL model including
spin, Eqs. (1.17) and (1.21), can be expressed in terms of the four velocities0 ¬ < & 0 à < , 0 ¬ = & 0 à>= or the four quantities

0 ½ & � ½ & 0 # & � # . Due to spin-charge
separation the specific heat has two additive contributions of the same form as
in Eqs. (1.1) and (1.2). If we denote, as usual, the proportionality factor in the
linear 	 -term by ? one obtains??`I � �Q � 0820 ½ ~ 0320 # $ & (1.22)

where ?\I is the value in the noninteracting limit. To calculate the spin suscep-
tibility @ # one adds a term

G " ¸� # to ¸Û ¨ w Æ Z «þ � . Then by minimizing the ground
state energy with respect to ¦ # one obtains

¹ ¸� # ­ ø " S 0 ¬ = , i.e. @ # is inversely
proportional to

0 ¬ = . If one denotes the spin susceptibility of the noninteracting
system by @ # Ñ I , this yields for the zero temperature susceptibility@ #@ # Ñ I � 0320 ¬ = � � # 0320 # f (1.23)

For spin rotational invariant systems one has
� # ��� [26]. The zero temperature

compressibilty A is proportional to �CB Z >%I�SDB1¦ Z � � w� which using Eqs. (1.17) and
(1.21) leads to AA1I � 0320 ¬ < � � ½ 0320 ½ f (1.24)
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A simple manifestation of spin-charge separation occurs in the time evolution
of a localized perturbation of e.g. the the spin-up density. The time evolutionÕ=m�Ñ 1 ��E �L�OÕCm Ñ 1�È � ¯GF b 	 H>I for 2 � 
 & ç implies| m�Ñ 1 ��E �L� | m�Ñ 1 Ý 
 Zm Ñ 1 È � ¯GF b 	 H I GWç Zm�Ñ 1 È ¯GF b 	 H I Þ G | o � m Ñ 1 
 m�Ñ 1�ç�m Ñ 1 Ý È � ¯GF b 	 H I GWÈ ¯GF b 	 H I Þ

(1.25)
If the initial state of the system involves a perturbation of right movers only, i.e.¹ | m�Ñ 1 ­ � s for 9ü² s and the perturbation is sufficiently smooth � ¹ | m�Ñ 1 ­KJ� s
for
s ²î9 h 9 ½ only) the initial perturbation is split into four parts which

move with velocities
^ 0 ½

and
^ 0 # without changing the initial shape. If only

the initial expectation values of the | m�Ñ 3 are different from zero one obtains for³�¹ Ä 3 ��Ç & s � ­ VML ��Ç � using Eq. (1.12)³�¹ Ä 3 ��Ç & E � ­ � u 1ON � ~ � 1� L ��Ç G 0 1 E � ~ �7G � 1� L ��Ç ~ 0 1 E �QP f (1.26)

For the spin rotational invariant case
� # �ý� there is no contribution which

moves to the left with the spin velocity. Already for the pure
ÿ � -model with� ½ ���

but
0 ½ J� 0 # “spin-charge separation” of the distribution occurs. For the

spinless model with
ÿ Z J�as the initial distribution splits into one right- and one

left-moving part, which is often called “charge fractionalization” [27, 28]. Note
that the splitting described in Eq. (1.26) is independent of the details of

L ��Ç �
like the corresponding total charge. An additional comment should be made:
spin-charge separation is often described as the fact that when an electron is
injected into the system its spin and charge move independently with different
velocities. This is very misleading as it is a collective effect of the total system
which produces expectation values like in Eq. (1.26).

The easiest way to understand the important manifestation of spin-charge
separation in the momentum resolved one-particle spectral functions [29, 30]
is to make use of the bosonization of the electronic field operators discussed in
the next section.

3. Luttinger liquids - computational tools
In section 2 many of the important features of LL’s like the absence of a

discontinuity at the Fermi surface were presented without giving any details
how these properties are actually determined. As the most important tool
the bosonization of the field operators is presented in detail in this section.
This method is then used to calculate correlation functions like the one-particle
Green’s function and the Q � 2 -density response function. In the second part of
this section the TL model with additional interactions and (or) a one particle
potential with a “backscattering” contribution is discussed. The model is no
longer exactly solvable and RG arguments play an important role [16, 17, 25].
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3.1 Bosonization of the field operator
In the following a selfcontained presentation of the bosonization of a single

fermion operator including a straightforward construction of the particle number
changing part (“Klein factor”) is given. We present the bosonization of the
field operator for the right movers described by the 
 z Ñ � and just mention the
corresponding result for the left movers.
The starting point are the commutation relations the 
 z Ñ � obey for ] qns� | M & 
 z Ñ � � ��G �� ] 
 z ��MFÑ � & � | oM & 
 z Ñ � � ��G �� ] 
 zg� MÓÑ � f (1.27)

If (after taking the limit ] ISR G í ) one introduces the Q8� -periodic auxiliary
field operator ¸Ê � � 0 � , where

0
later will be taken as Q8�¥Ç}SHT¸Ê � � 0 �ÚV tuz v � t È ¯

zUT 
 z Ñ � & (1.28)

it obeys the simple commutation relations� | M & ¸Ê � � 0 � � ��G �� ] È � ¯ M T ¸Ê � � 0 � V � | oM & ¸Ê � � 0 � � ��G �� ] È ¯ M T ¸Ê � � 0 � f
(1.29)

Products of exponentials of operators linear in the boson operatorsW ��V um[Îv IYX m | om V Z � V um[Îv I º}m | m (1.30)

with arbitrary constants X m and
º}m

obey similar commutation relations� | M & È,[ � È � ! � � X M%È�[ � È � ! V � | oM & È�[ � È � ! � ��G7º}M%È�[ � È � ! & (1.31)

which follow from � | M & È,\�]_^D � � X È,\�]_^D . We therefore make the ansatz¸Ê � � 0 �Ú� ¶` � � 0 �,È ¯ba ^� ¨ T « È ¯7a � ¨ T « & (1.32)

where the operator c § � � 0 � is given by [19]c § � � 0 �L� tum8vxw È ¯ m T� 9 | m f (1.33)

Then the operator

¶` � � 0 � commutes with all the | M and | oM . We next construct
¶` � � 0 � such that both sides of Eq. (1.32) yield identical matrix elements.

As ¸Ê � � 0 � reduces the number of right movers by one, the operator

¶` � � 0 �
also must have this property. In order to determine

¶` � � 0 � we work with the
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eigenstates of the noninteracting system ( the limit ]�IdR G í is implied and9 2 is an arbitrary positive integer later related to
� 2

)P @B] z E ] & ¸¦ � & ¸¦ � ­ Vfe z � | oz � Mhg� ] z_ikjl m � � â¬ !em3v�M ò 
 o � m�Ñ ��mn jl m � � â¬ �eo v�M ò 
 oo Ñ � mn P prq9s ­ f
(1.34)

It is easy to see that

¶` � � 0 � P @ s E ] & ¸¦ � & ¸¦ � ­ has no overlap to excited states¹ @B] z E ] & ¸¦ � G � & ¸¦ � P ¶` � � 0 � P @ s E ] & ¸¦ � & ¸¦ � ­ �¹ @ s E ] & ¸¦ �£G�� & ¸¦ � P e z � | z � Mhg� ] zCi ¶` � � 0 � P @ s E ] & ¸¦ � & ¸¦ � ­ f (1.35)

As

¶` � � 0 � commutes with the | z the rhs of Eq. (1.35) vanishes unless all ] z are
zero. This implies¶` � � 0 � P @ s E ] & ¸¦ � & ¸¦ � ­ � 
 � �L¸¦ � & ¸¦ � & 0 � P @ s E ] & ¸¦ � G�� & ¸¦ � ­ & (1.36)

where 
 � ��¸¦ � & ¸¦ � & 0 � is a c-number. In order to determine 
 � �L¸¦ � & ¸¦ � & 0 � we
calculate

¹ @ s E ] & ¸¦ �ëG�� & ¸¦ � P ¸Ê � � 0 � P @ s E ] & ¸¦ � & ¸¦ � ­ using Eq. (1.28) as well as
Eq. (1.32). In the calculation of the matrix element with the fermionic form
Eq. (1.28) we use Eq. (1.34) which yields¹ @ s E ] & ¸¦ � G�� & ¸¦ � P 
 z Ñ � P @ s E ] & ¸¦ � & ¸¦ � ­ � � GÃ��� â¬ ! ³ z Ñ m � � â¬ � f (1.37)

The factor � GÃ��� â¬ ! occurs because we have to commute 
 z Ñ � through the product
of ¦ � � G ]4I ~ � ~ 9 2 ~ ¸¦ � fermionic operators of the left movers if we
assume

G ]4I ~ 9 2 to be odd. We note that no such factor occurs for the
corresponding matrix element of the left movers. The calculation of the ground
state to ground state matrix element of ¸Ê � � 0 � using Eq. (1.32) is simple as both
exponentials involving the boson operators can be replaced by the unit operator
and the matrix element is just 
 � � ¸¦ � & ¸¦ � & 0 � . The comparison therefore yields
 � � ¸¦ � & ¸¦ � & 0 �Ú� � GÃ��� â¬ ! È ¯ T ¨ m � � â¬ � « (1.38)

and 
 � � ¸¦ � & ¸¦ � & 0 �7��È � ¯ T ¨ m � � â¬ ! « . Together with Eq. (1.34) and the defini-
tion ¸� ÒëV � Ò�G � G ]4I ~ � ~ 9 2 � ¶� this implies¶` � � 0 �,È � ¯ ¨ m � � âã � « T � GÃ��� âã ! P @ s E ] & ¸¦ � & ¸¦ � ­ � P @ s E ] & ¸¦ �£G�� & ¸¦ � ­ f (1.39)

If we apply the operator

¶` � � 0 �,È � ¯ ¨ m � � âã � « T � GÃ��� âã ! to the states in Eq. (1.34)
and use again that

¶` � � 0 � commutes with the boson operators we obtain¶` � � 0 �,È � ¯ ¨ m � � âã � « T � GÃ��� âã ! P @B] z E ] & ¸¦ � & ¸¦ � ­ � P @B] z E ] & ¸¦ � G�� & ¸¦ � ­ f
(1.40)
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This shows that the operator t �ÙV ¶` � � 0 �,È � ¯ ¨ m � � âã � « T � GÃ��� âã ! is independent
of
0

and given byt � � uâ¬ � Ñ â¬ ! uu Mhgwv P @B]
z E ] & ¸¦ � G�� & ¸¦ � ­ ¹ @B] z E ] & ¸¦ � & ¸¦ � P f (1.41)

It follows immediately that t � is unitary, i.e. t � t o� � t o� t �Ù� ¶� . From Eq.
(1.41) one can infer that for arbitrary functions x of the number operator ¸� �one has t � x��Ú¸� ���L� x��Ú¸� � ~ ��� t � .
To summarize we have shown that¶` � � 0 �Ú� t � È ¯ ¨ m � � âã � « T � G ��� âã ! f (1.42)

In

¶` � ��y ��� t � È � ¯ ¨ m � � âã ! «{z no factor � GÃ��� âã � appears and therefore

¶` � � 0 �
and

¶` � ��y � anticommute, which is necessary to enforce anticommutation rela-
tions between ¸Ê � � 0 � and ¸Ê � ��y � . It is an easy exercise to show that e.g. the
anticommutation relations � ¸Ê � � 0 � & ¸Ê � ��y � � �»� s are fulfilled. In the calcula-
tion the properties of

¶` � � 0 � as well as the factor in Eq. (1.32) involving the
boson operators enter. If one replaces the operators

¶` Ò � 0 �,È � ¯ Ò T ¨ âã}| ��m � « by
“Majorana fermions” ~ Ò which commute with the boson operators and obey
the anticommutation relations � ~ Ò & ~ Ô � ��� Q ³ Ò8Ô ¶� , as often done in the liter-

ature, this yields � ¸Ê Ò � 0 � & ¸Ê Ò ��y � � � � � �¼G s��*� ��y G 0 � � È ¯ Ò ¨�z � T « ¨ âã�| ��m � « , i.e.
a violation of the correct anticommutation relations. This implies that the t Ò
have to be properly treated. In many publications they are written as t Ò �OÈ ¯��� | ,
where the phase operators

¶� Ò
are assumed to obey the canonical commutation

relations (CCR) ��¸� Ò & ¶� Ò � � c ¶� [19]. We do not use this concept here because no
phase operator can be constructed which obeys the CCR as an operator identity
[4, 31, 32, 33, 34].

In the following we will always use the “normal ordered” form (all boson
annihilation operators to the right of the creation operators) of the bosonization
formula Eqs. (1.32, 1.33). Alternatively one introduces a convergence factorÈ � m \ Æ Z

, whith X R s
and works with the Hermitian Bose fields � Ò � 0 �'V§ Ò � 0 � ~ § oÒ � 0 � as well as the fields � ��^ � � . The derivatives of the latter

fields are related to the total current and the deviation of the total charge density
from its average value [35]. As we work with an interaction cut-off

�1½
the

introduction of X is not necessary and because of the space limitation this field-
theoretic formulation is not used here.

3.2 Calculation of correlation functions for the TL model
In order to calculate correlation functions of the TL model with nonzero in-
teractions it is necessary to express the field operator ¸Ê � � 0 � Eq. (1.32) in
terms of the

ÕCm & Õ om instead of the | m & | om because the former have a simple
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time dependence and for the temperature dependent expectation values one has¹RÕ oM Õ m ­ � ³ MÚm 9 � ��; m � , where 9 � ��; � �ì� S\� È Ô F GK��� is the Bose function.
For the ground state calculation all one needs is

Õ�m P �7I ­ �as without using the
explicit form of the interacting ground state P �%I ­ .

For periodic boundary conditions one has | M � 
 M�ÕCM ~ ç�M%Õ o � M where

the operators
ÕxM

and
Õ o � M

commute. Therefore
È ¯ba � ¨ T « (and

È ¯7a ^� ¨ T « ) in Eq.
(1.32) can be written as a product of two exponentials with the annihilation
operators to the right. After once using the Baker-Hausdorff formula,

È [ �}� �È [ È � È � ¤�9� [ Ñ ��� if the operators
W

and
Z

commute with � W & Z � , in order to
complete the process of normal ordering one obtains for the physical field
operator Ê Ò ��Ç �Ú� ¸Ê Ò �RQ8�¥Ç}SHT � S � T for a system of finite length T with periodic
boundary conditions [36]Ê Ò ��Ç �Ú� W � T �� T ¶` Ò � Q8�¥ÇT $ È ¯b� ^| ¨ É « È ¯G� | ¨ É « (1.43)

with c_@ Ò ��Ç �L� uM_Îv I � � Õ ] �Ö P ] P Ý 
 M È ¯ :�D<É Õ=MüGéç�M%È � ¯ :�DxÉ Õ � M�Þ & (1.44)W � T �LVOÈ � J��b�� ¤ # �b Æ m and
� ��Ç � is the unit step function.

This is a very useful formula for the calculation of properties of one-dimensional
interacting fermions. For the special choice

ç m � ç � s �,È � m Æ m < where 9 ½ ��5½ TXS8Q8� is determined by the interaction cut-off,
W � T � can be calculated ana-

lytically using
J tm8vxw
� m S�9 � G�� �9� � �ÓG � � . For 9 ½ ¿ � this yields

W � T �F����5�CS �5½ T � # � ¨ I « which shows that the prefactor in Eq.(1.44) has an anomalous
power law proportional to � � SHT � ¤� � # � ¨ I « . This implies that the 
 m�Ñ Ò scale like� � SHT � # � ¨ I « .
The time dependent operator Ê � ��Ç & E � follows from Eq. (1.44) by replacing

Õ�M
and
Õ � M

by
Õ M È � ¯GF D I and

Õ � M È � ¯GF D I and t � in

¶` �
by t � ��E � . Various kinds

of time dependent correlation functions can quite simply be calculated using
this result. Here we begin with c�� Ð� ��Ç & E �ÚV�¹ Ê o� � s & s � Ê � ��Ç & E � ­ .
As t � commutes with the bosonic operator the particle number changing op-
erators lead to a simple time dependent factort o� t � ��E � P � I ��¸¦ � & ¸¦ � � ­ �OÈ � ¯ � � ò ¨ â¬ � Ñ â¬ ! « � � ò ¨ â¬ � � w·Ñ â¬ ! « � I P � I ��¸¦ � & ¸¦ � � ­ f

(1.45)
As Ê � ��Ç � in Eq.(1.43) is normal ordered in the

Õ
’s one has to use the Baker-

Hausdorff formula only once to normal order Ê o� � s & s � Ê � ��Ç & E � . This yields
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with
� 2 � Q8�¥9 2 SHTc È ¯b� I � Ð� ��Ç & E � � W Z � T �T È ¯ : � É È � � � ¨ I Ñ I « Ñ � ^� ¨ É Ñ I « � (1.46)� È ¯ : � ÉT È J �b�� ¤ ¤b � � !D�{� � b8� !.� b,�7� � Z # �b ���_� � ¨ : b É « � �¡� b,� � w � �

where
º»V >%I5� ¸¦ � & ¸¦ � � G >FI5� ¸¦ �WGO� & ¸¦ � � is the chemical potential. The

analytical evaluation of the sum (integral in the limit T¢R í ) in the exponent
in Eq. (1.46) is not possible. An approximation which gives the correct largeÇ and E behaviour [37] is to replace ; m by

0 ½��3m
. This yields for T£R í with

the exponential cut-off for the
ç8m

used earlier [14]

c È ¯b� I � Ð� ��Ç & E �L� G cQ8� È ¯ : � ÉÇ G 0 ½ E G c s y ¤ Z��Ç G 0 ½ E G c ¤ � ��Ç ~ 0 ½ E ~ c ¤ � �
# � ¨ I « &

(1.47)
where ¤ � Q5S � ½ . As

¹ Ê o� � s & s � Ê � ��Ç & s � ­ for large Ç decays proportional to� � S�Ç � wA� Z # � ¨ I « the anomalous dimension for the spinless model is given byÕ � � Q ç Z � s �L� � � Gn��� Z S8Q � f (1.48)

Luttinger’s result for
¹ 9<: Ñ � ­ follows by performing the Fourier transform with

respect to Ç . The full line in Fig.1.3 was calculated with
ç Zm �îs f � È � Z : b Æ : < ,

while the dashed curve corresponds to
ç Zm � s fU¥c� �3m S �5½��,È � Z :�b Æ : < . The latter

example corresponds to an interaction with
ÿ Z � � R s � R s which leads to a

vanishing anomalous dimension
Õ � . In this case the occupancies

¹ 9<: Ñ � ­ have a
discontinuity at

� 2
as in a Fermi liquid [38]. An efficient numerical algorithm

to calculate
¹ 9C: Ñ � ­ for arbitrary forms of

ç Zm
is described in the appendix of

reference [2].

The spectral function Ä Ð � � & ; � relevant for describing angular resolved pho-
toemission is obtained from Eq. (1.47) by a double Fourier transformÄ Ð� � � & ; � � ¹ 
 o: Ñ � ³ � ; ~ � Û G >%I5��¸¦ �£G�� & ¸¦ � �·� � 
 : Ñ � ­ (1.49)� �Q8� Å t� t � E È ¯�F I Å t� t � Ç È

� ¯ :�É c È ¯b� I � Ð� ��Ç & E � f
As Eq. (1.47) is reliable in the large Ç and E limit its use in Eq. (1.49) correctly
describes the spectral function for

� N � 2 and ; N s [39]. Using the variable
substitutions y§¦ � Ç Â 0 ½ E the double integral factorizes and with the additional
approximation c s R¨c ¤ on the rhs of Eq. (1.47) one obtains [11, 14]Ä Ð� � � 2 ~ ¸� & ; � ø � � G ; G 0 ½ P ¸� P � � G ; ~ ¸� 0 ½�� | ú� � w � G ; G ¸� 0 ½�� | ú� È o F`Æ T < f (1.50)
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Without the additional approximation there is an additional weak dependence on; ~ ¸� 0 ½ [29]. The complete spectral function Ä � � � & ; �Ú� Ä Ð� � � & ; � ~ Ä Ü� � � & ; � ,
where Ä Ü� � � & ; � is defined via c�� Ü� ��Ç & E �ÚV�¹ Ê � ��Ç & E � Ê o� � s & s � ­ can be obtained
using Ä Ü� � � 2 ~ ¸� & ; �L� Ä Ð� � � 2 G ¸� & G ; � which follows from the particle-hole
symmetry of the model. The absence of a sharp quasi-particle peak is manifest
from Ä � � � 2 & ; � ø Õ � P ; P Ò5ú � w È � o0© F © Æ T < .

In order to calculate correlation functions of the spin one-half TL model
the operators | m�Ñ ( which appear in the generalization of the bosonization for-
mula Eqs. (1.32) and (1.33) have to be replaced by the spin and charge bosons| m�Ñ ( � � | m�Ñ ½ ~ # | m Ñ # � S � Q . Because of the exponential occurence of the bo-
son operators in Eq. (1.32) and spin-charge separation Eq.(1.21) the Green’s
function � Ð�xÑ ( ��Ç & E � factorizes into a spin and a charge part, which both are
of the form as the square root of the function on the rhs of Eq. (1.47) . This
square root results from the factors

� S � Q in the expression for the | m�Ñ ( . In
the spin factor the charge velocity

0 ½
is replaced by the spin velocity

0 # . For
the average occupation numbers one again obtains Luttinger’s result Eq. (1.16)
with

Õ � �ìç Z½ � s � ~ ç Z # � s �¾V Õx½ ~ Õ # . The individual contributions can be
expressed in terms of the

� 14V � 0 à Ñ 1 S 0 ¬ Ñ 18� w Æ Z as
Õª14� � � 1¼GK��� Z S\��� � 13� .

As in the spinless model the fermionic (creation) annihilation operators 
 ¨ o «m Ñ Ò`Ñ (
scale like � � SHT � Ò5ú Æ Z . For spin rotational invariant systems one has

� # � � ,
i.e. no contribution to the anomalous dimension

Õ � from the spin part of the
Hamiltonian [26]. For the momentum integrated spectral functions one ob-
tains Ä Ò`Ñ ( ��; � ø P ; P Ò5ú as in the spinless model [40]. The

�
-resolved spectral

functions Ä Ò`Ñ ( � � & ; � on the other hand show a drastic difference to the model
without spin. The delta peaks of the noninteracting model are broadened into
one power law threshold Eq. (1.47) in the model without spin and two power
law singularities (see Fig. 1.4) in the model including spin [29, 30, 37] (forÕ � ² � S8Q in the case of a spin independent interaction). The “peaks” disperse
linearly with

�ËGé� 2
.

It is also straightforward to calculate various response functions for the TL
model. We discuss the density response function «ë�;: & � �7V±G ¹·¹ ¶ÄY¬ V ¶Ä � ¬ ­·­�­ SHT
of the spinless model for : N s and : N ^ Q � 2 , where¹·¹ ¶W V ¶Z ­·­�­ V�G®c!" Å tI ¹ � W ��E � & Z � ­ È ¯ ­ I � E (1.51)

involves the retarded commutator [41] and
�

is a frequency above the real axis.
From the decomposition [42] Ê ��Ç � N Ê � ��Ç � ~ Ê � ��Ç � of the field operatorÊ ��Ç � in the original Tomonaga model it is obvious that the operator

¶Ä ��Ç �æ�Ê o ��Ç � Ê ��Ç � of the density (see Eq. (1.8) ) has two very different contributions¶Ä ��Ç � N ¶Ä � ��Ç � ~ ¶Ä � ��Ç � ~ Ý Ê o� ��Ç � Ê � ��Ç � ~ " f 
 f Þ (1.52)
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Figure 1.4. Spectral function � �¯	 ° � ïB�²±´³ï ����� as a function of normalized frequency for³ï �£ó ï <&µ � ñ for the TL- model with a spin independent interaction. The parameters are chosen
such that ¶ < � ¡ ¶ � and � ú =1/8.V ¶Ä I5��Ç � ~ ¶Ä Z : � ��Ç � f
The spatial Fourier transform of

¶Ä I is linear in the boson operators Eq. (1.12)
and the : N s contribution of the density response function � «ë�;: & � � � I defined
with the operators � ¶Ä I � ¬ follows using the (linear) equations of motion for the| m ��E � as � «ë�;: & � � � I � �� !" : Z 0 à �;: �� : 0 ½ �;: � � Z G � Z (1.53)

This exact result for the : N s contribution agrees with the RPA result for the
original Tomonaga model. This fact, not mentioned in Tomonaga’s paper [5] as
the RPA paper by Bohm and Pines [43] was not yet published, was “discovered”
many times in the literature. For the spin

� S8Q -model � «ë�;: & � � � I has an additional
factor Q and one has to replace

0 à
by
0 à <

.
The real part of the ( : �îs ) frequency dependent conductivity #L��; ~ c s �

follows from � «ë�;: & ; ~ c s � � I by multiplication with c È Z ; S.: Z and taking the
limit :·R s . This yields for the spinless model� !" S È Z � R È #L��; ~ c s �Ú� 0 à ³ ��; �L� � 0 ½�³ ��; � (1.54)

For the Galilei invariant Tomonaga model Eq. (1.14) one has
0[à � 032

, i.e. the
weight ¸ of the zero frequency “Drude peak” is independent of the interaction,
as expected. As ¸ apart from a constant is given by the second derivative of> I �_� � SHT with respect to the magnetic flux through the

���
ring [44],

�
(or� ½

) can be obtained from a ground state calculation for microscopic lattice
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models using
� ¨ ½ « � �;¸¹A�S.¸�I,A[I � w Æ Z , where A is the compressibility discussed

in Eq. (1.24). The anomalous decay of the correlation functions for these
models, which are more difficult to calculate directly, can then be quantitatively
predicted if Haldane’s LL concept is taken for granted. For a weak two-body
interaction the result for

� ¨ ½ « GO� linear in the interaction follows from first
order perturbation theory for the ground-state energy, which involves the (non-
selfconsistent) Hartree and Fock terms. As they are independent of the magnetic
flux, ¸ S.¸�I has no term linear in ¸0 , i.e.

� ½ N �CAØSDA1I � w Æ Z � � 032 S 0 ¬ < � w Æ Z ,
which holds exactly for Galilei invariant continuum models [45]. Performing
the second derivative of > ¨ w «I � ¦ � with respect to ¦ yields [46]� ½Ú���ÓG Q ¸0 � s ��G ¸0 �RQ � 2 �Q8� !"1032 ~ ` � ¸0`Z � f (1.55)

In the spinless case the factor Q in front of ¸0 � s � is missing in the result for�
. Instead of ¸ as the second input besides A one can obtain

0 ½
directly by

calculating the lowest charge excitation energy (see section 4).
The easiest way to calculate the : N ^ Q � 2 contribution to the density re-

sponse is to use the bosonization of the field operators [14]. The first step is to

normal order Ê o� ��Ç � Ê � ��Ç � using Eq. (1.43) . This gives a factor
È � � � ¨ É « Ñ � ^ ! ¨ É « �

which using � @ � ��Ç � & @ o � ��Ç � � � G Q J MÓÜ I 
 M�ç�M S�] together with the factorW Z � T � leads to

Ê o� ��Ç � Ê � ��Ç �L� 2`IT � �5��5½ T $ �
� w ¶` o� � Q8�¥ÇT � ¶` � � Q8�¥ÇT �,È � ¯7º»� ^ ¨ É « È � ¯7º»� ¨ É « (1.56)

withU @X��Ç ��V @ � ��Ç ��G @ � ��Ç �Ú��G c uMFÜ I ¼ � M] Ý È ¯ : D É ÕCM»GÙÈ � ¯ : D É Õ � M%Þ f
Here 2`I is a dimensionless constant of order unity and the exponent

� G �
of the second factor on the rhs follows using Q ç ZM ~ Q 
 M çBM�� � MaGü� . The
importance of this factor for impurity scattering in Luttinger liquids was first
pointed out by Mattis (1974) [21] and will be discussed later. The calculation
of the two terms of the commutator

¹ � Ê o� ��Ç & E � Ê � ��Ç & E � & Ê o� � s & s � Ê � � s & s � � ­ is
then straightforward and one obtains for the spectral function of the : N ^ Q � 2
response function the power law behaviour [14]

Im � «ë� ^ Q � 2 ~²½ & ; � � Z : � ø sign ��; � � ��; Z G 0 Z½ ½ Z �¿¾ ; Z G 0 Z½ ½ Z0 Z½ � Z½ À �
� w

(1.57)
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The static
^ Q � 2 ~Á½ response diverges proportionally to P ½ P Z ¨ � � w « which has

to be contrasted with the logarithmic singularity in the noninteracting case. In
the model including spin the exponent Q � G Q is replaced by

� ½ ~ � # G Q .
The pair propagator Â¾�;: & ; � resulting from the response function for

¶W �Ê o� ��Ç � Ê o� ��Ç � and

¶Z � Ê � � s � Ê � � s � was found by Luther and Peschel to be
the same as the Q � 2 -density response, provided the sign of the interaction is
reversed [14]. An attractive interaction leads to a power law divergence inÂ¾�;: �ìs & ; � s � as the temperature is lowered, indicative of large pairing
fluctuations.

3.3 The TL model with additional interactions and
perturbations

The exact solution of the TL model essentially depends on the fact that
the numbers of right and left movers are conserved. This symmetry can be
destroyed by a one-particle potential with

^ Q � 2 -Fourier components or by
interaction terms which change the individual particle numbers, like Q � 2 -
“backscattering” terms or Umklapp-terms for a half-filled band. With such
additional terms the model is in general no longer exactly solvable. Important
insights about the influence of such terms have come from a (perturbational)
RG analysis [16, 25].

3.3.1 Impurity in a spinless TL model

We begin with the spinless model with an additional impurity which is de-
scribed by¶Í
Ã � Å � Í 2 ��Ç � ¶Ä I ��Ç � ~ Í � ��Ç � ¶Ä Z : � ��Ç � � � Ç V ¶Í 2 ~ ¶Í � & (1.58)

where

¶Í 2
describes the forward and

¶Í �
the backward scattering due to the

impurity and the two different operators for the densities are defined in Eq.
(1.52). As the forward scattering term is linear in the boson operators it can be
treated in an exact way. The backscattering term has the property � ¶Í � & ¸� Ò � J�asand the model can no longer be solved exactly (except for

� � � S8Q and a
special assumption about

Í �
, as discussed below). For a zero range impurity

it follows directly from Eq. (1.56) that

¶Í �
scales as � � SHT � � while ¸ÛËþ � in

Eq. (1.17) scales as
� SHT . Therefore the influence of

¶Í �
depends crucially on

the sign of the two-body interaction [21, 22]. For repulsive interactions one
has

� ² � which shows that

¶Í �
is a relevant perturbation. For

� q �
,

i.e. an attractive interaction,

¶Í �
is irrelevant. A detailed RG analysis of the

problem was presented in a seminal paper by Kane and Fisher [25]. For a
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zero range backscattering potential and two-body interaction they mapped the
problem to a local bosonic sine-Gordon model [25, 35, 47]. The subsequent
RG analysis shows that the backscattering amplitude scales as �S� � w when the
flow parameter � is sent to zero [48], as can be anticipated from Eq. (1.56) .
This leads to the breakdown of the perturbational analysis in

Í �
for repulsive

interactions. As already mentioned in section 2 this analysis was supplemented
by a RG analysis of a weak hopping between two semi-infinite chains. The weak
hopping scales to zero like � Ò*Ä for repulsive interactions, where

Õ��À� � � w G��
is the boundary exponent. It describes e.g. the different scaling Ä ��Ç & ; � ø P ; P Ò*Äof the local spectral function near a hard wall boundary of a LL [25, 49, 50].
These scaling results together with the asumption mentioned in section 2 leads
to the “split chain scenario” in which even for a weak impurity the observables at
low energies behave as if the system is split into two chains with fixed boundaries
at the ends. Within the bosonic field theory this assumption was verified by
quantum Monte Carlo calculations [51] and the thermodynamic Bethe ansatz
[52].

This implies e.g. for the local density of states Ä ��Ç & ; � ø P ; P Ò*Ä for smallP ; P and Ç near the impurity like in a LL near a hard wall. The transmission
through the impurity vanishes near

� 2
proportional to ø P �?G�� 2 P Z Ò*Ä which

leads to a conductance �ë� 	 � which vanishes with temperature 	 in power law
fashion ��� 	 � ø 	 Z Ò*Ä [25].

Additional insight comes from the analysis for the special value
� �î� S8Q

[25, 35, 32] . For
Í � ��Ç �L� Í �L³ ��Ç � the expression for

U @�� s � in Eq. (1.56) can
be written in terms of new boson operators ¸Õ M V � Õ M G�Õ � M � S � Q . If one
neglects the momentum dependence of

� M
in Eq. (1.56) and puts

� MK� � S8Q
one obtains c U @�� s �X��J M Ï w ¸Õ M S � ] as in the bosonization of a single field
operator Eqs. (1.32) and (1.33) . It is then possible to refermionize the

� ��� S8Q -
TL model with a zero range impurity. Even the Klein factors can properly be
handled [32] and one obtains a model of “shifted noninteracting Fermi oscilla-
tors” which can be solved exactly introducing an auxiliary Majorana fermion
[35, 32]. Unfortunately the local densities of states cannot be calculated exactly
because of the complicated nonlinear relationship between the original fermion
operators and the fermion operators which diagonalize the shifted Fermi os-
cillator problem [32]. Additional results for the transport through a spinless
LL containing one impurity were obtained by mapping the problem onto the
boundary sine-Gordon model and using its integrability [53].

In order to bridge the two regimes treated by Kane and Fisher one can use
a fermionic RG description bearing in mind that it is perturbational in the
two-body interaction [54, 55]. It shows that the long range oscillatory effective
impurity potential is responsible for the “splitting”, for site impurities as well as
for hopping impurities of arbitrary strength. For realistic parameters very large
systems are needed to reach the asymptotic open chain regime [55]. Hence only
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special mesoscopic systems, such as very long carbon nanotubes, are suitable
for experimentally observing the impurity induced open boundary physics.

For a discussion of the impurity problem in the TL model including spin see
also reference [56].

3.3.2 The TL- model with additional two-body interactions

Tomonaga was well aware of the limitations of his approach for more generic
two-body interactions (“In the case of force of too short range this method fails”
[5]). We therefore first discuss Tomonaga’s continuum model in this short range
limit

� ½ ¿ � 2
opposite to the one considered in section 2. Then low energy

scattering processes with momentum transfer N ^ Q � 2 are possible and have
to be included in the theoretical description of the low energy physics.

In the “
ÿ
-ology” approach one linearizes the nonrelativistic dispersion around

the two Fermi points and goes over to right- and left-movers as in section 2.
Then the “ Q � 2 ”-processes are described by the additional interaction termÛ ¨ w «./p�Å � u(�Ñ ( � Å Ý ÿ w - ³ (�Ñ ( �[~ ÿ w / ³ (�Ñ � ( � Þ Ê o�xÑ ( ��Ç � Ê o� Ñ ( � ��Ç � Ê �xÑ ( � ��Ç � Ê � Ñ ( ��Ç �k� ÇCf

(1.59)
For a spin-independent two particle interaction one has

ÿ w - � ÿ w / � ÿ w
. For

the zero range interaction assumed in Eq. (1.59) one has to introduce band cut-
offs to regularize the interaction term. The RG flow equations for the cut-off
dependent interactions on the one-loop level are quite simple [16]. If

ç
runs

from zero to infinity in the process of integrating out degrees of freedom one
obtains for spin-independent interactions� ÿ w � ç8��`ç � G �� !"[082 ÿ Z w � ç8� (1.60)� ÿ Z � ç8��`ç � G �Q8� !"[082 ÿ Z w � ç8�
and
ÿ � is not renormalized. Obviously

ÿ w � ç8� can be obtained from the first
equation only ÿ w � ç8�L� ÿ w� ~ çÇÆ ¤Ì9ÈÉ T � & (1.61)

where
ÿ w

is the starting value. It is easy to see that
ÿ w � çH�<G Q ÿ Z � ç8�L� ÿ w G Q ÿ Z

holds by subtracting twice the second equation from the first in Eq. (1.60) . In
the following we use the notation

ÿËÊ) V ÿ9) � ç R í � . Now one has to distinguish
two cases:

for
ÿ w � s one renormalizes to the fixed line

ÿ
Êw � s & ÿ�ÊZ � ÿ Z G ÿ w S8Q and
the fixed point Hamiltonian is a TL model which shows the generic importance
of the TL model for repulsive interactions. In this case the

ÿ w
-interaction is
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called marginally irrelevant. For the nonrelativistic continuum model with a
spin independent interaction one has

ÿ
ÊZ ½ � Q ¸0 � s �LG ¸0 �RQ � 2 � and
ÿÌÊZ # ��s and

for the stiffness constant
� ½Ú� �g�RQ8� 032 ~ ÿ Ê� ½ G ÿ ÊZ ½ � S\�RQ8� 032 ~ ÿ Ê� ½ ~ ÿ ÊZ ½ � � w Æ Z N�xG �/Q ¸0 � s �[G ¸0 �RQ � 2 � � S\�RQ8� !"Ø032 � and

� # ��� . Due to the approximations made,
also here only the result for

� ½ÓG �
linear in ¸0 is reliable. The agreement

with the direct calculation Eq. (1.55) shows explicitly to leading order in the
interaction that Haldane’s Luttinger liquid concept is consistent.

For
ÿ w ² s the solution (1.61) shows that

ÿ w � çH� diverges at a finite value ofç
. Long before reaching this point the perturbational analysis breaks down and

all one can say is that the flow is towards strong coupling. In this case the
ÿ w

-
interaction is called marginally relevant. In order to to obtain an understanding
of the strong coupling regime it is useful to bosonize the additional interactionÛ ¨ w «./p�Å in Eq. (1.59) [57]. The term proportional to

ÿ w -
is of the form of aÿ Z - -interaction and therefore bilinear in the boson operators Eq. (1.19) . For

the
ÿ w /

-term one uses the bosonization of the field operators Eqs. (1.32) and
(1.33) with additional spin labels. As the

ÿ w /
-term contains field operatorsÊ oÒ.3 ��Ç � Ê Ò.4 ��Ç � of opposite spin it only involves “spin bosons” Eq. (1.19) , which

implies “spin-charge separation” also for this model [58]. The charge part stays
trivial with massless charge bosons as the elementary interactions. Luther and
Emery showed that for a particular value of

ÿ w -
the
ÿ w /

-term can be written
as a product of spinless fermion field operators and the exact solution for the
spin part of the Hamiltonian is possible using refermionization [57], discussed
earlier in connection with the backscattering impurity. The diagonalization of
the resulting problem of noninteracting fermions is simple and shows that the
spectrum for the spin excitations is gapped. It is generally believed that these
properties of Luther-Emery phases are not restricted to the solvable parameter
values.

Strong coupling phenomena which lead to deviations from LL-properties
with gapped phases are discussed in detail in section 4 for lattice models. There
in case of commensurate filling Umklapp processes can become important, e.g.
for half filling where two left movers from the vicinity of the left Fermi point
are scattered into two right movers near the right Fermi point or vice versa. As� � � � 2 is a reciprocal lattice vector such a scattering process is a low energy
process conserving quasi-momentum. In the

ÿ
-ology model such processes are

described by an additional termÛ ¨ 
 «./p�Å � �Q u(BÑ ( � Å ÿ (�Ñ ( �
 ��Ç G®Í[� � Ê o�xÑ ( ��Ç � Ê o�xÑ ( � � Í[� Ê � Ñ ( � � Í[� Ê � Ñ ( ��Ç �,È Z ¯ : � ¨ É ��Î «~ Û f 
 f � � Ç ��Í (1.62)

Umklapp processes for # � # � are only possible for nonzero interaction range.
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4. Results for integrable lattice models
As mentioned in subsection 2.4, results for integrable models which can be

solved exactly by the Bethe ansatz played a central role in the emergence of the
general “Luttinger liquid” concept [18]. It is therefore appropriate to shortly
present results for the two most important lattice models of this type, the model
of spinless fermions with nearest neighbour interaction and the

���
-Hubbard

model. (We put
!" ���

in this section.)

4.1 Spinless fermions with nearest neighbour interaction
The one-dimensional single band lattice model of spinless fermions with

nearest neighbour hopping matrix element E � q�s � , and nearest neighbour in-
teraction t (often called

Í
in the literature) is given byÛ ��G E u d Ý 
 od 
 d �xw ~ Û f 
 f Þ ~ t u d ¶9 d ¶9 d �xw V ¶	 ~ ¶t & (1.63)

where e denotes the sites and the

¶9¥d � 
 od 
 d are the local occupation number
operators. In the noninteracting limit t �îs one obtains for lattice constant2 ��� the well known dispersion Ï�: ��G Q.E s��*� � . For the following discussion
of the interacting model ( t J� s ) we mainly focus on the half filled band case� 2 � �CS8Q with

032 � Q.E . In contrast to the (continuum) Tomonaga model
Umklapp terms appear when the interaction term in Eq. (1.63) is written in the�

-representation. As discussed below they are irrelevant at the noninteracting
( t ��s ) fixed point [17]. Therefore the system is a Luttinger liquid for small
enough values of P t P . The large t limit of the model is easy to understand:
For t ¿ E charge density wave (CDW) order develops in which only every
other site is occupied thereby avoiding the “Coulomb penalty”. For large but
negative t the fermions want to be as close as possible and phase separation
occurs. For the quantitative analysis it is useful that the model in Eq. (1.63) can
be exactly mapped to a Ð ��� S8Q -Heisenberg chain with uniaxially anisotropic
nearest neighbour exchange (“ ÑkÑÓÒ ” model) in a magnetic field by use of the
Jordan-Wigner transformation [59]. For t q�s this model is also called the an-
tiferromagnetic Heisenberg-Ising model. The point t V t ½Ú� Q.E corresponds
to the isotropic Heisenberg model. For t q Q.E the Ising term dominates and
the ground state is a well defined doublet separated by a gap from the continuum
and long range antiferromagnetic order exists. For

G Q.E%²Ôt µ Q.E there is no
long range magnetic order and the spin-excitation spectrum is a gapless con-
tinuum. The mapping to the ÑkÑÓÒ -model therefore suggests that the spinlesss
fermion model Eq. (1.63) in the half filled band case is a Luttinger liquid forP t P ²nQ.E .

Before we present the exact results for the Luttinger liquid parameters
�

and0 ½
from the Bethe ansatz solution [18, 60], we shortly discuss the RG approach
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to the model. A perturbative RG calculation around the free fermion fixed
point is discussed in detail in Shankar’s review article [17]. The first step is
to write the four fermion matrix elements of the interaction

¶t in Eq. (1.63) in
the
�

-representation. This yields for a chain of ¦ sites with periodic boundary
condition and values

� d � Q8�[e`S�¦ in the first Brillouin zone¹R� w & � Z P ¶t P � 
 & � � ­ � QÕt s��*� � �\wÚGW� 
 �¦ uMXv I Ñ 'xw ³ : ¤ � : � Ñ : ¢ � : � � Z,Ì M (1.64)

The ] �Os term on the rhs of Eq. (1.64) represents the direct scattering terms
and the ] ��^Ë� terms the Umklapp processes. The matrix element antisym-
metrized in

� 
 and
� � is proportional to ��Ö{× �g� � w GW� Z � S8Q � ��Öw× �g� � 
 Gé� � � S8Q � .

Therefore the low energy Umklapp Hamiltonian scales like � � S8T � 
 which shows
that it is strongly irrelevant at the free field fixed point [17]. This analysis
confirms the Luttinger liquid behaviour for small values of t , but gives no
hint about the critical value t ½ for the CDW transition. With the separation
¶t V ¶t I ~ ¶tÙØ iÛÚ -�*&ÜÝÜ implied by Eq. (1.64) one can do better by first treating
¶	 ~ ¶t�I by bosonization and then perform the RG analysis around the corre-

sponding TL fixed point to get information for which value of t the Umklapp
term starts to be a relevant perturbation. For this analysis it is easier to work di-
rectly with the unsymmetrized matrix elements in Eq. (1.64). As

�}w1G¾� 
 N ^ �
for the low energy Umklapp processes this leads after extending the (linearized)
dispersion of the right and left movers from

G í to í to a
ÿ 
 -interaction with a

range of order ¤ � 2 . The scaling dimension of the corresponding
Û ¨ 
 «./p�Å follows

using bosonic normal ordering as in Eq. (1.56). For Ç GkÍ of order ¤ or smaller
one obtainsÊ o� ��Ç � Ê o� � Í[� Ê � � Í[� Ê � ��Ç � T Z ø � Ç GÁÍT $ Z � ¤T $ � ¨ �

� w «
(1.65)êF�Þt o� � Z t Z� È Z ¯ : � ¨ É ��Î « È ¯ � ^ ¨ É Ñ Î « È ¯ � ¨ É Ñ Î « &

where
Z ��Ç & Íc��� @ � ��Ç � ~ @ � � Íc�ØG @ � ��Ç �1G @ � � Íc� with @ Ò ��Ç � defined in Eq.

(1.44). The first factor on the rhs is due to the Pauli principle and describes
the same physics as the two ��Ö{× -factors mentioned above for small arguments.
Therefore the second factor has to provide more than two powers of T to make
the Umklapp term a relevant perturbation, which happens for

� ² � S8Q . As
discussed below, the exact Bethe ansatz result for

�
yields t ½ � Q.E . If one

uses the simple linear approximation for
� G �

in Eq. (1.55) one obtains with
Eq. (1.64)

� -/./p ���ÓG tÓS\� ��E � for the critical value t -/./p½ S8E � �CS8Q , not too bad
an approximation.

Exact analytical results for the Luttinger liquid parameters for the half filled
model can be obtained from the Bethe Ansatz solution [18, 60, 61]. It is not
necessary to address the anomalous decay of the correlation functions directly,
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but one can use a ground state property and the lowest charge excitation to extract
the parameters, as was dicussed in connection with Eq. (1.55). This yields for
the stiffness constant

� � �CS\�/Q qDß
s0s��*� � G tÓS8Q.E � � and for the charge velocity0 ½Ú� ��E Ö �7G �Þt7S8Q.E � Z S\� � G qDß
s0s��*� � G tÓS8Q.E � � . For repulsive interactions t qs
the value of

�
decreases monotonously from the noninteracting value

� ���
to
� � � S8Q for t � Q.E , which corresponds to an anomalous dimensionÕ � � � � ~ � S � � S8Q Gn�_� � S8� . For attractive interactions

�
diverges whent approaches

G Q.E , and the charge velocity
0 ½

goes to zero. Results for the
Luttinger liquid parameter

�
for less than half filled bands are shown in Fig.

1.5 [62]. The limit 2´R s
and 9àR s

corresponds to the continuum limit.
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Figure 1.5. Luttinger liquid parameter á from the Bethe ansatz solution as a function of the
band filling � for different values of â �bã ��� � . The short dashed curve shows the infinite â
result � � µ ¡ ±åä ��ó¾� µ ¡ ä � � .
As the interaction goes over to a contact interaction its effect vanishes because
of the Pauli principle and

�
goes to

�
. For small enough values of t the

linear approximation Eq. (1.55)
� -/./p � �ÃG t ��Öw× ��9=� � SH��E provides a good

approximation for all values of 9 , in contrast to the Hubbard model discussed
below. In the infinite t limit the Bethe Ansatz equations simplify considerably
and the ground-state energy as well as low lying excited states can be calculated
analytically [61]. With these results it is easy to show that

� � � �LG 9 � Z holds
for
s ²n9é² � S8Q , i.e.

� � � S8� , is the lower bound for
�

in the LL regime of
the model [18]. The corresponding upper bound of the anomalous dimension
is
Õ � �Çæ SDç . In order to achieve larger values of

Õ � the model in Eq. (1.63)
has to be generalized to include longer range interactions [63].
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4.2 The Hubbard model
As there exists an excellent review on the LL behaviour in the

���
-Hubbard

model [64], the following discussion will be rather short. As the model includes
spin the on-site interaction between electrons of opposite spins is not forbidden
by the Pauli principle. This is taken as the only interaction in the model. The���

Hubbard Hamiltonian readsÛ ��G E u d Ñ ( Ý 
 od Ñ ( 
 d �xw·Ñ ( ~ Û f 
 f Þ ~ t u d ¶9 d Ñ 3 ¶9 d Ñ 4 f (1.66)

In the extended Hubbard model a next nearest interaction term
Í J d ¶91d ¶91d �xw

with

¶91d V ¶9 d Ñ 3 ~ ¶9 d Ñ 4 is added [65]. In order to show the important difference
to the spinless model Eq. (1.63) we again first discuss the half-filled band case,
which is metallic for t � s . For t ¿ E the “Coulomb penalty” is avoided
when each site is singly occpied. Then only the spin degrees of freedom mat-
ter. In this limit the Hubbard model can be mapped to a spin-

� S8Q Heisenberg
antiferromagnet with an exchange coupling è � �9E Z S�t . In the charge sec-
tor there is a large gap

U ½ ø t while the spin excitations are gapless. The
���

Hubbard model can also be solved exactly using the Bethe ansatz [66] and prop-
erties like the charge gap or the ground-state energy can be obtained by solving
Lieb and Wu’s integral equation. In contrast to the spinless model described
in the previous subsection the charge gap in the Hubbard model is finite for allt q�s . While for t ¿ E it is asymptotically given by t it is exponentially
small,

U ½ N �Cç.E�SH� � Ö t7S8E�é�êÌë¼� G Q8��E�S�t ), for
s ²ìt híE . This shows that

the Umklapp term is no longer irrelevant at the free field fixed point. The Pauli
principle factor of Eq. (1.65) is missing as the interaction is between electrons
of opposite spin. The Umklapp term is therefore a marginal perturbation. The
RG analysis [16] shows that the Umklapp term is marginally relevant while
the Q � 2 -backscattering (“

ÿ w
”) interaction is marginally irrelevant for t q�s as

discussed following Eq. (1.60).
When the band is not half filled Umklapp is not a low energy process and

the Hubbard model is a Luttinger liquid with
� # � � . The LL parameters� ½

and
0 1

can be obtained by (numerically) solving Lieb an Wu’s integral
equation [67]. Even for

s ²ît hïE the perturbative result Eq. (1.55) works
well only for intermediate filling 9 V ¦ � z S�¦ N s fUð , where ¦ � z is the number
of electrons (half filling corresponds to 9 � � ) . In the limit 9ñR s

the
Fermi velocity

0 2 � Q.E ��Ö{× � �¥9xS8Q � goes to zero but Q ¸0 � s �FG ¸0 �RQ � 2 � � t
stays finite and the correction term increases with decreasing 9 in contrast
to the spinless model. The Bethe ansatz results show that

� ½ R � S8Q for9òR s as well as 9óR � for all t q�s . For tîR í it leads to
� ½ R � S8Q

for all fillings 9 different from
�
. In this limit the velocities are given by0 ½ � Q.E ��Ö{× � �¥9 � and

0 # � �RQ8��E Z S�t � � ��G ��Ö{× �RQ8�¥9 � S\�RQ8�¥9 � � , i.e. the spin
velocity goes to zero [64, 67]. The t � í results for

0 ½
and

� ½
can be
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understood without the Bethe ansatz solution. Double occupancies of the lattice
sites are forbidden and the system behaves like a system of noninteracting
spinless fermions with

� 2
replaced by Q � 2 [64]. The spin degrees of freedom

play no role and any configuration of the spins gives an eigenfunction of the
same energy. This immediately explains the result for

0 ½
mentioned above. For

a TL model with spin one obtains (for fixed ¦ 3 G ¦ 4 ) from Eqs. (1.17) and (1.21)T%�CB Z > I SDB1¦ Z � � � � 0 ¬ < S8Q , while the factor
� S8Q is missing in the spinless case.

The formula for the spinless case can be used to calculate T%�CB Z >FIBSDBØ¦ Z � � fort � í with
0 ¬ replaced by

052 �RQ � 2 � , using the spinless fermion analogy.
This yields

0 ¬ < � Q 0 ½ i.e.
� ½Ú��� S8Q .

As the calculation of correlation functions not only requires excitation en-
ergies but also many electron matrix elements which are difficult to evaluate
using the Bethe ansatz, various numerical methods have been used to study e.g.
the manifestation of spin-charge separation in the one-particle spectral function
[68, 69]. The Bethe ansatz approach simplifies in the infinite t limit [70].
After earlier work [71, 72] the frequency dependent optical conductivity of the���

Hubbard model was also studied using Bethe ansatz methods [73, 74], as
well as the dynamical density-matrix renormalization group [74].

5. Weakly coupled chains: the Luttinger to Fermi liquid
transition

Strictly one-dimensional systems are a theoretical idealization. Apart from
this even the coupling to an experimental probe presents a nontrivial disturbance
of a Luttinger liquid. Unfortunately the weak coupling of a

���
system to such a

probe as well as the coupling between several LLs is theoretically not completely
understood [26]. The coupling between the chains in a very anisotropic

� �
compound generally, at low enough temperatures, leads to true long-range
order. The order develops in the phase for which the algebraic decay of the
correponding correlation function of the single chain LL is slowest [64]. This
can lead e.g. to charge-density wave (CDW), spin-density wave (SDW) order
or superconductivity.

In the following we shortly address some important issues of the coupled
chain problem, which are a prerequisite for the theoretical descriptions of the
attempts to experimentally verify LL behaviour. In the first part of this section
theoretical aspects of the problem of an infinite number of coupled chains are
addressed. This is followed by a short discussion of the (approximate) experi-
mental realizations of LLs. As there are other chapters in this book addressing
this question the discussion will be rather short.
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5.1 Theoretical models
We consider a systems of ¦ / coupled chains described by the HamiltonianÛ � ¬õôu¯ vxw Û ¯ ~ u ¯ Îv d Û ¨ �Þ� «¯ d ~ um�Ñ ¨ ( « u ¯ Ñ d E / Ñ ¯ d 
 om Ñ ¨ ( « Ñ ¯ & 
 m�Ñ ¨ ( « Ñ d (1.67)

where the
Û ¯ are the Hamiltonians of the individual chains, the

Û ¨ �Þ� «¯ d represent
the two-body (Coulomb) interaction of electrons on different chains and the last
term

Û ¨ I ô « describes the hopping between the chains with E / Ñ ¯ d the transverse

hopping matrix elements and the 
 ¨ o «m Ñ ¨ ( « Ñ ¯ the (creation) annihilation operators
of one-particle states with quasi-momentum

�\m
along the chain c and spin # (if

spin is included in the model). The individual
Û ¯ can be TL-Hamiltonians Eq.

(1.17) or lattice Hamiltonians like in Eqs. (1.63) or (1.66).
We address the question if LL physics survives in such a model. The second

and the third term on the rhs of Eq. (1.67) describe different types of couplings
between the chains. If the transverse hopping is neglected ( E / VOs ) the model
can be solved exactly for special assumptions about the two-body interaction
and the

Û ¯ . If the individual chains are described by TL-Hamiltonians Eq. (1.17)
and the interaction

Û ¨ �Þ� «¯ d can be expressed in terms of the densities

¶Ä m�Ñ ¨ 1 « Ñ Ò`Ñ ¯
the exact solution is possible by bosonization [75, 76]. This is important when
the long range Coulomb interaction is taken into account. For a single chain
the corresponding one-dimensional Fourier transform ¸0 �;: � (which has to be
regularized at short distances) has a logarithmic singularity for :kR s . This
leads to

� ¨ ½ « �as and the divergence of the anomalous dimension, i.e. the sys-
tem is not a LL. The � � 2 harmonic of the density-density correlation function
shows a very slow decay almost like in a Wigner crystal [77]. The Coulomb
coupling between the chains removes this singularity and a three-dimensional
extended system of coupled chains is a LL [75]. The corresponding anoma-
lous dimension can be calculated and leads to values of order unity for realistic
values of the coupling constant

È Z S\� � !"1032 � [76]. If Q � 2 -scattering terms of
the interaction are kept the model can no longer be solved exactly and a more
complicated scenario emerges in the parquet approximation [78].

The inclusion of the transverse hopping presents a difficult problem even
if the inter-chain two-body interactions are neglected. This is related to the
fact that the transverse hopping is a relevant perturbation for

Õ � ² � [79,
80, 81]. This can easily be seen if the individual chains are described by TL-
Hamiltonions Eq. (1.17), scaling like

� SHT . As discussed in section 3 the 
 ¨ o «m Ñ ¨ ( « Ñ ¯
scale like � � SHT � Ò5ú Æ Z . As

Û ¨ I ô « involves products of creation and annihilation
operators on different chains no further boson normal ordering is necessary andÛ ¨ I ô « scales as � � SHT � Ò5ú . This suggests “confinement” for

Õ � qK� : if an extra
electron is put on the e -th chain it stays there with probability close to

�
even
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in the long time limit. This conclusion can be questioned as RG calculations
perturbative in E / demonstrate that the hopping term generates new and relevant
interchain two-particle hoppings. These calculations show that the system flows
to a strong-coupling fixed point which cannot be determined within the approach
[81, 82].

If inter-chain two-body interactions are included the relevance of hopping
terms can be different. When only density-density and current-current interac-
tions between the wires are included, as discussed above [75, 76], the possible
relevance around this Gaussian model, recently called sliding LL [83, 84, 85],
can be different. If the single chains are in the spin-gapped Luther-Emery regime
[57] single-particle hopping between the chains is irrelevant and the coupled
system can show power-law correlations characteristic of a

���
-LL [83, 85]. For

the spinless model single particle and pair hoppings can be irrelevant for strong
enough forward interactions [84].

In the following we concentrate on the Luttinger to Fermi liquid crossover.
In order to get a quantitative picture it is desirable to study models which
allow controlled approximations. The simple perturbative calculation in E /
for the calculation of the one-particle Green’s function by Wen [80] discussed
below is unfortunately only controlled in the rather unphysical limit when the
transverse hopping is independent of the distances of the chains ( E / Ñ ¯ d V E / )
[86]. The (retarded) one-particle Green’s function � is expressed in terms of
the selfenergy ö

�ë� � - &9÷� / & � V E / �L� �� G Ï :,ø Ñ�ù: ô G ö_� � - & ÷� / & � V E / � & (1.68)

where Ï :�ø Ñ ù: ô denotes the energy dispersion for the noninteracting model and� � ; ~ c s is the frequency above the real axis. For small E / the dispersion
can be linearized around

� - � ^_� 2
near the open noninteracting Fermi sur-

face. This yields Ï :,ø Ñ ù: ô N ^ 082 � � - Â»� 2 � ~ E / � ÷� / � . In the context of Fermi

liquid theory the selfenergy is studied in (all orders) perturbation theory in the
two-body interaction

0
around the noninteracting limit. This can be done using

standard Feynman diagrams. In the present context one wants to study how
the LL behaviour for finite two body interaction and finite anomalous dimen-
sion is modified by the transverse hopping. Similar to perturbation theory for
the Hubbard model around the atomic limit nonstandard techniques have to be
used [87]. The simplest approximation, which corresponds to the “Hubbard
I” approximation for the Hubbard model, is to replace ö in Eq. (1.68) in ze-
roth order in E / by the selfenergy ö ¨ �;ú *,./p « � � - & � � of a single chain [80]. This
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approximation first used by Wen reads for
� - N � 2��� � - &9÷� / & � V E / �Qû � p � �� � � � � - & � � � � w G E / � ÷� / � & (1.69)

where � � is determined by the spectral function Ä � discussed following Eq.
(1.50) via a Hilbert transform. In the asymptotic low-energy regime this
yields � � � � 2 ~ ¸� - & � �L� W I3�g� ¸� - S � ½�� Z G � � S�; ½�� Z � Ò5ú Æ Z S\� � G 0 ½ ¸� - � for spinless
fermions, with ; ½LVO�5½ 0 ½ and

W I � � Õ � S\�/Q ��Öw× � � Õ � S8Q � � . Wen’s approximate
Green’s function leads to a spectral function with the same range of continua
as Ä � � � - & ; � . In addition there can be poles at ; :,ø Ñ�ù: ô , determined by setting

the denominator in Eq. (1.69) equal to zero. The poles located at ; :�ø ÑGù: ô ��s
determine the Fermi surface ¸� - � ÷� / � of the interacting coupled system. From

Eq. (1.69) and the simple form of � � one obtains
W I5�·¸� - S � ½�� ¨ w � Ò5ú « � E / � ÷� / � ,

which shows that the reduction of warping of the Fermi surface (FS) by the in-
teraction is proportional to � E / � ÷� / � S�; ½ � Ò5ú Æ ¨ w � Ò5ú « . This is shown in Fig. 1.6 for
a two dimensional system of coupled chains. If one writes E / � ÷� / ��V E / 
 � ÷� / � ,

−2 −1 0 1 2
kx/kF

−1

0

1

k y/π
a y

Figure 1.6. Fermi surface “flattening” in Wen’s approximation for coupled chains for different
values of the the anomalous dimension � ú for a single chain. The dotted lines show the nonin-
teracting FS, the long dashed curves correspond to � ú � ñ ô�� ¡ õ and the full ones to � ú � ñ ô � .
At � ú �è� the FS degenerates to two parallel lines as without interchain coupling, called the
“confinement transition”.

with 
 � ÷� / � a dimensionless function, the new effective low energy scale is given
by E �Cü � ; ½ ��E / S�; ½�� w Æ ¨ w � Ò ú « . The weights Ò ù: ô of the poles for ÷� values on the

Fermi surface are also proportinal to � E / � ÷� / � S�; ½ � Ò5ú Æ ¨ w � Ò5ú « . Wen’s approxi-
mate solution has the Fermi liquid type property of quasi-particle poles with
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nonzero weight on the Fermi surface, except at the special points where E / � ÷� / �
vanishes. The improved treatment by Arrigoni [88] shows that this peculiar van-
ishing of the quasi-particle weights is an artefact of Wen’s approximation. The
new idea involved is to let the number of “perpendicular” dimensions “

��Gr�
” go

to infinity. This extends the original idea of the “dynamical mean field theory”
(DMFT) [89], where one treats the Hubbard model in infinite dimensions as
an effective impurity problem to the case of a chain embedded in an effective
medium. Results are obtained by carrying out a resummation of all diagrams
in the E / -expansion which contribute in this large dimension limit [88]. This
approach shows explicitly how the leading order Wen approximation is uncon-
trolled at low energies. For the case of weakly coupled one-dimensional Mott
insulators one expects the approximation to be better controlled [90].

Despite the Fermi liquid like properties at energy scales much smaller than E �Cü
the coupled chain system can nevertheless show LL like properties for energy
scales larger than E �Cü if there is a large enough energy window to the high
energy cutoff ¸; ½ which describes the regime where the asymptotic LL power
laws hold for a single chain. Then for temperatures lower than ¸; ½ but higher thanE �Cü the system behaves like a LL. The integrated spectral functions Ä ÐÒ`Ñ ¨ ( « ��; �
probed by angular integrated photoemission, for example, show approximate
power law behaviour ø � G ; � Ò5ú for temperatures larger than E �Cü in the energy
window

��� 	 ² G ; ² ¸; ½ . Unfortunately little is known about the value of¸; ½ for microscopic models. An exception is the Tomonaga model Eq. (1.14)
with a constant ¸0 � �[� up to the cutoff

�`½
, where the high energy cutoff ¸; ½ equals; ½Ã�îý Ö{× � 0 ½ & 0 # �,� ½ [4]. This implies for the integrated spectral function for

the very large t Hubbard model with periodic boundary conditions that the
power law P ; P Ò ú only holds in a narrow energy window ø 0 # , which vanishes
proportional to

� S�t in the tþR í limit [65]. Another example is the Hubbard
model at boundaries where ¸; ½ can be very small for small t [50].

As an alternative way to treat the “anisotropic large dimension model” [88]
one can try to solve the resulting chain-DMFT equations numerically, using e.g.
a quantum Monte Carlo algorithm [91]. In this reference the

Û ¯ were chosen as
Hubbard Hamiltonians (1.66) with chain lengths of 16 and 32 sites. The results
for a partly filled band as a function of temperature indicate in fact a crossover
from a LL to a FL at the estimated crossover scale as the temperature is lowered.
In agreement with Arrigoni [88] the authors find that the quasi-particle weight
is more uniform along the Fermi surface than suggested by Wen’s approxima-
tion Eq. (1.69). At half filling and low but finite temperatures the crossover
from the Mott insulator to FL crossover was examined (the intermediate LL
regime was too narrow to be visible). In the future it is to be expected that this
method applied to longer chains and additional nearest neighbour interaction
will provide important results which allow a more realistic comparison with
experimental work.
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Because of space limitations the interesting field of a finite number of coupled
chains cannot be discussed here [92].

5.2 On the experimental verification of LL behaviour
There exist several types of experimental systems where a predominantly

���
character can be hoped to lead to an (approximate) verification of the physics of
Luttinger liquids. In the following we present a short list of the most promising
systems and discuss some of the experimental techniques which have been
used. As these topics are also discussed in other chapters of this book we do
not attempt a complete list of references but only refer to most recent papers or
to review articles on the subject.
The following systems look promising:

Highly anisotropic “quasi-one-dimensional” conductors

There has been extensive work on organic conductors, like the Bechgaard
salts [93, 94], as well as inorganic materials [95, 96].

Artificial quantum wires

Two important types of realizations are quantum wires in semiconductor
heterostructures [97, 98] or quantum wires on surface substrates [99, 100].

Carbon nanotubes

The long cylindrical fullerenes called quantum nanotubes are also quantum
wires but have been listed separately because of their special importance
in future applications like “molecular electronics” [101, 102]. Using the
peculiar band structure of the � -electrons of a single graphite plane it was
shown that single wall “armchair” nanotubes should show LL behaviour
with

� ½ ø s f�Q G4s f � down to very low temperatures [103, 104], despite the
fact that two low energy channels are present.

Fractional quantum Hall fluids

Electrons at the edges of a two-dimensional fractional quantum Hall system
can be described as a chiral Luttinger liquid [105]. The power law tunneling
density of states observable in the tunneling current-voltage characteristics
shows power laws of extraordinary quality [106]. The theoretical predictions
for general filling factors between the Laughlin states + ��� and + ��� S �
[107, 108] are not borne out by experiment [109]. As in these chiral LLs
the right- and left-movers are spatially separated the edge state transport
is quite different from the case of quantum wires and FQH fluids are not
further discussed in the following.

Promising experimental techniques to verify LL behaviour are:
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High resolution photoemission

One of the earliest claims of possible verification of Luttinger liquid be-
haviour was from angular integrated photoemission of the Bechgaard salt�;ÿ��kÿ���� � Z�� ��� , which showed a power law supression at the chemical
potential with an exponent of order

�
over an energy range of almost one

eV [110]. There are serious doubts that this suppression can be simply ex-
plained by the LL power law behaviour [94]. Therefore a large number of
other quasi-one-dimensional conductors were examined [94, 95, 96, 111].
In addition periodic arrays of quantum wires on surface substrates were stud-
ied by angular resolved photoemisssion (ARPES), but the interpretation of
a two peak structure as spin-charge separation [99] was questioned [100].
Spin-charge separation was shown to occur in the

���
Hubbard model also

at higher energies on the scale of the conduction band width [69, 70, 73].
Recent ARPES spectra of TTF-TCNQ were interpreted with the

���
Hub-

bard model at finite doping to show signatures of spin-charge separation
over an energy scale of the conduction band width. As for the Hubbard
model

� ½ëqî� S8Q for 9 J� � which implies
Õ � ² � SDç for the anomalous

dimension the experimentally found nearly linear spectral onset at low en-
ergies cannot be explained within the same model. ARPES data for the “Li
purple bronze” seem to compare favorably to the LL lineshape [96]. For the
quasi-one-dimensional antiferromagnetic insulators � ß
	���
 Z and � ß Z 	���
 

ARPES spectra have been interpreted to show evidence of spin-charge sep-
aration [112]. For a more in depth discussion see the chapter by Grioni in
this book.

Transport

As discussed in section 3 even a single impurity has a drastic effect on
the conductance of a LL, which vanishes as a power law with temperature.
Another issue is the “conductance puzzle” of a clean LL. There has been
an extended discussion whether the quantized value

È Z S " for noninteract-
ing electrons in a single channel is modified by the interaction to

� ½ È Z S "
[113, 114]. Apparently the answer depends sensitively on the assumptions
made about the contacts, a very delicate theoretical as well as experimental
problem [115]. Experimental results are available for cleaved edge over-
growth quantum wires [97] as well as carbon nanotubes [116, 117, 118]. In
the nanotubes the authors observe approximate power laws of the conduc-
tance which seem to be consistent with LL behaviour. A detailed dicussion
of transport through quantum wires is presented in the chapter by Yacoby.
For a recent theoretical discussion of experimental results on the interchain
transport in the Bechgaard salts see references [119, 120]. There the ques-
tion of energy scales and the importance of the proximity of the incipient
Mott insulator are addressed.
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Optical properties

Optical properties have long been used to investigate electronic properties
of quasi-one-dimensional systems [121]. The optical behaviour of differ-
ent Bechgaard salts was analyzed recently using LL concepts [122]. At
low energies, smaller than about ten times the Mott gap, the importance of
dimerization and interchain hopping was pointed out [123]. As there is a
separate chapter about the optical response in chains and ladders it will not
be discussed further here.

Obviously neither the list of systems nor that of methods is coming close to
being complete. They were presented to show that there are intensive experi-
mental activities in the attempt to verify the elegant LL concept put forward by
theoreticians. Further work on both sides is necessary to come to unambiguous
conclusions.
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[16] J. Sólyom, Adv. Phys. 28 , 201 (1979)

37



38

[17] R. Shankar, Rev. Mod. Phys. 66, 129 (1994)

[18] F.D.M. Haldane, Phys. Rev. Lett. 45, 1358, (1980)

[19] F.D.M. Haldane, J. Phys. C 14, 2585-2919 (1981)

[20] L.P. Gorkov and I.E. Dzyaloshinski, JETP Letters, 18, 401 (1973)

[21] D. C. Mattis, J. Math. Phys. 15, 609 (1974)

[22] A. Luther and I. Peschel, Phys. Rev. Lett. 32, 992 (1974)

[23] W. Apel and T.M. Rice, Phys. Rev. B 26, 7063 (1982)

[24] T. Giamarchi and H.J. Schulz, Phys. Rev. B 37, 325 (1988)

[25] C.L. Kane and M.P.A. Fisher, Phys.Rev.Lett. 68, 1220, (1992); Phys. Rev. B 46, 15233
(1992)

[26] For a theoretical review see: J. Voit, Rep. Prog. Phys. 58, 977-1116 (1995)

[27] M.P.A. Fisher and L.I. Glazman, “Transport in a one-dimensional Luttinger liquid”,
in Mesoscopic Electron Transport, NATO series E, Vol. 345, 331 (Kluwer Academic
Publishing, Dordrecht, 1997)

[28] K.-V. Pham, M. Gabay and P. Lederer, Phys.Rev. B 61, 16397 (2000)

[29] V. Meden and K. Schönhammer, Phys. Rev. B 46, 15753 (1992)

[30] J. Voit, Phys. Rev. B 47, 6740 (1993)

[31] K. Schönhammer, Phys. Rev. B 63, 245102 (2001)

[32] J.v. Delft and H. Schoeller, Ann. Phys. (Leipzig) 7, 225 (1998).

[33] The CCR � ³� ������ ��� �� cannot hold as an operator identity. This commutation relation
would imply � � �"!ª� ³� � ���� �#� �%$'&
�D� ³� . If one puts � �)( this leads to a contradiction
as � �"! ( ³� is zero because ³� has integer eigenvalues, but $*&
� ( ³� is nonzero (see P.
Jordan, Z. Phys. 44, 1 (1927)).

[34] K. Schönhammer, Phys. Rev. A 66, 014101 (2002)

[35] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Corre-
lated Systems (Cambridge University Press, Cambridge, 1998)

[36] Some authors factor out + � | �Þ� � in the definition of the , | �.- � , which is contained in our�/ | � ¡ ( - µ10 � .
[37] The subtleties of the large - and ã behaviour are discussed in V. Meden, Phys. Rev. B

60, 4571 (1999)

[38] V. Meden, “Spektrale Eigenschaften niedrigdimensionaler korrelierter Elekronensys-
teme”, PhD thesis, Göttingen (1996), http://www.theorie.physik.uni-goettingen.de / 2
meden



REFERENCES 39

[39] The naive expectation that the ï -resolved spectral function reduces to the noninteracting
delta-peak for ä ï ó ï��§ä43 ï < is false. This is discussed in: K. Schönhammer and V.
Meden, Phys. Rev. B 47, 16205 (1993)

[40] In contrast to the result for the occupancies (see [7]) the ä � ä |65 result holds without a
restriction on the value of � ú .

[41] D.N. Zubarev, Soviet Physics Uspekhi 3, 320 (1960)

[42] This decomposition is valid only for calculating low energy properties.

[43] D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952)

[44] W. Kohn, Phys. Rev. 133 A, 171 (1964)

[45] F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981)

[46] It is assumed that the (quasi-) momentum matrix elements ¶ �*7&	 �98;: �=<�	 �=> of the two-body
interaction have the property ¶ �'7 	 �=8�: �*7�	 �98 � ³¶ � ñ � and ¶ �'7&	 �98�: �98 	 �*7 � ³¶ � ä ï ¤ ó ï � ä � .
Then it is also easy to show directly that ¶@? � ¶ � ± / � ³¶ � � for non Galilei invariant
models.

[47] In this mapping the Klein factors are not taken into account in a rigorous way.

[48] The corresponding weak coupling RG for the disorder problem with many impurities
was in fact performed earlier [24].

[49] M. Fabrizio and A. Gogolin, Phys. Rev. B 51, 17827 (1995)

[50] V. Meden, W. Metzner, U. Schollwöck, O. Schneider, T. Stauber, and K. Schönhammer,
Eur. Phys. J. 16, 631-646 (2000)

[51] K. Moon, H. Yi, C.L. Kane, S.M. Girvin, and M.P.A. Fisher, Phys.Rev. Lett. 71, 4381
(1993)

[52] P. Fendley, A.W.W. Ludwig, and H. Saleur, Phys. Rev. Lett. 74, 3005 (1995)

[53] R. Egger, H. Grabert, A. Koutouza, H. Saleur, and F. Siano, Phys. Rev. Lett. 84, 3682
(2000)

[54] D. Yue, L.I. Glazman, and K.A. Matveev, Phys. Rev. B 49, 1966 (1994)

[55] V. Meden, W. Metzner, U. Schollwöck, and K. Schönhammer, Phys. Rev. B 65, 045318
(2002); J. Low Temp. Phys. 126, 1147 (2002)

[56] A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 4631 (1993)

[57] A. Luther and V. Emery, Phys. Rev. Lett. 33, 589 (1974)

[58] Here again the Klein factors are treated in a sloppy way. Strictly speaking even the fact
that the Hamiltonian is a sum of commuting boson and particle number parts is lost.

[59] see e.g. E. Lieb, T. Schultz and D. Mattis, Annals of Physics 16, 407 (1961)

[60] C.N. Yang and C.P. Yang, Phys. Rev. 150, 321, 327 (1966)



40

[61] M. Fowler and M.W. Puga, Phys.Rev. B 18, 421 (1978)

[62] As the numerical results by Haldane [18] are not easily extracted from his figure, the
results shown were obtained by an independent numerical solution of the Bethe Ansatz
equations (V. Meden, private communication).

[63] S. Capponi, D. Poilblanc, and E. Arrigoni, Phys. Rev. B 57, 6360 (1998)

[64] H.J. Schulz, “Fermi liquids and non-Fermi liquids” in Mesoscopic Quantum Physics,
Les Houches, Session LXI, 1994 (Elsevier, Amsterdam, 1995)

[65] for a review see e.g. : F. Mila and K. Penc, J. of Electron Spectr. and Rel. Phen. 117-118,
451 (2001), and references therein

[66] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

[67] H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990); there is a factor
¡

missing in the denomi-
nator on the rhs of Eq. (8).

[68] J.Favand, S. Haas, K. Penc, and E. Dagotto, Phys. Rev. B 55, R4859 (1997)

[69] M.G. Zacher, E. Arrigoni, W. Hanke, and J.R. Schrieffer, Phys. Rev. B 57, 6370 (1998)

[70] K. Penc, K. Hallberg, F. Mila and H.Shiba, Phys.Rev. B 55, 15475 (1997)

[71] F. Gebhard, K. Bott, M. Scheidler, P. Thomas, and S. W. Koch, Phil. Mag. B 75, 13
(1997)

[72] F. B. Gallagher and S. Mazumdar, Phys. Rev. B 56, 15025 (1997)

[73] J. M. P. Carmelo, N. M. R. Peres, and P.D. Sacramento, Phys. Rev. Lett. 84, 4673 (2000)

[74] E. Jeckelmann, F. Gebhard, and F.H.L. Essler Phys. Rev. Lett. 85, 3910 (2000); F.H.L.
Essler, F. Gebhard, and E. Jeckelmann, Phys. Rev. B 64, 125119 (2001)

[75] H.J. Schulz, J. Phys. C 16, 6769 (1983)

[76] P. Kopietz, V. Meden, and K. Schönhammer, Phys. Rev. Lett. 74, 2997 (1995); Phys.
Rev. B 56, 7232 (1997). The effective low energy scale ãBADC discussed after Eq. (1.69) is
not recovered in the higher dimensional bosonization scheme.

[77] H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993)

[78] L.P. Gorkov and I.E. Dzyaloshinski, Sov. Phys. JETP 40, 198 (1975)

[79] C. Bourbonnais, F. Creuzet, D. Jerome, K. Bechgaard, and A. Moradpour, J. Phys. (Paris)
Lett. 45, L755 (1984)

[80] X. G. Wen, Phys. Rev. B 42, 6623 (1990)

[81] C. Bourbonnais and L.G. Caron, Int. J. Mod. Phys. B 5, (1991)

[82] S.A. Brazowski and V.M. Yakovenko, Sov. Phys. JETP 62, 1340 (1985); A.A. Nerseyan,
A. Luther, and F.V. Kusmartsev, Phys. Lett. A176, 363 (1993)

[83] V.J. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, Phys. Rev. Lett. 85, 2160
(2000)



REFERENCES 41

[84] A. Vishwanath and D. Carpentier, Phys. Rev. Lett. 86, 674 (2001)

[85] R. Mukhopadyhay, C. L. Kane, and T. C. Lubensky, Phys. Rev. B 64, 045120 (2001)

[86] D. Boies, C. Bourbonnais, and A.M.S. Tremblay, Phys. Rev. Lett. 74, 68 (1995)

[87] W. Metzner, Phys. Rev. B 43, 8549 (1991)

[88] E. Arrigoni, Phys. Rev. Lett. 83, 128 (1999); Phys. Rev. B 61, 7909 (2000)

[89] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); A. Georges, G. Kotliar,
W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

[90] F.H.L. Essler and A. Tsvelik, Phys. Rev. B 65, 115117 (2002)

[91] S. Biermann, A. Georges, A. Liechtenstein, and T. Giamarchi, Phys. Rev. Lett. 87,
276405 (2001)

[92] see e.g. M. Tsuchiizu, P. Donohue, Y. Suzumura, and T. Giamarchi, Eur. Phys. J. B 19,
185 (2001)

[93] D. Jerome and H.J. Schulz, Adv. Phys. 31, 299 (1982)

[94] M. Grioni and J. Voit, “High resolution photoemission studies of low dimensional
system”, in: H. Stanberg, H. Hughes (Eds.), Electron Spectroscopies Applied to Low-
Dimensional Materials, Kluwer Academic Publishers, (2000) p. 501

[95] G.H. Gweon, J.D.Denlinger, J.W. Allen, R. Claessen, C.G.Olson, H.Höchst, J. Marcus,
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